
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 16141–16155
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Dynamic Head Selection for Neural Lexicalized Constituency Parsing

Yang Hou and Zhenghua Li*

School of Computer Science and Technology,
Soochow University, China

yhou1@stu.suda.edu.cn zhli13@suda.edu.cn

Abstract

Lexicalized parsing, which associates con-
stituent nodes with lexical heads, has histor-
ically played a crucial role in constituency
parsing by bridging constituency and depen-
dency structures. Nevertheless, with the ad-
vent of neural networks, lexicalized structures
have generally been neglected in favor of un-
lexicalized, span-based methods. In this pa-
per, we revisit lexicalized parsing and propose
a novel latent lexicalization framework that
dynamically infers lexical heads during train-
ing without relying on predefined head-finding
rules. Our method enables the model to learn
lexical dependencies directly from data, offer-
ing greater adaptability across languages and
datasets. Experiments on multiple treebanks
demonstrate state-of-the-art or comparable per-
formance. We also analyze the learned depen-
dency structures, headword preferences, and
linguistic biases.

1 Introduction

Constituency parsing is a fundamental task in natu-
ral language processing (NLP), aiming to represent
the syntactic structure of a sentence as a hierarchi-
cal tree. Parsing is beneficial for numerous down-
stream tasks, including machine translation (Wang
et al., 2007; Currey and Heafield, 2019), semantic
role labeling (Zhou et al., 2020), and named entity
recognition (Li et al., 2017).

Historically, early approaches to constituency
parsing emphasized lexicalized parsing, where
headwords—key words within phrases—played a
central role in guiding syntactic analysis (Mager-
man, 1995; Charniak, 1997; Collins, 1996, 1997;
Charniak, 2000, 2001; Gildea, 2001; Collins, 2003).
Headwords encapsulate critical syntactic and se-
mantic information, enabling the resolution of
complex phenomena such as agreement and long-
distance dependencies (Hindle and Rooth, 1993).

* Corresponding author

However, the emergence of unlexicalized pars-
ing models challenged the necessity of lexical infor-
mation. Research demonstrated that unlexicalized
models could achieve comparable or superior per-
formance, often with reduced complexity and better
generalization across datasets (Klein and Manning,
2003; Petrov and Klein, 2007).

Despite their historical significance, lexicalized
structures are largely ignored in modern neural
approaches. State-of-the-art constituency parsers
predominantly adopt unlexicalized, span-based
methods, leveraging pre-trained language models
(PLMs) such as BERT (Devlin et al., 2019). These
PLMs inherently encode rich lexical and syntactic
dependencies, prompting a reassessment of the role
of lexicalization in parsing. Specifically, two key
questions arise:
1. Does modeling bilexical dependencies still offer

benefits for neural constituency parsing?
2. Can the structural dependency representations

implicitly encoded in PLMs be effectively uti-
lized to enhance parsing?
To address the first question, we reimplement

Collins-formalism of lexicalized parsing with neu-
ral models. For the second question, we propose
a novel latent lexicalization framework for neural
constituency parsing. Unlike traditional methods
that rely on fixed head-finding rules, our framework
introduces dynamic head selection during training.
By treating head selection as a latent variable, the
implicit syntactic knowledge encoded in PLMs are
effectively leveraged, eliminating the need for ex-
plicit dependency supervision and enabling greater
adaptability across languages and datasets. Our
contributions are as follows:
• We revisit lexicalized parsing in the context of

neural models.
• We propose a latent lexicalization framework that

dynamically determines lexical heads, making
the process fully data-driven and flexible.

• We demonstrate through extensive experiments

16141

S

VP

PP

night6at5loudly4barks3

NP

dog2The1

(a) An unlexicalized constituency tree
S[barks]

VP[barks]

PP[at]

night6at5loudly4barks3

NP[dog]

dog2The1

(b) A lexicalized constituency tree

Figure 1: Example trees for the sentence “The dog barks
loudly at night.” Part-of-speech tags are omitted.

on the Penn Treebank (PTB), Chinese Treebank
(CTB), and SPMRL datasets that our method
achieves state-of-the-art or comparable perfor-
mance.

• We provide detailed analyses of the learned de-
pendency structures, headword preferences, and
linguistic biases.

Our code is publicly available at https://github.
com/ironsword666/LatentLexConstParsing.

2 Background

In this section, we provide an overview of the foun-
dational concepts in constituency parsing and lexi-
calization, and introduce common methods of lexi-
calization.

2.1 Constituency Parsing

Constituency parsing aims to represent the syntac-
tic structure of a sentence as a hierarchical tree.
Given a sentence w = w1w2. . .wn, where wi is
the i-th word, the task involves generating a tree t
where each node represents a linguistic unit (word
or phrase) labeled with its syntactic category. For
example, in the sentence “The dog barks loudly at
night”, the noun phrase (NP) “The dog” and the
verb phrase (VP) “barks loudly at night” are con-
stituents. Each constituent is defined by a span of
words (i, j) and a syntactic category l, represented
as the tuple (i, j, l), where i and j denote the start
and end word positions. An example constituency
tree is shown in Figure 1a.

2.2 Lexicalization in Parsing

Lexicalization enhances constituency parsing by
associating each constituent with a lexical head—a
specific word that carries the most syntactic and
semantic importance. For instance:

• Unlexicalized rule: S → NP VP
• Lexicalized rule: Sbarks → NPdog VPbarks

Here, “barks” serves as the head of the sentence
(S), while “dog” is the head of the NP node. These
lexical heads propagate from the leaves to the root
of the tree, forming a lexicalized tree structure.
Figure 1 contrasts unlexicalized and lexicalized
trees. By enriching constituency parsing with lexi-
cal heads, lexicalization bridges the gap between
constituency parsing and dependency parsing, pro-
viding a unified framework to represent both phrase
structure and head-dependent relations. In the lexi-
calized tree t (the same symbol is reused), each con-
stituent is represented as a headed span (i, j, h, l),
where h denotes the position of the headword.
Based on these headed spans, head-dependent rela-
tions h → m can be extracted, yielding a complete
dependency tree as a by-product.

2.3 Lexicalization Methods

Lexicalization in parsing relies on manual annota-
tions or fixed heuristics to identify the lexical head
of each constituent.

• Human Annotation: Dependency trees are an-
notated in parallel with constituency trees. While
accurate, this method is labor-intensive, and con-
sequently, such parallel treebanks are rare or vir-
tually non-existent.

• Naive Heuristics: Simple methods such as al-
ways assigning the leftmost or rightmost child
as the head are efficient but rarely align with
linguistic intuition.

• Linguistic Heuristics: Handcrafted head-finding
rules, such as those used by Collins (2003), deter-
mine lexical heads based on linguistic principles
(e.g., the rightmost noun in a noun phrase is the
head).

Among these methods, head-finding rules are
most commonly used in research, as they obtain
a balance between computational efficiency and
linguistic precision.

16142

https://github.com/ironsword666/LatentLexConstParsing
https://github.com/ironsword666/LatentLexConstParsing

(a) Left binarization (b) Right binarization

(c) Head binarization (d) Latent binarization

Figure 2: Different binarization and lexicalization meth-
ods for a parent node with four children (circles).
Squares represent intermediate nodes. Solid shapes
indicate determined states, while hollow shapes indicate
undetermined states.

3 Latent Lexicalized Constituency
Parsing

3.1 Proposed Latent Lexicalization

Linguistic heuristics, while effective, often fail to
generalize across diverse datasets and syntactic
variations. Treebanks are annotated using different
guidelines, and languages exhibit inherent struc-
tural differences (Dixon, 2010). Moreover, multi-
ple dependency representations, such as Stanford
Dependencies (de Marneffe et al., 2006) and Uni-
versal Dependencies (de Marneffe et al., 2021), can
exist for the same sentence, highlighting the need
for a general and flexible lexicalization framework.

To address these challenges, we propose a latent
lexicalization framework that treats the lexical head
of a constituent as a latent variable. Key features
of this approach include:
• Dynamic Head Selection: In our framework,

the lexical head of a constituent is not predefined.
For a constituent A → B1B2. . .Br, any child Bi

can serve as the head. This flexibility enables the
model to dynamically select the most appropri-
ate head, effectively utilizing implicit syntactic
knowledge encoded in PLMs.

• Representation as A Forest: Instead of con-
structing a single lexicalized tree, we represent
each sentence as a forest of possible lexicalized
trees, where each tree corresponds to a valid head
assignment. During training, the model opti-
mizes over this forest, learning head assignments
that maximize parsing performance.
This data-driven approach generalizes effec-

tively across languages and datasets, overcoming
the rigidity of traditional approaches.

3.2 Binarization of Lexicalized Trees

Efficient parsing algorithms, such as the Eisner-
Satta algorithm (Eisner and Satta, 1999) used in
this paper, require constituency trees to be bina-
rized into Chomsky normal form (CNF).1 The bi-
narization process varies depending on how lexical
heads are determined, as shown in Figure 2.
• Left Binarization: The leftmost child is selected

as the head of the constituent. The tree is re-
cursively binarized by recursively grouping the
leftmost child with one sibling at a time, creating
new intermediate nodes.2

• Right Binarization: Assign the rightmost child
as the head. The tree is transformed by grouping
the rightmost child with one sibling.

• Head Binarization: Head-finding rules are used
to identify the head, and these heads guide how
the nodes are binarized. The detailed process is
described in Appendix A.1.

Latent binarization In our latent lexicalization
framework, where head selection is dynamic, bi-
narization must account for all possible head as-
signments. This leads to a latent binarization3

approach, which considers all valid binary decom-
positions of an n-ary node during training. For
instance, the constituent A → B1B2B3 can be
binarized as:

• A → A1B3, A1 → B1B2

• A → B1A1, A1 → B2B3

This approach ensures consistency between the
phrase structures and the learned dependency struc-
tures. In other words, for each head assignment,
there exists a corresponding binary decomposition.

To clarify the notion of “latent” in this context:
1) In latent lexicalization, any two children of a
parent node can form a potential dependency. 2) In
latent binarization, for a span (i, j) in an n-ary tree,
any span that crosses it is forbidden in the resulting
binary tree. For example, the span (1, 3) crosses
with span (2, 4), and such crossings are disallowed.

1For a discussion on different binarization strategies and
their effects on parsing, see Chen et al. (2021).

2This process ensures that all children depend on the left-
most child.

3This differs from the implicit binarization (Stern et al.,
2017), where an empty label ∅ represents all intermediate
nodes in binary tree decomposition.

16143

3.3 Incorporating Linguistic Knowledge

While the latent lexicalization framework is data-
driven, incorporating linguistic Knowledge can fur-
ther refine the head selection.

Punctuation Exclusion Punctuation marks are
excluded as potential heads because they do not
govern other words. This common linguistic con-
straint is applied across languages.

Content vs. Function Words Content words
(e.g., nouns, verbs) are more likely to serve as
heads than function words (e.g., determiners, con-
junctions). Introducing a bias toward content words
helps the model prioritize semantically significant
words when selecting heads.

Phrase-Level Preferences Linguistic principles
can guide head selection for specific phrase types.
For example, in verb phrases VP → VP NP PP,
objects (NP) or prepositions (PP) are less likely to
serve as heads compared to the main verb (VP).
Thus, NP and PP are forbidden as heads in this sce-
nario. These preferences resemble traditional head-
finding rules but are implemented as soft biases,
allowing the model to adapt to diverse syntactic
structures. For instance, the attachment of a PP to
either a VP or an NP remains flexible, depending
on the data.

For simplicity and cross-linguistic applicability,
only punctuation exclusion is used in this work.

4 Model

In this section, we describe the scoring mechanism,
model architecture, training, and decoding process.

4.1 Scoring factorization

We adopt a two-stage chartb-based framework for
lexicalized parsing, following Dozat and Manning
(2017) and Zhang et al. (2020). In this framework,
constituent brackets are predicted first, followed by
the labeling of these constituents. The overall score
for a (unlabeled) lexicalized tree t is decomposed
into constituency and dependency scores:

s(t) = scon(t) + sdep(t)

=
∑

(i,j)∈t
s(i, j) +

∑

(h→m)∈t
s(h→m) (1)

where s(i, j) is the score of constituent span (i, j),
and s(h → m) denotes the score of a dependency
arc from a head h to its dependent m.

This decomposition enables the use of Eisner-
Satta algorithm (Appendix A.2), a chart-based dy-
namic programming approach with a time complex-
ity of O(n4) for both training and decoding.4

4.2 Model Architecture
For an input sentence w = w0w1. . .wn, where w0

is an artificial ROOT token, we first obtain contex-
tualized representation of each word wi using a
pre-trained language model (BERT in this work).

xi = BERT(wi) (2)

The representations5 are then used to compute
scores for candidate constituents and dependen-
cies using biaffine attention mechanisms (Dozat
and Manning, 2017).

xcon-left
i = MLPcon-left(xi)

x
con-right
j = MLPcon-right(xj)

x
dep-head
h = MLPdep-head(xh)

xdep-mod
m = MLPdep-mod(xm)

(3)

Scores are computed for constituency spans (i, j)
and dependency arcs h → m:

s(i, j) = BiAffinecon(xcon-left
i ,x

con-right
j)

s(h→m) = BiAffinedep(x
dep-head
h ,xdep-mod

m)
(4)

Additionally, constituent label scores s(i, j, l) are
computed using another biaffine mechanism.

4.3 Training
We train the model using conditional random fields
(CRF) to maximize the probability of the gold-
standard tree. The probability of a lexicalized tree
t is defined as:

p(t|w) =
exp(s(t))

Z(w) ≡ ∑
t′ exp(s(t

′))
(5)

where Z(w) is the partition function summing over
all possible trees. When headwords are explicitly
specified, the tree probability directly supervises
the model. When headwords are latent, we opti-
mize over a forest T of valid lexicalized trees:

p(T |w) =

∑
t∗∈T exp(s(t∗))

Z(w)

Lbracket(θ) = − log p(T |w)

(6)

4Alternatively, scores can be factored over headed spans
(i, j, h), but this would require a CKY-style algorithm (Collins,
1997), leading to a higher computational complexity (O(n5)).

5We use fencepost representaions for constituents, as de-
scribed in Stern et al. (2017).

16144

The summation process is performed using a Inside-
version of Eisner-Satta algorithm. See Algorithm 1
in Appendix A.2 for details.

For constituent labels, we use cross-entropy loss:

Llabel(θ) = −
∑

(i,j,l)∈t
log p(l|i, j) (7)

The final loss combines both objectives:

L(θ) = Lbracket(θ) + Llabel(θ) (8)

4.4 Inference

During inference, we use Eisner-Satta algorithm to
decode the best lexicalized tree:

t̂ = argmax
t

s(t) (9)

Then, the optimal label for each constituent (i, j)
is predicted as:

l̂i,j = argmax
l

s(i, j, l) (10)

In addition, head-dependent relations can be di-
rectly extracted from the predicted lexicalized tree.

5 Experiments

5.1 Setup

Data. We conduct experiments on benchmarks
for multiple languages. For English, we use Penn
Treebank 3.0 (PTB) (Marcus et al., 1993), follow-
ing the standard splits (sections 2–21 for training,
section 22 for development, and section 23 for
testing). For Chinese, the Chinese Treebank 5.1
(CTB5) (Xue et al., 2005), split according to the
common practice. We also evaluate our model on
six morphologically rich languages (French, Ger-
man, Korean, Hungarian, Basque, and Polish) from
the SPMRL dataset (Seddah et al., 2013), using the
provided splits. The statistics of the datasets are
shown in the Appendix B.1.

Evaluation Metrics Parsing performance is eval-
uated using the standard precision, recall and F1
score metrics with the EVALB tool6 for PTB and
CTB, and the EVALB_SPMRL script7 for SPMRL.

6https://nlp.cs.nyu.edu/evalb/
7https://www.spmrl.org/spmrl2013-sharedtask.html

Implementation Details For English and Chi-
nese, we extract dependencies with Stanford parser
v3.3.08. And for SPMRL, we use the provided
gold-standard dependencies. Additional imple-
mentation details, including hyperparameter set-
tings, optimization strategies, and computational
resources, are provided in Appendix B.1.

5.2 Main Results
Effectiveness of Lexicalization We evaluate the
impact of different lexicalization methods by com-
paring the following models, all trained with a CRF
loss. The results of the max-margin training are
presented in the Appendix B.2 for details.
• Con: A baseline unlexicalized parser, following

the approach of Zhang et al. (2020).
• Con (Latent): An extension of Con, incorporat-

ing latent binarization (see Section 3.2).
• Lex (Head): A lexicalized parser that uses pre-

specified lexical heads, extracted or annotated.
• Lex (Left): Assigns the leftmost child as the

head for each constituent.
• Lex (Right): Assigns the rightmost child as the

head for each constituent.
• Lex (Latent): Uses latent binarization and latent

lexicalization to infer heads during training.
Table 1 presents the results on PTB, CTB5

and SPMRL datasets. Surprisingly, using pre-
determined lexical heads (Lex (Head)) degrades
performance compared to the unlexicalized base-
line (Con), suggesting that rigid heuristic rules may
not align well with the implicit syntactic knowledge
encoded in PLMs. Assigning the leftmost (Lex
(Left)) or rightmost (Lex (Right)) child as the head
yields slight improvements on some languages, de-
spite being linguistically simplistic. Our latent
lexicalization approach (Lex (Latent)) consistently
outperforms other methods across all languages,
except for two low-resource languages, Basque
and Polish. This demonstrates the advantages of
dynamically inferred heads over fixed head assign-
ments. These findings highlight the limitations of
traditional head-finding heuristics in the context of
PLMs. While there may be room for improvement
in leveraging rule-extracted headwords, the results
emphasize the promise of latent lexicalization as a
flexible and effective strategy for improving con-
stituent lexicalization in neural parsing models.

Compared with previous work Tables 2, 3 and
4 compare our model with state-of-the-art parsers

8https://nlp.stanford.edu/software/lex-parser.shtml

16145

https://nlp.cs.nyu.edu/evalb/
https://www.spmrl.org/spmrl2013-sharedtask.html
https://nlp.stanford.edu/software/lex-parser.shtml

Model English Chinese French German Korean Hungarian Basque Polish

Con 95.81 91.96 87.25 90.36 89.38 94.54 91.20 95.94
Con (latent) 95.86 91.68 87.88 90.41 89.42 94.79 91.19 95.98
Lex (head) 95.77 91.67 87.30 90.33 89.28 94.32 91.16 95.62
Lex (left) 95.79 92.00 87.79 90.34 89.31 94.69 91.34 95.68
Lex (right) 95.82 92.07 87.29 90.52 89.43 94.82 91.13 95.76

Lex (latent) 96.02 92.34 87.91 90.53 89.51 94.83 91.28 95.79
∆ vs. Con (latent) +0.16 +0.66 +0.03 +0.17 +0.09 +0.04 +0.09 -0.19

Table 1: Results of different lexicalization methods on PTB (English), CTB5 (Chinese) and SPMRL (covering
French, German, Korean, Hungarian, Basque and Polish). Only the F1 scores are reported.

Model P R F1

Kitaev et al. (2019) 95.46 95.73 95.59
Zhou and Zhao (2019) 95.70 95.98 95.84
Zhang et al. (2020) 95.85 95.53 95.69
Xin et al. (2021) 96.29 95.55 95.92
Cui et al. (2022) 95.70 96.14 95.92
Yang and Tu (2022) 96.19 95.83 96.01
Yang and Tu (2023) 96.21 95.87 96.04
Ours 96.19 95.85 96.02

Table 2: Results on PTB test set.

Model P R F1

Kitaev et al. (2019) 91.96 91.55 91.75
Zhang et al. (2020) 92.51 92.04 92.27
Yang and Deng (2020) 93.80 93.40 93.59
Xin et al. (2021) 92.94 92.06 92.50
Cui et al. (2022) 92.45 92.17 92.31
Yang and Tu (2023) 92.83 91.97 92.41
Ours 92.60 91.87 92.34

Table 3: Results on CTB5 test set.

on PTB, CTB, and SPMRL datasets. On PTB,
our model achieves a F1 score of 96.02, compa-
rable to the best-performing parser (Yang and Tu,
2023). For CTB5, our method achieves competitive
results, demonstrating its effectiveness across lan-
guages. On the multilingual SPMRL dataset, our
parser outperforms previous methods on French
and Korean, and achieves strong results on other
languages, showcasing its robustness in morpho-
logically rich settings.

6 Analysis

In this section, we analyze the prediction behavior
of our model to better understand the effects of

latent lexicalization. Specifically, we investigate
the head selection patterns and its consistency with
Stanford Dependencies (SD) on PTB test set.

6.1 Lexcial Head Selelction

We analyze the predicted head selection patterns
from two perspectives: (1) the headword choices
for different phrase types, and (2) the dependency
relationships inferred between POS tags. The
gold-standard references can be found in the Ap-
pendix B.4.

Phrase Head Preferences We investigate head
selection for various types of constituents.9 The
results, shown in Table 5, reveal several patterns:
• Noun Phrase (NP): The model predominantly

selects the noun as the head, aligning with lin-
guistic expectation.

• Verb Phrase (VP): The main verb is usually cho-
sen as the head, but auxiliary verbs (e.g., is, has)
are also frequently identified as heads.

• Prepositional Phrase (PP): The model frequently
selects the noun phrase (NP) within the PP as the
head. This behavior is consistent with the Uni-
versal Dependencies (UD) annotation scheme.
These results suggest that the model captures

certain linguistic norms, though it does not always
strictly adhere to them.

Dependency Relationship To further investigate
head selection, we examine the predicted depen-
dencies between POS tags. Table 6 outlines fre-
quent dependency relationships. Some dependen-
cies align with linguistic conventions, such as:
• The dependency between verbs and nouns (VB ↷
NN).

9Inherited heads from unary chains (e.g., NP → NNS)
have minimal impact on the results.

16146

Model
Rich Resource Low Resource

Avg
French German Korean Hungarian Basque Polish

Kitaev et al. (2019) 87.42 90.20 88.80 94.90 91.63 96.36 91.55
Nguyen et al. (2020) 86.69 90.28 88.71 94.24 92.02 96.14 91.34
Cui et al. (2022) 87.51 90.43 89.07 94.95 91.73 96.33 91.67
Yang and Tu (2023) 87.89 91.07 89.31 95.06 91.72 96.18 91.87
Ours 87.91 90.53 89.51 94.83 91.28 95.79 91.64

Table 4: Results on SPMRL test set. Only the F1 scores are reported.

Phrase Head Count Ratio (%) Headword

NP

NN 5382 29.0 it, “%”,
NNS 3123 16.9 the, company,
NNP 2795 15.1 he, market,
NP 2511 13.6 share, million

VP

VP 2453 28.0 said, is,
VBD 1220 13.9 be, are,
VB 973 11.1 have, was,

VBZ 690 7.9 says, for

S
VP 5265 93.4 said, is,
S 221 3.9 are, was

PP
NP 4570 83.3 in, of,
IN 552 10.1 market, for

ADVP
RB 1027 83.5 also, ago,

RBR 43 3.5 now, still

ADJP
JJ 420 49.3 “$”, million,
S 51 6.0 more, billion

WHNP
WDT 272 63.0 that, which,
WP 106 24.5 who, what

Table 5: Most frequent heads for each constituent label,
along with high-frequency headwords (listed in left-to-
right, top-down order).

• The tendency for verbs to serve as the head of
sentences (ROOT ↷ VBD).

However, certain dependencies contradict com-
monly used Stanford Dependencies. For instance:
• Dependencies between nouns and prepositions

(NN ↷ IN) contradict the expected head direction,
where prepositions typically govern nouns.
These inconsistencies do not necessarily indi-

cate a failure to learn dependency relationships.
Intriguingly, the prediction preference for nouns
as heads of prepositional phrases aligns with Uni-
versal Dependencies conventions. This alignment
offers practical advantages for resolving classic
PP attachment ambiguities. For example, in the
sentence “They saw a cat with a telescope”, to
facilitate disambiguation, the model requires prior-
itizing semantically meaningful associations (saw
↔ telescope, cat ↔ telescope) over syntactically

Head ↷ Dependent Count Ratio (%)

NN↷ DT 3250 5.7
NNP ↷ NNP 2837 5.0
NN↷ IN 1871 3.3
NN↷ NN 1506 2.7
NNS ↷ IN 1231 2.2
NNS ↷ NN 973 1.7
NN↷ JJ 959 1.7
VBD ↷ . 901 1.6
VB↷ NN 885 1.6

ROOT↷ VBD 880 1.5

Table 6: Dependency relationships between POS tags.

Model UAS UUAS

Ours 37.0 51.3

for reference
Wu et al. (2020) 41.7 52.1

Table 7: Dependency parsing performance. Wu et al.
(2020) use a syntax probing method on the English
Parallel Universal Dependencies (PUD) treebank.

functional connections (saw ↔ with, cat ↔ with).

6.2 Consistency with Stanford Dependencies
Parsing Performance We compare the predicted
dependencies against Stanford Dependencies using
unlabeled attachment score (UAS) and undirected
UAS (UUAS) (Klein and Manning, 2004). The
results, presented in Table 7, show that the UAS
value is relatively low, indicating that the predicted
dependencies differ substantially from those in the
SD. However, UUAS, which eliminates sensitive
to annotation variation, gains a higher score.

Arc Direction The directionality of dependency
arcs offers valuable insight into language-specific
syntactic patterns (note that arc direction is distinct
from head-dependent direction). Dependency arc

16147

Model Leftward Arc Rightward Arc

SD 51.8 48.2
Ours 67.0 33.0

Table 8: Ratio of leftward arcs and rightward arcs.

Language Source UAS UUAS

English C 37.01 51.32
Chinese C 63.02 70.34
French C 34.83 52.76
German C 46.22 58.22
Korean C 29.70 54.45
Hungarian C 36.34 49.22
Polish C 13.10 33.21
Basque D 44.07 58.92

Table 9: Dependency parsing performance on PTB,
CTB5, and SPMRL datasets. C and D denote converted
and manually annotated dependency trees, respectively.

direction varies across languages. For example,
English is a head-initial language, whereas Chinese
is head-final.10

To evaluate arc directionality, we calculate the
ratio of leftward arcs and rightward arcs. As shown
in Table 8, the predicted dependencies predomi-
nantly exhibit head-final patterns, aligning with the
results in Table 6. Specifically, the model correctly
predicts head-initial arcs for verbs governing ob-
jects (e.g., eat ↷ apple), However, a significant
proportion of noun phrases in the dataset follow
a head-final structure (e.g., the ↶ dog), which
influences the overall prediction patterns.

6.3 Dependency Evaluation

We expand the evaluation of dependency parsing
to more datasets, including CTB5 and SPMRL.
We distinguish between dependency trees that are
manually annotated (D) and those converted from
constituency trees (C). The results are shown in
Table 9. We observe that for CTB5, the depen-
dency performance is quite strong, while the model
performs worst in Polish. Basque, with manually
annotated dependency trees, shows a fair result.

10The annotation formalism also influences arc direction.
For instance, Universal Dependencies (UD) often prioritize
right-to-left dependencies.

7 Related Work

Lexicalized Parsing Lexicalized parsing has
been a cornerstone in syntactic analysis, under-
pinning many early parsing frameworks (Mager-
man, 1995; Charniak, 1997; Collins, 1996, 1997).
Among these, the Collins formalism stands out
as particularly influential, utilizing lexical heads
to facilitate syntactic derivations (Collins, 2003).
Although initially designed for English and chart-
based parsing, these models have been successfully
adapted to other languages and transition-based
parsing paradigm (Crabbé, 2014, 2015).

Joint Parsing The inherent ability of lexicalized
parsing to encode dependency relations has mo-
tivated efforts to jointly predict constituency and
dependency structures within a unified framework.
Some approaches maintain separate representa-
tions for dependency and constituency structures
while enforcing consistency constraints between
them (Strzyz et al., 2019; Fernández-González and
Gómez-Rodríguez, 2022). Others adopt a single-
tree representation to jointly predict both structures
(Zhou and Zhao, 2019; Gu et al., 2024).

Modern Constituency Parsing Building on tra-
ditional methods, modern constituency parsers pre-
dominantly follow either chart-based (Kitaev and
Klein, 2018; Zhang et al., 2020; Xin et al., 2021)
or transition-based (Cross and Huang, 2016; Liu
and Zhang, 2017) approaches. Transition-based
parsers, in particular, have seen various innova-
tions. Some models transform input sentences into
linearized tree representations (Wei et al., 2020;
Amini and Cotterell, 2022) or pointer sequences
(Nguyen et al., 2020; Yang and Tu, 2022). Another
promising direction is combinatory parsing (Chen
et al., 2021; Chen and Komachi, 2023), where
shorter spans are merged into longer spans in a
layer-wise manner. Notably, their multi-branching
architecture—similar to our work—can be adapted
to select the head of each constituent.

Latent Parsing The use of latent representations
has proven effective in various NLP tasks. Fu et al.
(2020) model nested named entities using a con-
stituency parsing framework. Lou et al. (2022)
extend their work by introducing a latent lexical-
ized tree structure. Zhang et al. (2022) treat se-
mantic arguments as latent single-root dependency
trees. These approaches demonstrate the potential
of latent parsing frameworks to handle complex
linguistic structures without manual annotations.

16148

Compared with these work, our work is the first to
apply latent parsing to constituency parsing.

Syntax Probing Syntax probing has emerged
as a key methodology for analyzing the linguis-
tic knowledge encoded in PLMs (Tenney et al.,
2019; Belinkov, 2022). Probing tasks often rely
on linear transformations to map model representa-
tions to syntactic parse trees (Hewitt and Manning,
2019; Manning et al., 2020). Utilizing parameter-
free methods, researchers have shown that PLMs
implicitly learn rich syntactic structures, such as
constituency and dependency parses, even without
explicit supervision (Wu et al., 2020; Niu et al.,
2022; Buder-Gröndahl, 2024). Our work comple-
ments syntax probing by explicitly incorporating
lexicalized parsing into a neural framework.

8 Conclusion

In this work, we proposed a latent lexicalization
framework for constituency parsing, designed to
dynamically infer head words during training. By
treating head selection as a latent variable, the
model can learn lexical dependencies directly from
data, eliminating the need for predefined head-
finding rules and enhancing adaptability across lan-
guages and datasets.

Our experiments on PTB and CTB demonstrate
that the latent lexicalization framework consistently
outperform traditional lexicalization approaches,
such as heuristic-based. Key findings include: 1)
The heads inferred by the model successfully align
with linguistic conventions for some syntactic struc-
tures, such as verbs governing their arguments.
However, for preposition attachment, the head se-
lection conflicts with Stanford Dependencies. 2)
The model often predicts head-final arcs in English,
which is common for nouns governing their mod-
ifiers. These results underscore the potential of
latent lexicalization to utilize lexical dependency
representations encoded in PLMs.

Limitations

Projectivity and Continuous Spans The parsing
algorithm (Eisner-Satta) used in this work inher-
ently restricts the model to projective dependency
structures. Furthermore, our framework focuses
exclusively on continuous spans, meaning it does
not account for discontinuous constituents. Dis-
continuous spans are often associated with non-
projective dependencies, which frequently occur
in linguistic phenomena such as extraposition or

topicalization. As a result, our model may not
fully capture certain syntactic configurations that
require non-projective or discontinuous representa-
tions. To address this limitation, future work could
explore alternative parsing algorithms that support
non-projective structures and discontinuous spans.

Computational Complexity While the proposed
method supports efficient batch processing on
GPUs, its theoretical complexity of O(n4) may
limit scalability in scenarios involving long sen-
tences. Although parsing speeds are comparable
to existing methods in practice (Appendix B.3),
the increased computational overhead could pose
challenges for resource-constrained environments.

Headword Consistency The discrepancies ob-
served between the predicted heads and gold-
standard heads suggest that the model does not
always capture the correct headword information.
This inconsistency may propagate errors in down-
stream tasks, which rely on accurate dependency
structures. While incorporating linguistic con-
straints could improve consistency, doing so may
introduce additional complexity and reduce the
cross-linguistic generalizability.

Acknowledgements

We thank all the anonymous reviewers for their
valuable comments. This work was supported
by National Natural Science Foundation of China
(Grant No. 62176173 and 62336006), and a Project
Funded by the Priority Academic Program Devel-
opment (PAPD) of Jiangsu Higher Education Insti-
tutions.

References

Afra Amini and Ryan Cotterell. 2022. On parsing as
tagging. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 8884–8900, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Yonatan Belinkov. 2022. Probing classifiers: Promises,
shortcomings, and advances. Computational Linguis-
tics, 48(1):207–219.

Tommi Buder-Gröndahl. 2024. What does parameter-
free probing really uncover? In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
327–336, Bangkok, Thailand. Association for Com-
putational Linguistics.

16149

https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.18653/v1/2022.emnlp-main.607
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.1162/coli_a_00422
https://doi.org/10.18653/v1/2024.acl-short.31
https://doi.org/10.18653/v1/2024.acl-short.31

Eugene Charniak. 1997. Statistical parsing with a
context-free grammar and word statistics. In Pro-
ceedings of the Fourteenth National Conference on
Artificial Intelligence and Ninth Innovative Applica-
tions of Artificial Intelligence Conference, AAAI 97,
IAAI 97, July 27-31, 1997, Providence, Rhode Island,
USA, pages 598–603. AAAI Press / The MIT Press.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In 1st Meeting of the North American Chapter
of the Association for Computational Linguistics.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proceedings of the 39th An-
nual Meeting of the Association for Computational
Linguistics, pages 124–131, Toulouse, France. Asso-
ciation for Computational Linguistics.

Zhousi Chen and Mamoru Komachi. 2023. Discon-
tinuous combinatory constituency parsing. Transac-
tions of the Association for Computational Linguis-
tics, 11:267–283.

Zhousi Chen, Longtu Zhang, Aizhan Imankulova, and
Mamoru Komachi. 2021. Neural combinatory con-
stituency parsing. In Findings of the Association
for Computational Linguistics: ACL-IJCNLP 2021,
pages 2199–2213, Online. Association for Computa-
tional Linguistics.

Michael Collins. 1997. Three generative, lexicalised
models for statistical parsing. In 35th Annual Meet-
ing of the Association for Computational Linguistics
and 8th Conference of the European Chapter of the
Association for Computational Linguistics, pages 16–
23, Madrid, Spain. Association for Computational
Linguistics.

Michael Collins. 2003. Head-driven statistical models
for natural language parsing. Computational Linguis-
tics, 29(4):589–637.

Michael John Collins. 1996. A new statistical parser
based on bigram lexical dependencies. In 34th An-
nual Meeting of the Association for Computational
Linguistics, pages 184–191, Santa Cruz, California,
USA. Association for Computational Linguistics.

Benoit Crabbé. 2014. An LR-inspired generalized lex-
icalized phrase structure parser. In Proceedings of
COLING 2014, the 25th International Conference on
Computational Linguistics: Technical Papers, pages
541–552, Dublin, Ireland. Dublin City University and
Association for Computational Linguistics.

Benoit Crabbé. 2015. Multilingual discriminative lexi-
calized phrase structure parsing. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1847–1856, Lisbon,
Portugal. Association for Computational Linguistics.

James Cross and Liang Huang. 2016. Span-based con-
stituency parsing with a structure-label system and
provably optimal dynamic oracles. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1–11, Austin, Texas.
Association for Computational Linguistics.

Leyang Cui, Sen Yang, and Yue Zhang. 2022. Inves-
tigating non-local features for neural constituency
parsing. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 2065–2075, Dublin,
Ireland. Association for Computational Linguistics.

Anna Currey and Kenneth Heafield. 2019. Incorpo-
rating source syntax into transformer-based neural
machine translation. In Proceedings of the Fourth
Conference on Machine Translation (Volume 1: Re-
search Papers), pages 24–33, Florence, Italy. Associ-
ation for Computational Linguistics.

Marie-Catherine de Marneffe, Bill MacCartney, and
Christopher D. Manning. 2006. Generating typed
dependency parses from phrase structure parses. In
Proceedings of the Fifth International Conference
on Language Resources and Evaluation (LREC’06),
Genoa, Italy. European Language Resources Associ-
ation (ELRA).

Marie-Catherine de Marneffe, Christopher D. Man-
ning, Joakim Nivre, and Daniel Zeman. 2021. Uni-
versal Dependencies. Computational Linguistics,
47(2):255–308.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Robert MW Dixon. 2010. Basic Linguistic Theory:
Volume 2 Grammatical Topics. Oxford University
Press.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April
24-26, 2017, Conference Track Proceedings. Open-
Review.net.

Jason Eisner and Giorgio Satta. 1999. Efficient parsing
for bilexical context-free grammars and head automa-
ton grammars. In Proceedings of the 37th Annual
Meeting of the Association for Computational Lin-
guistics, pages 457–464, College Park, Maryland,
USA. Association for Computational Linguistics.

Daniel Fernández-González and Carlos Gómez-
Rodríguez. 2022. Multitask pointer network for
multi-representational parsing. Knowl. Based Syst.,
236:107760.

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang,
and Fei Huang. 2020. Nested named entity recogni-
tion with partially-observed treecrfs. In AAAI Con-
ference on Artificial Intelligence.

16150

http://www.aaai.org/Library/AAAI/1997/aaai97-093.php
http://www.aaai.org/Library/AAAI/1997/aaai97-093.php
https://aclanthology.org/A00-2018
https://aclanthology.org/A00-2018
https://doi.org/10.3115/1073012.1073029
https://doi.org/10.3115/1073012.1073029
https://doi.org/10.1162/tacl_a_00546
https://doi.org/10.1162/tacl_a_00546
https://doi.org/10.18653/v1/2021.findings-acl.194
https://doi.org/10.18653/v1/2021.findings-acl.194
https://doi.org/10.3115/976909.979620
https://doi.org/10.3115/976909.979620
https://doi.org/10.1162/089120103322753356
https://doi.org/10.1162/089120103322753356
https://doi.org/10.3115/981863.981888
https://doi.org/10.3115/981863.981888
https://aclanthology.org/C14-1052
https://aclanthology.org/C14-1052
https://doi.org/10.18653/v1/D15-1212
https://doi.org/10.18653/v1/D15-1212
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/D16-1001
https://doi.org/10.18653/v1/2022.acl-long.146
https://doi.org/10.18653/v1/2022.acl-long.146
https://doi.org/10.18653/v1/2022.acl-long.146
https://doi.org/10.18653/v1/W19-5203
https://doi.org/10.18653/v1/W19-5203
https://doi.org/10.18653/v1/W19-5203
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
http://www.lrec-conf.org/proceedings/lrec2006/pdf/440_pdf.pdf
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.3115/1034678.1034748
https://doi.org/10.1016/J.KNOSYS.2021.107760
https://doi.org/10.1016/J.KNOSYS.2021.107760

Daniel Gildea. 2001. Corpus variation and parser per-
formance. In Proceedings of the 2001 Conference on
Empirical Methods in Natural Language Processing.

Yanggan Gu, Yang Hou, Zhefeng Wang, Xinyu Duan,
and Zhenghua Li. 2024. High-order joint con-
stituency and dependency parsing. In Proceedings of
the 2024 Joint International Conference on Compu-
tational Linguistics, Language Resources and Eval-
uation (LREC-COLING 2024), pages 8144–8154,
Torino, Italia. ELRA and ICCL.

John Hewitt and Christopher D. Manning. 2019. A
structural probe for finding syntax in word represen-
tations. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4129–4138, Minneapolis, Minnesota. Association for
Computational Linguistics.

Donald Hindle and Mats Rooth. 1993. Structural ambi-
guity and lexical relations. Computational Linguis-
tics, 19(1):103–120.

Nikita Kitaev, Steven Cao, and Dan Klein. 2019. Multi-
lingual constituency parsing with self-attention and
pre-training. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3499–3505, Florence, Italy. Association for
Computational Linguistics.

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Association
for Computational Linguistics.

Dan Klein and Christopher Manning. 2004. Corpus-
based induction of syntactic structure: Models of
dependency and constituency. In Proceedings of
the 42nd Annual Meeting of the Association for
Computational Linguistics (ACL-04), pages 478–485,
Barcelona, Spain.

Dan Klein and Christopher D. Manning. 2003. Accu-
rate unlexicalized parsing. In Proceedings of the
41st Annual Meeting of the Association for Compu-
tational Linguistics, pages 423–430, Sapporo, Japan.
Association for Computational Linguistics.

Peng-Hsuan Li, Ruo-Ping Dong, Yu-Siang Wang, Ju-
Chieh Chou, and Wei-Yun Ma. 2017. Leveraging lin-
guistic structures for named entity recognition with
bidirectional recursive neural networks. In Proceed-
ings of the 2017 Conference on Empirical Methods
in Natural Language Processing, pages 2664–2669,
Copenhagen, Denmark. Association for Computa-
tional Linguistics.

Jiangming Liu and Yue Zhang. 2017. Encoder-decoder
shift-reduce syntactic parsing. In Proceedings of
the 15th International Conference on Parsing Tech-
nologies, pages 105–114, Pisa, Italy. Association for
Computational Linguistics.

Chao Lou, Songlin Yang, and Kewei Tu. 2022. Nested
named entity recognition as latent lexicalized con-
stituency parsing. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 6183–6198,
Dublin, Ireland. Association for Computational Lin-
guistics.

David M. Magerman. 1995. Statistical decision-tree
models for parsing. In 33rd Annual Meeting of the As-
sociation for Computational Linguistics, pages 276–
283, Cambridge, Massachusetts, USA. Association
for Computational Linguistics.

Christopher D. Manning, Kevin Clark, John Hewitt,
Urvashi Khandelwal, and Omer Levy. 2020. Emer-
gent linguistic structure in artificial neural networks
trained by self-supervision. Proc. Natl. Acad. Sci.
USA, 117(48):30046–30054.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank. Computational
Linguistics, 19(2):313–330.

Thanh-Tung Nguyen, Xuan-Phi Nguyen, Shafiq Joty,
and Xiaoli Li. 2020. Efficient constituency parsing
by pointing. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3284–3294, Online. Association for Computa-
tional Linguistics.

Jingcheng Niu, Wenjie Lu, Eric Corlett, and Gerald
Penn. 2022. Using roark-hollingshead distance to
probe BERT’s syntactic competence. In Proceedings
of the Fifth BlackboxNLP Workshop on Analyzing
and Interpreting Neural Networks for NLP, pages
325–334, Abu Dhabi, United Arab Emirates (Hybrid).
Association for Computational Linguistics.

Slav Petrov and Dan Klein. 2007. Improved inference
for unlexicalized parsing. In Human Language Tech-
nologies 2007: The Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics; Proceedings of the Main Conference,
pages 404–411, Rochester, New York. Association
for Computational Linguistics.

Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie
Candito, Jinho D. Choi, Richárd Farkas, Jennifer Fos-
ter, Iakes Goenaga, Koldo Gojenola Galletebeitia,
Yoav Goldberg, Spence Green, Nizar Habash, Marco
Kuhlmann, Wolfgang Maier, Joakim Nivre, Adam
Przepiórkowski, Ryan Roth, Wolfgang Seeker, Yan-
nick Versley, Veronika Vincze, Marcin Woliński,
Alina Wróblewska, and Eric Villemonte de la Clerg-
erie. 2013. Overview of the SPMRL 2013 shared
task: A cross-framework evaluation of parsing
morphologically rich languages. In Proceedings
of the Fourth Workshop on Statistical Parsing of
Morphologically-Rich Languages, pages 146–182,
Seattle, Washington, USA. Association for Computa-
tional Linguistics.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017.
A minimal span-based neural constituency parser.

16151

https://aclanthology.org/W01-0521
https://aclanthology.org/W01-0521
https://aclanthology.org/2024.lrec-main.713
https://aclanthology.org/2024.lrec-main.713
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://doi.org/10.18653/v1/N19-1419
https://aclanthology.org/J93-1005
https://aclanthology.org/J93-1005
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P19-1340
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.18653/v1/P18-1249
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1218955.1219016
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.3115/1075096.1075150
https://doi.org/10.18653/v1/D17-1282
https://doi.org/10.18653/v1/D17-1282
https://doi.org/10.18653/v1/D17-1282
https://aclanthology.org/W17-6315
https://aclanthology.org/W17-6315
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.18653/v1/2022.acl-long.428
https://doi.org/10.3115/981658.981695
https://doi.org/10.3115/981658.981695
https://doi.org/10.1073/PNAS.1907367117
https://doi.org/10.1073/PNAS.1907367117
https://doi.org/10.1073/PNAS.1907367117
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2020.acl-main.301
https://doi.org/10.18653/v1/2022.blackboxnlp-1.27
https://doi.org/10.18653/v1/2022.blackboxnlp-1.27
https://aclanthology.org/N07-1051
https://aclanthology.org/N07-1051
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://aclanthology.org/W13-4917
https://doi.org/10.18653/v1/P17-1076

In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Michalina Strzyz, David Vilares, and Carlos Gómez-
Rodríguez. 2019. Sequence labeling parsing by learn-
ing across representations. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 5350–5357, Florence, Italy. Asso-
ciation for Computational Linguistics.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4593–
4601, Florence, Italy. Association for Computational
Linguistics.

Wei Wang, Kevin Knight, and Daniel Marcu. 2007. Bi-
narizing syntax trees to improve syntax-based ma-
chine translation accuracy. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
746–754, Prague, Czech Republic. Association for
Computational Linguistics.

Yang Wei, Yuanbin Wu, and Man Lan. 2020. A span-
based linearization for constituent trees. In Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pages 3267–3277, On-
line. Association for Computational Linguistics.

Zhiyong Wu, Yun Chen, Ben Kao, and Qun Liu. 2020.
Perturbed masking: Parameter-free probing for ana-
lyzing and interpreting BERT. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 4166–4176, Online. Asso-
ciation for Computational Linguistics.

Xin Xin, Jinlong Li, and Zeqi Tan. 2021. N-ary con-
stituent tree parsing with recursive semi-Markov
model. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 2631–2642, Online. Association for Computa-
tional Linguistics.

Naiwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer.
2005. The penn chinese treebank: Phrase structure
annotation of a large corpus. Natural language engi-
neering, pages 207–238.

Kaiyu Yang and Jia Deng. 2020. Strongly incremen-
tal constituency parsing with graph neural networks.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Songlin Yang and Kewei Tu. 2022. Bottom-up con-
stituency parsing and nested named entity recogni-
tion with pointer networks. In Proceedings of the

60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2403–2416, Dublin, Ireland. Association for Compu-
tational Linguistics.

Songlin Yang and Kewei Tu. 2023. Don’t parse, choose
spans! continuous and discontinuous constituency
parsing via autoregressive span selection. In Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 8420–8433, Toronto, Canada. Association for
Computational Linguistics.

Yu Zhang, Qingrong Xia, Shilin Zhou, Yong Jiang, Guo-
hong Fu, and Min Zhang. 2022. Semantic role la-
beling as dependency parsing: Exploring latent tree
structures inside arguments. In Proceedings of the
29th International Conference on Computational Lin-
guistics, pages 4212–4227, Gyeongju, Republic of
Korea. International Committee on Computational
Linguistics.

Yu Zhang, Houquan Zhou, and Zhenghua Li. 2020. Fast
and accurate neural CRF constituency parsing. In
Proceedings of the Twenty-Ninth International Joint
Conference on Artificial Intelligence, IJCAI 2020,
pages 4046–4053. ijcai.org.

Junru Zhou, Zuchao Li, and Hai Zhao. 2020. Parsing
all: Syntax and semantics, dependencies and spans.
In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 4438–4449, Online.
Association for Computational Linguistics.

Junru Zhou and Hai Zhao. 2019. Head-Driven Phrase
Structure Grammar parsing on Penn Treebank. In
Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 2396–
2408, Florence, Italy. Association for Computational
Linguistics.

16152

https://doi.org/10.18653/v1/P19-1531
https://doi.org/10.18653/v1/P19-1531
https://doi.org/10.18653/v1/P19-1452
https://aclanthology.org/D07-1078
https://aclanthology.org/D07-1078
https://aclanthology.org/D07-1078
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2020.acl-main.299
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2020.acl-main.383
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://doi.org/10.18653/v1/2021.acl-long.205
https://proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1ec6-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f7177163c833dff4b38fc8d2872f1ec6-Abstract.html
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.18653/v1/2022.acl-long.171
https://doi.org/10.18653/v1/2023.acl-long.469
https://doi.org/10.18653/v1/2023.acl-long.469
https://doi.org/10.18653/v1/2023.acl-long.469
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://aclanthology.org/2022.coling-1.370
https://doi.org/10.24963/IJCAI.2020/560
https://doi.org/10.24963/IJCAI.2020/560
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/2020.findings-emnlp.398
https://doi.org/10.18653/v1/P19-1230
https://doi.org/10.18653/v1/P19-1230

ATTACH : COMPLETE :

m

i j m h

i j h

i k h

h

k + 1 j

h

i j

Figure 3: Deduction rules for Eisner-Satta algorithm
(ATTACH and COMPLETE). We show only Left-rules,
omitting the symmetric Right-rules as well as initial
conditions for brevity.

A Method

A.1 Head Binarization

If the headwords are extracted with head-finding
rules, the left binarization and right binarization
strategies are no longer applicable. That is because
the headword is not always the leftmost or right-
most child. In this case, we can use the head bina-
rization to binarize the constituency tree.

The basic idea is to split the constituent into two
parts with the headword in the middle. However,
it is not enough to simply split the constituent into
two parts. We need to ensure that the dependency
structures in both parts are valid. Specifically, if
node A is binarized as A → A1A2: (1) there exists
a dependency relation between the headword of A1

and A2, (2) dependency arcs within both A1 and
A2 can form single-rooted dependency subtrees11.

A.2 Eisner-Satta Algorithm

The Eisner-Satta algorithm is a dynamic program-
ming algorithm for finding the highest-scoring lex-
icalized tree. It iteratively combines smaller spans
into larger ones to construct a complete lexicalized
tree. It distinguishes between two types of spans:
headed spans and hooked spans. A headed span
(i, j, h) is a span (i, j) with a headword h, while
a hooked span (i, j, h) is a span (i, j) with an un-
known headword, which is governed by a word h
outside the span. The deduction process is shown
in Figure 3.

During training, we use an Inside-version of
the Eisner-Satta algorithm to compute the partition
function Z(w), by replacing the max operator with
the log-sum-exp operator. For the proposed latent
lexicalization method, we use a masked version
of the algorithm to enumerate all valid lexicalized
trees. As shown in Algorithm 1.

11This requires dependency trees to be projective.

Dataset Language #Train #Dev #Test

PTB English 39,832 1,700 2,416
CTB5 Chinese 17,544 352 348
SPMRL French 14,759 1,235 2,541
SPMRL German 40,472 5,000 5,000
SPMRL Korean 23,010 2,066 2,287
SPMRL Hungarian 8,146 1,051 1,009
SPMRL Basque 7,577 948 946
SPMRL Polish 6,578 821 822

Table 10: Data statistics. We present the number of
sentences in the training, development, and test sets.

Params BERT
MLP Input Size 768/1024

MLP Layers 1

Con/Dep BiAffine Size 500

Label BiAffine Size 100

BERT Dropout 0.1

Other Dropout 0.33

Optimizer AdamW

BERT Learning Rate 5× 10−5

Other Learning Rate 1× 10−3

Batch Size (tokens) 1000

Table 11: Parameters settings.

B Experiments

B.1 Implementation Details

The data statistics for our experiments are sum-
marized in Table 10. We adopt the ma-
jority of hyperparameters from Zhang et al.
(2020). A key modification in our ap-
proach is the removal of the cascaded LSTM
layers traditionally placed above BERT. In-
stead, we directly fine-tune the BERT model.
Specifically, we employ bert-large-cased
for English, bert-base-chinese for Chinese,
and bert-base-multilingual-cased for the
SPMRL dataset. For PTB and CTB, we fine-tune
BERT for 10 epochs, and for SPMRL, we fine-tune
for 15 epochs for high-resource languages and 100
epochs for low-resource languages. The detailed
hyperparameters are listed in Table 11. Experi-
ments are conducted on a single NVIDIA V100
GPU. Results are averaged over three runs with
different random seeds.

16153

Algorithm 1 Eisner-Satta Algorithm

1: Input: span scores s(i, j) ∈ Rn×n

2: ▷ scores of crossing spans are masked to −∞ (Section 3.2) ◁
3: Input: arc scores s(h → m) ∈ R(n+1)×n

4: ▷ some arc scores are masked to −∞ based on linguistic constraints (Section 3.3) ◁
5: Define: α, β ∈ Rn×n×(n+1)

6: Initialize: α:,:,: = 0, β:,:,: = 0
7: for w = 1, . . . , n do
8: for i = 1, . . . , n− w do
9: j = i+ w

10: for h = i, . . . , j do
11: αi,j,h = s(i, j) + maxi≤k≤j(αi,k,h + βk+1,j,h;βi,k,h + αk+1,j,h)
12: ▷ Inside version: log

∑
i≤k≤j [exp(αi,k,h + βk+1,j,h) + exp(βi,k,h + αk+1,j,h)] ◁

13: end for
14: for h = 0, . . . , n do
15: βi,j,h = maxi≤m≤j(αi,j,m + s(h → m))
16: ▷ Inside version: log

∑
i≤m≤j exp(αi,j,m + s(h → m)) ◁

17: end for
18: end for
19: end for
20: return β1,n,0

Model English Chinese French German Korean Hungarian Basque Polish

Con 95.79 91.93 87.50 90.45 89.45 94.71 91.26 95.97
Lex (head) 95.76 91.86 87.63 90.46 89.48 94.38 91.12 95.68
Lex (left) 95.88 91.94 87.52 90.42 89.36 94.48 91.34 96.00
Lex (right) 95.74 91.96 87.39 90.57 89.49 94.80 91.52 95.87
Lex (latent) (n=4) 95.87 92.16 87.75 90.03 89.43 94.78 91.07 95.89
Lex (latent) (n=8) 95.97 92.20 87.55 90.08 89.50 94.44 91.34 96.17

Table 12: Max-margin training results on PTB (English), CTB5 (Chinese) and SPMRL (covering French, German,
Korean, Hungarian, Basque and Polish). For latent lexicalization, we report the results with different numbers of
sampled trees (n).

Model Sent/Sec.

Zhou and Zhao (2019) 158.7
Chen et al. (2021) 411.2
Gu et al. (2024) 305.8
Con 254.4
Lex (latent) 249.7

Table 13: Decoding speed comparison on PTB test set.

B.2 Max-Margin Training

In table 12, we adopt a max-margin training objec-
tive to optimize the benchmark models.

L = max(0,∆(t̂, t∗) + s(t̂)− s(t∗))

For latent lexicalization, a possible approach to
apply max-margin loss is to enumerate all valid
lexicalized trees and compute the margin loss for
each tree.

L = max(0, s(t̂)−
∑

t∗∈T s(t∗)
|T | +

∆(t̂, T)

|T |)

However, these exists two key challenges:
1. The number of trees in the forest (i.e. |T |) grows

exponentially, making it difficult to determine
the exact count.

16154

Phrase Head Count Ratio (%) Headword

NP

NN 5823 31.3 “$”, “%”,
NP 4443 23.9 it, company,

NNS 3273 17.6 he, market,
NNP 2939 15.8 year, Corp.

VP

VP 2745 31.4 said, have,
VBD 1416 16.2 expected, says,
VB 1318 15.1 is, buy,

VBN 900 10.3 take, had

S
VP 5359 94.6 said, is,
S 195 3.4 have, says

PP

IN 4971 90.5 of, in,
TO 394 7.2 for, to,

VBG 64 1.2 on, by,
PP 29 0.5 with, from

SBAR
S 1758 97.8 have, is,

SBAR 27 1.5 had, expects

ADVP

RB 1065 87.8 also, down,
RBR 50 4.1 ago, still,
IN 47 3.9 up, however,

ADVP 21 1.7 back, well

ADJP
JJ 598 67.0 “$”, million,

ADJP 61 6.8 likely, higher

QP
$ 249 50.8 million, “%”

CD 196 40.0 1/2, billion

WHNP
WDT 270 62.9 that, which,
WP 106 24.7 who, what

Table 14: Most frequent heads for each constituent label
on SD.

2. Summing over all tree scores requires a dy-
namic programming algorithm (Eisner-Satta
in our case). However, for numerical stabil-
ity, it computes log

∑
t∗∈T exp(s(t∗)) rather

than
∑

t∗∈T s(t∗), which is necessary for max-
margin loss.

A potential solution involves sampling a subset of
trees from the forest, and we present the results
using 4 and 8 sampled trees.

B.3 Parsing Speed Comparison

Parsing efficiency is critical for practical applica-
tions. Table 13 compares the parsing speed of our
model with Con on PTB. Although our model has
a higher theoretical complexity (O(n4) vs. O(n3)),
both achieve comparable speeds in practice due to
the GPU-optimized batch processing. This demon-
strates that the added computational cost of latent

Head ↷ Dependent Count Ratio (%)

NN↷ DT 3554 6.27
NNP ↷ NNP 2489 4.39
IN↷ NN 2148 3.79
NN↷ JJ 1706 3.01
NN↷ IN 1667 2.94
NN↷ NN 1304 2.30
IN ↷ NNS 1300 2.29
NNS ↷ JJ 1211 2.14
IN ↷ NNP 905 1.60
ROOT↷ VBD 879 1.55

Table 15: Top ten dependency relationships on SD.

Model Arc Distance Root Distance

SD 3.4 8.9
Ours 4.1 9.6

Table 16: Average dependency arc distance, with the
root arc listed separately.

lexicalization is negligible in real-world scenarios.

B.4 Head Selection from Stanford
Dependencies

In this section, we provide the gold-standard head
selection by the Stanford Dependencies (SD). The
pharse head selection is shown in Table 14, and the
dependency relationships are shown in Table 15.

B.5 Arc Distance
We analyze the average distance between heads and
their dependents, as well as the distance of the root
to the main verb. Table 16 shows that predicted
dependencies tend to span longer distances than
gold-standard ones. While the dependency struc-
tures are constrained by the constituency structures,
this results indicate that the inferred dependencies
are not limited to local relationships.

16155

