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Abstract

To enable Large Language Models (LLMs) to
function as conscious agents with generaliz-
able reasoning capabilities, it is crucial that
they possess the ability to comprehend situa-
tional changes (transitions) in distribution trig-
gered by environmental factors or actions from
other agents. Despite its fundamental signifi-
cance, this ability remains underexplored due
to the complexity of modeling infinite possible
changes in an event and their associated distri-
butions, coupled with the lack of benchmark
data with situational transitions. Addressing
these gaps, we propose a novel formulation
of reasoning with distributional changes as a
three-step discriminative process, termed as
MetAphysical ReaSoning. We then introduce
the first-ever benchmark, MARS, comprising
three tasks corresponding to each step. These
tasks systematically assess LLMs’ capabili-
ties in reasoning the plausibility of (i) changes
in actions, (ii) states caused by changed ac-
tions, and (iii) situational transitions driven
by changes in action. Extensive evaluations
with 20 (L)LMs of varying sizes and meth-
ods indicate that all three tasks in this pro-
cess pose significant challenges, even after
fine-tuning. Further analyses reveal poten-
tial causes for the underperformance of LLMs
and demonstrate that pre-training on large-
scale conceptualization taxonomies can poten-
tially enhance LMs’ metaphysical reasoning
capabilities. Our data and models are pub-
licly accessible at https://github.com/HKUST-
KnowComp/MARS.

1 Introduction

Recent advances in LLMs have demonstrated
superior performance in a variety of reasoning
tasks (Liu et al., 2023b; Chan et al., 2024; Ko et al.,
2023; Qin et al., 2023; Jain et al., 2023). However,
to truly achieve conscious processing (Andreas,
2022), the integration of System II reasoning abil-
ity (Sloman, 1996; Kahneman, 2011) is essential as
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Figure 1: Examples of changes in event in our formu-
lation. After changes occur, events may become meta-
physical as components are abstracted into high-level
concepts, while some remain plausible in reality.

it enables LLMs to perform out-of-distribution gen-
eralization when encountered with unfamiliar sce-
narios (Bengio et al., 2021). Among several compo-
nents that make up System II reasoning, a critical
element of it is the ability to reason with situa-
tional changes in distribution, triggered by environ-
mental factors and actions by themselves or other
agents, when dealing with non-stationarities (Ben-
gio, 2017). It serves as the core ability in planning
tasks (Huang et al., 2024), which can be achieved
by dynamically recombining existing concepts in
the given environment or action and learning from
the resultant situational changes (Lake and Baroni,
2018; Bahdanau et al., 2019; de Vries et al., 2019).
For instance, in the event that “PersonX is driv-
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ing a car in a sunny day,” a change in the weather
from sunny to rainy could cause a different out-
come, such as “PersonX becomes more cautious
and drives slower.” This illustrates that a change
in weather conditions can lead to a change in the
driver’s behavior, which represents an environmen-
tal change that triggers situational changes within
the distribution of different weathers.

Though fundamental, the exploration of this abil-
ity has been limited due to several factors. First, the
scope for change within an event is vast, with nu-
merous components capable of altering in a wide
variety of ways. This results in an overwhelm-
ingly large number of potential changes that are
impossible to fully cover with existing knowledge
bases. Second, reasoning with changes in distribu-
tion lacks a clear formulation due to its complex-
ity. Unlike one-step inference reasoning tasks (Sap
et al., 2019), changes in action may lead to implau-
sible events that cannot occur in reality, thus termi-
nating the reasoning process. Such type of changes
require extra care when designing evaluation pro-
tocols. Lastly, there is a lack of a reliable evalua-
tion benchmark. Existing benchmarks (Valmeekam
et al., 2023; He et al., 2023b) typically focus on a
limited number of changes within a few scenarios,
thus limiting the coverage of formed distributions.
The changes in actions and states are also formu-
lated under planning or logical tasks, which neglect
transitions (consequences) caused by changes.

To address these gaps, we take a step forward by
formally defining reasoning with changes in distri-
bution as a three-step discriminative process. We
start by defining seven categories of changes, each
corresponding to different components within an
event. To semantically cover more changes in a
unified manner, we propose implementing changes
by altering each component within the event us-
ing their abstractions or numerical variations. This
approach creates a hierarchical distribution of var-
ious changes, with the abstracted ones offering a
more generalized coverage. Inspired by Bengio
et al. (2021), we formulate reasoning with changes
in distribution as sequentially tasking the model to:
(1) assess the plausibility of a potential change in
a given event that describes an action, (2) evaluate
the plausibility of an inferential state resulting from
the modified action, and (3) determine the neces-
sary change in an action to convert an implausible
inferential state into a plausible one. We refer to
this process as metaphysical reasoning–a term we
adopt to describe a mode of reasoning that deals

with highly improbable or abstract scenarios dis-
tinct from its traditional philosophical meaning or
counterfactual reasoning (see Appendix A)–as it
also requires models to distinguish implausible ac-
tions, states, and transitions that exist only in this
abstract “metaphysical” realm, indicating their rare
occurrence in reality (Heidegger, 2014).

We then construct the first evaluation bench-
mark, MARS, featuring 355K annotated data
across three tasks corresponding to each step. It is
constructed by sequentially instructing an LLM to
extract events from Wikitext (Merity et al., 2017)
and BookCorpus (Zhu et al., 2015), identify muta-
ble components within each event, generate abstrac-
tions and numerical variations for those compo-
nents, create a metaphysical inference state based
on the changes, and generate the necessary modifi-
cations to make the metaphysical inference plausi-
ble in reality. Large-scale human annotations are
then conducted to provide labels of evaluation data
entries and verify the quality of our benchmark. Ex-
tensive experiments with over 20 (L)LMs demon-
strate that all three tasks in this process present sig-
nificant challenges, even for LMs after fine-tuning.
Further analyses reveal potential reasons for such
underperformance and identify possible solutions
for enhancing the metaphysical reasoning abilities
of language models.

2 Backgrounds and Related Works

Reasoning about Changes in Distribution. En-
abling LMs to understand distributional changes
due to localized causal interventions, particularly
in semantic spaces, has long been a crucial ob-
jective in the pursuit of conscious machine intelli-
gence (Bengio et al., 2019, 2021). Previous works
have mainly explored this within the context of
discriminating changes between actions and states
with methods such as commonsense knowledge in-
jection (Tandon et al., 2018), event calculus (Basina
et al., 2022), and fuzzy reasoning (Zhang et al.,
2013). Other studies aim to benchmark this rea-
soning process through logical reasoning tasks (He
et al., 2023b) and planning tasks (Valmeekam et al.,
2023; Wu et al., 2021). However, these studies
only cover changes in limited formats and scenar-
ios and also overlook the significance of represent-
ing changes as a distribution in relation to different
variables in actions. Such loss restricts the out-of-
distribution generalizability of the resulting LMs
when facing unfamiliar scenarios. Moreover, pre-
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vious evaluations do not cover transitions caused
by changes, making subsequent evaluations around
reasoning with changes incomplete.
Benchmarking LLMs. The advent of LLMs (Ope-
nAI, 2022, 2023; Touvron et al., 2023b,a; Reid
et al., 2024) has sparked various studies in investi-
gating LLM’s potential in a variety of tasks (Chen
et al., 2024b,a; Yuan et al., 2024; Chan et al., 2024;
Jain et al., 2023; Qin et al., 2023). These studies
have significantly contributed to our understanding
of LLMs by evaluating their performance across di-
verse tasks, using different scales of parameters and
prompting methods (Qiao et al., 2023). However,
there is an absence of a comprehensive benchmark
for assessing the ability of (L)LMs to reason with
changes in distribution. This inspires us to formally
define it and introduce the first benchmark that eval-
uates such reasoning capabilities of (L)LMs.

3 Definitions of Changes in Event and
Metaphysical Reasoning

Modeling changes within an event is inherently
complex due to the infinite number of changes
that can occur. For simplicity, we only consider
events that represent an action and study changes
between their inferential states. Given an event
e, we first define seven types of changes that
could transpire within e. These changes are rep-
resented as components of the event, including
its subject s, verb v, object o, temporal quanti-
fier t, spatial quantifier l, numerical properties
n, and sub-events se. The original event is de-
noted as a function of these seven components,
e = f(s, v, o, t, l, n, se). A change in the event
can be represented by altering one of its compo-
nents, for instance, e′ = f(s′, v, o, t, l, n, se) if the
change impacts the subject s′.

To effectively model the distribution of changes
across different types of components, we leverage
two types of hierarchical formulations. Specifi-
cally, for s, v, o, se, we define changes in these
components as conceptualizing their original in-
stance into three concepts with progressively in-
creased abstractedness (Giunchiglia and Walsh,
1992; Tenenbaum et al., 2011). For t, l, n, we de-
fine their changes as modifications from their origi-
nal values to three distinct numerical or spatial val-
ues with progressively increased units. This brings
a hierarchical structure to changes of a certain com-
ponent, forming a distribution that gradually covers
more possible changes. Abstracted components, as

high-level concepts, can semantically represent a
broader range of combinations for altering an event.
Some running examples of how changes impact an
action are shown in Figure 1. We then propose a
three-step discriminative process, which we term
as Metaphysical Reasoning (see Appendix A), to
formulate reason with changes in distribution. The
three steps, as shown in Figure 2, are:

(1) Metaphysical Event Discrimination: The first
step answers the question, “Will the change happen
in reality?” It aims to determine the plausibility of
a change based on a given event, as alterations in
components may lead to implausible events that
defy reality. We refer to such an event, which
rarely occurs in reality due to these changes, as
a metaphysical event. The goal of the first task is
to discriminate whether the modified event e′, con-
ditioned on the original event e with a single altered
component c ∈ (s, v, o, t, l, n, se), is metaphysical
or not by making a binary prediction.

(2) Metaphysical Inference Discrimination: Con-
sidering that distributional changes occur in non-
stationary environments, a conscious agent should
be able to predict the potential outcomes of the
modified event for future reasoning scenarios.
Therefore, the second step aims to answer the ques-
tion, “What will the altered event result in?” Simi-
larly, we term the inferences of an event that rarely
occurs in reality as metaphysical inference. The
objective of the second task is to determine whether
an inferential state i, triggered by the altered event
e′, is metaphysical or not by predicting a binary
answer. Note that e′ could be either metaphysical
or not, as inferences in both cases can be evaluated.

(3) Metaphysical Transition Reasoning: Finally,
with some inferences remain metaphysical, a con-
scious agent should be able to plan what change is
necessary to make such inference plausible in real-
ity. This completes the reasoning chain by covering
the feasibility, consequence, and motivation of dis-
tributional changes. Thus, the last task answers
the question, “What change is needed to make a
metaphysical inference plausible?” We refer to this
as metaphysical transition reasoning and set the
objective as to determine whether another change,
denoted as c′, can make a metaphysical inference i
plausible in relation to a changed event e′ by mak-
ing a binary prediction regarding c′.
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Figure 2: The three steps in metaphysical reasoning. Our motivation behind this is that, by conquering all steps
sequentially, a conscious agent could answer: (1) Will the change occur in reality? (2) What will the change cause?
(3) What change can make a metaphysical (desired) inference plausible?

4 MARS Benchmark Curation Pipeline

We then introduce our sequential pipeline for cu-
rating the MARS benchmark. An overview of
our curation pipeline is shown in Appendix Fig-
ure 5. To guarantee a comprehensive coverage
of events across various domains and topics, we
source original text from two publicly available
large corpora: Wikitext (Merity et al., 2017) and
BookCorpus (Zhu et al., 2015). We filter out noisy
text that includes hashtags and hyperlinks and seg-
ment long text into sentences with no more than
200 tokens to facilitate future processing.

4.1 Text Decomposition and Extraction

We first perform text decomposition (Ye et al.,
2023; Jhamtani et al., 2023) to break down lengthy
text into semantically complete short events, which
are then used for fine-grained component extrac-
tion. To enable large-scale processing, we use Chat-
GPT (OpenAI, 2022), a powerful LLM with strong
text understanding abilities, as the core processor
for all stages. For each stage, we guide it with a
few-shot prompt (West et al., 2022; Brown et al.,
2020) by creating task-specific explanations and
exemplars (detailed prompts are in Appendix B):

<TASK-PROMPT>
<INPUT1><OUTPUT(1,1)> . . . <OUTPUT(1,N1)>
<INPUT2><OUTPUT(2,1)> . . . <OUTPUT(2,N2)>
. . .
<INPUT10><OUTPUT(10,1)> . . . <OUTPUT(10,N10)>
<INPUT11>

To perform text decomposition, <TASK-PROMPT>
clarifies the goal to ChatGPT, which involves ex-
tracting semantically complete actions from the
given text. <INPUT1−10> and <OUTPUT1−10> are
filled with 10 pairs of human-crafted examples,

each containing several action events extracted
from text sampled from Wikitext and BookCor-
pus. ChatGPT is expected to learn from these ex-
amples and use them as a guide to extract action
events (<OUTPUT(11,1−N)>) from the final input text
(<INPUT11>). For component extraction, we adjust
<TASK-PROMPT> to define the task of extracting the
seven components from a given event. We populate
<INPUT1−10> and <OUTPUT1−10> with 10 pairs of
events and seven comma-separated lists of compo-
nents extracted from the event, each corresponding
to one type of components defined in §3. ChatGPT
then extracts seven lists of components for the final
given event (<INPUT11>). If any type of component
is absent, “None” will be generated instead.

4.2 Component Abstraction and Variation

The next step is designed to implement changes
within the event by altering its components, ex-
tracted from the previous step, by generating
their abstractions or numerical variations. Follow-
ing Wang et al. (2024b), we guide ChatGPT by
modifying <TASK-PROMPT> with the objective of
generating abstract concepts for s, v, o, se and nu-
merical variations for t, l, n within a specified event.
For each <INPUT1−10> and <OUTPUT1−10> pair, we
populate the input with a specific event and one
of its components. The output consists of three
human-authored component abstractions or numer-
ical variations that align with the event’s context.
Subsequently, ChatGPT is tasked with generating
three abstractions or numerical variations for the fi-
nal pair of the given event and a component within
the event (<INPUT11>). Replacing the original com-
ponents in the event with their generated changes
forms changed event candidates for the metaphysi-
cal event discrimination task.
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Dataset / Task #Text #Event #Avg.Token #Train #Dev #Test #Total. #Unlabel. Expert.

AbsATM (He et al., 2024) N/A 7,196 1.060 107,384 12,117 11,503 131,004 372,584 N/A
AbsPyramid (Wang et al., 2024d) N/A 16,944 1.690 176,691 22,050 22,056 220,797 0 N/A
Meta. Event. 9,998 55,190 1.040 96,004 12,013 11,982 119,999 329,540 94.0%

AbsATM (He et al., 2024) N/A 7,196 6.413 65,386 8,403 7,408 81,197 5,921,195 N/A
Meta. Inference. 9,837 35,528 10.40 96,009 12,010 11,981 120,000 497,590 96.5%

Propara (Dalvi et al., 2018) 9,051 9,051 N/A 7,043 913 1,095 9,051 0 N/A
TRAC (He et al., 2023b) 15,000 15,000 N/A 10,000 2,000 3,000 15,000 0 N/A
PlanBench (Valmeekam et al., 2023) 26,250 26,250 N/A 0 0 26,250 26,250 0 N/A
Meta. Transition. 9,677 31,447 1.810 92,495 11,563 11,560 115,618 273,474 93.5%

Table 1: Statistics of the MARS benchmark in comparison against other benchmarks. Meta. refers to three tasks
in MARS. Expert. refers to expert verification results.

4.3 Inference Generation

We then collect inferential states of the modified
events by similarly instructing ChatGPT to au-
tonomously generate them. For each altered event,
we prompt ChatGPT to separately generate one
plausible inference and one metaphysical infer-
ence. We first modify <TASK-PROMPT> to gener-
ate a state that could potentially be caused by the
altered event, and populate <INPUT1−10> with 10
modified events and <OUTPUT1−10> with 10 cor-
responding plausible inferences authored by hu-
man experts. ChatGPT is then requested to gener-
ate an additional plausible state inference for the
given changed event (<INPUT11>). Next, we adjust
<TASK-PROMPT> to generate a metaphysical state
that is infrequently caused by the changed event
in reality, yet remains contextually relevant. We
replace <OUTPUT1−10> with 10 metaphysical infer-
ences and then collect a metaphysical inference
from ChatGPT. This, along with the generated plau-
sible inference, forms two candidate data entries for
each changed event in the metaphysical inference
discrimination task.

4.4 Metaphysical Transition Generation

Given that half of the inferential states generated
in the previous step remain metaphysical, we then
collect the additional changes necessary to trans-
form these states into plausible real-world infer-
ences. We adjust the <TASK-PROMPT> to describe
such required changes and populate <INPUT1−10>
with 10 pairs of modified events and their corre-
sponding metaphysical inferences. <OUTPUT1−10>
are filled with 10 corresponding human-authored
changes in events that can render the inferences
plausible. Subsequently, ChatGPT generates the
required change for the final pair of the modified
event and its metaphysical inference (<INPUT11>).
Note that the generated change still needs to be one
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Figure 3: Hypernym distribution of the top 5,000 popu-
lar component variations.

of the seven types we defined in §3. We collect one
additional change for each metaphysical inference
and use it as a candidate data entry for the last task.
However, we discard event and inference pairs that
ChatGPT deems impossible to render plausible,
even with an additional change.

4.5 Human Annotations
Annotation: Finally, we carry out large-scale hu-
man annotations to label candidate data for each
task via Amazon Mechanical Turk (AMT). We pro-
vide detailed instructions with examples to quali-
fied workers and task them with annotating (1) the
plausibility of the changed events generated in §4.2,
(2) the plausibility of the plausible/metaphysical
inferences produced in §4.3, and (3) the plausibil-
ity of the transitions generated in §4.4. We collect
five votes for each entry and the majority vote is
used as the final label. The overall inter-annotator
agreement (IAA) is 81% in terms of pairwise agree-
ment, and the Fleiss Kappa (Fleiss, 1971) is 0.56,
indicating sufficient agreement (see Appendix D).
Expert Verification: To verify the quality of our
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collected labels, we recruit three postgraduate stu-
dents with rich experience in NLP to perform a
second round annotation. Each of them is asked
to annotate a sample of 100 data entries for each
task, following the same instructions provided to
the AMT annotators. Results in Table 1 show that,
on average, 93.67% labels collected from human
annotations align with the expert’s vote, demon-
strating the reliability of our collected labels.

5 Evaluations and Analysis

5.1 MARS Statistics

Table 1 presents statistics of the MARS benchmark,
which comprises a total of 355,617 annotated data
distributed across three tasks. We partition the an-
notated data into training, development, and testing
splits following an 8:1:1 ratio, ensuring there is no
overlap of text and events between the different
splits to preserve the evaluation’s generalizability.
On average, 1.04 tokens are generated to describe
changes in action for the metaphysical event and
transition discrimination tasks, while 10.4 tokens
are used for inferences in the metaphysical infer-
ence discrimination task. To the best of our knowl-
edge, we are the first in proposing such a triad of
tasks concurrently within a single benchmark. To
compare MARS with other datasets, we select those
with analogous task objectives for each task and
compare them individually. We find MARS tends
to be significantly larger than other benchmarks,
covering a broader range of events and providing
training sets for evaluating the performance of fine-
tuned models. To further illustrate the diverse cov-
erage of events and changes in MARS, we match
each component variation against hypernyms in
Probase (Wu et al., 2012) and plot their distribution
according to their number of occurrences in Fig-
ure 3. Our results indicate that MARS covers over
170,000 hypernyms in Probase, spanning broad cat-
egories such as event, activity, concept, unit, etc.

5.2 Main Evaluations on MARS

5.2.1 Task Setup and Model Selections
We then experiment with a selection of (L)LMs
to investigate their performances on our cu-
rated MARS benchmark. Accuracy, AUC, and
Macro-F1 scores are used as evaluation metrics.

The evaluation of different models are cate-
gorized into three types: (1) ZERO-SHOT: We
first evaluate several (L)LMs in a zero-shot man-
ner. For small-sized Pre-Trained Language Mod-

els (PTLMs), we evaluate DeBERTa-v3 (He et al.,
2023a), GPT2 (Radford et al., 2019), CAR (Wang
et al., 2023a), CANDLE (Wang et al., 2024b),
and VERA (Liu et al., 2023a), following the de-
sign of zero-shot question answering (Ma et al.,
2021). For LLMs, we evaluate LLaMa2, LLaMa3,
LLaMa3.1 (Touvron et al., 2023a,b; Dubey et al.,
2024), Gemma (Mesnard et al., 2024), Falcon (Al-
mazrouei et al., 2023), and Mistral (Jiang et al.,
2023) using direct zero-shot prompting (Qin et al.,
2023). (2) FINETUNING: We then assess the
performance of (L)LMs when fine-tuned on the
training set of MARS. For PTLMs, we fine-tune
DeBERTa, GPT2-xl, and VERA. For LLMs, we
fine-tune LLaMa2, LLaMa3, Gemma, and Mis-
tral using LoRA (Hu et al., 2022). (3) LLM
API: Finally, we evaluate the performance of
GPT-4 (OpenAI, 2023) and GPT-4o-mini (OpenAI,
2024), which represent proprietary LLMs, under
zero-shot, five-shots, Chain-of-Thought prompt-
ing (COT; Wei et al., 2022), and Self-Consistent
COT (SC-COT; Wang et al., 2023c) settings. For
LLaMa3.1-70B and GPT-4o-mini, we also test their
performances with RAG (Gao et al., 2023), Multi-
agent Calibration (Yang et al., 2024), and Self Re-
flection (Pan et al., 2024). Please find implementa-
tion details in Appendix C, multi-task fine-tuning
experiments in Appendix E.1, and few-shot fine-
tuning experiments in Appendix E.2.

5.2.2 Results and Analysis
Evaluation results are reported in Table 2. From
the results, we observe that: (1) Most models ex-
hibit subpar performance under the zero-shot
setting. Among PTLMs, only VERA delivers ac-
ceptable results across all three tasks, while the
rest significantly underperform. Though models
fine-tuned on commonsense knowledge and con-
ceptualizations, such as CAR and CANDLE, show
some improvement compared to their DeBERTa-
v3-Large backbone, these performances are still un-
satisfactory, even falling below the level of majority
voting. For LLMs, improving training paradigms
and increasing the number of parameters can in-
deed help achieve better performance. Neverthe-
less, all models perform poorly across all tasks
in MARS, emphasizing the difficulty of our tasks.
(2) Fine-tuning only offers limited benefits. With
fine-tuning, all models improve significantly. For
example, DeBERTa-Large’s accuracy increases by
16.18%, 21.84%, and 22.2% on three tasks, respec-
tively. However, the best results for all tasks are
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Methods Backbone Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random - 50.00 - 49.56 50.00 - 49.56 50.00 - 49.56
Majority - 60.98 - 37.99 58.56 - 36.93 50.25 - 33.37

PTLM
(Zero-shot)

DeBERTa-Base 214M 60.55 49.41 42.89 50.10 47.57 48.96 49.05 41.32 33.19
DeBERTa-Large 435M 48.27 49.88 45.87 47.73 49.94 44.44 50.73 46.96 46.15
GPT2-XL 1.5B 38.62 51.12 27.93 44.40 51.88 31.45 49.92 48.35 48.09
CAR 435M 54.63 49.34 49.96 48.33 42.85 41.93 52.97 35.05 46.94
CANDLE 435M 51.90 49.12 50.30 46.77 44.03 38.48 53.49 34.95 47.95
VERA 11B 51.82 50.48 48.52 60.97 62.54 59.09 61.31 66.32 61.17

PTLM
(Fine-tuned)

DeBERTa-Base 214M 63.82 63.98 63.39 69.50 70.59 69.31 71.96 73.85 71.17
DeBERTa-Large 435M 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01
GPT2-XL 1.5B 46.68 47.63 46.96 43.70 44.22 30.41 44.57 45.03 45.89
VERA 11B 61.95 61.43 60.81 63.90 66.93 70.84 71.75 74.57 73.27

LLM
(Zero-shot)

Meta-LLaMa-2-7B 50.64 - 41.41 49.87 - 49.23 50.94 - 50.64
Meta-LLaMa-2-13B 51.50 - 49.48 50.81 - 50.57 50.81 - 50.80
Meta-LLaMa-2-70B 52.40 - 49.03 56.13 - 46.81 48.45 - 48.34
Meta-LLaMa-3-8B 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
Meta-LLaMa-3-70B 57.41 - 50.59 63.40 - 61.82 60.15 - 60.01
Meta-LLaMa-3.1-8B 51.01 - 50.27 52.13 - 51.29 52.35 - 52.09
Meta-LLaMa-3.1-70B 59.22 - 52.08 63.61 - 61.90 61.28 - 61.03

+RAG 61.21 - 54.51 66.38 - 65.90 61.53 - 61.22
+Multi-Agent 56.12 - 51.08 65.06 - 65.01 62.54 - 62.19
+Self-reflection 57.94 - 53.17 63.91 - 63.51 60.92 - 60.77

Meta-LLaMa-3.1-405B 60.01 - 52.99 64.52 - 63.23 61.74 - 61.76
Gemma-2-9B 56.88 - 48.53 51.83 - 51.76 49.41 - 45.01
Falcon-7B 54.32 - 49.51 51.77 - 50.30 50.42 - 49.02
Falcon-40B 52.35 - 50.36 49.67 - 49.38 50.27 - 50.22
Mistral-7B 49.90 - 48.94 50.23 - 50.06 51.75 - 51.75

LLM
(Fine-tuned)

Meta-LLaMa-2-7B 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12
Meta-LLaMa-2-13B 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37
Meta-LLaMa-3-8B 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
Gemma-2-9B 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18
Mistral-7B 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

LLM
(API)

GPT4 53.90 - 53.45 51.20 - 50.95 49.41 - 49.33
GPT4 (5-shots) 49.85 - 49.58 51.47 - 51.30 48.88 - 48.73
GPT4 (COT) 51.28 - 50.73 51.49 - 51.35 47.62 - 47.58
GPT4 (SC-COT) 51.97 - 51.26 52.05 - 52.27 48.24 - 48.11
GPT-4o-mini 57.94 - 57.91 53.84 - 53.53 48.06 - 48.06

+RAG 59.99 - 59.97 54.54 - 54.21 49.39 - 49.19
+Multi-Agent 54.21 - 53.17 52.76 - 52.26 46.94 - 46.70
+Self-reflection 56.89 - 55.21 53.22 - 53.20 48.51 - 48.45

Table 2: Evaluation results (%) of various language models on the testing sets of MARS. The best performances
within each method are underlined and the best among all methods are bold-faced.

still capped at around 74%, indicating a shared
difficulty and significant room for future enhance-
ments. One potential reason for this is that, since
we split the data according to the source of text in
Wikitext and BookCorpus, the distribution between
different splits may differ significantly, as the do-
main and topics could be diverse from each other.
We also discuss the reasons for PTLMs’ strong per-
formance compared to LLMs after fine-tuning in
Appendix E.3. (3) The GPT series models un-
derperform compared to other LLMs, and COT
does not consistently aid performance. Surpris-
ingly, GPT series models fall short when compared
to open LLMs, such as LLaMa-3-70B. One possi-

ble explanation is that negative examples in MARS

are sourced from ChatGPT’s generation and are
obtained via post-human annotation. This makes
it challenging to discriminate as these negative ex-
amples contradict GPT’s internal knowledge. Ad-
vanced prompting methods only offer limited im-
provement in performances.

5.3 Analysis

5.3.1 Transferring from Conceptualization

Improving the performance of LLMs on MARS re-
quires extensive fine-tuning on large-scale human-
annotated data, making it non-trivial. Since we
observe that approximately 80% of action changes
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Backbone Training Data Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

DeBERTa
435M

Zero-shot 58.27 49.88 45.87 47.73 49.94 44.44 50.73 46.96 46.15
CANDLE 57.94 58.22 57.31 59.43 59.03 58.18 62.00 62.19 61.50
MARS 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01
CANDLE + MARS 64.95 64.27 63.74 71.85 73.32 71.64 74.39 77.97 73.30

VERA
11B

Zero-shot 41.82 50.48 38.52 60.97 62.54 59.09 61.31 66.32 61.17
CANDLE 57.81 57.24 56.77 56.59 56.08 55.25 59.79 59.88 59.19
MARS 61.95 61.43 60.81 63.90 66.93 70.84 71.75 74.57 73.27
CANDLE + MARS 62.21 61.77 61.17 71.45 74.46 67.61 73.95 77.35 78.26

LLaMa-3
8B

Zero-shot 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
CANDLE 56.47 56.75 56.07 58.29 57.81 57.00 58.74 58.81 58.19
MARS 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
CANDLE + MARS 60.93 60.80 60.12 69.13 70.84 72.12 74.09 79.38 71.42

Table 3: Evaluation results (%) of transfering knowledge from CANDLE to aid MARS. The best performances
among each method is underlined and best ones among all methods are bold-faced.

are executed by modifying a component along
with its abstracted concepts (see Table 5), we first
study whether exposing LLMs to more concep-
tualizations and abstract knowledge can enhance
their metaphysical reasoning capabilities. For
this purpose, we select CANDLE (Wang et al.,
2024b) as the knowledge source, which is an au-
tomatically constructed knowledge base contain-
ing 382K conceptualizations of events and abstract
inferential knowledge. We first convert event-
conceptualization pairs into the task format of meta-
physical event discrimination and reformat com-
monsense inferential knowledge to align with the
objectives of the metaphysical inference and tran-
sition discrimination tasks. More details are in
Appendix C.2.

Three backbone models are then fine-tuned sep-
arately on CANDLE and MARS. Another group
is sequentially fine-tuned on CANDLE and then
on MARS. All models are then evaluated on the
testing set of MARS, with the results reported
in Table 3. From the results, a significant im-
provement is observed across all tasks when the
models are sequentially fine-tuned on CANDLE
and MARS, compared to solely fine-tuning on
CANDLE or MARS.

These findings indicate that the transfer of con-
ceptualizations and abstract knowledge from CAN-
DLE effectively enhances the performance of LMs
in metaphysical reasoning tasks. Since CANDLE
is constructed by distilling from an LLM without
human labor, this opens up a scalable and cost-
efficient approach to improving the metaphysical
reasoning capabilities of LLMs.

5.3.2 Impact of Component Types
We then analyze the performance of LLMs on each
component type to understand the reasons for their
subpar performance. We select LLaMa-3-8B as the
representative model and compare its accuracy on
each component type when fine-tuned on MARS

and CANDLE + MARS. The results are illustrated
in Figure 4. We observe that while pre-training
the model on CANDLE consistently enhances per-
formance, LLaMa3 still struggles when reasoning
with changes in spatial quantifiers, temporal quan-
tifiers, and numerical properties. This is in line
with recent studies that demonstrate weaknesses in
temporal and numerical reasoning for LLMs (Tan
et al., 2023; Shi et al., 2023). Another possible
reason is that since CANDLE only contains con-
ceptualizations for subjects, verbs, objects, and
sub-events in social events, pre-training models on
it cannot provide benefits for the aforementioned
aspects of change. Moreover, we only observe lim-
ited improvement for the metaphysical event dis-
crimination task. Future works could focus on how
to further enhance LLM’s metaphysical reasoning
capabilities in these weaker dimensions.

5.3.3 Error Analysis of GPT-Series Models
Finally, we select GPT4 as a representative model
and conduct a manual analysis to identify the
causes of errors by categorizing the mistakes found
in their COT responses. We sample 150 COT re-
sponses from each task, all of which result in in-
consistent results compared to human annotated
labels and present our classifications of these er-
rors as follows: (1) Hallucinations: 41.7% of er-
rors are caused by factual or metaphysical halluci-
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Figure 4: Performances by component types of fine-tuned LLaMa3-8B on three tasks of MARS.

nations by GPT4, where it creates a context that
accommodates changes in actions and inferences
that are not mentioned in the original text. For
instance, in the event “The poet enjoys writing
poems about western festivals,” GPT4 incorrectly
interprets the poet as Du Fu. This leads to a conflict
when reasoning about his life and the subsequent
inference “He was famous in the west,” resulting
in faulty reasoning. (2) Confusion between Con-
cepts and Hypernyms: 36.3% errors are attributed
to GPT4’s tendency to perceive abstract compo-
nents within changed actions as hypernyms that
fulfill the change, without considering all potential
entities within the original concept. For instance, in
a modified event, “He jumps down from very high
altitude and lands peacefully,” GPT4 interprets very
high altitude as a diving platform, deeming it plau-
sible. However, this concept could also encompass
high buildings, which would not be suitable for the
event. (3) Internal Conflict: 17.7% errors are at-
tributed to internal conflicts within GPT4’s reason-
ing rationales, as well as inconsistencies between
the binary predictions made and the correspond-
ing reasoning rationales. (4) Annotation Error:
4.3% errors are erroneously identified due to incor-
rect labels, potentially caused by spamming or a
misunderstanding of the task by human annotators.

6 Conclusions

In conclusion, this paper proposes Metaphysi-
cal Reasoning to delineate the process of rea-
soning with changes in distribution and construct

MARS as the associated evaluation benchmark
in a non-trivial manner. Our experiments show the
challenge of our task, which advanced prompting
and fine-tuning can’t easily solve. Analysis reveals
why LMs struggle with metaphysical reasoning
and suggests a possible improvement. We hope to
illuminate the path toward achieving conscious pro-
cessing in LLMs through System II reasoning by
effectively comprehending changes in distribution.

Limitations

Though we consider our work to be a fundamen-
tal step towards understanding the capabilities of
LMs in reasoning with changes in distribution, we
do acknowledge that several limitations still exist
that just cannot be covered within one single work.
Here, we discuss some important limitations that
future works can address:

(1) Include more types of changes in our cur-
rent formulation. In our work, we primarily focus
on seven types of changes, covering the subject,
verb, object, spatial quantifier, temporal quantifier,
numerical properties, and sub-events of the event.
While these seven types encompass most of the
potential changes, there are other uncovered com-
ponents within an event that can be impacted by
changes, such as adjectives, adverbs, and preposi-
tional phrases. Nevertheless, our flexible and auto-
mated benchmark curation pipeline, empowered by
an LLM, allows for future research to extend the
benchmark to cover a broader range of component
types.

(2) Reliance of LLM on benchmark curation.
Our data construction process relies significantly
on ChatGPT, an expensive and proprietary lan-
guage model used for data collection, as well as
human annotation for data verification. In Ap-
pendix B.3, we discussed the feasibility of leverag-
ing open-sourced LLM as a replacement to Chat-
GPT to reduce cost and promote reproducibility.
Future research could also consider utilizing robust
open-source language models (Reid et al., 2024)
and general statement plausibility estimators (Liu
et al., 2023a) to replace these methods.

(3) Solution and Downstream Applications of
Metaphysical Reasoning. While this paper es-
tablishes a comprehensive evaluation benchmark
for metaphysical reasoning, we leave the explo-
ration of a practical solution to aid LLMs in solving
metaphysical reasoning tasks, as well as the poten-
tial benefits of utilizing metaphysical reasoning for
downstream tasks into future works. These tasks
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may include planning (Yuan et al., 2023; Ouyang
and Li, 2023) or reasoning with changes (He et al.,
2023b).

Ethics Statement

Offensive Content Elimination. Our benchmark
curation pipeline, which involves generating con-
tent with ChatGPT, necessitates stringent measures
to ensure the absence of offensive content in both
the prompts and the generated responses. For this
purpose, we apply two strategies to eliminate of-
fensive content. First, we use the highest level of
Azure AI Content Safety Filter to filter out any
content that contains personal privacy, promotes
violence, racial discrimination, hate speech, sexual
content, or self-harm. If any such unsafe content
is detected in the prompts or generated responses,
it automatically triggers a system failure, which
prevents the inclusion of such data in our dataset.
Second, we manually inspect a random sample of
500 data entries from three tasks in MARS for
offensive content. Based on our annotations, we
have not detected any offensive content. We thus
believe that our dataset is safe and will not yield
any negative societal impact.
Licenses. We will share our code and models
under the MIT license, thereby granting other re-
searchers free access to our assets for research pur-
poses. Other datasets used in this paper, includ-
ing Wikitext and Bookcorpus, are shared under
the CC-SA license, permitting us to use them for
research. As for language models, we access all
open-source LMs via the Huggingface Hub (Wolf
et al., 2020). All associated licenses permit user
access for research purposes, and we have agreed
and committed to follow all terms of use.
Annotations. We conduct large scale human an-
notations on the Amazon Mechanical Turk (AMT)
platform. We invite annotation workers from the
US, Europe, and India due to their proficiency in
English. The annotators are paid on average at an
hourly rate of 19 USD, which is comparable to the
minimum wages in the US. The selection of these
annotators is solely based on their performance
on the evaluation set, and we do not collect any
personal information about the participants from
AMT. For expert verifications, we have secured
IRB approval and support from our institution’s de-
partment, which allows us to invite expert graduate
students to validate the quality of our data. They
all agree to participate voluntarily without being

compensated. We have made concerted efforts to
eliminate offensive content, thereby ensuring that
no annotators are offended.
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Appendices

A Differentiation from Philosophical
Metaphysics and Counterfactual
Reasoning

In this work, we use the term “metaphysical” to
describe a specific mode of reasoning that deals
with highly improbable or abstract scenarios, dis-
tinct from both its traditional philosophical mean-
ing and the concept of counterfactual reasoning.
Philosophically, “metaphysics” refers to the study
of the fundamental nature of reality, encompassing
questions about existence, causality, and the nature
of being (Aristotle and Aristotle, 1933; Bergson,
1999). While this classical usage involves con-
ceptual analysis and abstract thought, our focus
diverges significantly. We adopt “metaphysical” to
signify reasoning that examines transitions between
plausible and highly improbable states, emphasiz-
ing the logical structure and abstracted nature of
these transitions rather than ontological or existen-
tial inquiries.

This distinction is important because our frame-
work does not engage with the philosophical de-
bates about the nature of reality or existence. In-
stead, it concentrates on how LLMs process and
adapt to scenarios that are rare or abstract yet logi-
cally consistent. For example, while metaphysical
reasoning in our context might involve reasoning
about a scenario where “a civilization survives for
100,000 years,” it does not explore the metaphysi-
cal nature of time, existence, or causality in a philo-
sophical sense.

Furthermore, our concept of metaphysical rea-
soning is distinct from counterfactual reasoning.
Counterfactual reasoning involves evaluating “what
if” scenarios that diverge from known realities
but remain bounded by plausible causal relation-
ships (Li et al., 2023; Hua et al., 2024). For ex-
ample, a counterfactual might consider, “What if
Caesar had lost the battle of Pharsalus?”–a sce-
nario grounded in historical plausibility. In contrast,
metaphysical reasoning in our framework extends
beyond plausibility to explore scenarios that are
structurally coherent but unlikely or abstract, such
as “What if Caesar ruled for a millennium?” Here,
the focus is not on causal plausibility but on the
ability to evaluate transitions to rare, abstract, or
highly improbable states.

This differentiation between “metaphysical” in
our framework, metaphysics in philosophy, and

counterfactual reasoning underscores the novel
challenges our benchmarks aim to address. By
pushing LLMs to reason about transitions into ab-
stract or improbable scenarios, we aim to probe
and enhance their capabilities for adaptive, out-of-
distribution reasoning – a necessary step toward
achieving generalizable System II reasoning.

B MARS Benchmark Curation Details

B.1 MARS Benchmark Curation
An overview of our benchmark construction
pipeline is shown in Figure 5. We first present
our prompts used in each step for sequentially
instructing ChatGPT to generate candidate data
for MARS (Wang et al., 2024a).

B.1.1 Text Decomposition and Event
Component Extraction

To decompose a lengthy text from the source cor-
pora into several action events, we use the follow-
ing prompt to instruct ChatGPT.

You are required to decompose the

given long sentence into several short

yet semantically complete events, each

describing an action. An action

event refers to those describing an

action or a state change that occurs

at a specific time and place. The

key components of each event should

be preserved: including the subject,

verb, object, temporal and spatial

quantifiers, numerical properties of the

subject and objects, and sub-events.

Generate one event as a whole sentence

per line. You can generate as many events

as you need. Below are some examples:

. . .
Sentence <i>: In November 2010, after

years of planning and development,

SpaceX successfully launched their

Falcon 9 rocket into orbit for the

first time. The launch took place at

Cape Canaveral Air Force Station in

Florida. The Falcon 9 carried a Dragon

spacecraft mock-up, representing a major

milestone in SpaceX’s efforts to develop

a reliable and cost-effective means

of transporting cargo and eventually

astronauts to the International Space

Station.

Event 1: SpaceX successfully launched
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4.1 Event Decomposition

<Source Text About Caesar>

Event: Caesar ruled the Rome 
emperor for more than 10 
years

4.1 Component Extraction

Event: Caesar ruled the Rome 
emperor for more than 10 years

Subject: Caesar | Verb: rule | 
… Temporal: more than 10 
years | …

4.2 Component Abstraction / Variation

Event: <Caesar> ruled the 
Rome emperor for more than 10 
years

Original: Caesar
Abstraction: King, Human, 
Mammal

4.3 Inference Generation

Event: If <King> ruled the 
Rome emperor for more than 10 
years

Inference: people admired his 
leadership.

4.3 Metaphysical Inference Generation

Event: If <King> ruled the 
Rome emperor for more than 10 
years

Metaphysical Inference: his 
people suffer from chaos and 
instability.

4.4 Metaphysical Transition Generation

If <King> ruled the Rome emperor for 
more than 10 years, then his people suffer 
from chaos and instability?

Transition: more than 10 years 
-> less than 10 days (temporal 
quantifier)MARS

4.5 Human Annotation & Expert Verification

Amazon MTurk

Expert

(Candidate Data)

Meta. Event Discrim.
Meta. Inference 
Discrim.
Meta. Transition 
Discrim.

Figure 5: An overview of our benchmark curation pipeline with running examples.

their Falcon 9 rocket into orbit for the

first time in November 2010.

Event 2: The Falcon 9 carried a Dragon

spacecraft mock-up.

Event 3: The launch of the Falcon 9

took place at Cape Canaveral Air Force

Station in Florida.

. . .
Sentence <N>: In May 1934, following

reports of a Japanese spy operating

out of Dutch Harbor, the United

States Navy dispatched Edwin T. Layton

to the Aleutians to investigate the

allegations.

We then use the following prompt to extract
seven types of components from the decomposed
events.

Given a short event, extract these

components:

1. Subject: The noun that performs the

action in the sentence.

2. Verb: The action word in the

sentence.

3. Object: The noun that receives the

action of the verb.

4. Temporal Quantifier: The time or time

period of the event in the sentence.

5. Spatial Quantifier: The location

or spatial extent of the event in the

sentence.

6. Numerical Quantities and Properties

of Objects: Numerical values describing

the number or properties of the subject,

object, or sub-events.

7. Sub-events: Complete events that are

part of the main event in the sentence.

For each component, if there are more

than one, separate them with |. If

you cannot find one for a component,

generate “None” only. Below are some

examples:

. . .
Event <i>: After the First Battle

of Naktong Bulge, the US Army’s 2nd

Infantry Division was moved to defend

the Naktong River line.

Subject: US Army’s 2nd Infantry Division

Verb: moved | defend

Object: None

Temporal Quantifier: After the First

Battle of Naktong Bulge

Spatial Quantifier: Naktong River line

Quantities and Properties of Objects:

None

Sub-events: The US Army’s 2nd Infantry

Division was moved | The US Army’s 2nd

Infantry Division was moved to defend

the Naktong River line.

. . .
Event <N>: The University of Colorado

created the Department of Medicine in

September 1883 in the Old Main building

on the Boulder campus.

B.1.2 Component Abstraction and Variation
For each type of component, we customize the
prompt according to the nature of the component
and whether the changes are implemented via ab-
straction or numerical variation. Here, we take the
subject category with its abstraction as an example.

Given an event and a subject within the

event, abstract the given subject in

the given sentence into three different

concepts. Each concept should be more

abstract than the previous one. You are

encouraged to be creative, but please

ensure the three concepts gradually

cover more instances. Below are some

examples:
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. . .
Event <i>: World’s leading scientists

announce breakthrough in clean energy

technology, revolutionizing global

sustainability efforts.

Subject: World’s leading scientists

Concepts: expert, human, organism

. . .
Event <N>: A driver is speeding down

the highway.

Subject: A driver

Note that leveraging LLM to perform contextu-
alized abstraction (Wang et al., 2024b; Yu et al.,
2023) has been shown to result in better quality,
larger coverage, and stronger downstream bene-
fits compared to previous conceptualization meth-
ods (He et al., 2024; Wang et al., 2023b, 2024c),
such as retrieving from a pre-defined concept tax-
onomy or human annotation. Our knowledge
distillation-based method is justifiable and enables
large-scale benchmark construction.

B.1.3 Inference Generation
We use different prompts to collect plausible infer-
ential states and metaphysical inferential states for
each changed action event. Here, we provide the
prompt for generating a metaphysical inference as
an example.

Given an action event, generate a

short metaphysical if-then inferential

statement that describes an inferential

state that only occurs in metaphysical

space. A state is a condition or

situation in which someone or something

exists in the past or present that

will last for a certain time if no

changes occur. An action is a thing

that can be done in a time interval

that is usually not long. Metaphysical

inference is a type of inference that

is not based on empirical evidence but

rather on the nature of things. It

can be a counterfactual inference that

is contrary to the facts or reality,

meaning that it is usually not true in

reality world. Below are some examples:

. . .
Event <i>: In 2003, he played a

recurring role on two episodes of The

Bill.

Metaphysical Inference: Everyone

criticizes his performance in the show.

. . .
Event <N>: Sam drives down the road

with fast speed.

B.1.4 Metaphysical Transition Generation
Finally, we use the prompt below to collect the
change needed to transition a metaphysical infer-
ence into a plausible one.

You will be given an event and its

metaphysical inference, meaning that

such an inference is impossible or

rarely occurring in reality. Please

generate a transition that would make

the inference plausible or possible

in real life. Specifically, you are

required to only change a component

of the event. The component must

be one of the Subject, Verb, Object,

Temporal Quantifier, Spatial Quantifier,

Numerical Properties of Subject or

Objects, and Sub-events of the event.

Below are some examples:

. . .
Event <i>: The boss of the company is

monitoring the employees.

Metaphysical Inference: The boss feels

nervous and is expecting a rise.

Transition: employees -> stocks (Object)

. . .
Event <N>: The man is being chased by a

100 meters butterfly in the forest.

Metaphysical Inference: The man is not

scared and is laughing.

B.2 Main Evaluations on MARS

To evaluate LLMs on three tasks in MARS, we
show our evaluating prompts in zero-shot scenario
in Table 6. Note that we are aware that LLMs
may not be familiar with the word “metaphysical.”
Therefore, we also experimented with replacing
the word with “implausible,” and the best perfor-
mances from both types of prompts are reported.
These models are consistent across all models’ eval-
uations for fair comparison.

For few-shot evaluations, few shot examples
are added after task descriptions and before the
prompted test entry. The exemplars are randomly
sampled for each different test entry. For COT
prompting, we specifically ask LLMs to “think step
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Model Task 1 Plaus. Expert. Task 2 Plaus. Expert. Task 3 Plaus. Expert.

ChatGPT 60.98 92.0 58.56 96.5 50.25 93.5
Meta-LLaMa-3.1-405B 62.2 93.2 57.0 95.8 51.0 94.6
GPT-4o 64.6 94.8 59.2 98.4 53.4 96.0

Table 4: Annotation results of evaluation data curated with different LLMs as backbones. Plaus. refers to plausible
event/inference/transition rate and Expert. refers to ratio of data accepted by expert annotators.

Component Type Identified Modified

ME. MI. MT. #Avg. ME. MI. MT. #Avg.

Subject 4,376 3,907 3,507 1.116 3,106 2,950 2,591 1.094
Verb 9,874 8,856 8,061 3.647 4,408 4,146 3,760 3.457
Object 12,645 11,302 9,986 1.760 5,949 5,494 4,865 1.703
Temporal Quantifier 3,003 2,560 2,288 0.472 1,394 1,253 1,110 0.435
Spatial Quantifier 3,866 3,741 3,301 0.459 2,064 1,979 1,718 0.476
Numerical Properties 5,619 4,932 4,355 0.652 3,570 3,353 2,920 0.612
Sub-events 419 385 326 0.040 425 402 332 0.037

Total 39,802 35,683 31,824 8.146 20,916 19,577 17,296 7.814

Table 5: Number of unique components by type in annotated splits of MARS. #Avg. refers to the average number of
unique identified/modified component per event.

by step and generate a short rationale to support
your reasoning.” Then, we ask it to give an answer
based on its generated rationale. The sampling
temperature τ is set to 0.1 by default, and 5 COT
responses are sampled with τ set to 0.7 in the SC-
COT setting.

B.3 Leveraging Open-sourced LLM for
Benchmark Curation

In this paper, we use proprietary LLMs and human
annotation for data construction, which can be
expensive and labor-intensive. However, this ap-
proach serves the best pursuit of data quality, which
is crucial for an evaluation benchmark. Prior to our
data collection, we tested a wide variety of LLMs,
and ChatGPT outperformed almost all of them.
Therefore, we opted to use it for data construction.
Nevertheless, with the recent advancements
in state-of-the-art LLMs, we have found that
meta-llama/Llama-3.1-405B-Instruct and
GPT-4o also achieve satisfactory performance
within our data collection framework. We sampled
500 original data entries and employed similar
prompts and data collection processes to gather
metaphysical reasoning evaluation data entries. We
then asked expert annotators to rate the plausibility
of the obtained data. The results are shown in
Table 4. We observe that LLAMA3.1-405B can
achieve comparable performance to ChatGPT
in terms of plausible data (evaluation data that
reflects reality rather than metaphysics, similar to

the majority vote results in Table 2) and expert
acceptance rates. Additionally, we find that
GPT-4o can even improve the data collection
process, resulting in higher quality data. Thus, we
believe this represents a compromise between data
quality, reproducibility, and cost. It would also
be feasible for data collectors to use LLAMA3.1
in the future for collecting metaphysical data,
although leveraging proprietary LLMs can be more
reliable to some extent.

B.4 Additional Statistics on MARS

Table 5 presents detailed statistics on the number of
unique identified and modified components by type
in the annotated splits of each task. The majority
(approximately 80%) of the components focus on
the subject, verb, and object, while the remainder
(around 20%) concentrate on temporal quantifiers,
spatial quantifiers, numerical properties, and sub-
events. On average, each annotated event in MARS

features 8.15 identified components for changes
and 7.81 transitions.

C Implementation Details

This section provides further implementation de-
tails for the main evaluations and subsequent anal-
yses.

For all experiments, we use the Huggingface1

Library (Wolf et al., 2020) to build all models.
For each LLM, we conduct experiments with

1https://huggingface.co/
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Task Prompt

ME.

Given an event, determine whether it is a metaphysical event or not.
A metaphysical event refers to event that is implausible or rarely occurring in reality.
If it is plausible and commonly accepted in the real world, answer yes.
On the contrary, if the event is metaphysical, answer No.
The event you need to discriminate is: <TEST-ENTRY-EVENT>.
Answer Yes or No only with one word:

MI.

Given an assertion that describes a if-then inference, determine whether the inference is plausible or metaphysical.
A plausible inference is an inference that is likely to be true or reasonable based on the information provided in the assertion.
A metaphysical inference is an inference that is not based on empirical evidence but rather on the nature of things,
it rarely occurs in the real world and can be counterfactual or implausible.
The assertion is: <TEST-ENTRY-INFERENCE>.
Answer Yes or No only with one word.

MT.

You are given an event, an inference based on the event that rarely occurs in the real world (a metaphysical inference),
and a transition in the event that would make the inference plausible or possible in the real world,
please determine whether the transition is correct or not in terms of making the inference plausible or possible.
The event is: <TEST-ENTRY-EVENT>.
The inference is: <TEST-ENTRY-INFERENCE>.
The transition is: <TEST-ENTRY-TRANSITION>.
Answer Yes or No only with one word.

Table 6: Prompts used for evaluating LLMs across three tasks in MARS in zero-shot scenario. ME. MI., and MT.
stand for three tasks, respectively.

both its instruction fine-tuned version (if any)
and the original version. The one achieving
higher performances will be included in the
reported results. For LLaMa2, the model code is
meta-llama/Llama-2-7b/13b/70b(-chat)-hf.
For LLaMa3, the model code is
meta-llama/Meta-Llama-3-8B/70B(-Instruct).
For Mistral, we use mistralai/
Mistral-7B(-Instruct)-v0.3.

For ChatGPT and GPT4, we access it through
Microsoft Azure APIs2. The code of the accessed
version for ChatGPT is gpt-35-turbo, and for
GPT4 is gpt-4. Both models are of the ver-
sion dated 2024-02-01. The maximum generation
length is set to 50 tokens in zero-shot and few-shot
settings, while for COT and SC-COT evaluations,
the maximum generation length is set at 200 to-
kens.

All experiments are conducted on eight NVIDIA-
V100 (32G) GPUs, with 8E disk space, 48 CPU
cores, and 1T memory. Each experiment is re-
peated three times with different random seeds,
and the average performances are reported. The
variance across all experiments remains below 0.08,
which is considered extremely small. Due to space
constraints, we omit reporting this variance.

2https://azure.microsoft.com/en-us/products/ai-services/

C.1 Main Evaluations on MARS

First, we add random voting and majority voting as
another two baselines for revealing the characteris-
tics of the MARS benchmark.

To evaluate PTLMs in a zero-shot manner, we
adopt the evaluation pipeline used for zero-shot
question answering (Ma et al., 2021; Wang et al.,
2023a). Specifically, we convert each discrimi-
nation data entry into two declarative statements,
which serve as natural language assertions cor-
responding to ‘yes” or “no” options. For in-
stance, when determining whether an event is meta-
physical, we generate two assertions: “The event
<EVENT> is metaphysical as it’s unlikely to occur in
reality,” and “The event <EVENT> is not metaphysi-
cal; it’s plausible in reality.” The models are then
tasked with computing the loss of each assertion.
The assertion with the lowest loss is considered as
the model’s prediction. This approach allows any
PTLM to be evaluated under classification tasks
with an arbitrary number of options or even type
classification based on a single assertion. We use
the open code library3 as our code base and follow
the default hyperparameter settings. For VERA,
we follow the exact same implementation4 (Liu
et al., 2023a). The accessed backbone model is
liujch1998/vera, and all other hyperparameter
settings follow the default implementation.

3https://github.com/Mayer123/HyKAS-CSKG
4https://github.com/liujch1998/vera
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For fine-tuning PTLMs, we connect each PTLM
backbone with five fully connected classification
layers. The entire model is then fine-tuned using
a classification objective with cross-entropy loss.
We employ a default setting of a learning rate of
5e-6 and a batch size of 64. The models are op-
timized using an AdamW optimizer (Loshchilov
and Hutter, 2019), with the model’s performance
evaluated every 50 steps. We set the maximum se-
quence lengths for the tokenizers to 70 for all three
discriminative subtasks. Early stopping is also im-
plemented to select the best checkpoint when the
highest validation accuracy is achieved. To ensure
convergence, we train all models with five epochs.

For evaluating LLMs in a zero-shot manner, we
transform the input for each task into assertions
using natural language prompts, as illustrated in
Table 6. The models are then prompted to deter-
mine the plausibility of the provided assertions by
answering yes or no questions. We parse their re-
sponses using pre-defined rules to derive binary pre-
dictions. When generating each token, we consider
the top 10 tokens with the highest probabilities.

For fine-tuning LLMs, we use LoRA for fine-
tuning, and the LoRA rank and α are set to 16
and 32, respectively. We adopt the open code li-
brary from LlamaFactory5 (Zheng et al., 2024) for
model training and evaluation. We similarly use
an Adam (Kingma and Ba, 2015) optimizer with
a learning rate of 5e-5 and a batch size of 8. The
maximum sequence length for the tokenizer is set
at 300. All models are fine-tuned over three epochs,
selecting the checkpoint with the highest accuracy
on the validation set.

Finally, for evaluating proprietary LLMs, such as
ChatGPT and GPT4, we similarly prompt them as
with open LLMs. Detailed prompts are explained
in Appendix B.2.

We also include full evaluation results (with
more baselines and models included) in Table 8.
Specifically, for RAG (Gao et al., 2023), we re-
formulate the traditional paradigm of retrieval-
augmented generation for our task by asking an
LLM to first identify important concepts from the
evaluation data entry, retrieve relevant knowledge
from an abstract knowledge base containing infor-
mation about the concepts, and merge them into the
evaluation prompt for making the final prediction
on metaphysical reasoning tasks. This approach
aligns with the design of our MARS benchmark and

5https://github.com/hiyouga/LLaMA-Factory

provides insights into which method offers more
benefits when comparing retrieval to fine-tuning
conceptual knowledge into LLMs.

For Multi-Agent Calibration, we adopt the multi-
agent deliberation design from Yang et al. (2024),
which is a multi-agent confidence calibration sys-
tem for multiple-choice QA. In this setting, we
set up two LLMs. The first LLM generates the
initial chain-of-thought response and prediction
for each task. The second LLM is prompted with
the first LLM’s chain-of-thought response and is
asked to analyze the differences. Its reasoning ra-
tionale regarding these differences, particularly in
the metaphysical realm, is then provided as feed-
back to the first LLM. The first LLM incorporates
this feedback and is asked to regenerate the chain-
of-thought rationale and final prediction. This loop
continues until the second LLM agrees with the
first LLM.

For Self-Reflection (Pan et al., 2024), we adopt
a straightforward approach to rectify LLM errors
by using feedback provided by the LLM itself (self-
reflection). In this setting, we first ask an LLM
to generate a chain-of-thought response explaining
the rationale behind a given metaphysical data en-
try. We then prompt it for a new round, deliberately
asking it to analyze the correctness of its rationale
and answer. This feedback is merged back into
the original prompt and first response to generate a
refined response after self-reflection.

C.2 Improving Metaphysical Reasoning via
Transferring from Conceptualization
Taxonomy

In this section, we elaborate further on how we
transform CANDLE into the format of three tasks
in MARS for large-scale pre-training in improv-
ing LMs’ metaphysical reasoning abilities.

CANDLE’s data is primarily divided into two
sections. The first section comprises conceptualiza-
tions of instances or events, which can be reformat-
ted into metaphysical event discrimination. Each
data entry in CANDLE represents a conceptualiza-
tion of an abstracted instance within an event or
the abstraction of an entire event. Following our
definition in Section 3, we interpret each concep-
tualization as a change in the event. For each data
entry, replacing the original instance with its con-
ceptualization forms a plausible change that could
occur in reality. Subsequently, we randomly select
negative conceptualizations for an event from con-
ceptualizations of other events that do not share any
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common words with the anchor event. These nega-
tive conceptualizations form metaphysical events.
Three models are then pre-trained on four million
events, with a balanced ratio of plausible events
and metaphysical events. The hyperparameters
for fine-tuning all models remain consistent with
the implementation details described above in Ap-
pendix C.1.

The second part contains the commonsense in-
ferential knowledge of abstracted events, which
can be interpreted as inferential states of the modi-
fied events. To synchronize with our task structure,
we exclusively select relations that imply a state
in the inferential knowledge. We obtain negative
inference samples in a similar manner by sampling
from inference tails of events without common key-
words. Subsequently, we pre-train models for both
the metaphysical inference discrimination task and
the metaphysical transition reasoning task. These
models are trained to determine whether the infer-
ence is plausible or metaphysical in relation to the
altered event. As CANDLE does not include tran-
sitions, this approach serves as the most accurate
simulation of the metaphysical transition reasoning
task. It’s also important to note that CANDLE is
exclusively predicated on social events, covering
only subject, object, and sub-events as types of ab-
straction changes. In contrast, MARS contains
a significantly wider array of events, incorporates
more types of changes, and also evaluates (L)LMs’
capabilities in discerning what additional change
is requisite to instigate a transition. These features
make MARS distinct from tasks in CANDLE.

D Annotation Details

D.1 Worker Selection Protocol

To ensure the high quality of our human annotation,
we implement strict quality control measures. Ini-
tially, we invite only those workers to participate
in our qualification rounds who meet the follow-
ing criteria: 1) a minimum of 1K HITs approved,
and 2) an approval rate of at least 95%. We se-
lect workers separately for each task and conduct
three qualification rounds per task to identify those
with satisfactory performance. In each qualifica-
tion round, we create a qualification test suite that
includes both easy and challenging questions, each
with a gold label from the authors. Workers are
required to complete a minimum of 20 questions.
To qualify, they must achieve an accuracy rate of at
least 80% on the qualification test. After our selec-

tion process, we chose 36, 24, and 32 workers for
three tasks, respectively, from a pool of 481, 377,
and 409 unique annotators. On average, our worker
selection rate stands at 7.26%. Following the quali-
fication rounds, workers are required to complete
another instruction round. This round contains
complex questions selected by the authors, and
workers are required to briefly explain the answer
to each question. The authors will then double-
check the explanations provided by the annotators
and disqualify those with a poor understanding.

D.2 Annotation Interface

For each task, we provide workers with compre-
hensive task explanations in layman’s terms to en-
hance their understanding. We also offer detailed
definitions and several examples of each choice to
help annotators understand how to make decisions.
Each entry requires the worker to annotate using a
four-point Likert scale. Workers are asked to rate
the plausibility of the given question using such
scale, where 1 signifies strong agreement and 4
indicates strong disagreement. We consider anno-
tations with a value of 1 or 2 as plausible and those
with a value of 3 or 4 as implausible. A snapshot
of our annotation instructions, along with a snap-
shot showing the question released to the worker,
are shown in Figure 6 and Figure 7. To ensure
comprehension, we require annotators to confirm
that they have thoroughly read the instructions by
ticking a checkbox before starting the annotation
task. We also manually monitor the performance
of the annotators throughout the annotation pro-
cess and provide feedback based on common er-
rors. Spammers or underperforming workers will
be disqualified. The overall inter-annotator agree-
ment (IAA) stands at 81% in terms of pairwise
agreement, and the Fleiss kappa (Fleiss, 1971) is
0.56. These statistics are generally comparable to
or slightly higher than those of other high-quality
dataset construction works (Sap et al., 2019; Fang
et al., 2021a,b; Hwang et al., 2021; Li et al., 2025;
Bai et al., 2023), which indicates that the annotators
are close to achieving a strong internal agreement.

D.3 Expert Verification

Finally, we enlist the help of three postgraduate
students, each with extensive experience in NLP re-
search, to validate the annotations. These students
are given the same instructions as those provided to
the crowd-sourcing workers and are asked to verify
a sample of 100 annotations for each task. The
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high level of consistency between our expert anno-
tators and the AMT annotators, as demonstrated
in Table 1, suggests that our AMT annotation is of
high quality.

E Additional Experiments and Analysis

In this section, we include additional analytical ex-
periments to provide better support for our claims
in MARS.

E.1 Multi-task Fine-tuning on MARS

E.1.1 Setup
To achieve conscious processing, an ideal language
model should be capable of performing three tasks
uniformly and sequentially. However, fine-tuning
each task separately contradicts this objective, as it
results in a model that can only perform one task
after one training. Therefore, in this section, we
investigate the possibility of enabling a language
model to master all tasks simultaneously through
multitask fine-tuning. Given that all three tasks
are binary classification tasks, we adopt a straight-
forward approach. The language model is trained
using a randomly shuffled combination of training
data from all three tasks. This anticipates that the
model will learn all tasks collectively. The best
checkpoint is chosen based on achieving the high-
est accuracy on the validation sets of all three tasks.
After training, the model performance is evaluated
separately on the testing sets of each task. All train-
ing details remain consistent with those explained
in the Appendix C.1.

E.1.2 Results and Analysis
The results are presented in Table 9. Upon analyz-
ing these results, we observe that LLMs fine-tuned
in a multi-task setting generally outperform those
simply fine-tuned on the respective training data for
each task. This observation is interesting as it sug-
gests that training the model uniformly across all
three tasks can enhance the entire process simulta-
neously, thereby improving reasoning with changes
in distribution. This implies that LLMs can poten-
tially mimic human learning abilities, which are
better equipped to reason with changes by collec-
tively understanding the feasibility, consequence,
and necessity of such changes. Such a phenomenon
indirectly indicates that our task formulation is in-
deed interconnected and collectively forms a rea-
soning pipeline. However, it’s important to note
that this improvement is only marginal. LLMs still

exhibit limited metaphysical reasoning ability, par-
ticularly in the metaphysical event discrimination
task. More advanced methods are still required to
enable LLMs to achieve metaphysical reasoning.

E.2 Few-shot Fine-tuning on MARS

E.2.1 Setup

From the main evaluation results in Table 2, it is
evident that fine-tuning consistently enhances the
performance of all models on MARS. In this sec-
tion, we delve deeper into the impact of fine-tuning
in a few-shot setting, with the aim of analyzing
the performance of models trained with limited
data. More specifically, we aim to examine how
models perform with varying sizes of training data.
This will enable us to determine whether collecting
more data invariably benefits fine-tuning, thereby
leading to the development of more robust meta-
physical reasoners. To achieve this, we sample the
training data for each task in a progressively in-
creasing ratio of 0.2, 0.4, 0.6, 0.8, and 1.0, and use
each sampled training data to fine-tune LLMs for
each task individually. The models are then eval-
uated on the complete validation sets to select the
optimal checkpoint, and on the full testing set for
performance assessment. All fine-tuning parame-
ters remain consistent across all models, as detailed
in Appendix C.1.

E.2.2 Results and Analysis

The results are reported in Table 10. From these
results, we observe that training the model with a
few-shot training data sample generally has a nega-
tive impact across all tasks in MARS. However,
this impact is not significant, and on rare occasions,
the sampled training data even leads to superior
results compared to training on the full sets. When
the training data is reduced to different ratios (80%,
60%, 40%, and 20%), the performance of the mod-
els is not significantly affected. This suggests that
the models are capable of learning from a small
amount of training data and that performance is
not significantly influenced by the size of the train-
ing data. In other words, annotating more data for
training does not necessarily result in better perfor-
mance, indicating that our task cannot be simply re-
solved by increasing training data. Future research
can explore more advanced reasoning paradigms or
training methods to further enhance the capabilities
of LLMs in metaphysical reasoning.
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Data Split Evaluation Method Event-ACC Inference-ACC Transition-ACC

MARS Zero-shot 53.90 51.20 49.41
MARS Few-shot 49.85 51.47 48.88
MARS-Claude Zero-shot 54.50 54.00 53.50
MARS-Claude Few-shot 56.00 55.50 54.00
MARS-LLAMA3.1 Zero-shot 52.00 56.50 56.50
MARS-LLAMA3.1 Few-shot 55.50 57.50 58.50

Table 7: Evaluation results (%) of GPT-4o on MARS constructed with different backbone LLMs.

E.3 Fine-tuned PTLMs vs. Fine-tuned LLMs

To validate the reason why fine-tuned PTLMs per-
form better than fine-tuned LLMs, we first hypoth-
esis that PTLMs have a faster convergence rate to
the training data due to their smaller number of pa-
rameters and fully fine-tuned paradigm (compared
to LoRA when fine-tuning LLMs). This results
in better fine-tuned performance than LLMs. Al-
though LLMs have lower performance, they exhibit
stronger generalizability to other tasks. We fine-
tune a DeBERTa-v3 model with 25% and 50% of
the training data and observed their performance in
Table 10. From the results, we observe that when
we reduce the training data for PTLMs, they are
hardly comparable to fine-tuned LLMs. However,
the last 50% of randomly sampled data brought
significant improvements. While we cannot deter-
mine the exact reason due to the black box nature
of these language models, we believe that PTLMs
have a faster rate of fitting into the distribution of
the training data or human annotations, resulting
in better outcomes on human-annotated evaluation
sets. LLMs are more likely to learn how to make
correct inferences rather than simply fitting the
data. Another possible reason is that we use LoRA
to fine-tune LLMs due to limited computational
resources; fully fine-tuning LLMs might further
enhance their performance.

E.4 Inherent Bias in MARS Construction

One concern regarding the MARS benchmark is the
potential bias introduced by using GPT-series mod-
els, specifically ChatGPT, for dataset construction.
Our approach to constructing MARS was guided by
the need to balance scalability with quality. In pilot
studies evaluating metaphysical reasoning across
various models, GPT-series models consistently
demonstrated the highest levels of creativity and
reliability. Based on these findings, we selected
GPT as the primary backbone for data generation.
Constructing MARS, however, required extensive
manual annotation, as LLMs often fail to provide

accurate labels for complex reasoning tasks. This
manual verification process made it impractical to
create multiple versions of MARS using different
backbone LLMs due to expensive human labors
required. Thus, to address concerns about potential
biases arising from reliance on ChatGPT, we con-
ducted additional experiments by constructing two
smaller versions of the MARS benchmark. These al-
ternative benchmarks utilized data generated from
two different LLMs, Claude-3.5-sonnet (Anthropic,
2024) and LLAMA 3.1-70B (Dubey et al., 2024),
in each step, to obtain 200 evaluation data entries
per task in MARS. All samples underwent expert
annotation to collect ground-truth labels. We then
evaluate GPT-4’s zero-shot and few-shot perfor-
mance on these alternative benchmarks alongside
the original MARS.

The results are shown in Table 7. We observe
that using different LLMs as backbones for MARS

construction results in similar performance by GPT-
4 across zero-shot and few-shot settings. Overall,
the difficulty of the MARS benchmark remains ro-
bust and consistent, irrespective of the backbone
LLM used during dataset generation. These exper-
iments demonstrate that the reliance on ChatGPT
for the original MARS construction does not com-
promise the benchmark’s validity or difficulty. The
results reinforce the reliability of MARS as a com-
prehensive test of metaphysical reasoning, with its
complexity surpassing any potential biases intro-
duced by the specific LLM used in data collection.

E.5 Binary Task Design in MARS

In MARS, all tasks are designed as a binary pre-
diction task to facilitate automated and easy label
collection and evaluation. Here, we discuss the
reason and some pilot analysis behind such task
design by considering other task formulations, in-
cluding multiple-choice, open-ended generation,
and binary evaluation.

Multiple-choice tasks, while structured and
amenable to automated evaluation, posed signif-
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icant challenges in collecting high-quality negative
(distractor) options. Relying on human annotators
to create distractors proved labor-intensive and im-
practical for scaling, as it required drafting multiple
plausible but incorrect options for each question.
As a result, we adopted open-ended generation and
binary evaluation, ultimately choosing a generate-
then-annotate paradigm. This approach involved
two stages: first, evaluating the performance of
LLMs in generating metaphysical cases during the
generation phase; second, annotating the generated
cases with binary labels (correct/incorrect).

To complement the binary evaluation results, we
also included human annotation results for Chat-
GPT’s performance in generating metaphysical
data, as indicated in the Majority row of Table 2,
which can be regarded as following a generative
task paradigm. The results demonstrate that, even
when the task is framed as a generation task, Chat-
GPT struggles with metaphysical reasoning. The
low proportion of human-annotated correct gener-
ations highlights the difficulty of reasoning about
metaphysical changes, regardless of task formu-
lation. While binary evaluation offers clear per-
formance metrics and scalability advantages, the
generation task provides complementary insights
into the model’s creative and reasoning capabili-
ties. Together, these observations underscore the
importance of improving LLMs’ ability to reason
about distributional and situational changes, which
is crucial for advancing their metaphysical reason-
ing capabilities.

F Case Studies

In this section, we present some examples for each
of the three tasks in MARS to help readers bet-
ter understand our benchmark. The examples are
displayed in Table 11. We observe that examples
in MARS typically require careful reasoning and
consideration of the plausibility of occurrences in
reality or the metaphysical realm to make the cor-
rect discrimination.
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Methods Backbone Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random - 50.00 - 49.56 50.00 - 49.56 50.00 - 49.56
Majority - 60.98 - 37.99 58.56 - 36.93 50.25 - 33.37

PTLM
(Zero-shot)

RoBERTa-Base 211M 38.60 49.40 27.90 44.30 55.11 30.80 51.13 53.37 38.36
RoBERTa-Large 340M 38.57 50.94 27.83 44.37 56.49 30.73 50.90 53.08 33.92
DeBERTa-Base 214M 60.55 49.41 42.89 50.10 47.57 48.96 49.05 41.32 33.19
DeBERTa-Large 435M 48.27 49.88 45.87 47.73 49.94 44.44 50.73 46.96 46.15
GPT2-XL 1.5B 38.62 51.12 27.93 44.40 51.88 31.45 49.92 48.35 48.09
CAR 435M 54.63 49.34 49.96 48.33 42.85 41.93 52.97 35.05 46.94
CANDLE 435M 51.90 49.12 50.30 46.77 44.03 38.48 53.49 34.95 47.95
VERA 11B 51.82 50.48 48.52 60.97 62.54 59.09 61.31 66.32 61.17

PTLM
(Fine-tuned)

RoBERTa-Base 211M 63.32 62.76 61.76 69.08 70.54 68.90 71.24 72.73 70.65
RoBERTa-Large 340M 64.22 63.18 62.62 69.04 70.63 68.90 69.68 71.70 68.73
DeBERTa-Base 214M 63.82 63.98 63.39 69.50 70.59 69.31 71.96 73.85 71.17
DeBERTa-Large 435M 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01
GPT2-XL 1.5B 46.68 47.63 46.96 43.70 44.22 30.41 44.57 45.03 45.89
VERA 11B 61.95 61.43 60.81 63.90 66.93 70.84 71.75 74.57 73.27

LLM
(Zero-shot)

Meta-LLaMa-2-7B 50.64 - 41.41 49.87 - 49.23 50.94 - 50.64
Meta-LLaMa-2-13B 51.50 - 49.48 50.81 - 50.57 50.81 - 50.80
Meta-LLaMa-2-70B 52.40 - 49.03 56.13 - 46.81 48.45 - 48.34
Meta-LLaMa-3-8B 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
Meta-LLaMa-3-70B 57.41 - 50.59 63.40 - 61.82 60.15 - 60.01
Meta-LLaMa-3.1-8B 51.01 - 50.27 52.13 - 51.29 52.35 - 52.09
Meta-LLaMa-3.1-70B 59.22 - 52.08 63.61 - 61.90 61.28 - 61.03
+RAG 61.21 - 54.51 66.38 - 65.90 61.53 - 61.22
+Multi-Agent 56.12 - 51.08 65.06 - 65.01 62.54 - 62.19
+Self-reflection 57.94 - 53.17 63.91 - 63.51 60.92 - 60.77
Meta-LLaMa-3.1-405B 59.22 - 52.08 63.61 - 61.90 61.28 - 61.03
Gemma-2-9B 56.88 - 48.53 51.83 - 51.76 49.41 - 45.01
Falcon-7B 54.32 - 49.51 51.77 - 50.30 50.42 - 49.02
Falcon-40B 52.35 - 50.36 49.67 - 49.38 50.27 - 50.22
Mistral-7B 49.90 - 48.94 50.23 - 50.06 51.75 - 51.75

LLM
(Fine-tuned)

Meta-LLaMa-2-7B 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12
Meta-LLaMa-2-13B 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37
Meta-LLaMa-3-8B 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
Gemma-2-9B 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18
Mistral-7B 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

LLM
(API)

ChatGPT 51.00 - 50.35 61.35 - 57.63 60.40 - 60.12
ChatGPT (5-shots) 53.61 - 53.28 58.05 - 57.42 62.40 - 59.35
ChatGPT (COT) 53.20 - 52.61 50.40 - 50.32 49.95 - 49.83
ChatGPT (SC-COT) 53.98 - 53.47 52.47 - 51.99 51.25 - 51.13
GPT4 53.90 - 53.45 51.20 - 50.95 49.41 - 49.33
GPT4 (5-shots) 49.85 - 49.58 51.47 - 51.30 48.88 - 48.73
GPT4 (COT) 51.28 - 50.73 51.49 - 51.35 47.62 - 47.58
GPT4 (SC-COT) 51.97 - 51.26 52.05 - 52.27 48.24 - 48.11
GPT-4o-mini 57.94 - 57.91 53.84 - 53.53 48.06 - 48.06
+RAG 59.99 - 59.97 54.54 - 54.21 49.39 - 49.19
+Multi-Agent 54.21 - 53.17 52.76 - 52.26 46.94 - 46.70
+Self-reflection 56.89 - 55.21 53.22 - 53.20 48.51 - 48.45

Table 8: Full evaluation results (%) of various language models on the testing sets of MARS. The best performances
within each method are underlined and the best among all methods are bold-faced.
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Methods Backbone Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

Random - 50.00 - 49.56 50.00 - 49.56 50.00 - 49.56
Majority - 60.98 - 37.99 58.56 - 36.93 50.25 - 33.37

LLM
(Zero-shot)

Meta-LLaMa-2-7B 50.64 - 41.41 49.87 - 49.23 50.94 - 50.64
Meta-LLaMa-2-13B 51.50 - 49.48 50.81 - 50.57 50.81 - 50.80
Meta-LLaMa-2-70B 52.40 - 49.03 56.13 - 46.81 48.45 - 48.34
Meta-LLaMa-3-8B 50.62 - 49.12 51.33 - 50.98 51.95 - 51.07
Meta-LLaMa-3-70B 57.41 - 50.59 63.40 - 61.82 60.15 - 60.01
Gemma-1.1-7B 56.88 - 48.53 51.83 - 51.76 49.41 - 45.01
Falcon-7B 54.32 - 49.51 51.77 - 50.30 50.42 - 49.02
Falcon-40B 52.35 - 50.36 49.67 - 49.38 50.27 - 50.22
Mistral-7B 49.90 - 48.94 50.23 - 50.06 51.75 - 51.75

LLM
(Fine-tuned)

Meta-LLaMa-2-7B 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12
Meta-LLaMa-2-13B 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37
Meta-LLaMa-3-8B 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74
Gemma-1.1-7B 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18
Mistral-7B 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

LLM
(Multi-task)

Meta-LLaMa-2-7B 60.70 59.88 59.17 66.15 64.67 64.34 70.40 70.89 70.20
Meta-LLaMa-2-13B 61.36 61.42 60.69 67.07 66.44 65.68 70.44 69.15 68.62
Meta-LLaMa-3-8B 61.38 61.85 61.02 67.20 67.13 66.60 71.64 72.06 71.12
Gemma-1.1-7B 61.54 62.36 61.15 67.71 67.60 66.98 73.12 72.82 71.89
Mistral-7B 61.03 61.16 60.38 67.69 67.20 66.16 72.34 72.52 71.78

Table 9: Evaluation results (%) of LLMs fine-tuned on MARS under the multi-task setting.

Backbone Training Data Event Inference Transition

Acc AUC Ma-F1 Acc AUC Ma-F1 Acc AUC Ma-F1

LLaMa-2
7B

20% 58.03 58.24 57.62 62.43 64.47 60.43 63.11 63.08 62.73
40% 58.81 58.40 57.69 64.03 67.48 61.58 66.44 70.04 64.15
60% 59.09 59.41 58.62 64.75 68.10 62.79 67.00 70.85 64.15
80% 59.48 60.54 59.82 64.15 68.01 61.53 66.42 70.64 64.92

100% 60.10 59.90 59.00 63.51 66.44 62.55 66.06 70.38 65.12

LLaMa-2
13B

20% 59.95 59.75 58.57 63.80 66.86 61.80 64.11 68.73 64.08
40% 59.45 59.18 58.25 65.49 68.98 63.54 68.52 71.61 64.82
60% 60.19 59.46 58.92 65.90 69.59 64.18 68.24 72.17 65.59
80% 60.24 60.05 59.43 65.99 69.70 64.27 68.35 72.43 65.97

100% 60.67 60.64 60.00 64.61 67.67 63.59 68.22 72.19 66.37

LLaMa-3
8B

20% 60.56 59.91 58.99 63.40 66.77 61.06 65.23 70.50 64.60
40% 60.68 59.98 59.23 62.35 69.00 61.81 69.43 72.72 65.27
60% 60.74 60.88 60.49 65.90 69.59 61.81 69.00 72.78 65.55
80% 60.91 61.03 60.29 66.73 69.71 61.72 68.71 73.15 66.43

100% 60.06 60.54 59.58 65.76 67.88 65.72 69.83 74.59 68.74

Gemma-v1.1
7B

20% 59.07 59.54 59.18 64.70 70.42 62.43 68.41 73.64 67.08
40% 60.79 59.93 59.72 62.80 70.57 62.26 69.83 73.91 62.18
60% 59.26 60.31 59.25 67.83 70.22 60.56 70.68 74.56 66.98
80% 59.31 59.32 58.73 64.03 70.77 63.73 69.66 73.51 67.05

100% 61.23 61.25 60.28 69.24 70.76 69.00 73.30 76.91 69.18

Mistral-v1.1
7B

20% 60.67 60.27 59.61 65.28 69.22 63.16 68.37 72.85 66.15
40% 60.53 60.78 60.03 65.92 70.21 63.96 69.79 72.97 69.46
60% 61.82 61.86 61.07 67.65 70.46 64.09 67.92 73.38 66.76
80% 59.35 59.55 58.85 68.07 70.43 66.49 69.84 73.63 65.84

100% 60.35 60.77 60.07 66.91 70.06 65.95 71.87 75.47 68.53

DeBERTa-v3-Large
635M

25% 58.11 57.90 57.64 63.28 64.12 64.70 64.51 67.21 66.54
50% 61.32 59.71 60.91 65.36 67.12 68.09 67.95 68.21 67.97

100% 64.45 64.16 63.27 69.57 71.15 69.33 72.93 74.00 72.01

Table 10: Evaluation results (%) of LLMs fine-tuned on MARS under the few-shot setting. Training data refers to
the ratio of sampled training data from the full training sets of MARS.
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Survey Instructions (Click to Collapse)

Is the given inference correct?
Hi! Welcome to our main round HITs. Thanks for contributing to our HIT!
Please read the following instructions carefully before starting the survey. Please don't spam our HITs as there are pre-defined answers. If
your performance is too poor we will disqualify you.
In this survey, you will be given some events and their inferential inferences in the format of if... then...
For each sentence, your task is to determine whether you think it is plausible and commonly appears in our normal life (in the reality) or it's a metaphysical
inference that is implausible and unlikely to happen in our real world.
If you cannot understand the sentence as there are fatal logic, wordings, or grammar mistakes, please select the implausible option.
Note that for each sentence, there is a pre-defined answer. Please answer carefully! Too low correctness rate will lead to the disqualification of the HITs.

Choice Explanations
To determine each sentence, you are required to select one choice from below:

Frequently seen / commonly happening

Definition: The inference is correct and plausible. It's logically correct and can surely happens in our daily life.

If "it is raining heavily outside", then "the streets are likely to be wet". If "a person studies consistently and prepares well for an exam", then "they are
more likely to perform better than someone who does not study as diligently".

If "a person eats a balanced diet and exercises regularly", then "they
are likely to be healthier and have a longer lifespan".

If "a student attends all their classes and completes all their assignments", then
"they are more likely to pass the course with a good grade".

May happen or occur but with low probability

Definition: The inference is plausible and generally logical but has a low probability of happening. It's a rare inference that can occur but not
frequently. In some cases, it may happen but not always.

If a person buys a lottery ticket, then there is a chance they could win
a significant amount of money.

If a person encounters a rare species of bird in their backyard, then it is possible
that the bird is migrating and has made an unusual stop.

If a person randomly selects a book from a library shelf, then there is
a slight possibility that they will stumble upon a valuable and rare first
edition.

If a person visits a particular coffee shop every day for a month, then there is a
small chance they may be offered a free cup of coffee as a gesture of appreciation
from the staff.

Not likely to happen in real world

Definition: The inference has a very low probability of happening in reality. It's an inference that is highly unlikely to occur in our daily life. It's a
metaphysical inference that is not possible in our world.

If a person jumps off a building, then they will be able to fly. If a person wishes hard enough, then they can make objects levitate without any
external force.

If a person walks through a solid wall, then they will reach a parallel
dimension.

If a person concentrates deeply, then they can communicate telepathically with
others.

Implausible

Definition: The inference is logically incorrect and implausible. It's an inference that is not possible in our world and has no chance of happening in
reality. Or you cannot understand the sentence due to fatal logic, wordings, or grammar mistakes.

If a person sneezes, then they will immediately transform into a
unicorn.

If a person touches a rainbow, then they will gain the ability to breathe underwater.

If a person eats a sandwich, then they will become invisible for 24
hours.

If a person takes a nap under a tree, then they will wake up with the ability to
control the weather.

Inference 1: ${event1_id}

If "the driver is speeding down the highway fast", then "the driver is not in a hurry".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 2: ${event2_id}
${event2_type}-${event2_component_type}-${event2_original}-${event2_variation}-${event2_generation_label}-${event2_transition_original}-${event2_transition_modified}-${event2_transition_type}

If "${event2_replaced}", then "${event2_inference}".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 3: ${event3_id}
${event3_type}-${event3_component_type}-${event3_original}-${event3_variation}-${event3_generation_label}-${event3_transition_original}-${event3_transition_modified}-${event3_transition_type}

If "${event3_replaced}", then "${event3_inference}".

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

26/05/2024, 01:39 localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE

localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE 1/3

Figure 6: Our annotation instruction for the workers at the metaphysical inference discrimination task. Workers are
provided with both task explanations and detailed examples.
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Survey Instructions (Click to Collapse)

Is the given inference correct?
Hi! Welcome to our main round HITs. Thanks for contributing to our HIT!
Please read the following instructions carefully before starting the survey. Please don't spam our HITs as there are pre-defined answers. If
your performance is too poor we will disqualify you.
In this survey, you will be given some events and their inferential inferences in the format of if... then...
For each sentence, your task is to determine whether you think it is plausible and commonly appears in our normal life (in the reality) or it's a metaphysical
inference that is implausible and unlikely to happen in our real world.
If you cannot understand the sentence as there are fatal logic, wordings, or grammar mistakes, please select the implausible option.
Note that for each sentence, there is a pre-defined answer. Please answer carefully! Too low correctness rate will lead to the disqualification of the HITs.

Choice Explanations
To determine each sentence, you are required to select one choice from below:

Frequently seen / commonly happening

Definition: The inference is correct and plausible. It's logically correct and can surely happens in our daily life.

If "it is raining heavily outside", then "the streets are likely to be wet". If "a person studies consistently and prepares well for an exam", then "they are
more likely to perform better than someone who does not study as diligently".

If "a person eats a balanced diet and exercises regularly", then "they
are likely to be healthier and have a longer lifespan".

If "a student attends all their classes and completes all their assignments", then
"they are more likely to pass the course with a good grade".

May happen or occur but with low probability

Definition: The inference is plausible and generally logical but has a low probability of happening. It's a rare inference that can occur but not
frequently. In some cases, it may happen but not always.

If a person buys a lottery ticket, then there is a chance they could win
a significant amount of money.

If a person encounters a rare species of bird in their backyard, then it is possible
that the bird is migrating and has made an unusual stop.

If a person randomly selects a book from a library shelf, then there is
a slight possibility that they will stumble upon a valuable and rare first
edition.

If a person visits a particular coffee shop every day for a month, then there is a
small chance they may be offered a free cup of coffee as a gesture of appreciation
from the staff.

Not likely to happen in real world

Definition: The inference has a very low probability of happening in reality. It's an inference that is highly unlikely to occur in our daily life. It's a
metaphysical inference that is not possible in our world.

If a person jumps off a building, then they will be able to fly. If a person wishes hard enough, then they can make objects levitate without any
external force.

If a person walks through a solid wall, then they will reach a parallel
dimension.

If a person concentrates deeply, then they can communicate telepathically with
others.

Implausible

Definition: The inference is logically incorrect and implausible. It's an inference that is not possible in our world and has no chance of happening in
reality. Or you cannot understand the sentence due to fatal logic, wordings, or grammar mistakes.

If a person sneezes, then they will immediately transform into a
unicorn.

If a person touches a rainbow, then they will gain the ability to breathe underwater.

If a person eats a sandwich, then they will become invisible for 24
hours.

If a person takes a nap under a tree, then they will wake up with the ability to
control the weather.

Inference 1: ${event1_id}

If "the driver is speeding down the highway fast", then "the driver is not in a hurry".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 2: ${event2_id}
${event2_type}-${event2_component_type}-${event2_original}-${event2_variation}-${event2_generation_label}-${event2_transition_original}-${event2_transition_modified}-${event2_transition_type}

If "${event2_replaced}", then "${event2_inference}".

How likely do you think this inference will happen in reality?

This is logically correct. In the given context, it can be frequently seen or commonly happening!

While I think this is plausible, it may only occur in specific cases I can think of.

This is not possible or very unlikely to happen in real world.

The inference is implausible. I don't understand it as there are too many grammar errors or meaningless words.

Inference 3: ${event3_id}
${event3_type}-${event3_component_type}-${event3_original}-${event3_variation}-${event3_generation_label}-${event3_transition_original}-${event3_transition_modified}-${event3_transition_type}

If "${event3_replaced}", then "${event3_inference}".

Previewing Answers Submitted by Workers
This message is only visible to you and will not be shown to Workers.
You can test completing the task below and click "Submit" in order to preview the data and format of the submitted results.

26/05/2024, 01:40 localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE

localhost:63342/MARS/Annotations/template/Transition_Inference_Discrimination_Main_demo.html?_ijt=oqm4k0jrvl1qvc25gqd9a52gjv&_ij_reload=RELOAD_ON_SAVE 1/3

Figure 7: An example of a question that has been released to the worker. Workers are asked to annotate in a
four-point Likert scale.

Task Data Examples Label

ME. The tax offices were devastation (burnt down) P.

ME. Keith and Vinnie are running (competition) against each other in the sheriff’s election P.

ME. We worked together environment (in the marina) for years M.

ME. The sun is melting horizon (over the landscape) like an orange popsicle M.

ME. Mammal (human) seek food for their own survival P.

MI. If I perception (felt) the tension leave me, then I feel more relaxed now P.

MI. If they both reached the excellence (world top 100) in 2005, then they both worked hard to
achieve their goals

P.

MI. If Parker and Garbajosa were adaptable (two very versatile players) who could both
defend and attack, then they were actually terrible basketball players.

M.

MI. If Stevens success (won) his first eight games, then Steven is a skilled player. P.

MI. If I communication (have to talk) to my insurance company, then my insurance company
is not responsive and does not provide good customer service.

M.

MT. If he was respectful (overpowering and right intrusion), then he will apologize for his
actions and make amends.

P.

MT. If the other guests have just been invited to participate in a karaoke session (join commu-
nity on the dance floor), then the other guests decline the invitation and choose to sit and
watch instead.

P.

MT. If Australia opposed (supported) South Vietnam in that time period, then Australia support
South Vietnam during that time period.

M.

MT. If Churchill has ignoring (communication) to the requests for verification in various ways,
then Churchill is not interested in verifying the requests and is avoiding them.

P.

MT. If Tikal has hundreds (thousands) of history structures, then archaeologists have not yet
discovered the true purpose of Tikal’s structures.

M.

Table 11: Case studies of three tasks in the MARS benchmark. ME, MI, and MT refer to three tasks in
metaphysical reasoning, respectively. P. refers to plausible in reality and M. refers to metaphysical. The original
component before the change/transition is marked in (grey).
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