Enhancing Cross-Lingual Transfer through Reversible Transliteration: A
Huffman-Based Approach for Low-Resource Languages

Wenhao Zhuang'?, Yuan Sun

1,2,3,* 1,2,3

, Xiaobing Zhao

'Minzu University of China, Beijing, China
ZNational Language Resource Monitoring & Research Center Minority Languages Branch
3Institute of National Security, Minzu University of China, Beijing, China

Emails: sdrz_zwh@163.com, sunyuan@muc.edu.cn, nmzxb_cn@163.com
* Corresponding author: Yuan Sun

Abstract

As large language models (LLMs) are trained
on increasingly diverse and extensive multilin-
gual corpora, they demonstrate cross-lingual
transfer capabilities. However, these capabil-
ities often fail to effectively extend to low-
resource languages, particularly those utilizing
non-Latin scripts. While transliterating low-
resource languages into Latin script presents a
natural solution, there currently lacks a com-
prehensive framework for integrating translit-
eration into LLMs training and deployment.
Taking a pragmatic approach, this paper inno-
vatively combines character transliteration with
Huffman coding to design a complete transliter-
ation framework. Our proposed framework of-
fers the following advantages: 1) Compression:
Reduces storage requirements for low-resource
language content, achieving up to 50% reduc-
tion in file size and 50-80% reduction in token
count. 2) Accuracy: Guarantees 100% lossless
conversion from transliterated text back to the
source language. 3) Efficiency: Eliminates the
need for vocabulary expansion for low-resource
languages, improving training and inference ef-
ficiency. 4) Scalability: The framework can
be extended to other low-resource languages.
We validate the effectiveness of our framework
across multiple downstream tasks, including
text classification, machine reading comprehen-
sion, and machine translation. Experimental re-
sults demonstrate that our method significantly
enhances the model’s capability to process low-
resource languages while maintaining perfor-
mance on high-resource languages. Our data
and code are publicly available at https://
github.com/CMLI-NLP/HuffmanTranslit.

1 Introduction

Large language models have demonstrated remark-
able multilingual transfer capabilities, enabling
knowledge transfer from one language to another
without additional training (Qi et al., 2023; Gao
et al., 2024; Ye et al., 2023). However, this trans-
fer ability often performs poorly in low-resource

languages, primarily constrained by three factors:
scarcity of training data (Costa-jussa et al., 2022),
insufficient cross-lingual word embedding align-
ment (Deshpande et al., 2021), and writing sys-
tem differences (Anastasopoulos and Neubig, 2019;
Muller et al., 2021).

Common approaches to improving LLMs’ adapt-
ability to low-resource languages include contin-
ued pre-training and supervised fine-tuning (Tao
et al., 2024). Due to the low representation of
low-resource languages in tokenizers and frequent
occurrence of UNKnown tokens (Moosa et al.,
2023), vocabulary expansion becomes a primary
task (Zhuang and Sun, 2025). However, ensuring
high performance for multiple low-resource lan-
guages is extremely challenging, facing two key
issues. The first issue is the increased training and
inference costs due to vocabulary size, as vocab-
ulary must inevitably expand with the addition of
languages to ensure tokenization performance for
each language (Purkayastha et al., 2023). The sec-
ond issue is the curse of multilinguality, which
means that using a fixed-capacity model to pre-
train multiple languages can improve cross-lingual
performance to some extent, but performance be-
gins to decline beyond a certain point (Conneau,
2019).

To improve cross-lingual transfer while avoid-
ing issues associated with extensive vocabulary ex-
pansion, transliteration of low-resource languages
has emerged as a viable approach. Translitera-
tion refers to the process of converting text from
one writing system to another according to spe-
cific rules, typically converting non-Latin scripts
to Latin alphabet representation (Wellisch, 1978).
Previous studies have demonstrated that transliter-
ating text into a common character set can enhance
cross-lingual transfer performance for low-resource
languages with non-Latin scripts (Liu et al., 2024a,
2025). This improvement is attributed to the com-
mon character set facilitating knowledge transfer

16299

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16299-16313

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics


https://github.com/CMLI-NLP/HuffmanTranslit
https://github.com/CMLI-NLP/HuffmanTranslit

through lexical overlap (Dhamecha et al., 2021;
Pires, 2019; Amrhein and Sennrich, 2020) and en-
abling the reuse of existing information in embed-
ding matrices (Purkayastha et al., 2023). Append-
ing transliterated content to prompt templates for
low-resource languages has been shown to improve
downstream task performance (Ma et al., 2024).

Most research on transliteration relies on exist-
ing tools like UROMAN (Hermjakob et al., 2018),
which maps any UTF-8 character to Latin letters,
to investigate the impact of transliteration on cross-
lingual transfer or alignment. However, this translit-
eration process is irreversible; due to the potential
loss of characteristic information from the origi-
nal script during transliteration, it is impossible to
accurately restore the transliterated Latin letters
back to the source language script, which limits
its practical applications (Amrhein and Sennrich,
2020). Furthermore, low-resource languages typ-
ically utilize extended Unicode character sets for
encoding, resulting in their textual data occupying
more storage space compared to languages like En-
glish. This storage overhead issue becomes more
prominent when processing large-scale multilin-
gual corpora. Therefore, this paper focuses on two
key issues: how to implement a reversible transliter-
ation mechanism to facilitate practical applications
while maintaining cross-lingual transfer effective-
ness, and how to achieve text compression during
the transliteration process to facilitate storage and
training. We observe that these two points corre-
spond precisely to the reversibility and compres-
sion properties of Huffman coding, which provides
the theoretical foundation for our Huffman coding-
based transliteration scheme.

We selected three low-resource languages: Ti-
betan, Mongolian, and Uyghur, which are mi-
nority languages in China with a total user base
exceeding 30 million speakers, along with En-
glish and Chinese as high-resource languages for
our experiments. We conducted continued pre-
training of open-source LLMs using corpora ob-
tained through various transliteration methods, an-
alyzed cross-lingual transfer performance across
text classification, named entity recognition, ma-
chine reading comprehension, knowledge extrac-
tion, and machine translation tasks, while also com-
paring compression rates among different translit-
eration methods. To enable the model to directly
serve low-resource language users, we developed
a FastText-based automatic transliteration frame-
work that performs language detection before and

after model processing, implementing translitera-
tion and restoration of input and output, thereby
maintaining native language interaction at the user
end. In summary, our contributions are as follows:

* We propose a Huffman coding-based translit-
eration scheme for low-resource languages,
achieving reversibility in the transliteration
process and addressing the limitations of tra-
ditional transliteration methods in practical
applications.

* Leveraging the compression properties of
Huffman coding, we effectively reduce the
storage overhead of low-resource language
texts, making the training of large-scale multi-
lingual corpora more efficient.

* We develop an end-to-end framework integrat-
ing FastText language identification, enabling
automatic transliteration and restoration of
low-resource languages while maintaining na-
tive language interaction and improving per-
formance across multiple downstream tasks.

2 Related Works

Cross-lingual Transfer for Low-resource Lan-
guages To enhance low-resource language per-
formance in LLMs, one primary approach uses con-
tinued pre-training and supervised fine-tuning with
low-resource corpora (Wenhao et al., 2024). How-
ever, this method faces significant challenges: it
requires complex vocabulary expansion and model
architecture modifications, resulting in poor scal-
ability, and most critically, suffers from limited
training data availability (Joshi et al., 2020).

Alternative approaches focus on improving
cross-lingual transfer capabilities through vari-
ous mechanisms: concatenating multilingual in-
put sequences to leverage shared representation
spaces (Kim et al.; Tanwar et al., 2023; Cueva
et al., 2024), projecting target language represen-
tations onto high-resource languages for enhanced
feature extraction (Xu et al., 2023), and increasing
the parallel content in multilingual training cor-
pora (Zhuang and Sun, 2025).

While these methods aim to transfer capabilities
from resource-rich to low-resource languages, a
fundamental challenge remains: the substantial dif-
ferences in writing systems among low-resource
languages. Unifying multiple languages into a sin-
gle writing system could potentially address vocab-
ulary challenges and promote vocabulary sharing,
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thereby facilitating cross-lingual knowledge trans-
fer (Purkayastha et al., 2023).

Tokenization and Vocabulary Expansion Ex-
isting subword tokenizers (such as BPE (Sennrich,
2015) and SentencePiece (Kudo, 2018)) have been
widely adopted for low-resource languages. How-
ever, due to the limited representation of these lan-
guages in pre-training corpora, they suffer from in-
sufficient vocabulary coverage, over-segmentation,
and high ratios of unknown tokens. While vocabu-
lary expansion (Cui et al., 2023) offers a potential
solution, it introduces new challenges: the need for
substantial training data to adequately train new
tokens, and increased model capacity requirements
to mitigate the multilingual curse (Conneau, 2019).

Recent approaches have focused on more effi-
cient solutions, such as leveraging shared linguis-
tic information and cross-lingual word embedding
alignment (Ogueji et al., 2021; Liu et al., 2021),
which improve tokenization without significant vo-
cabulary expansion. Notably, transliterating low-
resource languages into a unified writing system
has shown promising results (Dhamecha et al.,
2021; Liu et al., 2024b), simultaneously enhancing
vocabulary sharing and model transfer capabilities
while avoiding the computational overhead of vo-
cabulary expansion.

Romanization and Transliteration Romaniza-
tion is the process of mapping various characters
to Latin characters, though this process is typically
irreversible. Its objective is to approximate the pro-
nunciation of the original character text as closely
as possible. Specialized tools like UROMAN (Her-
mjakob et al., 2018) can romanize almost all char-
acters by directly mapping UTF-8 characters to
Latin letters, though this process involves informa-
tion loss, such as the omission of tonal information.
There are also general character conversion tools
like uconv that can preserve more original charac-
ter information, such as adding diacritical marks,
but this limits subword sharing across languages.
The Tibetan, Mongolian, Uyghur, and Chi-
nese languages used in our experiments can all
be romanized through UROMAN; however, due
to the uniqueness of the Tibetan writing system,
uconv currently cannot transliterate Tibetan. Ro-
manization encoding has been studied in both
natural language processing and speech process-
ing domains, such as its application in multilin-
gual pre-trained language models to enhance low-
resource languages (Purkayastha et al., 2023), and

in speech processing systems’ pre-training as ad-
ditional forced alignment for text labeling (Pratap
et al., 2024). Moreover, phonological distinctions
may be lost during romanization - for instance,
Chinese characters become toneless pinyin when
romanized, with a single pinyin potentially cor-
responding to many different characters. URO-
MAN also converts numbers from different writ-
ing systems into Western Arabic numerals (Ding
et al., 2024), which further complicates the process
of converting romanized text back to source lan-
guages, particularly when users expect LLMs to
output in their native writing systems. In contrast,
our proposed Huffman coding-based transliteration
method is an innovative approach that balances
transliteration (improving cross-lingual transfer),
compression (reducing storage and training costs),
and reversibility (facilitating practical restoration
and interaction).

3 Methodology

3.1 Overview

We propose a three-stage processing approach for
low-resource language transliteration and applica-
tions: (1) character encoding design: analyzing
character frequencies and designing custom encod-
ings. (2) transliteration and model training: train-
ing on transliterated raw corpora. (3) end-to-end
language processing pipeline: comprising input
language classification and processing, model in-
ference, and output language classification and pro-
cessing, as shown in Figure 1.

In this study, we focus on three low-resource
languages of China: Tibetan, Uyghur, and Mon-
golian (see Table 1). These languages represent
different writing systems, with a combined user
base exceeding 30 million speakers. We select
these languages because they present significant
challenges for cross-lingual transfer: they use non-
Latin scripts, have limited digital resources, and
exhibit distinct writing systems that differ substan-
tially from high-resource languages like Chinese
and English.

Name | ISO 639-1 | Writing System
Tibetan bo Tibetan script
Uyghur ug Uyghur Arabic script

Mongolian mn Traditional Mongolian script

Table 1: Overview of the low-resource languages stud-
ied in this work.
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Step 1: Character Encoding Design

Unicode

Character
Statistics

bo: agaz B NRN FN BV YR RS
mn: m jJ frowed s/ H, ﬂ

ug: Cilidas b g Liga,

Custom
;3158047 Encoding "G oor e
"/ : 1363662 Assignment wh-E or a
457 .

Step 2: Transliteration and Model Training

Transliteration

Process

bo: q:i;j&g'ﬂ%«'zﬂq’q@m'?'g&'agx. ..
mn: foontes fom

Ug: (b (558 Gl gy Jiinal 555
en: March is a good time for ...

zh: YV BISEELERFRA ...

>

bo: @BzCAfCfQCPCIQA|CP...
mn: @AIBrAcAoGKBBfCZzAu...
ug: @AbBiAbXHABIAbDNB...
en: March is a good time for ...
zh: wu ye shi zhi yi jing jian...

Training Input

Step 3: Language Processing Pipeline

Input Model output
User Input Language Need Output Language
— > | Classifier | —> (Transliteration? ) —» >

Classifier _‘

Figure 1: Overview of our three-stage approach. Step 1: Character encoding design with Unicode character statistics
and custom encoding assignment. Step 2: Transliteration process for model training input. Step 3: Language
processing pipeline with language classification for user interaction.

3.2 Character Frequency Analysis

Since English already uses Latin script and Chi-
nese has well-established romanization tools for
converting characters to pinyin, we focused our
transliteration efforts on three low-resource lan-
guages: Uyghur, Tibetan, and Mongolian. Our
character frequency analysis began with the CUTE
open-source parallel dataset (Zhuang and Sun,
2025), which provided aligned text across Chi-
nese, Uyghur, Tibetan, and English. To incorporate
Mongolian, which wasn’t originally included in
CUTE, we followed the dataset’s methodology to
collect and evaluate Mongolian translations, using
human evaluators to assess translation quality from
Chinese to Mongolian. For comprehensive char-
acter analysis, we sampled 3,000 instances from
each of the three low-resource languages and con-
ducted a thorough examination of their Unicode
characters and frequencies. Through a systematic
approach combining Unicode code point ranges,
character naming conventions, and expert linguistic
validation, we identified the core character sets for
each language: 45 characters for Mongolian, 38 for
Uyghur, and 81 for Tibetan. These character sets

were then consolidated and arranged in descending
order of frequency, providing a foundation for our
transliteration scheme.

3.3 Huffman-based Encoding Design

Properties of Huffman Coding Huffman cod-
ing, as a variable-length encoding method, pos-
sesses both variable-length allocation and pre-
fix properties. The variable-length allocation
ensures that high-frequency characters receive
shorter codes while low-frequency characters re-
ceive longer codes, providing a theoretical founda-
tion for our text compression. The prefix property
guarantees that no code is a prefix of any other char-
acter’s code, facilitating unambiguous decoding.

Customized Encoding Scheme Based on the
principles of Huffman coding, we designed an im-
proved encoding scheme. To accommodate more
languages, our scheme, while not strictly adhering
to the prefix property, ensures unambiguous de-
coding through structured design. Specifically, we
constrain all codes to follow the pattern "First letter
capitalized, subsequent letters lowercase" and em-
ploy a maximum matching strategy for decoding.
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Table 2 demonstrates the possibilities of this design
pattern at different lengths.

Length Pattern Capacity
One A,B,..,Z 26
Two Aa, Ab, ..., 7z 676
Three Aaa, Aab, ..., Zzz 17,576
Four Aaaa, Aaab, ..., Zzzz 456,976
Total (up to four characters) 475,254

Table 2: Encoding patterns and theoretical capacity for
different lengths. The pattern consists of one uppercase
letter followed by zero or more lowercase letters.

This design offers three key advantages: (1) By
constraining the first character to be uppercase and
subsequent characters to be lowercase, combined
with the maximum matching strategy, it ensures
unambiguous decoding. (2) It maintains the core
principle of Huffman coding, allowing for variable-
length code allocation based on character frequen-
cies. (3) It provides significant scalability, theo-
retically supporting encoding for up to 475,254
characters. In this study, we implemented a subset
of the two-character scheme, utilizing 21 single-
character codes (B-X) and 141 two-character codes
(Aa-Fk), totaling 162 encoding options. This scale
is sufficient to cover the character sets of Uyghur,
Tibetan, and Mongolian languages.

3.4 Transliteration Strategies

To explore optimal transliteration strategies, we
designed three progressive transliteration schemes,
with each scheme building upon and improving its
predecessor.

Basic Transliteration Strategy We designed
a transliteration scheme using "First-letter-
capitalized + lowercase" encoding rules. This
scheme transliterates Uyghur, Tibetan, and
Mongolian into Latin alphabet representations
according to encoding rules, while converting
Chinese characters into Pinyin and preserving
English text unchanged. While this strategy
achieved basic transliteration functionality and
reversibility, it did not account for the tokenizer’s
characteristics, leaving room for further token
compression.

Tokenizer-based Optimization Strategy To ad-
dress the token optimization potential in the ba-
sic strategy, we analyzed the characteristics of the

Llama?2 tokenizer. Research showed that 66% of
original characters required four tokens for repre-
sentation. In response, we innovatively utilized
single tokens from the Llama?2 tokenizer (Touvron
et al., 2023) as encoding mappings for original
characters, enabling all 162 original characters to
be represented by single tokens. The comparative
token distribution is shown in Table 3.

Method 1-token 2-token 3-token 4-token
Original 1 45 9 107
Basic 90 72 0 0
Optimized 162 0 0 0

Table 3: Character distribution by token length after
Llama2 tokenization. The Optimized method achieves
single-token encoding for all characters.

Hybrid Vocabulary Strategy Building upon the
second strategy, we leveraged the linguistic patterns
inherent in the transliterated text to train a special-
ized vocabulary of 4,000 tokens. This vocabulary
was merged with Llama2’s original 32,000-token
vocabulary to create a hybrid vocabulary of 33,738
tokens, maintaining efficient single-character en-
coding while capturing common character combi-
nations. The comparison of the three strategies is
presented in Table 4. For a comprehensive analy-
sis of file size and token compression ratios across
different languages and strategies, see Appendix B.

Strategy  Vocab Size Compr. Cost
Basic 32,000 1.63x% Low
Tokenizer 32,000 2.35x Medium
Hybrid 33,738 3.04x% High

Table 4: Comparison of different strategies. Compr.
shows average token compression ratio across Tibetan,
Mongolian and Uyghur languages.

3.5 Reversibility Mechanism

Our transliteration system achieves perfect re-
versibility through a carefully designed mapping
mechanism, maintaining bidirectional mappings
between original characters and Latin codes. For
characters not in the mapping tables (e.g., emojis,
rare characters, or special symbols), the system pre-
serves them using @’ markers with proper escape
sequences (e.g., @ @’ for the ’ @’ character itself),
ensuring no information loss during transliteration.
The detailed process is shown in Algorithm 1.
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Algorithm 1 Reversible Transliteration System

IHPUt: Mc2l7 Ml2c:
text: Input text
Output: Transliterated or restored text

Bidirectional mappings,

Function ToLatin(text):
result < ||
for each cin text do
Append M9[c] if exists, else preserve as
@..@
end for
return joined result

Function FromLatin(latin_text):
result <[], i< 0
while ¢ < length(latin_text) do
Process @ markers or find longest match-
ing code
Advance 7 accordingly
end while
return joined result

The system employs a greedy matching strategy
during restoration, where it attempts to match the
longest possible Latin code sequence for mapped
characters while correctly handling preserved se-
quences between @’ markers. This dual mecha-
nism ensures 100% restoration accuracy by either
mapping characters through the bidirectional tables
or preserving them in their original form.

3.6 Auxiliary Models for Practical
Deployment

To achieve end-to-end system deployment, we de-
veloped three auxiliary models. At the input stage,
we trained a FastText-based classifier specifically
for identifying Mongolian, Tibetan, Uyghur, Chi-
nese, and other languages. At the output stage, we
trained a FastText language classifier tailored to
the characteristics of transliterated text to guide
language restoration. Additionally, to accurately
handle the conversion from Chinese pinyin to char-
acters, we fine-tuned a specialized model based on
Qwen2.5-0.5B (Yang et al., 2024). The detailed
training processes and evaluation results of these
models are presented in Appendix A.

4 Experiments and Analysis

To evaluate the effectiveness of different translit-
eration schemes, we conducted a series of experi-
ments examining the cross-lingual transfer perfor-

mance of models trained with various translitera-
tion strategies. We specifically focused on whether
the models could effectively transfer knowledge to
low-resource languages (Tibetan, Mongolian, and
Uyghur) while maintaining performance in high-
resource languages (Chinese and English).

4.1 Experimental Setup

We adopt the following experimental procedure:
First, we process the pre-training corpus using dif-
ferent transliteration methods, followed by con-
tinued pre-training of the model. The choice of
continued pre-training over training from scratch
is motivated by the common challenge of insuffi-
cient training data faced by low-resource languages,
which makes it difficult to support a complete pre-
training process. After pre-training, we perform
supervised fine-tuning using downstream task data
from high-resource languages, and then directly
conduct zero-shot evaluation on low-resource lan-
guages to verify the model’s cross-lingual transfer
capability.

For Tibetan, Uyghur, and Mongolian languages,
we identified a limited number of available datasets.
Our experiments encompassed three primary tasks:
text classification, machine reading comprehension,
and translation. These tasks evaluated the model’s
capabilities across different levels of language pro-
cessing, thereby enabling a comprehensive assess-
ment of the transliteration scheme’s effectiveness.
Details regarding the pre-training data and parame-
ter settings can be found in Appendix C.

We designed the following comparative experi-
ments:

* Direct Continued Pre-training: Continuing
pre-training on the original model using raw
corpora.

* Vocabulary Expansion: Augmenting the orig-
inal model’s vocabulary with dedicated lexi-
cons for each low-resource language.

* UROMAN Transliteration: Applying univer-
sal romanization tools for transliteration.

* Three Progressive Transliteration Strategies:
As detailed in Section 3.4.

4.2 Text Classification

We first evaluated the effectiveness of various
transliteration schemes on the text classification
task. The experiments utilized the WCM-v2 dataset
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Model Low-resource Languages (Acc / F1) Chinese Average
bo mn ug Acc F1 Minorities All

Base Llama2 28.65/21.23 1.78/1.65 73.33/74.69 | 86.12 8591 | 13.48/9.01 48.15/48.78
Expanded Vocab | 53.96/51.69 64.45/67.95 76.00/82.91 | 89.95 8991 | 62.58/64.56 75.64/76.34
UROMAN 49.37/48.88 64.92/67.78 81.33/86.18 | 89.82 89.75 | 62.10/63.47 75.33/75.84
Basic Trans. 52.16/52.18 66.46/69.55 74.67/81.51 | 89.92 89.81 | 63.40/65.17 76.06/76.60
Token-Opt Trans. | 54.14/54.94 61.25/64.61 81.00/85.31 | 90.15 90.07 | 60.80/63.54 74.81/75.86
Hybrid Trans. 50.45/52.58 61.25/65.15 65.33/75.59 | 90.00 89.95 | 58.80/62.15 73.68/75.02

Table 5: Performance comparison on the WCM-v2 dataset. The best scores are in bold, with the second best
underlined. Base Llama2: directly fine-tuned on original texts; Expanded Vocab: vocabulary expansion for each
low-resource language; Basic/Token-Opt/Hybrid Trans.: three progressive transliteration strategies. Minorities
average is calculated as the mean of scores for low-resource languages.

\ CMRC-Trained

| SQuAD-Trained

Model
Chinese Tibetan English Tibetan
EM Fl1 EM Fl1 EM Fl1 EM Fl1

Base Llama2 77.2 89.5 7.9 45.8 89.5 95.3 6.5 50.8
Expanded Vocab 81.3 91.1 11.5 50.6 89.9 95.7 10.3 589
UROMAN 79.6 88.3 12.0 53.4 84.2 88.7 11.0 61.1
Basic Trans. 87.7 92.7 15.5 59.5 87.7 89.1 12.7 65.1
Token-Opt Trans. 88.4 93.6 16.0 60.2 88.0 89.3 13.5 66.5
Hybrid Trans. 83.1 90.2 14.8 58.8 87.2 89.0 12.3 64.9

Table 6: Machine Reading Comprehension performance comparison. The best scores are in bold, with the second
best underlined. Results show both source language (Chinese/English) and target language (Tibetan) performance
under different training settings. EM: Exact Match score; F1: F1 score.

(see Appendix D.1), a classification dataset en-
compassing multiple ethnic minority languages of
China (Yang et al., 2022). This dataset maintains
balanced distributions across both categories and
languages, containing texts from 10 domains in-
cluding arts, geography, and history. The experi-
mental results are shown in Table 5. To comprehen-
sively evaluate the effectiveness of each approach,
we focus not only on the overall performance but
also specifically on the average performance across
low-resource languages.

4.3 Machine Reading Comprehension

For the machine reading comprehension task, we
evaluate the models’ performance by fine-tuning
them on the Chinese CMRC dataset (Cui et al.,
2019) and English SQuAD dataset (Rajpurkar,
2016), followed by zero-shot testing on the Ti-
betanQA dataset (Sun et al., 2021) to assess their
cross-lingual transfer capabilities. We also report
the performance on the source languages to verify
that our approaches maintain strong performance
on high-resource languages while enabling effec-
tive cross-lingual transfer. The results are shown in
Table 6. For detailed information about the datasets,
please refer to Appendix D.2.

4.4 Machine Translation

To evaluate the models’ machine translation capa-
bilities for low-resource languages, we conduct
experiments on Chinese-to-Tibetan (zh-bo) and
Chinese-to-Uyghur (zh-ug) translation tasks using
the Flores-200 dataset (Costa-jussa et al., 2022).
We employ few-shot prompting with three care-
fully selected examples for each language pair, en-
suring the examples cover diverse linguistic pat-
terns. The evaluation uses three standard metrics:
BLEU score for overall translation quality, chrF for
character-level accuracy, and Translation Edit Rate
(TER) for measuring the amount of editing required
to match the reference translation. Table 7 presents
the results of our comparative evaluation. For de-
tailed information about the dataset and prompts
used, please refer to Appendix E.

4.5 Overall Analysis

Cross-task Performance Analysis Through a
comparative analysis of experimental results across
text classification, machine reading comprehen-
sion, and machine translation tasks, our proposed
transliteration approach demonstrated excellent
cross-lingual transfer capabilities. In text clas-
sification tasks, the basic transliteration strategy
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Model Chinese-to-Tibetan (zh-bo) Chinese-to-Uyghur (zh-ug)
BLEU?T chrFt TER| BLEU?T chrF{ TER|
Base Llama2 35 0.28 0.92 4.2 0.31 0.89
Expanded Vocab 5.0 0.35 0.86 5.7 0.38 0.83
UROMAN 4.5 0.33 0.88 52 0.36 0.85
Basic Trans. 5.7 0.37 0.84 6.4 0.40 0.81
Token-Opt Trans. 6.3 0.39 0.82 7.0 0.42 0.79
Hybrid Trans. 3.8 0.30 0.90 4.5 0.33 0.87

Table 7: Machine Translation performance comparison on Flores-200 dataset using few-shot prompting (3 examples).
1 higher is better, |: lower is better. The best scores are in bold, with the second best underlined. TER: Translation

Edit Rate.

achieved an average accuracy of 63.40% on low-
resource languages, showing an improvement of
0.82% compared to the vocabulary expansion
approach. For machine reading comprehension
tasks, the tokenizer-optimized transliteration strat-
egy achieved an exact match score of 16.0% on
Chinese-to-Tibetan transfer, outperforming the vo-
cabulary expansion approach by 4.5%. This strat-
egy also exhibited superior performance in trans-
lation tasks, achieving a BLEU score of 6.3 in
Chinese-to-Tibetan translation. Notably, these im-
provements were achieved while maintaining high
performance on resource-rich languages, as exem-
plified by our approach achieving 90.15% accuracy
on Chinese text classification tasks.

Key Findings Our experimental results yield
three significant findings:

* Performance and Efficiency: Our translitera-
tion approaches consistently outperformed tra-
ditional vocabulary expansion methods across
tasks, with both basic and tokenizer-optimized
strategies showing exceptional results. By
leveraging existing tokenizer characteristics,
these approaches significantly improved low-
resource language processing without vocabu-
lary expansion.

» Untapped Potential: Despite using simple
frequency-based encoding schemes (B-X, Aa-
Fk) and random token assignments, our meth-
ods demonstrated remarkable effectiveness.
This suggests substantial room for improve-
ment through the incorporation of linguis-
tic features and more sophisticated encoding
strategies.

* Scalable Framework: Our findings establish
a new paradigm for low-resource language

processing, offering a more promising direc-
tion than vocabulary expansion. The success
of this relatively simple implementation par-
ticularly demonstrates its potential for scaling
to multiple low-resource languages.

These results not only validate our approach but
also indicate that more sophisticated versions of
these strategies could yield even more significant
improvements in low-resource language process-
ing.

5 Conclusion

In this paper, we introduce a novel Huffman-based
transliteration framework that addresses three criti-
cal challenges in low-resource language processing:
cross-lingual transfer, storage efficiency, and prac-
tical deployment. Our framework demonstrates
superior performance across diverse tasks while
maintaining a lightweight implementation. The ba-
sic and tokenizer-optimized strategies consistently
outperform traditional approaches, achieving up
to 4.5% improvement in cross-lingual machine
reading comprehension and significant gains in
translation tasks, all while preserving performance
on high-resource languages. Beyond performance
gains, our approach offers unique advantages in
compression efficiency, reducing both file size and
token count by 2-3 times without sacrificing re-
versibility. Most importantly, our framework’s suc-
cess with simple frequency-based encoding sug-
gests substantial potential for improvement through
the incorporation of linguistic features and more
sophisticated encoding strategies. These findings
establish a promising direction for scaling language
technologies to the world’s many low-resource lan-
guages, offering a more practical alternative to the
traditional vocabulary expansion paradigm.
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Limitations

While our approach demonstrates promising re-
sults, there are several important limitations to con-
sider. Our current evaluation scope is restricted
to three low-resource languages with non-Latin
scripts. Although the framework is theoretically
extensible to other writing systems, specific adap-
tations may be necessary to accommodate their
unique characteristics. The limited availability of
evaluation datasets for low-resource languages also
poses a challenge, particularly in tasks like machine
reading comprehension, where we could only as-
sess performance on a subset of languages.

From a practical perspective, our approach faces
a trade-off between storage efficiency and compu-
tational overhead. While we achieve significant
reductions in storage requirements, the translitera-
tion and restoration processes introduce additional
computational steps that could impact real-time
performance, especially in scenarios requiring fre-
quent language switching. Furthermore, our cur-
rent encoding scheme relies primarily on charac-
ter frequency, leaving room for potential improve-
ments through the incorporation of linguistic fea-
tures such as phonemes and morphological infor-
mation.
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A Auxiliary Models

To achieve a comprehensive end-to-end system,
we developed three auxiliary models for input lan-
guage identification, output language identifica-
tion, and Chinese pinyin conversion. These models
collectively form a complete language processing
pipeline, ensuring that the system can accurately
process multilingual inputs and generate appropri-
ate outputs.

A.1 Input Language Classifier

We trained specialized language identification mod-
els based on the FastText framework to accurately
identify the language type of input text. The
classifier supports five language categories: Ti-
betan (bo), Mongolian (mn), Uyghur (ug), Chinese
(zh), and other languages (other). The training
data was sourced from multiple datasets, including
CUTE (Zhuang and Sun, 2025), WCM-v2 (Yang
et al., 2022), and other open-source datasets, to
ensure the model can process text from various
domains. The training parameters for the input
language classifier are shown in Table 8.

The evaluation results on the test set of 5,000
entries show that the classifier achieved a high level
of classification across all languages and can be
used for actual classification needs. The evaluation
results are shown in Table 9.

Language Precision Recall F1
Tibetan 0.992 0.989 0.991
Mongolian 0.987 0.985 0.986
Uyghur 0.995 0.993 0.994
Chinese 0.998  0.997 0.998
Other 0981 0.978 0.980

Table 9: Performance of the input language classifier on
various languages.

A.2 Transliterated Text Classifier

To accurately identify transliterated text in model
outputs and guide proper language restoration, we
trained a specialized FastText classifier. The dis-
tinguishing feature of this classifier lies in its need
to process transliterated text; therefore, we utilized
parallel corpora of transliterated text for training,
ensuring the model could recognize textual features
under different transliteration strategies. The train-
ing parameters for the output language classifier
are shown in Table 8.

The classification performance on the transliter-
ated text test set is shown in Table 10.

Language Precision Recall F1
Tibetan 0.988 0.985 0.987
Mongolian 0983  0.981 0.982
Uyghur 0.991  0.989 0.990
Chinese 0.995 0994 0.995
Other 0.992  0.990 0.991

Table 10: Performance of the transliteration text classi-
fier in various languages.

A.3 Pinyin-to-Chinese Converter

For Chinese pinyin conversion, we performed task-
specific fine-tuning based on the Qwen2.5-0.5B
model (Yang et al., 2024). This model handles the
conversion from pinyin sequences to Chinese char-
acters, which is a typical sequence-to-sequence
conversion task. We used approximately 1 mil-
lion pinyin-character pairs for training, with data
sourced from news texts, Wikipedia, and general
domain texts. The parameters used for fine-tuning
are shown in Table 11.

Parameter Value
Batch Size 128
Learning Rate 2e-5
Max Length 2048
Epochs 3
Warmup Steps 1000
Weight Decay 0.01

Table 11: Qwen2.5-0.5B fine-tuning parameter settings.

The performance evaluation of the model on the
test set is shown in Table 12.

These three auxiliary models collectively form a
complete language processing pipeline, capable of
accurately identifying input languages, processing
transliterated text, and converting pinyin to Chi-
nese characters when needed. In practical applica-
tions, these models have demonstrated stable per-
formance and high accuracy.

B Compression Analysis

To comprehensively evaluate different transliter-
ation approaches, we compare our three strate-
gies with two baselines: vocabulary expansion
(adding 6,000 tokens for each low-resource lan-
guage) and UROMAN (a widely-used romaniza-
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Parameter Input Classifier  Output Classifier Note

Learning Rate 0.1 0.05 Initial learning rate

Epochs 25 30  Training epochs

Word n-grams 2 3 Maximum length of word n-gram
Vector Dimension 100 150 Embedding dimension

Context Window 5 7  Size of context window

Min Word Count 5 3 Minimum word frequency

Table 8: Training parameters for FastText language classifiers. The input classifier is optimized for raw text
classification, while the output classifier is specifically tuned for transliterated text patterns with slightly different

hyperparameters.
Metric Value Note
Character Accuracy 0.975 Single character accuracy
Sentence Accuracy 0.892 Complete sentence accuracy
BLEU Score 96.8 Overall translation quality
Inference Speed 125ms/sent Average processing time

Table 12: Evaluation of Pinyin Conversion Model Performance. The model shows strong performance in character-
level accuracy and complete sentence conversion, with reasonable inference speed suitable for real-time applications.

tion tool). Table 13 presents the compression
performance across different approaches and lan-
guages.

File Token

Method Lang Compr. Compr.
bo 1.00x 6.92x%

: mn 1.00x 9.66x

Vocab Bxpansion g 1.00x  4.49x
zh 1.00x 1.75%

bo 2.07x 1.88x%

mn 2.41x 5.16x

UROMAN ug oy > dn
zh 1.00x 1.12x

bo 1.98x 1.33x

Basic mn 1.95x  2.57x
‘ ug 125x  1.00x
zh 0.73x  0.90x

bo 2.61x 1.80x

Tokenizer mn 2.07x 3.85x%
ug 1.27x 1.39x

zh 0.73x 0.90x

bo 2.61x  2.23x

- mn 2.07x 4.98x
fybrid ug 1.27x 1.92x
zh 0.73x  1.41x

Table 13: Compression performance across different ap-
proaches and languages. File Compr. shows the ratio of
original file size to transliterated file size. Token Compr.
indicates the ratio of original token count to transliter-
ated token count using Llama?2 tokenizer. Language
codes: bo (Tibetan), mn (Mongolian), ug (Uyghur), zh
(Chinese).

The vocabulary expansion approach achieves
the highest token compression ratios but maintains
original file sizes. UROMAN demonstrates good
compression performance in both file size and to-
ken count. Our proposed methods show progres-
sive improvements from Basic to Hybrid strategies,
with the Hybrid approach achieving competitive
token compression while maintaining strong file
size reduction. Note that Chinese (zh) shows dif-
ferent patterns due to its unique characteristics in
tokenization and encoding.

C Training Details

C.1 Pre-training Data

The statistics of the raw corpora used for pre-
training are shown in Table 14. The data is pri-
marily sourced from the CUTE parallel corpus
(Zhuang and Sun, 2025), which provides high-
quality aligned multilingual content across Chi-
nese, Uyghur, Tibetan, and English languages. For
Mongolian, we followed the data collection and
quality assessment methodology described in the
CUTE paper to ensure comparable data quality and
distribution.
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Language Lines Size (GB)
Tibetan (bo) 934,140 11.22
Mongolian (mn) 933,941 11.48
Uyghur (ug) 934,002 7.37
Chinese (zh) 933,946 2.54
English (en) 933,989 3.60

Table 14: Pre-training Corpora Statistics. The data is
primarily sourced from the CUTE parallel corpus, with
additional Mongolian data collected following similar
quality standards.

C.2 Training Parameter Settings

Table 15 lists the main parameter settings for the
pre-training and supervised fine-tuning phases.

D Dataset Details
D.1 WCM-v2 Dataset

WCM-v2 is a multilingual text classification
dataset covering 10 domains including arts, geog-
raphy, and history (Yang et al., 2022). The dataset
is characterized by its balanced distribution across
both categories and languages, containing Chinese
training sets and test sets in multiple languages.
Table 16 shows the sample distribution of each lan-
guage across different categories.

D.2 Machine Reading Comprehension
Datasets

We utilize three machine reading comprehension
(MRC) datasets for evaluation. Table 17 shows the
key statistics of these datasets.

Dataset Train Dev Test
SQuAD vl.1 87,599 10,570 -
CMRC 2018 10,142 3,219 1,002
TibetanQA - - 2,007

Table 17: Statistics of machine reading comprehension
datasets used in our experiments. TibetanQA is used
only for testing cross-lingual transfer capability.

SQuAD The Stanford Question Answering
Dataset (SQuAD) vl1.1 (Rajpurkar, 2016) is
a widely used English reading comprehension
dataset containing over 100,000 question-answer
pairs. The questions and answers were created by
crowdworkers based on Wikipedia articles, with
answers being continuous spans from the corre-
sponding reading passages.

CMRC The Chinese Machine Reading Compre-
hension (CMRC) 2018 dataset (Cui et al., 2019)
follows a similar format to SQuAD, featuring span-
extraction questions in Chinese. The dataset covers
various domains, making it suitable for evaluating
Chinese reading comprehension capabilities.

TibetanQA TibetanQA (Sun et al., 2021) is a
Tibetan machine reading comprehension dataset,
with 2,007 publicly released question-answer pairs
for evaluation. While the full dataset contains
20,000 question-answer pairs annotated from ar-
ticles on Tibetan web resources, only a portion is
publicly available and used in our experiments for
zero-shot cross-lingual evaluation.

Note on Language Coverage While our study
aims to evaluate cross-lingual transfer across mul-
tiple low-resource languages, we were unable to
identify suitable machine reading comprehension
datasets for Mongolian and Uyghur languages at
the time of our research. This limitation highlights
the scarcity of evaluation resources for these lan-
guages in certain NLP tasks.

E Translation Details

Flores-200 Dataset The Flores-200 dataset is
a multilingual benchmark for evaluating ma-
chine translation systems, encompassing 200 lan-
guages (Costa-jussa et al., 2022). The sentences
in the dataset are derived from English Wikipedia
articles and professionally translated into other lan-
guages. We utilize both the development and test
sets, which contain 997 and 1,012 samples per lan-
guage pair, respectively. To ensure fair evaluation,
we conduct our experiments exclusively on the test
set.

Translation Prompts We employ English as the
unified instruction language for translation tasks.
Each prompt contains three carefully selected trans-
lation examples (3-shot), with low-resource lan-
guage text appearing only in the source-target trans-
lation pairs. Specifically, the prompt template fol-
lows this structure:

(1) An instruction header:

Translate the following Chinese text
to {target_language?}

(2) Three example translation pairs, each format-
ted as:
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Hyperparameter Pre-training Fine-tuning

Learning Rate 1.0e-4 2.0e-5
Training Epochs 1.0 3.0
Global Batch Size 1024 256
Max Sequence Length 4096 4096
Warmup Ratio 0.05 0.05
Data Type BF16 BF16
LR Scheduler Cosine Cosine

Table 15: Hyperparameter settings for pre-training and supervised fine-tuning phases. During the pre-training phase,
except for vocabulary expansion, we observed frequent loss spike phenomena when the learning rate was set to
2.0e-4. After reducing it to 1.0e-4, the training process became more stable.

Category mn bo ug zh-train zh-test
Arts 135 141 3 2,657 335
Geography 76 339 256 12,854 1,644
History 66 111 0 1,771 248
Nature 7 0 7 1,105 110
Natural Science 779 133 20 2,314 287
People 1,402 111 0 7,706 924
Technology 191 163 8 1,184 152
Education 6 1 0 936 118
Economy 205 0 0 922 109
Health 106 111 6 551 73
Total 2,973 1,110 300 32,000 3,995

Table 16: Sample distribution across categories and languages in the WCM-v2 dataset. The dataset contains training
and test sets for Chinese (zh), and test sets for ethnic minority languages (mn: Mongolian, bo: Tibetan, ug: Uyghur).
Additional test sets for Korean, Kazakh, and Kyrgyz are also available in the dataset but not used in our experiments.

Chinese: [source text]
{target_language}: [translation]

(3) The translation request:

Now translate this:
Chinese: [input text]

This design is motivated by two key consider-
ations: First, utilizing English as the instruction
language leverages the model’s strong capabilities
in English; Second, by minimizing the presence
of low-resource languages in the prompt, we can
better evaluate the model’s genuine translation ca-
pabilities rather than simple pattern matching. The
three examples are selected to cover diverse sen-
tence structures and vocabulary complexity, help-
ing the model understand the requirements of the
translation task.
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