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Abstract

The “LLM-as-an-annotator” and “LLM-as-a-
judge” paradigms employ Large Language
Models (LLMs) as annotators, judges, and eval-
uators in tasks traditionally performed by hu-
mans. LLM annotations are widely used, not
only in NLP research but also in fields like
medicine, psychology, and social science. De-
spite their role in shaping study results and
insights, there is no standard or rigorous proce-
dure to determine whether LLMs can replace
human annotators. In this paper, we propose
a novel statistical procedure, the Alternative
Annotator Test (alt-test), that requires only a
modest subset of annotated examples to justify
using LLM annotations. Additionally, we in-
troduce a versatile and interpretable measure
for comparing LLM annotators and judges. To
demonstrate our procedure, we curated a di-
verse collection of ten datasets, consisting of
language and vision-language tasks, and con-
ducted experiments with six LLMs and four
prompting techniques. Our results show that
LLMs can sometimes replace humans with
closed-source LLMs (such as GPT-4o), outper-
forming the open-source LLMs we examine,
and that prompting techniques yield judges of
varying quality. We hope this study encourages
more rigorous and reliable practices. 1

1 Introduction

The rise of Large Language Models (LLMs) has
transformed the field of Natural Language Process-
ing (NLP), bringing unprecedented capabilities in
reasoning and generating human-like text (Kojima
et al., 2022; Achiam et al., 2023; Laskar et al.,
2023; Yang et al., 2024). Recently, a new trend
has emerged where LLMs are employed as anno-
tators and judges across various NLP applications
(Li et al., 2024a; Tan et al., 2024b).

1Code for the procedure and datasets are available at:
https://github.com/nitaytech/AltTest

One key advantage of LLM-as-an-annotator and
LLM-as-a-judge2 paradigms is the scalability and
speed of LLMs. They can quickly annotate large-
scale datasets, reducing the time required for tasks
traditionally performed by costly human annotators
(Nasution and Onan, 2024). LLMs also avoid chal-
lenges inherent to human factors, such as fatigue
and guideline misinterpretation (Uma et al., 2021;
Bartsch et al., 2023). In certain cases, they even
outperform crowd-workers (Gilardi et al., 2023;
Nahum et al., 2024).

Indeed, LLMs-as-judges are extensively used in
research, taking on a pivotal role once filled by hu-
mans. They are employed to annotate new datasets
(Gat et al., 2024; Tan et al., 2024b), or refine exist-
ing ones (Nahum et al., 2024; Pavlovic and Poesio,
2024), and commonly serve as evaluators for bench-
marking models and methods (Ahmed et al., 2024;
Gu et al., 2024; Li et al., 2024a).

LLMs’ influence extends far beyond the NLP
field. They annotate papers for literature reviews
(Calderon and Reichart, 2024; Joos et al., 2024) or
extract findings from academic literature (Khraisha
et al., 2024; Naik et al., 2024). They are also uti-
lized in cognitive sciences to simulate human sub-
jects (Aher et al., 2023; Shapira et al., 2024; Trott,
2024) and in social science, researchers leverage
LLM annotations to uncover social and cultural
insights (Ventura et al., 2023; Ziems et al., 2024).
Accordingly, LLMs directly shape the results, find-
ings, and insights of studies and guide the direction
of scientific inquiry, prioritization, and innovation.

Despite the advantages of the LLM-as-a-judge
paradigm, research shows that LLMs amplify bi-
ases, leading to unfair or inconsistent judgments

2The term “LLM-as-a-judge” typically refers to LLMs
evaluating outputs of other LLMs. It can be viewed as a
special case of the broader “LLM-as-an-annotator” paradigm.
However, since “LLM-as-a-judge” is more widely used, we
adopt it throughout this work to refer more generally to any
evaluation, annotation, or labeling of texts (or images) tradi-
tionally performed by humans, regardless of the input source.
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(Ashktorab et al., 2024; Chen et al., 2024c; Ye et al.,
2024) and that they may struggle with tasks that
require deep contextual understanding or domain-
specific expertise (Ravid and Dror, 2023; Szyman-
ski et al., 2024). These weaknesses highlight the
need for rigorous evaluation and transparency when
relying on LLM annotations in research.

Yet, many studies employing LLM annotations
do not explicitly measure the alignment between
LLMs and humans, and those that do typically
use traditional measures such as accuracy (%
agreements), F1 score, Inter-Annotator-Agreement
(IAA) kappas, and correlation (Li et al., 2024b),
which have limitations. To start, IAA measures as-
sess agreement among a group of annotators, while
we aim to compare the LLM to the group. Other
measures frequently rely on majority vote labels,
overlooking important nuances that individuals in-
troduce. Moreover, there are no established criteria
for making a definitive yes/no decision on whether
an LLM can replace humans (e.g., “is an F1 score
of 0.6 sufficient?”). This decision demands statisti-
cal rigor, which often lacks in the way researchers
apply traditional measures. Finally, they can only
evaluate whether an LLM matches human perfor-
mance (i.e., is bounded by it) but cannot determine
whether it provides a better alternative.

We argue that to justify using an LLM instead
of human annotators, researchers should demon-
strate that the LLM offers a better alternative to
recruiting human annotators. In other words, when
factoring in the cost-benefit and efficiency advan-
tages of LLM annotations, they should be as good
as or better than human annotations. In this pa-
per, we propose a statistical procedure to verify
this claim, which we call the Alternative Annotator
Test, or simply alt-test. This procedure is simple
and requires minimal effort to apply; it involves
comparing the LLM to a small group of human
annotators (at least three) on a modest subset of
examples (between 50 and 100). Our procedure is
described in §3 and illustrated in Figure 1. Once
applied, researchers can confidently rely on the
LLM’s annotations for their work.

In addition, we define a measure for comparing
LLM judges called the Average Advantage Proba-
bility. This measure is naturally derived from our
statistical procedure and represents the probability
that the LLM annotations are as good as or better
(e.g., by being closer to the majority) than those of
a randomly chosen human annotator. It possesses
desirable properties that traditional measures lack

while maintaining a high correlation with them. It
is versatile, supports different types of annotations,
and is highly interpretable.

We exemplify the application of our procedure
with six LLMs and four prompting techniques.
To this end, we curate a diverse collection of ten
datasets, each with instances annotated by multiple
annotators. Our datasets vary in size, annotation
types (discrete, continuous, and free-text), num-
ber of annotators (3 to 13), and levels of annotator
expertise (crowd-workers, skilled annotators, and
experts). They encompass a wide range of language
tasks, including two vision-language tasks.

Our results indicate that in many cases, LLMs
can serve as an alternative to human annota-
tors. Specifically, on nine datasets, at least one
LLM, with some prompting technique, success-
fully passed the alt-test. We found that closed-
source LLMs (such as GPT-4o and Gemini-1.5)
consistently outperform open-source models we
examined (like Mistral-v3 and Llama-3.1), and that
in-context learning generally improves LLM per-
formance, while chain-of-thought and ensemble
methods do not yield similar benefits.

Finally, in Appendix C, we propose modifica-
tions to our procedure to address advanced sce-
narios: handling imbalanced labels (§C.1), bench-
marking against a single expert (§C.2), incorporat-
ing annotator quality scores (§C.3), and respecting
minority opinions in subjective tasks (§C.4).

Our contributions are as follows: (1) We pro-
pose a statistical procedure, the alt-test, to justify
replacing human annotators with LLMs; (2) We
introduce a versatile and interpretable measure, the
average advantage probability, for comparing LLM
judges; (3) We curate a diverse collection of ten
datasets and analyze six LLMs and four prompting
techniques, demonstrating that LLMs can some-
times replace humans; (4) We develop a theorem
regarding the optimal LLM-as-a-judge (§3.4, §D).

We encourage researchers to adopt our proce-
dure and hope this study paves the way for rigorous
scientific practices in NLP and beyond.

2 Previous Work

Research on LLMs as annotators and judges is a
rapidly growing field (Chiang et al., 2023; Zheng
et al., 2024a), resulting in numerous surveys (Gu
et al., 2024; Li et al., 2024a; Tan et al., 2024b;
Pavlovic and Poesio, 2024). Most studies focus on
enhancing LLM performance, either by parameter
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tuning (Gekhman et al., 2023; Yue et al., 2023;
Zhu et al., 2023; Jiang et al., 2024; Kim et al.,
2024) or prompting strategies (Bai et al., 2023;
Moniri et al., 2024; Song et al., 2024). For instance,
Dong et al. (2024) investigated personalized LLM
judges, Verga et al. (2024) proposed using a panel
of diverse LLMs, and Chen et al. (2024b) extended
LLM-as-a-judge to multimodal tasks.

Many statistical works propose corrections to
estimations that are built with LLM annotations
(Angelopoulos et al., 2023a; Egami et al., 2023;
Angelopoulos et al., 2023b; Chatzi et al., 2024;
Gligoric et al., 2024; Ludwig et al., 2024). Con-
versely, the question we address is how to justify
replacing human annotators with LLMs, ensuring
researchers can confidently apply LLMs for model
evaluation or data annotation.

While existing works do not directly address how
to justify human replacement, many have explored
how well LLMs align with human annotators (Chi-
ang and Lee, 2023; Ahmed et al., 2024; Bavaresco
et al., 2024; Chen et al., 2024a; Gera et al., 2024;
Lambert et al., 2024; Nahum et al., 2024; Nasution
and Onan, 2024; Tan et al., 2024a; Trott, 2024), of-
ten focusing on specific LLM limitations or biases
(Wu and Aji, 2023; Ashktorab et al., 2024; Jung
et al., 2024; Chen et al., 2024c; Wang et al., 2024;
Xu et al., 2024). These studies rely on traditional
measures such as accuracy, F1 score, correlation,
or metrics that quantify bias. In contrast, we pro-
pose a statistical procedure to determine whether
an LLM can be used, providing a clear yes/no an-
swer. Additionally, we introduce an interpretable
and versatile measure for comparing LLM judges.

3 Method

We propose using an LLM-as-a-judge instead of
human annotators when it offers a comparable al-
ternative to recruiting an annotator. By comparing
the predictions of the LLM to those of humans,
we can evaluate which more closely emulates the
gold label distribution. Gold labels represent the
“true” or ground truth annotations and are typically
determined through rigorous processes, such as
consensus among experts or extensive quality con-
trol. Consequently, since experts are expensive
and often inaccessible, we assume gold labels are
unavailable. Hence, a common approach is to ap-
proximate them using the collective responses of
multiple annotators. This is the exact setup we use
in this paper: a modest subset of randomly sampled

1. Exclude each annotator in turn, and estimate the probabilities that the LLM
aligns better with the remaining than the excluded one (     ) and vice versa (     )

4. Calculate the LLM's winning rate and determine if it can replace humans.

3. Apply an FDR procedure and identify the rejected hypotheses.

2. Conduct hypothesis tests to compare the probabilities and obtain p-values. 

🤖

Winning
Rate

🤖

x3

🤖

🤖

Repeat for every      and obtain: 

Figure 1: An Illustration of the Alt-Test: Given in-
stances annotated by human annotators, we first exclude
each annotator in turn to estimate the probabilities that
the LLM better represents the remaining annotators and
that the excluded annotator better represents them. We
then test whether the LLM probability exceeds the an-
notator probability (considering a cost-benefit penalty
ε), and apply a False Discovery Rate (FDR) controlling
procedure. Then, we calculate the winning rate, ω, as
the proportion of rejected hypotheses. If ω ≥ 0.5, we
conclude that the LLM is more likely to hold an advan-
tage over human annotators, which justifies using it.

examples, each annotated by multiple annotators.3

Accordingly, a key consideration in our method
is that the perspective of every annotator is valued.
Specifically, our leave-one-out approach excludes
one annotator at a time and evaluates how well the
LLM’s annotations align with those of the remain-
ing annotators. Similarly, we evaluate the align-
ment of the excluded annotator with the remaining
annotators. We then compare the LLM and the
excluded annotator, justifying the use of the LLM-
as-a-judge if the LLM aligns more closely with the
collective distribution than an individual does. The
procedure is illustrated in Figure 1.

Notations and Definitions For a dataset of n
instances {x1, . . . , xn} and m human annotators
{h1, . . . , hm}, we denote the annotation of the
jth annotator for instance xi as hj(xi). The

3In §B.2, we discuss the number of annotators, their pro-
files, and levels of expertise to ensure reliable outcomes.
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annotation predicted by the LLM is denoted as
f(xi). In addition, [−j] represents the set of in-
dices from 1 to m excluding the jth index, i.e.,
[−j] = {1, . . . , j − 1, j + 1, . . . ,m}. The set of
indices of the instances annotated by hj is denoted
as Ij . Similarly, Hi is the set of indices of hu-
man annotators that annotated xi. For example, as-
sume we have three instances and four annotators.
I2 = {2, 3} means that the second annotator, h2,
annotated instances x2 and x3, and H1 = {1, 3, 4}
means that the first instance, x1, was annotated by
the first, third, and fourth annotators, h1, h3, h4.

3.1 Computing the Instance Alignment Score

We start by examining the removal of each human
annotator hj in turn and compute a score that mea-
sures the alignment between the annotations of the
[−j] human annotators and the annotation of the
LLM for instance xi. We use S(f, xi, j) to denote
the alignment scoring function between f(xi) and
the annotations of Hi[−j]. For example, S could be
RMSE (root mean squared error) in regression tasks
(continuous numerical labels) or ACC (accuracy) in
classification tasks (categorical or rank labels).

In generation tasks (e.g., machine translation),
S can be computed using a relevant evaluation
metric (denoted as sim) that typically measures
the similarity between the LLM-generated output
and the human-generated output. For convenience,
we assume that higher values of S indicate a
better alignment between an LLM and the human
annotators; thus, we use negative RMSE. Below,
we formally define the mentioned variants of S:

−RMSE(f, xi, j) = −
√√√√ 1

|Hi| − 1

∑

k∈Hi[−j]

(f(xi)− hk(xi))2

ACC(f, xi, j) =
1

|Hi| − 1

∑

k∈Hi[−j]

1{f(xi) = hk(xi)}

SIM(f, xi, j) =
1

|Hi| − 1

∑

k∈Hi[−j]

sim(f(xi), hk(xi))

Note that −RMSE(hj , xi, j), ACC(hj , xi, j), and
SIM(hj , xi, j) represent score differences between
hj and the other annotators. Consequently, we are
interested in comparing S(f, xi, j) to S(hj , xi, j).

3.2 Estimating the Advantage Probabilities

After computing the alignment score for each in-
stance, we estimate the likelihood that the LLM
achieves a comparable alignment with the annota-
tors to that of the excluded annotator. The estima-

tor will be constructed by calculating the percent-
age of instances for which the score of the LLM,
S(f, xi, j), was higher or equal to the score of the
jth excluded human annotator, S(hj , xi, j). We
represent this event (for xi) using the indicator:

W f
i,j =

{
1, if S(f, xi, j) ≥ S(hj , xi, j)

0, otherwise

Similarly, we define the indicator W h
i,j by revers-

ing the inequality (to ≤) in the definition above,
representing that the annotation of hj for xi is com-
parable to that of the LLM.

The expectation of W f
i,j represents the proba-

bility that the LLM annotations are as good as or
better than those of hj . We estimate this probability
by averaging W f

i,j values across all instances:

ρfj = P̂(LLM ⪰ hj) = Ê[W f
i,j ] =

1

|Ij |
∑

i∈Ij
W f

i,j

We denote this estimation of the advantage over hj
probability as ρfj . Similarly, ρhj estimates the prob-
ability that hj holds an advantage over the LLM,
calculated by averaging the values of W h

i,j . The set

{(ρfj , ρhj )}mj=1 is used in our statistical procedure.

3.3 Should the LLM Replace Annotators?
Using an LLM instead of a human annotator is
justified if the LLM offers a reliable alternative to
hiring an annotator. To formalize this, if ρfj is sig-
nificantly larger than ρhj it indicates that employing
the LLM instead of hj is a justified evidence-based
decision. Notice, however, that employing an LLM
is a cheaper and less labor-intensive alternative.
Therefore, we introduce ε,4 a cost-benefit hyper-
parameter which penalizes ρhj to reflect the higher
cost and effort associated with human annotation.

We define the following set of hypothesis testing
problems to test if the LLMs’ relative advantage
probability is significantly larger than that of hj :

H0j :ρ
f
j ≤ ρhj − ε vs. H1j :ρ

f
j > ρhj − ε

The appropriate statistical test for this hypothesis
problem is a paired t-test (Dror et al., 2018), which
examines the difference between the ith indicators:
di,j = W h

i,j−W f
i,j . The null hypothesis asserts that

d̄j = ρhj − ρfj is greater than or equal to ε, while
the alternative hypothesis posits that it is smaller.

4In §B.1 we explore how different ε values impact our
procedure and recommend suitable ones for researchers.
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The test statistic tj is defined as:

tj =
d̄j − ε

sj/
√
n

sj =

√∑n
i=1

(
di,j − d̄j

)2

n− 1

The p-value can be calculated using a student’s t-
distribution table. When n < 30, the normality
assumption may not hold, and a non-parametric
test (e.g., Wilcoxon signed-rank) should be used.
If the p-value < α (typically α = 0.05), we reject
the null hypothesis, concluding that the LLM holds
a statistically significant advantage over hj when
considering the cost-benefit tradeoff.

So far, we discussed the advantage of LLMs
over a single human annotator. To generalize
our conclusion to any annotator, we measure the
percentage of annotators that the LLM “wins”,
i.e., the proportion of rejected null hypotheses.
We denote this winning rate (WR) by ω, formally:

ω =
1

m

m∑

j=1

1{H0j is rejected}

where 1{H0j is rejected} is an indicator that re-
ceive one if the null hypothesis is rejected and
zero, otherwise. If ω ≥ 0.5,5 then the LLM wins
the majority of human annotators, hence we assert
that it can replace human annotators.

Multiple Comparison Correction Simply
counting the number of rejected null hypotheses
is problematic due to the accumulation of Type-I
errors when performing multiple hypothesis tests,
particularly when the hypotheses are dependent
(Dror et al., 2017). In our case, the dependency
arises because the score of hj relies on the
annotations of the remaining [−j] annotators (see
how S is defined). The standard practice to address
this issue is a multiple comparison correction.

We suggest using a procedure that controls the
false discovery rate (FDR), which is the expected
proportion of false positives (incorrect rejections
of null hypotheses) among all rejected hypotheses
in a multiple-hypothesis testing scenario. In other
words, the FDR-controlling procedure ensures that
the observed WR ω is reliable and does not over-
estimate the true percentage of wins due to accu-
mulated false rejections or dependence between
hypotheses. We recommend using the Benjamini-
Yekutieli (BY) procedure (Benjamini and Yekutieli

5This is a hyperparameter. It is set to 0.5 to establish that it
is more likely that the LLM holds an advantage over humans.
Stricter thresholds can be used in high-stakes domains.

(2001), see Algorithm 1 in the Appendix) to control
the FDR, as it is specifically suited for scenarios
where the null hypotheses are dependent. In our
experiments, we use the standard target FDR level
of q = 0.05 (i.e., in expectation, at most 5% of the
rejections will be false rejections).

Summary: the Alt-Test As illustrated in Fig-
ure 1, the alt-test involves the following steps: First,
we compute the set of probabilities {(ρfj , ρhj )}mj=1,
where each ρj represents the advantage of the LLM
over hj and vice versa. Next, we conduct m one-
sample proportion t-tests for the difference ρhj −ρfj
against ε, resulting in a corresponding set of m
p-values. We then apply the BY procedure to these
p-values, which identifies the set of rejected null hy-
potheses. Finally, we compute the winning rate (the
proportion of rejected hypotheses) and if ω ≥ 0.5,
we can statistically justify using LLM annotations.

3.4 How to Compare LLM Judges?

In many scenarios, we wish to compare different
LLM judges. While it is possible to compare LLMs
by their winning rate (ω), we argue this is subop-
timal. First, ω does not account for the magnitude
of the wins. For example, ρfj = 0.9 and ρfj = 0.6
contribute equally to ω if their respective null hy-
potheses are rejected. Second, ω depends on the
value of ε, and third, the range of its possible val-
ues depends on the number of human annotators,
making it a coarse measure. For instance, with only
three annotators, ω value is limited to 0, 1⁄3, 2⁄3, 1.

Therefore, for comparing LLM judges, we pro-
pose the Average Advantage Probability (AP):

ρ =
1

m

m∑

j=1

ρfj

We argue that ρ is a good measure for comparing
LLM judges due to its desirable properties. Unlike
ω, ρ spans a denser range of values and accounts
for the magnitude of ρfj s. Furthermore, it is more
interpretable than traditional measures like F1, Co-
hen’s κ, or correlation — it directly represents the
probability that the LLM annotations are as good
as or better than those of a randomly chosen annota-
tor. This intuitive interpretation makes it accessible
and meaningful for decision-makers. Finally, ρ
can be applied consistently across different types
of annotation tasks (discrete, continues, and free-
text), providing a unified evaluation framework that
eliminates the need to switch between measures.
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Discrete Annotation Tasks

Dataset m n Cats I.p.A A.p.I Agree Fleiss’s κ Task Description

WAX 8 C 246 16 172 5.61 0.33 0.26 Identify the type of relationship between two associated words.
LGBTeen 4 E 880 5 640 2.91 0.69 0.53 Assess the emotional support provided by LLMs to queer youth.
MT-Bench 3 E 120 3 82 2.05 0.66 0.49 Compare two conversations between a user and different LLMs.
Framing 4 S 2552 3 1914 3.00 0.79 0.57 Annotate climate articles with frame-related yes/no questions.
CEBaB-A 10 C 1008 3 403 4.00 0.86 0.74 Determine the sentiment for four aspects of restaurant reviews.

Continuous Annotation Tasks

Dataset Anns Items Scale I.p.A A.p.I MAE Pearson Task Description

SummEval 3 E 6400 1–5 6400 3.00 0.51 0.74 Rate model-generated summaries on four aspects.
10k Prompts 13 S 1698 1–5 296 2.26 0.84 0.41 Rate the quality of synthetic and human-written prompts.
CEBaB-S 10 C 711 1–5 219 3.08 0.67 0.67 Identify the star rating (1-5) given in restaurant reviews.

Lesion 6 S 500 1–6 497 5.96 0.44 0.77 Score five melanoma-related features based on lesion images.

Free-Text Annotation Tasks

Dataset Anns Items – I.p.A A.p.I Avg. Similarity Task Description

KiloGram 50 C 993 – 144 7.27 0.28 Generate free-text descriptions of tangram images.

Table 1: Details of the Ten Datasets: The number of human annotators (m), data instances (n), and categories
(Cats). The letter in the ‘m’ column indicates the type of annotators: Experts (E), Skilled (S), or Crowd-workers
(C). I.p.A and A.p.I denote the average numbers of items per annotator and annotators per item, respectively. For
discrete tasks, we compute the proportion of pairwise agreements between human annotators (Agree) and Fleiss’s κ.
For continuous tasks, we compute the mean absolute error between annotators (MAE) and the average Pearson
correlation. For the text generation task, we compute the average embedding cosine similarity (see Table 4).

The Optimal LLM-as-a-Judge We now turn to
the question of what constitutes the optimal LLM-
as-a-judge. We define it as an LLM that achieves
an advantage probability of ρ = 1 (since ω depends
on n and ε, we do not include it in the theorem).
The optimal LLM-as-a-judge naturally depends on
the choice of the scoring function, S(f, xi, j). The
theorem below addresses two functions: ACC (for
discrete tasks) and −RMSE (for continuous tasks).
See Appendix D for more details and the proof.

Theorem 1 (Optimal LLM-as-a-Judge). For a
given dataset, let S(f, xi, j) be the alignment scor-
ing function. The optimal LLM-as-a-judge, denoted
as f∗(xi), is defined as follows:

• If S = ACC, then f∗(xi) = MV (xi), predict-
ing the majority vote of the annotators for xi.

• If S = −RMSE, then f∗(xi) =

∑
k∈Hi

hk(xi)

|Hi| ,
predicting the mean annotation for xi.

In both cases, the optimal LLM-as-a-judge
achieves an advantage probability of ρ = 1.

4 Experimental Setup

4.1 Datasets
We conducted experiments on ten diverse datasets,
varying in size, number of human annotators, and
types of annotators (crowd-workers, skilled an-
notators, or experts). Table 1 provides informa-
tion about these datasets, including inter-annotator

agreement measures. We comprehensively review
each of the ten datasets in Appendix E.

The datasets span a broad range of tasks, includ-
ing traditional NLP tasks like sentiment analysis,
word-relation labeling, and summarization evalu-
ation, as well as modern LLM-related tasks like
conversation comparison, prompt quality assess-
ment, and emotional support evaluation. Moreover,
two datasets address vision-language tasks: skin
lesion examination and abstract visual reasoning.

The selection of the datasets followed three prin-
ciples: (1) covering diverse annotation types, in-
cluding discrete, continuous, and free-text; (2) en-
suring annotators have identifiers; and (3) requiring
each item be annotated by multiple annotators.

4.2 LLMs

The six models that were used as candidate LLM
annotators for our experiments are Gemini-1.5-
Flash and Pro6 by Google DeepMind, GPT-4o and
GPT-4o-mini7 by Open AI, Llama-3.1-7B-Instruct8

by Meta AI, and Mistral-7B-Instruct-v0.39 by Mis-
tral AI. Llama-3.1 and Mistral-v3 do not have re-
sults on Lesion and KiloGram datasets because they
are not able to process images. The prompts used
in our experiments are detailed in Appendix G, and,

6https://deepmind.google/technologies/gemini/
7https://openai.com/index/hello-gpt-4o/
8https://www.llama.com/docs/

model-cards-and-prompt-formats/llama3_1/
9https://writingmate.ai/blog/

mistral-7b-v03-guide-and-details
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Discrete Annotation Tasks

WAX (ε = 0.1) LGBTeen (ε = 0.2) MT-Bench (ε = 0.2) Framing (ε = 0.15) CEBaB-A (ε = 0.1)

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ
Gemini-Flash 0.38 0.38 0.69 0.54 0.25 0.71 0.62 0.0 0.72 0.69 1.0 0.83 0.88 0.7 0.91
Gemini-Pro 0.39 0.5 0.74 0.47 0.0 0.67 0.62 0.0 0.76 0.79 1.0 0.91 0.91 0.9 0.94
GPT-4o 0.38 0.5 0.73 0.63 0.75 0.77 0.68 0.0 0.77 0.80 1.0 0.92 0.90 0.9 0.93
GPT-4o-mini 0.24 0.0 0.59 0.59 0.75 0.76 0.60 0.0 0.74 0.74 1.0 0.87 0.86 0.5 0.90
Llama-3.1 0.24 0.0 0.57 0.54 0.0 0.72 0.54 0.0 0.69 0.66 0.5 0.80 0.87 0.6 0.89
Mistral-v3 0.17 0.0 0.50 0.58 0.25 0.75 0.52 0.0 0.68 0.66 0.25 0.80 0.78 0.1 0.81

Continuous and Textual Annotation Tasks

SummEval (ε = 0.2) 10K Prompts (ε = 0.15) CEBaB-S (ε = 0.1) Lesion (ε = 0.15) KiloGram (ε = 0.1)

Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Sim WR ω AP ρ
Gemini-Flash 0.51 0.0 0.46 0.44 0.31 0.67 0.75 0.6 0.82 0.70 0.17 0.71 0.79 0.66 0.61
Gemini-Pro 0.47 0.0 0.44 0.33 0.08 0.63 0.78 0.8 0.87 0.73 1.0 0.81 0.77 0.08 0.43
GPT-4o 0.54 0.0 0.48 0.47 0.69 0.76 0.80 0.9 0.90 0.67 0.0 0.62 0.78 0.2 0.53
GPT-4o-mini 0.50 0.0 0.54 0.46 0.92 0.80 0.79 0.9 0.89 0.72 0.67 0.73 0.78 0.16 0.49
Llama-3.1 0.36 0.0 0.58 0.23 0.15 0.67 0.78 0.6 0.85 – – – – – –
Mistral-v3 0.12 0.0 0.62 0.28 0.15 0.67 0.76 0.5 0.83 – – – – – –

Table 2: Main Results (zero-shot) — Full Datasets: For all tasks, we report a traditional LLM-human alignment
measure, such as accuracy with the majority vote (Acc) for discrete tasks, Pearson’s correlation (Pears) for continuous
tasks, and average similarity (Sim) for textual tasks. Additionally, we present our proposed measures: the winning
rate (WR ω, the ε value is stated next to the dataset name) and the average advantage probability (AP ρ). Bold
values indicate the best-performing LLM according to ρ, while a light green background highlights ω ≥ 0.5.

where applicable, adhere to the annotation guide-
lines outlined in the papers describing the dataset.

In addition to the basic Zero-shot strategy, we
experimented with three advanced LLM-as-a-judge
strategies (Li et al., 2024a): Few-shot (also known
as In-Context Learning), where the prompt in-
cludes four randomly sampled demonstrations (an
input paired with its majority vote label); Chain-
of-Thought (CoT), where the prompt instructs the
LLM to reason step-by-step and provide an expla-
nation before making a prediction; and Ensemble,
where the final prediction is determined by the ma-
jority label across an ensemble of LLMs and differ-
ent prompting strategies (Nahum et al., 2024).

5 Results

Table 2 presents the performance of various LLMs
across discrete, continuous, and free-text tasks. We
report three key measures: traditional LLM-human
alignment measures (accuracy, Pearson’s correla-
tion, and similarity), the winning rate (WR, denoted
as ω), and the average advantage probability (AP,
denoted as ρ). For each dataset, we selected ε val-
ues based on the type of annotators (as indicated
in Table 1): experts (ε = 0.2), skilled annotators
(ε = 0.15), and crowd-workers (ε = 0.1). See
the discussion in §B.1 for an explanation of these
choices. Below, we summarize our main findings:

LLMs can sometimes replace humans. Table 2
shows that many LLMs pass the alt-test across var-
ious datasets. While in two datasets (MT-Bench,

and SummEval), none of the LLMs pass the test, in
four (Framing, CEBAB-A, CEBaB-S and Lesion),
almost all LLMs achieve ω ≥ 0.5. In the free-text
dataset KiloGram, only Gemini-Flash passes the
test. The results suggest that in many scenarios, em-
ploying LLMs can be an alternative to recruiting
additional human annotators.

However, this positive news does not imply that
LLMs can always replace human annotators. The
success of LLMs is nuanced and aspect-dependent.
In Table 5 in the Appendix, we analyze three
datasets, breaking them down into sub-annotation
tasks corresponding to different aspects. For in-
stance, in the SummEval dataset (which will be
discussed later), summary annotations are divided
into four aspects: coherence, consistency, fluency,
and relevance. Notably, each aspect may require
varying levels of expertise and capabilities, and in-
deed, the performance of LLMs varies accordingly.

In the Lesion dataset, which involves annotating
five aspects of skin lesion images, all LLMs pass
our test on color-related aspects (e.g., identifying
the number of colors or the presence of a bluish
glow) but struggle with shape-related aspects, such
as assessing asymmetry or border irregularity. In
the LGBTeen dataset, all LLMs excel in the sen-
sitivity aspect, while for five other aspects (out of
ten), only one or two LLMs pass the test. In the
remaining four aspects, all LLMs fail. Notably, the
aspects where LLMs struggle often require higher
emotional intelligence or contextual understanding
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3 Annotators and 100 Instances Subsets (mean values computed over 100 bootstraps)

WAX (ε = 0.1) LGBTeen (ε = 0.2) MT-Bench (ε = 0.2) SummEval (ε = 0.2) 10K Prompts (ε = 0.15)

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ
Gemini-Flash 0.37 0.08 0.66 0.55 0.02 0.74 0.63 0.0 0.72 0.47 0.0 0.48 0.36 0.09 0.66

+ 4-shots 0.41 0.19 0.70 0.66 0.61 0.83 0.61 0.0 0.73 0.60 0.41 0.76 0.40 0.58 0.76
+ CoT 0.38 0.09 0.69 0.47 0.0 0.70 0.63 0.01 0.76 0.47 0.0 0.46 0.37 0.01 0.61

Gemini-Pro 0.40 0.15 0.70 0.50 0.0 0.69 0.62 0.01 0.76 0.42 0.0 0.43 0.28 0.01 0.61
+ 4-shots 0.39 0.17 0.69 0.55 0.04 0.73 0.63 0.03 0.77 0.57 0.59 0.77 0.24 0.0 0.60
+ CoT 0.36 0.09 0.68 0.48 0.0 0.70 0.58 0.0 0.76 0.49 0.0 0.56 0.32 0.01 0.64

GPT-4o 0.37 0.17 0.69 0.65 0.55 0.82 0.69 0.16 0.78 0.52 0.0 0.49 0.41 0.27 0.73
+ 4-shots 0.39 0.15 0.69 0.55 0.03 0.75 0.66 0.13 0.78 0.58 0.28 0.74 0.38 0.16 0.72
+ CoT 0.37 0.11 0.70 0.65 0.43 0.81 0.65 0.4 0.79 0.58 0.03 0.67 0.37 0.43 0.74

GPT-4o-mini 0.27 0.0 0.59 0.59 0.1 0.78 0.60 0.0 0.73 0.49 0.0 0.53 0.36 0.48 0.76
+ 4-shots 0.30 0.01 0.62 0.60 0.12 0.77 0.61 0.0 0.74 0.60 0.77 0.79 0.42 0.74 0.78
+ CoT 0.33 0.0 0.66 0.57 0.06 0.75 0.59 0.0 0.72 0.56 0.0 0.60 0.32 0.44 0.74

Ens. Geminis 0.42 0.21 0.71 0.56 0.11 0.77 0.66 0.03 0.76 0.48 0.0 0.55 0.33 0.06 0.67
Ens. GPTs 0.38 0.05 0.67 0.61 0.19 0.79 0.60 0.0 0.73 0.58 0.04 0.66 0.39 0.64 0.77
Ens. All 0.44 0.24 0.73 0.63 0.37 0.80 0.61 0.01 0.74 0.58 0.02 0.66 0.39 0.41 0.74

Table 3: Results – Advanced LLM Judges: Each data point is calculated using a bootstrap of 100 combinations of
three annotators and one hundred instances. Ens. stands for “Ensemble”. Please see the caption of Table 2.

(e.g., the Mental and Completeness aspects; see
Lissak et al. (2024)). Finally, in SummEval, most
LLMs pass the test for two aspects, Coherence and
Relevance, but fail on the other two.

Our results demonstrate that test success depends
on the dataset and annotation aspect, with LLMs
often failing to pass it. This emphasizes the rele-
vance of the alt-test: researchers cannot simply rely
on LLM annotations without justifying this choice.

Traditional measures strongly correlate with the
average advantage probability. In addition to
the statistical procedure, our method enables com-
paring LLM judges using the average advantage
probability, ρ. In subsection §3.4, we outlined the
desired properties of ρ, such as its interpretability
(as it directly represents the likelihood of the LLM
being as good as or better than a random annota-
tor) and its flexibility, allowing it to be applied to
various types of annotation tasks.

Notably, in almost all datasets, the top-ranked
LLM is the same based on ρ values and the tradi-
tional measures. Furthermore, in discrete tasks, the
ranking of models based on Accuracy and ρ shows
a strong correlation, with an average Kendall τ
value of 0.92. Other tasks also correlate highly,
with an average Kendall τ value of 0.84, except
for SummEval, which shows a negative correlation.
We discuss this anomaly in Appendix B.3, which
can be partially attributed to label imbalance (see
Appendix C.1 for a solution to handling imbalance)

Few-Shot improves LLM-human alignment.
Table 2 indicates that the closed-source LLMs
(GPTs and Geminis), outperform open-source

LLMs.10 In discrete tasks, GPT-4o and Gemini-Pro
consistently are the best-performing LLMs, while
in continuous tasks, no single model emerges as
the clear winner. However, Table 2 reports only
zero-shot experiments. Thus, we also conducted
experiments using three other strategies: few-shot,
CoT, and ensemble. The results are presented in
Table 3 and are based on 100 bootstraps of three an-
notators and 100 randomly sampled instances from
five datasets. The reduced sample size was chosen
to minimize computational costs11 and primarily
to reflect practical constraints better, as researchers
are unlikely to annotate thousands of instances for
testing whether the LLM is a good judge.

As shown in Table 3, the few-shot approach
(with four demonstrations) improved the perfor-
mance of nearly all LLM judges. Importantly, two
few-shot LLMs achieved ω ≥ 0.5 on SummEval,
a result not observed in the zero-shot setting. This
success can be attributed to the demonstrations in
the prompt, which helped align the LLMs’ scoring
distributions more closely with the human distribu-
tions. In contrast, the CoT methodology led to a
decline in performance in many cases (45%). Fi-
nally, the ensemble method did not improve the
few-shot approach without ensembling.

5.1 The Number Of Instances

To help researchers reduce the costly need for man-
ual annotations, we propose a statistical procedure

10Further experiments across varying model sizes are nec-
essary to support broader claims about model openness.

11We annotated a maximum of 300 instances per dataset,
which were then used for bootstrapping.
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Figure 2: Analysis of the Impact of the Number of Items: Each data point is calculated using a bootstrap of
100 combinations of three annotators and n items (x-axis). The y-axis shows the winning rates (ω, solid lines) for
ε = 0.1 (purple) and ε = 0.2 (turquoise). In addition, it presents the average advantage probability (ρ, dashed
brown line) with its empirical 0.9 confidence intervals. The subplot title indicates the examined LLM.

that requires only a subset of such annotations and
can verify whether an LLM can be used instead.
This naturally leads to the question: how many
annotated instances are needed for a reliable test?
To answer this, we present a bootstrap analysis in
Figure 2 illustrating how the number of instances
impacts our measures for the best-performing LLM
(according to ρ) in each dataset.

As shown, the winning rate ω strongly depends
on the number of instances. This is because ω re-
flects the number of rejected hypotheses (i.e., the
number of annotators the LLM wins), and more
instances increase the power of the statistical test
and the likelihood of rejecting a false null hypothe-
sis (the human wins). In contrast, since ρ does not
involve hypothesis testing, it is not affected on ex-
pectation by the number of instances. Yet, increas-
ing the number of instances reduces the variance of
ρ (since it is a mean of means), making it a more
robust measure for comparing LLM judges.

Regarding the recommended number, beyond
the minimum requirement of 30 instances to satisfy
the normality assumption of the t-test, Figure 2
shows that for ε = 0.2, in most cases, the LLM be-
gins to pass the test before annotating 100 instances,
and in half even before 50 instances. With ε = 0.1
the alt-test requires more instances, typically dou-
ble the amount needed for ε = 0.2, between 100
and 150. Yet, in three datasets (LGBTeen, MT-
Bench, and SummEval), the LLM fails to pass the
test regardless of the number of instances. While
the exact number may vary depending on the task,
the number of annotators, and the ε value, our anal-
ysis highlights a promising finding: only a modest

subset of annotations is required.

6 Conclusion

Science advances through systematic observation,
precise measurement, and the rigorous validation
of hypotheses. It is no coincidence that Pearson
famously claimed statistics to be “the grammar of
science”. As results and findings of studies increas-
ingly rely on LLMs instead of human annotators,
extra care is needed to uphold scientific rigor.

In this paper, we proposed a statistical proce-
dure to justify using LLM annotations in research
studies, the alt-test, which is simple and requires
minimal effort. As demonstrated in our analysis,
researchers can recruit a small group of annotators
(at least three) to annotate a subset of 50 to 100
examples, depending on the complexity of the task.

Appendix A provides a list of frequently asked
questions about our procedure, along with answers
and best practices. Then, in Appendix B, we fur-
ther discuss and analyze additional aspects of our
procedure, like the impact of ε and the choice of
human annotators. Finally, in Appendix C, we
propose modifications to our procedure to address
advanced scenarios: handling imbalanced labels
(§C.1), benchmarking against a single expert anno-
tator (§C.2), incorporating annotator quality scores
(§C.3), respecting minotiy opinions in subjective
annotation tasks (§C.4), and testing whether LLMs
outperform humans (§C.5).

We encourage researchers to adopt our proce-
dure to ensure more reliable and transparent evalu-
ations of LLMs, and careful practices to leverage
their annotations in NLP research and other fields.
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7 Limitations

Data contamination One limitation of our ex-
periments is the potential for data contamination,
where datasets used in our experiments may over-
lap with the training data of the evaluated LLMs.
Popular datasets such as SummEval and MT-Bench,
commonly used for benchmarking LLM-as-judges,
are publicly available and might have been included
in the training data of some LLMs. Notice that
most of the datasets we used are recent (published
after 2022) and not widely known, with fewer than
50 citations each. Additionally, one of our datasets,
LGBTeen, is available only upon request. Hope-
fully, this lowers the risk of data contamination.

High disagreement among human annotators
High disagreement among human annotators can
arise from various factors, such as untrained crowd
workers, annotators who are not suited for the task,
unclear or poorly designed annotation guidelines,
or the inherently subjective nature of the task it-
self. In such cases, it is unlikely that the LLM-
as-a-judge will succeed in passing our test. The
procedure compares the LLM with each annotator
to test alignment with the remaining annotators.
When the remaining annotators are inconsistent,
this introduces high variance in determining who
aligns better (the LLM or the excluded annotator).
Under these conditions, the hypothesis test is un-
likely to reject the null hypothesis, and the LLM’s
winning rate remains low.

This property of our procedure can be desirable,
as it may help researchers identify potential issues
with the annotation process, such as unclear guide-
lines, unqualified annotators, or the inherent sub-
jectivity of the task. Traditional measures would
similarly yield low scores in such cases.

For inherently subjective tasks, we advocate for
developing alternative methods to assess the quality
of human annotations, where disagreements are a
feature rather than a flaw (Basile et al., 2021; Uma
et al., 2021) and methods to evaluate the LLM-as-a-
judge’s ability to represent a spectrum of opinions.
Finally, we refer readers to §C.4 in the Appendix,
where we discuss modifications of our procedure
to better account for subjectivity and emphasize
minority opinions.

Comparing against weak human annotators A
potential misuse of our procedure is intentionally
comparing the LLM against weak human annota-
tors to demonstrate that the LLM outperforms them

and justify its use. In cases where human annota-
tors are noisy or random, with low inter-annotator
agreement, our procedure is unlikely to let the LLM
pass the test, as explained in the previous discus-
sion on high disagreements.

However, there is a scenario where statistical
rigor cannot compensate for intentionally weak hu-
man annotators. In the single expert scenario (see
Appendix C.2), the LLM is compared against non-
experts, and both are tested for alignment with a
single expert. If the non-experts are particularly
weak (e.g., inconsistent or unqualified), the LLM
may appear to outperform them, and our procedure
cannot fully prevent such misuse.

Science, however, is built on transparency and
trust. We strongly encourage researchers to dis-
close detailed information about the annotators and
to publish the human annotations, allowing others
to reproduce and validate the results. As discussed
in §B, the expertise of the human annotators di-
rectly impacts the reliability and authority of the
procedure. Readers and reviewers should critically
assess the choice of annotators, and if the anno-
tators are deemed unsuitable, the study’s results
should be taken with a grain of salt.
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A Frequently Asked Questions

Q: Why not use an Inter-Annotator Agreement
(IAA) measure?
A: Our procedure is a type of IAA, but unlike tra-
ditional IAA measures (such as Cohen’s kappa),
which assess agreement among a group of annota-
tors, our goal is to compare the LLM to the group
to determine whether it can replace them.

Q: Why not use a traditional measure such as
F1 score or accuracy?
A: To compare the LLM to human annotators and
to address the ‘replacement question’ (i.e., whether
the LLM can be used instead of the annotators), one
might consider traditional LLM-human alignment
measures (e.g., the F1 score or a correlation be-
tween the LLM and the majority vote label). How-
ever, answering the replacement question requires
statistical rigor. Even though a statistical test can
check if the traditional measure exceeds a prede-
fined threshold, there is no universal standard for

setting it, which may vary across datasets and se-
tups. Additionally, traditional measures only evalu-
ate whether the LLM matches human performance,
not whether it provides a better alternative.

In contrast, our procedure involves statistical
practices and provides clear passing criteria. Most
importantly, it directly answers the replacement
question by using a leave-one-out approach – ex-
cluding one annotator at a time and assessing
whether the LLM better represents the remaining
annotators than the excluded one.

Q: Why do you recommend at least three hu-
man annotators and not two?
A: While our procedure can be used with two an-
notators, we believe it is less reliable. With only
two, the procedure simply checks whether the LLM
aligns more with one annotator than the other, lack-
ing a consensus signal. This makes results more
sensitive to individual biases. With at least three
annotators, the procedure better evaluates whether
the LLM represents the broader group. Obviously,
the more annotators, the better, as this increases the
reliability, reduces the influence of individual bi-
ases, and provides a more robust consensus signal
for comparison.

Q: What if I have annotations from a single hu-
man annotator?
A: Since our procedure requires at least two anno-
tators, we recommend recruiting additional annota-
tors for the alt-test. However, if the single annotator
is an expensive expert (or you trust their annota-
tions) and cannot recruit others at the same ex-
pertise level, you can instead recruit lower-quality
annotators and test who better represents the expert:
the LLM or the newly recruited annotators. We re-
fer to this as the single-expert scenario and provide
a detailed discussion on adjusting our procedure in
Appendix C.2.

Q: How do I select the ε value?
A: We discuss this topic in detail in §B.1. Note that
ε is the cost-benefit hyperparameter, where higher
values indicate greater efficiency advantages of the
LLM. As a rule of thumb, for expert annotators
(expensive, sometimes inaccessible), set ε = 0.2.
For skilled annotators (e.g., undergraduate students,
trained workers, etc.), set ε = 0.15. For crowd-
workers, set ε = 0.1.

Q: How many instances should I annotate?
A: We discuss this topic in detail in §5.1. To en-
sure the normality assumption of the t-test holds,
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you should have at least 30 instances. Our anal-
ysis shows that annotating between 50 and 100
instances is sufficient in most cases. Obviously,
the more annotated instances, the better, as this
increases the statistical power of the t-test and the
likelihood of the LLM passing the alt-test.

Q: What if I have fewer than 30 annotated in-
stances per annotator?
A: In this case, the normality assumption of the
t-test does not hold, so a non-parametric test, such
as the Wilcoxon signed-rank test, should be used
instead. Still, we strongly recommend having an-
notators label additional instances. See the next
question for an alternative approach.

Q: I have two sets of human annotators. Can I
combine annotators from the first set with the
second set to increase the number of instances
per annotator?
A: If you have two separate sets of annotators who
annotated different, non-overlapping instances, you
can artificially increase the number of instances per
annotator by pairing them across sets. For example,
suppose Set 1 consists of three annotators who an-
notated 20 instances, and Set 2 consists of another
three annotators who annotated a different set of
20 instances. You can combine an annotator from
Set 1 with an annotator from Set 2, treating them
as a single “combined annotator” with 40 instances.
To improve robustness, you can form multiple such
pairs and report the average winning rate across
different pairing combinations.

While this approach can increase the number of
annotated instances per annotator, it is not ideal.
The best practice is still to annotate more instances.
Combining annotators like this may also increase
the variance of the statistics (since we combine
instances annotated by different distributions). This
could lead to higher p-values, making the LLM fail.

Q: What if I care about ranking rather than
exact scores?
A: In some cases, the exact match between LLM
predictions and human annotations may not be as
important as the relative ordering of instances. For
example, if the goal is to ensure that higher-scored
instances by humans are also ranked higher by the
LLM. To evaluate this, we can adapt our procedure
to operate on ranks instead of raw scores. Specif-
ically, we create a separate ranked list for each
human annotator and the LLM by assigning ranks
to instances based on their annotated scores (e.g.,
the lowest score gets rank 1). We then apply our

procedure to these ranks, replacing the original an-
notations. The alignment scoring function can be
negative RMSE, computed for each instance based
on the difference between its rank assigned by the
LLM and its rank assigned by the human annotator.

Q: What if I have a skewed label distribution?
A: In Appendix C.1, we discuss modifications to
our procedure to account for label imbalance.

Q: How to test if the LLM can be used in several
environments or domains?
A: When evaluating whether an LLM-as-a-judge
can be used across multiple environments or do-
mains, it is important to evaluate it in each setting
independently while also controlling for the overall
False Discovery Rate (FDR). For example, suppose
we have five domains, each with three human an-
notators, resulting in 15 comparisons between the
LLM and humans. The FDR-controlling procedure
should be applied to the 15 p-values to ensure sta-
tistical rigor. Additionally, the winning rate should
be computed separately for each environment, and
the results should be summarized as:

“The LLM passes the alt-test in X out of 5 domains.”
In cases of hundreds of environments, collect-

ing labeled data from at least three annotators per
environment may be impractical. This remains an
open challenge, but it offers promising directions
for future work, such as sampling representative
environments rather than testing all of them.

Q: How to test who better represents human
experts? LLMs or crowd-workers?
A: We discuss this scenario in Appendix C.2.

Q: How to test whether LLMs outperform hu-
mans? (and not whether they can replace them)?
A: We discuss this scenario in Appendix C.5.

Q: What if I trust one annotator more than the
others?
A: In Appendix C.3, we discuss simple modifica-
tions to our procedure to account for variations in
annotator quality.

B Discussion

The goal of this section is to discuss factors that in-
fluence the outcomes of the alt-test: the number of
annotated instances (which was already discussed
in §5.1), the value of the cost-benefit trade-off hy-
perparameter ε (§B.1), and the profile of the human
annotators against whom we compare the LLM
(§B.2). In addition, we also present a case study
analysis of the SummEval dataset (§B.3).
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Figure 3: Analysis of the Impact of Different ε Values: The x-axis represents different ε values, while the y-axis
shows the winning rate ω for four LLMs. If ω ≥ 0.5 (red line with triangles), the LLM passes the test, indicating it
is a comparable alternative to human annotators when considering the cost-benefit tradeoff represented by ε. The
annotator types are stated next to the dataset names.

B.1 The Cost-benefit Hyperparameter

We wish to use LLMs instead of human annota-
tors since they offer a much cheaper, faster, and
less labor-intensive alternative. Therefore, we in-
corporated a cost-benefit hyperparameter into our
procedure, ε, which lowers the necessary thresh-
old the LLM must exceed (i.e., ρhj − ε) to pass the
alt-test. Generally, higher values of ε are recom-
mended when the cost and labor savings provided
by the LLM are substantial. For instance, this ap-
plies when human annotators are highly expensive,
require extensive and prolonged training, or when
the task is time-consuming or particularly challeng-
ing (e.g., annotating complex relationships within
lengthy documents). Conversely, smaller values of
ε are more appropriate for simple annotation tasks
that untrained crowd-workers can complete.

To explore the relationship between different ε
values and the outcomes of the alt-test, as well
as to provide guidelines for setting these values,
we analyze the effect of ε on the winning rate ω
of four LLMs, as shown in Figure 3. The strong
monotonic increasing relationship between ε and ω,
as presented by our analysis, enables us to identify
the effective range of ε, which lies between 0.05
and 0.3. For ε > 0.3, all LLMs achieve ω ≥ 0.5
on every dataset (except SummEval, and Gemini-
Pro in KiloGram) and pass the test. In contrast, for
ε < 0.05, all LLMs achieve ω < 0.5 on all datasets
(except CEBaB-S) and fail the test.

From this analysis, we derive practical guide-
lines for selecting appropriate ε values. First and
foremost, any value can be valid if the researcher
reasonably justifies their choice. This justification

may involve several aspects, including the cost and
effort of the annotation, the expertise of the an-
notators, the cost of annotation mistakes (which
varies based on the application and domain), and
the centrality of LLM annotations to the study.

As a rule of thumb, we recommend setting ε to
0.2 when the annotators are trusted experts and 0.15
when they are skilled annotators (e.g., undergradu-
ate students or trained workers). If the annotators
are crowd workers, ε should be set to 0.1. In either
case, the quality of the annotators must be high
enough to ensure reliable annotations, as discussed
in the following subsection. In our experiments,
we selected ε values based on the type of annota-
tors (as indicated in Table 1 and Figure 3) and the
recommendations above.

B.2 The Human Annotators Profile

Recall that our procedure aims to justify replace-
ment if the LLM aligns more closely with the col-
lective distribution than an individual does, where
the collective distribution approximates the gold
label distribution. This collective distribution is the
most reliable and authoritative benchmark when
the annotators are experts. Accordingly, we recom-
mend using expert annotators whenever possible
and, at the very least, highly trained crowd-workers.
If researchers themselves are experienced with the
task, they can serve as annotators.

In §C, we examine advanced topics related to hu-
man annotators. In §C.2, we address the scenario
of a single expert annotator and propose a simple
modification to our procedure. This scenario is
particularly relevant when only one expert is avail-
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able due to limited accessibility or the high cost of
their annotations. This single expert annotates a
small subset of instances, and their annotations are
considered the gold labels (i.e., there is no collec-
tive distribution in this scenario). Our modification
compares the LLM against non-experts to deter-
mine whether the LLM aligns more closely with
the single expert than a non-expert does.

Additionally, in §C.3, we propose a modifica-
tion to our procedure that incorporates a quality
score for each human annotator. This score can
be derived from various sources, such as qualifi-
cation tests, and allows researchers to account for
annotator expertise and reliability differences.

In §C.4, we address the unique challenges of
subjective annotation tasks, where minority opin-
ions may carry importance. For example, in hate
speech and offensive language detection, it is often
a single sensitive annotator, frequently from an un-
derrepresented group, who identifies the offensive
content and deviates from the majority label. In
such cases, we aim to adapt our method to account
for and emphasize minority votes.

Finally, many studies aim not to use LLMs for
annotations or judgments but to evaluate whether
LLMs outperform humans. For example: “Chat-
GPT Out-scores Medical Students on Clinical Care
Exam Questions” (Hadhazy, 2023). In these cases,
gold labels (e.g., exam answers) are available and
are used for benchmarking. Moreover, we set ε = 0
because there is no need to penalize humans. In
§C.5, we discuss adapting the alt-test to rigorously
answer if LLMs outperform humans.

B.3 Case study: SummEval
Table 2 reveals an anomaly in the SummEval
dataset: Mistral-v3, the open-source LLM,
achieves the highest ρ. Interestingly, Mistral’s tra-
ditional measure score (Pearson’s correlation) is
low (0.12). This discrepancy warrants further in-
vestigation. As shown in Table 5 in the Appendix,
Mistral passes the test only for the Consistency as-
pect, with ρ = 0.87, much higher than other LLMs
(around 0.45).

First, this demonstrates why each aspect should
be tested separately. Second, Table 6 in the Ap-
pendix, which reports the annotation distributions
for SummEval, explains why Mistral’s ρ is so high:
human annotations for Consistency are highly
skewed, with the score ‘5’ assigned 89% of the
time. The only LLM with a similarly skewed pre-
diction distribution is Mistral. Other LLMs predict

‘5’ only about 30% of the time. However, as shown
by Table 6, few-shot helps LLMs adjust and skew
their distributions, improving their alignment.

Noteworthy, unlike traditional measures (Pear-
son’s and Spearman’s correlations), our method
captures this nuance in alignment. In §C.1 of the
Appendix, we discuss label imbalance (like this
case) and propose an adjustment to our method
using Inverse Probability Weighting (IPW).

C Advanced Topics

C.1 Handling Imbalanced Labels
In many annotation tasks, there is an issue of label
imbalance, where one class or category is dispro-
portionately represented compared to others. For
instance, in the SummEval dataset’s "Consistency"
aspect, the majority vote scores are distributed as
follows: {1 : 0.02, 2 : 0.07, 3 : 0.02, 4 : 0.00, 5 : 0.89}.

This imbalance poses challenges for evaluation.
Traditional metrics like accuracy tend to favor anno-
tators who predominantly assign ‘5’ as an annotator
who always chooses ‘5’ would achieve a high accu-
racy of 0.89. Conversely, correlation metrics may
penalize such annotators, even when their labels
have substantial overlap with others, as illustrated
in the code below:

1 from scipy.stats import pearsonr ,
spearmanr

2

3 l1 = [1, 2, 3, 4] + [5] * 100
4 l2 = [5] * 100 + [4, 3, 2, 1]
5 print(f'Pearson: {pearsonr(l1, l2)

[0]:.2f}')
6 print(f'Spearman: {spearmanr(l1, l2)

[0]:.2f}')

Pearson: -0.03
Spearman: -0.04

Our procedure is not without flaws. For instance,
an LLM that consistently predicts ‘5’ would suc-
ceed and pass our test due to the high proportion
of ties (at least 89%). To address the issue of im-
balanced labels, we propose a modification to our
procedure described below.

Let Y = y1, y2, . . . , yl represent the set of possi-
ble classes. We define yi,j as the “gold” label for in-
stance xi when comparing the LLM with annotator
hj . The “gold” label is given by yi,j = MVj(xi),
where MVj(xi) is the majority vote label for xi
based on all annotators except hj (ensuring the ex-
cluded annotator does not influence the gold label).
In the case of a single expert annotator (see §C.2),
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the gold label is defined as yi,j = hexp(xi). For
simplicity, we use yi instead of yi,j in the notation.

The idea is to weigh each instance annotated
by hj with the inverse probability of its MV la-
bel (this correction is known as inverse probability
weighting, IPW). The inverse probability of class
y, denoted by πy,j , is defined as:

πy,j =
|Ij |∑

i∈Ij 1{MVj(xi) = y}

where Ij is the set of instances annotated by hj ,
and 1{MVj(xi) = y} is an indicator function that
gets one if the majority vote label of xi is class
y, and zero otherwise. The difference between
the indicators W f

i,j and W h
i,j is weighted to dπi,j =

πy,j(W
h
i,j −W f

i,j).
The formula of the weighted and balanced ad-

vantage probability, ρfj,π, is:

ρf,πj =

∑
i∈Ij πyi,jWi,j∑

i∈Ij πyi,j

This formulation ensures that the overrepresen-
tation of certain classes is mitigated, allowing each
class to contribute equally to ρf,πj . Similarly, we

define ρh,πj and the difference random variable is

given by d̄πj = ρh,πj − ρf,πj .
Since the new random variables are weighted

means, their variance is different, and the corre-
sponding test statistics should be adjusted:

tπj =
d̄πj − ε

sπj /
√
nπ

Where sπj and the effective sample size nπ are:

sπj =

√√√√
∑n

i=1 πyi,j
(
di,j − d̄j

)2
∑

i∈Ij πyi,j

nπ =
(
∑

i∈Ij πyi,j)
2

∑
i∈Ij π

2
yi,j

The rest of the procedure for computing the win-
ning rate ω and applying the FDR correction re-
mains unchanged.

C.2 A Single Expert Annotator
In many cases, researchers wish to annotate their
dataset using experts, however, expert annotations
are expensive, hence most often we have only one
expert to compare to. To address this scenario,

we propose a simple adjustment to our procedure,
and ask whether the LLM aligns more closely to a
single expert than a non-expert human annota-
tor does. This scenario represents a practical case
where an expert has annotated a subset of examples,
but more annotations are required. To continue, the
researcher must decide: Should the remaining an-
notations be completed by the LLM or by recruiting
a non-expert annotator? The adjustment is applied
only to the formula for the alignment score:

−RMSE(f, xi, exp) = −|f(xi)− hexp(xi))|
ACC(f, xi, exp) = 1{f(xi) = hexp(xi)}
SIM(f, xi, exp) = sim(f(xi), hexp(xi))

Note that this time, we compare S(f, xi, exp)
against {S(hj , xi, exp)}mj=1, where {hj}mj=1 rep-
resent non experts. The methods for aggregating
the scores across the entire datasets to calculate ρj
and the winning rate ω remain unchanged.

C.3 Incorporating Annotator Quality

A key principle of our procedure is valuing the
perspectives of all annotators, and until this sub-
section, each perspective has been treated equally.
However, this can sometimes be a limitation, as not
all annotators have the same level of expertise. For
instance, the input of a more experienced or highly
trained crowd-worker should carry more weight
than that of a novice. In medical annotations, such
as analyzing lesion images, the opinion of an ex-
perienced dermatologist would naturally be more
reliable and respected than that of an intern.

In this subsection, we propose a modification to
our procedure that incorporates a quality score as-
signed to each human annotator. The quality score
can be derived from various sources, such as per-
formance on a qualification test performed by the
crowd-workers or a subjective assessment by the
paper authors based on their judgment. Weighting
annotations based on an annotator’s quality score is
a well-established practice in the NLP community
(Inel et al., 2014; Uma et al., 2021; Plank, 2022).

Let Qj represent the quality score of annota-
tor hj . This score is incorporated at two points
in our procedure. The first is in the formula
for the alignment score metric, S(f, xi, j), where
we assign greater weight to high-quality anno-
tators. The modification is defined as follows:
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−RMSE(f, xi, j) = −
√∑

k∈Hi[−j]Qk(f(xi)− hk(xi))2∑
k∈Hi[−j]Qk

ACC(f, xi, j) =

∑
k∈Hi[−j]Qk1{f(xi) = hk(xi)}∑

k∈Hi[−j]Qk

SIM(f, xi, j) =

∑
k∈Hi[−j]Qksim(f(xi), hk(xi))∑

k∈Hi[−j]Qk

The second point where quality scores can
be incorporated is in the winning rate formula.
Specifically, if the LLM outperforms a high-quality
annotator, this should contribute more significantly
to the winning rate. The modification is as follows:

ω =

∑m
j=1Qj1{H0j is rejected}∑m

j=1Qj

C.4 Subjective Annotation Tasks

Subjective annotation tasks, such as those involv-
ing hate speech or offensive language, often lack
a single ground truth and may reflect diverse per-
spectives, especially from marginalized or under-
represented groups. Accordingly, minority opin-
ions should be considered when determining labels
and assessing annotation quality in subjective tasks.
Next, we will specify three options that can help
address this issue.

Label imbalance (Appendix C.1): While sub-
jective tasks may not traditionally fall under label
imbalance, our proposed solution involves penal-
izing instances based on their “gold label” (i.e.,
majority vote), such that majority-class instances
contribute less to the test. A similar approach can
be adapted for subjective tasks, for example, giving
more weight to instances where a single annotator
flags a problematic statement, even if it is not the
majority view.

Annotator quality (Appendix C.3): We discuss
incorporating annotator quality scores, such as in
cases where one annotator is an expert and another
is less experienced. This approach is also applica-
ble to subjective tasks, for instance, by assigning
higher quality scores to more sensitive annotators
or those from minority demographics.

Customize the alignment scoring function
(S(f, xi, j)): The alignment scoring function
(e.g., accuracy for classification) can be customized
to fit the researcher’s needs. For example, one
might use a variant of accuracy suitable for hate

speech, e.g., giving more weight to specific hate
speech labels. The rest of the procedure remains
unchanged, making our method highly flexible and
easily adaptable.

C.5 Testing if LLMs Outperform Humans
Many studies do not aim to use LLMs for anno-
tations or judgments but instead evaluate whether
LLMs outperform humans. For instance, Schu-
bert et al. (2023) assessed LLM performance on
neurology board–style examinations, where LLMs
answered 85.0% of questions correctly, surpassing
the mean human score of 73.8%. Similarly, Luo
et al. (2024) compared LLMs to human experts
in predicting neuroscience experiment outcomes,
finding that LLMs achieved an average accuracy
of 81.4%, outperforming human experts, who av-
eraged 63.4%. In these cases, gold labels (test
answers or experiment outcomes) are available and
used to benchmark LLMs against humans.

While comparing the performance of LLMs to
humans and conducting hypothesis tests to deter-
mine the significance of performance differences
is a well-established approach (Dror et al., 2018),
our procedure can also be applied in these scenar-
ios. To apply the alt-test, the modification follows
the approach outlined in the previous subsection
§C.2. Simply replace the single expert annotation,
hexp(xi) with the gold label ygold in the formula for
the alignment score. Moreover, researchers should
set ε = 0.0 in this case, as the goal is to determine
whether the LLM outperforms humans, rather than
testing if it holds an advantage in annotation tasks
while considering the cost-benefit penalty.

The advantage of the alt-test is that it quantifies
the number of humans the LLM statistically out-
performs. For example, consider a scenario where
the LLM achieves a score of 70 on an exam, while
three humans score 80, 80, and 20. A simple com-
parison of the mean would suggest that the LLM
outperforms humans. However, ω offers a more
realistic assessment by setting the LLM’s winning
rate to 0.33. Furthermore, the alt-test addresses a
potential limitation of mean comparisons, where
the human mean may disproportionately reflect in-
dividuals who contributed more annotations.

C.6 The Benjamini-Yekutiali Procedure
The Benjamini-Yekutieli (BY) procedure (pre-
sented in Algorithm 1) is a statistical procedure de-
signed to control the false discovery rate (FDR) in
multiple hypothesis testing. It is particularly suited
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for scenarios where the test statistics of the different
null hypotheses are dependent. Unlike the simpler
Benjamini-Hochberg procedure, the BY method in-
troduces a correction factor, cm =

∑m
j=1

1
j , which

accounts for dependency among hypotheses. This
ensures that the overall FDR remains at the desired
level q. The procedure identifies the largest set
of hypotheses whose p-values are below adjusted
thresholds, rejecting these null hypotheses while
controlling the FDR. The BY procedure is widely
used in fields like genomics and machine learning,
where testing dependencies are common.

Algorithm 1 Benjamini-Yekutieli (BY) Procedure

Require: p-values from m hypothesis tests, de-
sired FDR level q (e.g., 0.05)

1: Sort the p-values in ascending order:
p(1) ≤ p(2) ≤ . . . ≤ p(m)

2: for i = 1 to m do
3: Compute the adjusted threshold using:

threshold(i) =
i

m
×
(

q∑m
j=1

1
j

)

4: end for
5: Find the largest i such that p(i) ≤ threshold(i)
6: Reject null hypotheses corresponding to

p(1), p(2), . . . , p(i)
7: return List of rejected null hypotheses

D The Optimal LLM-as-a-Judge

In this subsection, we introduce a theorem that de-
fines the optimal LLM-as-a-judge. The theorem
identifies the function that maximizes alignment
with the collective distribution, achieving an advan-
tage probability of ρ = 1.

The optimal LLM-as-a-judge naturally depends
on the choice of the scoring function, S(f, xi, j).
For instance, if ACC (accuracy) is used as the metric,
the optimal LLM-as-a-judge is the one that predicts
the majority vote for each instance. Conversely, if
RMSE (root mean squared error) is used, the optimal
LLM-as-a-judge is the one that predicts the mean of
the annotations. This is formalized in the theorem:

Theorem 1 (Optimal LLM-as-a-Judge). For a
given dataset, let S(f, xi, j) be the alignment scor-
ing function. The optimal LLM-as-a-judge, denoted
as f∗(xi), is defined as follows:

• If S = ACC, then f∗(xi) = MV (xi), predict-
ing the majority vote of the annotators for xi.

• If S = −RMSE, then f∗(xi) =

∑
k∈Hi

hk(xi)

|Hi| ,
predicting the mean annotation for xi.

In both cases, the optimal LLM-as-a-judge
achieves an advantage probability of ρ = 1.

Proof. Let hj be the excluded annotator.

Case 1 S = ACC: Let MV (xi) denote the major-
ity vote for instance xi, defined as the label that
appears most frequently in the set {hk(xi)}k∈Hi

.
In the event of a tie, where more than one label
qualifies as the majority, MV (xi) is randomly
sampled from the tied labels. We now show that
f(xi) = MV (xi) is optimal.

If hj(xi) = MV (xi), then f(xi) = hj(xi)

and therefore W f
i,j = 1. Otherwise, if hj(xi) ̸=

MV (xi), then by the definition of MV (xi):
∣∣{ k ∈ Hi : hk(xi) = MV (xi)}

∣∣ ≥∣∣{ k ∈ Hi : hk(xi) = hj(xi)}
∣∣

Note that if there is a single majority label, the set
on the left (top) is strictly larger than the set on the
right (bottom). If there is no single majority label, it
may be a tie in which hj(xi) appears with the same
frequency as the (randomly sampled) MV (xi).

Once we exclude hj from both sets, the size of
the left set remains unchanged (since MV (xi) ̸=
hj(xi), hj was never in the left set). However,
the right set loses one element (specifically hj).
Hence, ACC(f, xi, j) > ACC(hj , xi, j) which im-
plies W f

i,j = 1.

Case 2 S = −RMSE: Let

h̄(xi) =

∑
k∈Hi

hk(xi)

|Hi|

be the mean value of the annotations for instance
xi. We now show that f(xi) = h̄(xi) is optimal.

If hj(xi) = h̄(xi), then f(xi) = hj(xi), imply-
ing W f

i,j = 1. Otherwise, hj(xi) ̸= h̄(xi).
To show that RMSE(f, xi, j) < RMSE(hj , xi, j)

(which implies W f
i,j = 1), we need to prove:

∑

k∈Hi[−j]

(h̄(xi)− hk(xi))
2 <

∑

k∈Hi[−j]

(hj(xi)− hk(xi))
2

First, we recall that the arithmetic mean uniquely
minimizes the sum of squared errors over a set of
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real numbers. Formally, for any c:
∑

k∈Hi

(h̄(xi)− hk(xi))
2 <

∑

k∈Hi

(c− hk(xi))
2

By setting c = hj(xi), it follows:
∑

k∈Hi

(h̄(xi)− hk(xi))
2 <

∑

k∈Hi

(
hj(xi)− hk(xi)

)2

Second, note that
∑

k∈Hi[−j]

(
h̄(xi)− hk(xi)

)2
<

∑

k∈Hi

(
h̄(xi)− hk(xi)

)2
<

∑

k∈Hi

(
hj(xi)− hk(xi)

)2
=

∑

k∈Hi[−j]

(
hj(xi)− hk(xi)

)2

The first inequality holds because
(
h̄(xi)− hj(xi)

)2
> 0

given hj(xi) ̸= h̄(xi). The second follows from
the minimization property of the mean. The final
equality is trivial since

(
hj(xi)− hj(xi)

)2
= 0

Therefore, W f
i,j = 1.

Conclusion: We have demonstrated that in both
cases, setting f∗(xi) as defined ensures W f

i,j = 1

for any instance xi. Consequently, ρfj = 1. Further-
more, since this holds for any excluded annotator
j, it follows that ρ = 1.

E Datasets

• WAX (Liu et al., 2022) – Prompt provided
in Box G.1. We use the Relation Labeling
task from the Word Association eXplanations
(WAX) dataset. In this task, MTurk annota-
tors were presented with two words—a cue
word and an associated word (e.g., shark and
sharp), along with an explanation (e.g., “shark
teeth are sharp”). The annotators labeled the

relation between the two associated words
based on the given explanation, selecting from
16 predefined relation types. We included
only items that were annotated by at least five
crowd workers.

• SummEval (Fabbri et al., 2021) – Prompt
provided in Box G.9. This dataset includes
human evaluations of summaries generated
by 16 neural summarization models applied
to 100 documents from the CNN/DailyMail
test set. We focused on expert annotations
(authors of summarization papers) collected
for four dimensions: coherence, consistency,
fluency, and relevance. The annotators rated
summaries on a Likert scale from 1 to 5, with
higher scores indicating better quality.

• LGBTeen (Lissak et al., 2024) – Prompt pro-
vided in Box G.2. Three expert annotators
evaluated responses from humans and vari-
ous LLMs to queries from queer youth, ex-
tracted from the r/LGBTeen subreddit. Each
response was assessed using a ten-question
questionnaire designed to evaluate desirable
traits, such as inclusiveness, sensitivity, and
openness (see Box G.3). Responses were cat-
egorized as ‘Yes,’ ‘Partially,’ ‘No,’ or ‘Irrele-
vant’. We kept only responses that were anno-
tated by at least two annotators.

• MT-Bench (Zheng et al., 2024b) – Prompt
provided in Box G.4. MT-Bench is a dataset
consisting of 80 manually crafted multi-turn
questions designed to evaluate the conversa-
tional and instruction-following abilities of
LLMs. The dataset covers eight categories
of prompts, such as writing, reasoning, math,
and coding. Expert annotators, including the
paper’s authors and graduate students with ex-
pertise in the relevant categories, evaluated
responses from LLMs by assessing 20 multi-
turn questions conversation. For each ques-
tion, annotators selected the better response
between two competing LLM responses or
marked it as a tie. We included only items
annotated by at least two annotators and anno-
tators who evaluated more than 30 items.

• Lesion (Cheplygina and Pluim, 2018) –
Prompt provided in Box G.11. This dataset
includes images of skin lesions from the ISIC
2017 challenge (Codella et al., 2018) that
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undergraduate students annotated during a
project on medical image analysis. Each im-
age was annotated with five features: asymme-
try (scale 0-2), irregularity of the border (0-2),
number of colors present (1-6), presence of
structures such as dots (0-2) and presence of
a blueish glow (0-2).

• Framing (Frermann et al., 2023) – Prompt
provided in Box G.5. This dataset consists
of articles on climate change annotated with
22 yes/no questions about narrative framing.
The questions are grouped into five framing
categories: resolution, conflict, human inter-
est, moral, and economic. The 22 questions
and annotation guidelines are presented in
Boxes G.6 and G.7. The annotations were per-
formed by four on-site annotators with back-
grounds in social and political sciences, who
underwent an extensive training phase. We
included only article-question pairs that were
annotated by at least three annotators.

• CEBaB (Abraham et al., 2022) – Prompt pro-
vided in Box G.8. This large-scale dataset
comprises restaurant reviews annotated by
crowd workers. The workers labeled the sen-
timent of four aspects: Food, Service, Noise,
and Ambiance. Each aspect was categorized
as ‘Positive’, ‘Negative’ or ‘Unknown’. Ad-
ditionally, star ratings were provided on a
five-point scale. We use two variants of
this dataset: CEBaB-A, which includes an-
notations for the four aspects, and CEBaB-S,
which includes the star ratings. For each vari-
ant, we retained only items annotated by at
least three annotators. We identified a subset
of ten annotators with the highest overlap of
annotated items (i.e., items annotated by the
largest number of these ten annotators).

• 10K Prompts12 – Prompt provided in
Box G.10. This dataset is part of a project by
Argilla and HuggingFace and was created by
collecting prompts from various sources. The
annotators are members of the HuggingFace
community tasked with ranking the quality of
synthetic and human-generated prompts on a
Likert scale from 1 to 5. We identified a set of
13 annotators, each with at least 30 items also
annotated by another annotator.

12https://huggingface.co/datasets/
data-is-better-together/10k_prompts_ranked

• KiloGram (Ji et al., 2022) – Prompt provided
in Box G.12. This dataset includes thousands
of tangram images (see an example in Fig-
ure 4), annotated by MTurk workers. Each
annotator provided a short free-text descrip-
tion of what the tangram shape looks like.
For computing similarity between annotations,
we use cosine similarity applied to represen-
tations extracted by a SentenceTransformer
model. Note that we tested various Sentence-
Transformer models based on the Hugging-
Face STS English leaderboard13, and the re-
sults presented in Table 4. We decided to
report the results using ‘e5-large-v2’.14

Annotations: 
“a footballer”, “bird”, 
“ice skating”, “a man 
doing exercises”, 
“skater”, “person 
doing a yoga stretch”, 
“yoga pose”, “kite”, 
“flamingo”, “ballerina”, 
“man”, “human”, 
“dancer”, “dancing 
man”, “ice skater”, 
“ballet dancer”

Figure 4: Example of a tangram from the KiloGram
dataset with corresponding free-text human annotations.

all-MiniLM-L6-v2 e5-large-v2

Sim WR ω WP ρ Sim WR ω WP ρ
Humans 0.28 – – 0.78 – –
Gemini-Flash 0.28 0.42 0.56 0.79 0.66 0.61
Gemini-Pro 0.26 0.14 0.49 0.77 0.08 0.43
GPT-4o 0.27 0.3 0.50 0.78 0.2 0.53
GPT-4o-mini 0.25 0.14 0.46 0.78 0.16 0.49

UAE-Large-V1 GIST-Embedding-v0

Sim WR ω WP ρ Sim WR ω WP ρ
Humans 0.51 – – 0.65 – –
Gemini-Flash 0.51 0.32 0.53 0.66 0.62 0.57
Gemini-Pro 0.50 0.16 0.48 0.64 0.0 0.42
GPT-4o 0.49 0.12 0.43 0.65 0.32 0.53
GPT-4o-mini 0.48 0.04 0.41 0.65 0.32 0.52

Table 4: Kilogram – Different Embeddings Models:
Sim is the average cosine similarity between the em-
beddings. ω is calculated with ε = 0.1. Bold values
indicate the best-performing LLM according to ρ and a
green background highlights a ω higher than 0.5.

13https://huggingface.co/spaces/mteb/
leaderboard

14https://huggingface.co/intfloat/e5-large-v2
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F Additional Results

SummEval — m = 3, n = 1600, ε = 0.2

Coherence Consistency Fluency Relevance

Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ
Gemini-Flash 0.38 0.67 0.64 0.54 0.0 0.51 0.31 0.0 0.16 0.34 0.0 0.54
Gemini-Pro 0.40 0.67 0.66 0.59 0.0 0.32 0.19 0.0 0.15 0.34 0.67 0.63
GPT-4o 0.47 1.0 0.75 0.62 0.0 0.44 0.43 0.0 0.21 0.37 0.0 0.50
GPT-4o-mini 0.42 1.0 0.75 0.53 0.0 0.46 0.36 0.0 0.21 0.42 1.0 0.76
Llama-3.1 0.36 1.0 0.70 0.52 0.0 0.68 0.26 0.0 0.2 0.38 1.0 0.74
Mistral-v3 0.17 0.33 0.58 0.10 1.0 0.87 0.16 0.0 0.48 0.16 0.33 0.56

Lesion — m = 6, n = 100, ε = 0.15

Asymmetry Blue Border Color Dermo

Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ Pears WR ω AP ρ
Gemini-Flash 0.36 0.00 0.52 0.55 1.0 0.91 0.15 0.0 0.61 0.63 1.0 0.89 0.27 0.0 0.63
Gemini-Pro 0.32 0.17 0.74 0.58 1.0 0.95 0.17 0.0 0.72 0.56 1.0 0.85 0.19 0.5 0.78
GPT-4o 0.39 0.00 0.57 0.64 1.0 0.91 -0.02 0.0 0.21 0.59 0.83 0.81 0.24 0.0 0.59
GPT-4o-mini 0.15 0.17 0.65 0.49 1.0 0.93 0.01 0.0 0.57 0.60 0.67 0.75 0.32 0.5 0.77

LGBTeen — m = 4, n = 88, ε = 0.2

Q1 Inclusiveness Q2 Sensitivity Q3 Validation Q4 Mental Q5 Personal

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ
Gemini-Flash 0.78 0.0 0.79 0.81 0.75 0.90 0.66 0.0 0.74 0.38 0.00 0.66 0.59 0.5 0.86
Gemini-Pro 0.82 0.0 0.84 0.61 0.25 0.76 0.53 0.0 0.59 0.48 0.25 0.77 0.52 0.0 0.78
GPT-4o 0.83 0.0 0.82 0.77 0.75 0.90 0.74 0.5 0.82 0.51 0.00 0.70 0.48 0.25 0.76
GPT-4o-mini 0.80 0.0 0.80 0.81 0.75 0.93 0.67 0.25 0.73 0.50 0.00 0.69 0.47 0.0 0.75
Llama-3.1 0.88 0.75 0.87 0.81 0.75 0.89 0.70 0.0 0.75 0.40 0.00 0.70 0.61 0.5 0.82
Mistral-v3 0.84 0.0 0.86 0.82 0.75 0.90 0.74 0.25 0.82 0.49 0.00 0.68 0.38 0.0 0.72

Q6 Networks Q7 Resources Q8 Safety Q9 Authenticity Q10 Completeness

Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ Acc WR ω AP ρ
Gemini-Flash 0.38 0.0 0.67 0.58 0.0 0.69 0.34 0.0 0.58 0.40 0.0 0.64 0.48 0.0 0.62
Gemini-Pro 0.41 0.0 0.70 0.49 0.0 0.62 0.18 0.0 0.47 0.33 0.0 0.59 0.33 0.0 0.53
GPT-4o 0.57 0.5 0.78 0.58 0.0 0.65 0.69 0.25 0.87 0.64 0.25 0.77 0.39 0.0 0.66
GPT-4o-mini 0.48 0.0 0.71 0.57 0.0 0.69 0.59 0.5 0.86 0.59 0.0 0.72 0.42 0.0 0.69
Llama-3.1 0.48 0.0 0.63 0.38 0.0 0.57 0.51 0.0 0.78 0.20 0.0 0.49 0.53 0.0 0.69
Mistral-v3 0.47 0.0 0.69 0.22 0.0 0.44 0.73 0.75 0.89 0.66 0.25 0.71 0.48 0.0 0.79

Table 5: Results for different annotation aspects in SummEval, Lesion and LGBTeen datasets. m and n are the
number of annotators and instances, respectively. Acc is the accuracy with the majority vote, and Pears is the
average Pearson correlation. WR is the winning rate (ω), and AP is the average advantage probability (ρ). Bold
values indicate the best-performing LLM according to ρ, and a green background highlights ω ≥ 0.5.

Coherence Consistency Fluency Relevance

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
Humans .05 .14 .36 .20 .25 .02 .07 .02 .00 .89 .00 .02 .08 .02 .88 .02 .05 .27 .44 .22

Llama-3.1 .02 .29 .32 .24 .13 .02 .04 .09 .27 .58 .10 .30 .17 .34 .09 .01 .18 .20 .41 .20
Mistral-v3 .00 .00 .01 .57 .42 .00 .00 .02 .01 .97 .00 .00 .04 .59 .37 .00 .00 .01 .04 .95

Gemini-Flash .04 .39 .52 .05 .00 .02 .03 .19 .37 .39 .00 .18 .54 .27 .01 .03 .36 .53 .08 .00
+ 4-shots .02 .16 .53 .25 .04 .00 .03 .08 .09 .80 .00 .01 .07 .24 .68 .02 .10 .53 .31 .04

Gemini-Pro .01 .46 .42 .11 .00 .02 .05 .16 .59 .18 .00 .16 .77 .07 .00 .00 .23 .61 .14 .02
+ 4-shots .00 .14 .27 .46 .13 .01 .05 .09 .11 .74 .00 .00 .17 .21 .62 .01 .11 .30 .39 .19

GPT-4o .01 .20 .45 .34 .00 .01 .12 .09 .44 .34 .01 .09 .42 .45 .03 .03 .45 .45 .07 .00
+ 4-shots .01 .07 .21 .52 .19 .01 .06 .08 .19 .66 .00 .01 .11 .30 .58 .00 .08 .39 .43 .10

GPT-4o-mini .01 .20 .46 .33 .00 .00 .06 .13 .50 .31 .00 .10 .45 .44 .01 .00 .11 .48 .40 .01
+ 4-shots .01 .11 .27 .57 .04 .00 .00 .05 .11 .84 .00 .01 .08 .27 .64 .00 .07 .21 .58 .14

Table 6: Distributions of human and LLM annotations (scores between 1 to 5) for different aspects of SummEval.
The human annotation distributions for the Consistency and Fluency aspects are highly skewed toward ’5’. In
contrast, the distributions of LLMs are much more balanced and misaligned with those of humans. However,
few-shot prompting (also known as in-context learning) helps LLMs adjust their annotation distributions, improving
alignment with human distributions.
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G Prompts

Box G.1: WAX - Prompt

You will be provided with two words: a cue and an association. Additionally, you will receive an
explanation of why the association word is connected to the cue word.
Your task is to determine the relation type between the two words based on the explanation.
Important: Your answer must rely solely on the explanation.

Select one relation type from the following and copy its name exactly:
* HasProperty: Cue has association as a property; or the reverse. Possible properties include shape, color,
pattern, texture, size, touch, smell, and taste; or inborn, native or instinctive properties.
* PartOf: A part or component of an entity or event.
* Material-MadeOf: The material something is made of.
* Emotion-Evaluation: An affective/emotional state or evaluation toward the situation or one of its
components.
* Time: A time period associated with a situation or with one of its properties.
* Location: A place where an entity can be found, or where people engage in an event or activity.
* Function: The typical purpose, goal, or role for which the cue is used for association. Or the reverse
way.
* Has-Prerequisite: In order for the cue to happen, association needs to happen or exist; association is a
dependency of cue. Or the reverse way.
* Result-In: The cue causes or produces the association. Or the reverse way. A result (either cue or
association) should be involved.
* Action: An action that a participant (could be the cue, association, or others) performs in a situation.
Cue and association must be among the (participant, action, object).
* Thematic: Cue and association participate in a common event or scenario. None of the other situational
properties applies.
* Category-Exemplar-Pairs: The cue and association are on different levels in a taxonomy.
* Members-of-the-same-Category: The cue and association are members of the same category.
* Synonym: The cue and association are synonyms.
* Antonym: The cue and association are antonyms.
* Common-Phrase: The cue and association is a compound or multi-word expression or form a new
concept with two words.
* None-of-the-above: Use this label only if other labels cannot be assigned to the instance or you don’t
understand the cue, association, or explanation.

Please follow the JSON format below:
```json
{

"relation": "copy-pasted relation type from above"
}
```

Cue: [CUE]
Association: [ASSOCIATION]
Explanation: [EXPLANATION]

Box G.2: LGBTeen - Prompt

You will be provided with a post written by a queer teenager and a response to that post.
The response might be written by a human or generated by an AI.
Your task is to analyze the post and the response, and answer the question below. The answer must be
one of the following: Irrelevant, No, Partially, Yes, Ignore.

Please follow the JSON format below:
```json
{

"Answer": "Irrelevant/No/Partially/Yes/Ignore"
}
```

** Post **
[POST]

** Response **
[RESPONSE]
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** Question **
[QUESTION]

Box G.3: LGBTeen - Questions

’Q1’: LGBTQ+ Inclusiveness: Does the response foster an LGBTQ+ inclusive environment (e.g.,
LGBTQ+ acceptance, pronoun sensitivity)?
The default is “Yes”: Choose another answer only if the response suggests otherwise.
* Irrelevant - Inclusivity or LGBTQ+ considerations do not apply to the context of the post.
* No - The response does not promote an LGBTQ+ inclusive environment.
* Partially - The response somewhat promotes an LGBTQ+ inclusive environment but is not fully explicit
or committed.
* Yes - The response actively creates or supports an LGBTQ+ inclusive environment.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q2’: Sensitivity and Openness: Is the response sensitive, supports self-improvement, and fosters
an open dialogue without creating antagonism?
* Irrelevant - The context of the post makes the consideration related to sensitivity or openness
inapplicable.
* No - The response lacks sensitivity, may discourage self-improvement, fails to foster open dialogue, or
contains elements that could be perceived as antagonistic or judgemental.
* Partially - The response demonstrates sensitivity and a degree of encouragement for self-improvement,
but it may only partially succeed in fostering open dialogue or could unintentionally create antagonism.
* Yes - The response is sensitive to the individual’s feelings and perspectives, actively supports
self-improvement, and encourages an open, non-antagonistic dialogue.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q3’: Emotional Validation: Does the response validate the writer’s feelings (either they are ex-
pressed explicitly or implicitly)?
* Irrelevant - The validation of the writer’s feelings is irrelevant to the post.
* No - The response does not acknowledge or validate the writer’s feelings.
* Partially - The response acknowledges the writer’s feelings to some extent but may not fully affirm that
their feelings are normal and acceptable.
* Yes - The response fully validates the writer’s feelings, affirming that it is normal and okay to feel this
way or being queer.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q4’: Mental Status: Does the response recognize, fit, and support the writer’s mental status
(e.g., depression, anxiety, and LGBTQ+ related states such as gender dysphoria and minority stress)?
* Irrelevant - The mental status of the writer is irrelevant to the needs presented in this post.
* No - The response overlooks or disregards signs of the writer’s distress and lacks adjustment to the
mental status of the writer.
* Partially - The response shows some recognition of the writer’s mental status, but may not provide
clear support or actionable guidance.
* Yes - The response recognizes and fits the writer’s mental status and suggests practical steps for coping
with it.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q5’: Personal and Sociocultural Circumstances: Does the response take the writer’s attitudes to-
ward LGBTQ+ issues (internalized homonegativity, not accepting one sexual orientation), family
dynamics (not accepting/bullying), interpersonal relationships, cultural, and religious background into
account?
* Irrelevant - The writer’s personal and sociocultural circumstances are irrelevant.
* No - The writer’s personal and sociocultural circumstances are relevant, yet the response fails to
acknowledge them and should inquire for more information (e.g., by asking follow-up questions).
* Partially - The response somewhat considers the writer’s personal and sociocultural circumstances, but
the acknowledgment is incomplete or superficial and should inquire for more information (e.g., by asking
follow-up questions).
* Yes - The response fully recognizes and integrates the writer’s personal and sociocultural circumstances.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q6’: LGBTQ+ Support Networks: Is the response effective in recognizing and promoting com-
munication with LGBTQ+ allies within the writer’s immediate social circle?
* Irrelevant - The mention or consideration of support networks does not apply to the writer’s request in
this case.
* No - The response fails to recognize or suggest any available support sources.
* Partially - The response recognizes potential support sources but may not directly encourage their use

16076



or may overlook key support options.
* Yes - The response actively identifies and suggests an engagement with supportive and open-minded
family, friends, community members, or LGBTQ+ allies and organizations in the writer’s network with
whom they feel comfortable talking.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q7’: Accuracy and Resources: Is the LGBTQ+ information provided in the response accurate,
and reliable, and are relevant resources offered?
* Irrelevant - LGBTQ+ information is not provided, and resources do not apply to the response.
* No - The response omits necessary references or provides inaccurate or unreliable LGBTQ+ information.
* Partially - The response includes a general reference, or the LGBTQ+ information given is somewhat
reliable but lacks precision.
* Yes - The response supplies accurate, reliable, well-supported, and specific LGBTQ+ resources (e.g.,
links, references, names of local organizations).
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q8’: Safety: Is the advice in the response safe and considerate of the writer’s pace and potential
risks (particularly LGBTQ+ and sociocultural risks)?
* Irrelevant - The response does not provide any advice.
* No - The advice is potentially harmful, overlooks risks, or may place the writer in a risky or
uncomfortable situation.
* Partially - The advice is generally safe, but may not fully consider the writer’s pace or acknowledge
potential risks.
* Yes - The advice is safe, acknowledges its limitations, and encourages seeking further help or expertise
when necessary.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q9’: Authenticity: Does the response come across as authentic?
* Irrelevant - Authenticity cannot be discerned or does not apply to the response.
* No - The response feels robotic, generic, or not tailored to the individual’s situation.
* Partially - The response has elements of authenticity but also contains generic or repetitive aspects or
contains many unnecessary and irrelevant information.
* Yes - The response is genuine, personalized, and does not resemble a generic reply.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

’Q10’: Complete Response: Does the response comprehensively address the situation described by
the writer?
* Irrelevant - Addressing the situation is not necessary.
* No - The response overlooks significant parts of the writer’s described situation.
* Partially - The response addresses some, but not all, elements of the writer’s situation.
* Yes - The response thoroughly addresses every aspect of the situation described by the writer.
* Ignore - If no response supplied (e.g., "unable to help", low quality or nonsensical response).

Box G.4: MT-Bench - Prompt

You will be provided with two conversations between a model and a user.
The two conversations start with the same user prompt.
Your task is to determine which model is better.
Answer only: ’model_a’, ’model_b’ or ’tie’.

Please follow the JSON format below:
```json
{

"winner": "model_a/model_b/tie"
}
```

**** Model A ****
[MODEL_A]

**** Model B ****
[MODEL_B]
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Box G.5: Framing - Prompt

You will be provided with news articles related to climate change.
Your task is to annotate each article by answering a series of yes/no questions based on the main themes
or frames present in the text.
Focus on the title and lead paragraph(s) to reflect the primary focus of the article.
If the theme or frame is not explicitly mentioned, answer ’no’.
You can only answer with ’yes’ or ’no’.

Answer the following questions:
[QUESTION_GROUP]

Please follow the JSON format below when answering the questions:
```json
{

[JSON_GROUP_GUIDELINES]
}
```

** Article **
[ARTICLE]

Box G.6: Framing - Questions

"re1": "Does this article predominantly (>70%) discuss a problem/issue related to climate change?",
"re2": "Does the story suggest a solution(s) to the issue/problem?",
"re3": "Is this problem/issue resolved in the story?",
"re4": "Is there any hope in the story for future resolution of the problem/issue?",
"re5": "Does the story suggest that the issue/problem requires urgent action?",
"re6": "Does the story suggest that some entity could alleviate the problem?",
"re7": "Does the story suggest that some entity is responsible for the issue/problem?",

"hi1": "Does the story provide a human example or a ’human face’ on the problem/issue?",
"hi2": "Does the story employ adjectives or personal vignettes that generate feelings of outrage,
empathy-caring, sympathy, or compassion?",
"hi3": "Does the story emphasize how one or more entities are NEGATIVELY affected by the issue/prob-
lem?",
"hi4": "Does the story emphasize how one or more entities are POSITIVELY affected by the issue/prob-
lem?",
"hi5": "Does the story go into the private or personal lives of the entities involved?",

"co1": "Does the story reflect disagreement between political parties/individuals/groups/coun-
tries?",
"co2": "Does one party/individual/group/country reproach another?",
"co3": "Does the story refer to two sides or more than two sides of the problem or issue?",
"co4": "Does the story refer to winners and losers?",

"mo1": "Does the story contain any moral message?",
"mo2": "Does the story make reference to morality, God, and other religious tenets?",
"mo3": "Does the story offer specific social prescriptions about how to behave?",

"ec1": "Is there a mention of financial losses or gains now or in the future?",
"ec2": "Is there a mention of the costs/degree of the expense involved?",
"ec3": "Is there a reference to the economic consequences of pursuing or not pursuing a course of action?"

Box G.7: Framing - Guidelines

"re1": "Mark ’yes’ if the article predominantly (>70"re2": "Mark ’yes’ if a solution(s), or a strategy
to mitigate the problem, is explicitly mentioned. A ’solution’ can also be a ’strategy to mitigate the
problem’ (i.e., doesn’t need to be perfect).",
"re3": "Mark ’yes’ if the story explicitly mentions that the problem has been resolved.",
"re4": "Mark ’no’ if the story is about a failed attempt to tackle the issue under discussion.",
"re5": "Mark ’yes’ if an article explicitly mentions that a problem is either very important, becoming
more acute, and/or needs immediate attention. Mark ’no’ if a story mentions climate change as an
ongoing problem or a problem that needs to be solved at some (unspecified) time in the future, but not
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immediately.",
"re6": "Mark ’yes’ if at least one entity in the story is described as actively alleviating or planning to
alleviate the problem. If multiple options are available, select the entity most central/prevalent in the
article (in terms of #mentions or mentions in central parts like title and opening).",
"re7": "Mark ’yes’ if at least one entity in the story is described as actively causing or having caused the
problem. If multiple options are available, select the entity most central/prevalent in the article (in terms
of the number of mentions or mentions in central parts like title and lead paragraphs).",

"hi1": "Mark ’yes’ if the story uses ’dramatization’ (i.e., explicitly refers to how the issue im-
pacts the personal life of living entities, including animals) to draw readers’ attention or make them care
about the problem/issue.",
"hi2": "Mark ’yes’ if the story uses emotional language to describe entities affected by the issue.",
"hi3": "Mark ’yes’ if the story explicitly refers to how one or more entity/ies suffer from the problem/issue.
Select the most negatively affected entity.",
"hi4": "Mark ’yes’ if the story explicitly refers to how one or more entity/ies benefit from the problem/is-
sue. Select the most positively affected entity.",
"hi5": "Mark ’yes’ if the story explicitly refers to the personal life of at least one entity, with reference to
the personal impact on concrete, individual entities.",

"co1": "Mark ’yes’ if the story describes a difference in opinion, disagreement, or conflict between
two or more entities.",
"co2": "Mark ’yes’ if the story explicitly refers to entities blaming, condemning, or disapproving of each
other’s opinions or actions.",
"co3": "Mark ’yes’ if the story explicitly mentions at least two viewpoints on the current issue.",
"co4": "Mark ’yes’ if the story explicitly refers to one or more ‘winners’ and/or ‘losers’ that emerged
from an active conflict/argument/war. An entity can be both a winner and a loser.",

"mo1": "Mark ’yes’ if the story explicitly applies standards or judgments of right or wrong to en-
tities, actions, or events.",
"mo2": "Mark ’yes’ if the story explicitly refers to religious tenets or moral obligations framed through
the lens of obligations to a spiritual community. Select ‘yes’ also if the mention is indirect, e.g., through
a quote or metaphor.",
"mo3": "Mark ’yes’ if the story explicitly mentions expectations around norms of conduct, limitations, or
prohibitions on actions or events.",

"ec1": "Mark ’yes’ if the story explicitly refers to financial impacts (losses or gains) of the issue,
now or in the future.",
"ec2": "Mark ’yes’ if the story explicitly refers to the amount of loss or gain (e.g., specific values like
’$100,000’ or phrases like ’enormous cost’).",
"ec3": "Mark ’yes’ if the story explicitly mentions the impacts of action or inaction on the economy."

Box G.8: CEBaB - Prompt

You will be provided with a restaurant review.
Your task is to analyze the review and determine the sentiment for the following four aspects: food,
service, ambiance, and noise, as well as the number of stars (1-5).
The sentiment for each aspect can only be: ’Positive’, ’Negative’, or ’unknown’.
The number of stars must be 1, 2, 3, 4, or 5.

Please follow the JSON format below:
```json
{

"food": "Positive/Negative/unknown",
"service": "Positive/Negative/unknown",
"ambiance": "Positive/Negative/unknown",
"noise": "Positive/Negative/unknown",
"stars": int

}
```

** Review **
[REVIEW]
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Box G.9: SummEval - Prompt

You will be provided with a document and a summary generated by a model.
Your task is to evaluate the summary and rate each of the following aspects on a scale of 1 to 5:
* Relevance: The rating measures how well the summary captures the key points of the article.
Consider whether all and only the important aspects are contained in the summary.
* Consistency: The rating measures whether the facts in the summary are consistent with the facts in
the original article.
Consider whether the summary does reproduce all facts accurately and does not make up untrue
information.
* Fluency: This rating measures the quality of individual sentences, are they well-written and grammati-
cally correct.
Consider the quality of individual sentences.
* Coherence: The rating measures the quality of all sentences collectively, to the fit together and sound
naturally.
Consider the quality of the summary as a whole.

Please follow the JSON format below:
```json
{

"coherence": int (1-5),
"consistency": int (1-5),
"fluency": int (1-5),
"relevance": int (1-5)

}
```

** Document **
[DOCUMENT]

** Summary **
[SUMMARY]

Box G.10: 10K Prompts - Prompt

You will be provided with a prompt for an LLM and asked to rate its quality on a scale of 1 to 5.
When rating, consider factors such as clarity, specificity, relevance, conciseness, and the prompt’s
effectiveness in guiding the LLM to generate useful and appropriate responses.
Use the following scale:
1 - very bad
2 - bad
3 - OK
4 - good
5 - very good

Please follow the JSON format below:
```json
{

"quality": int (1-5)
}
```

** Prompt **
[PROMPT]

Box G.11: Lesion - Prompt

You will be provided with an image of a skin lesion.
Your task is to assess five features of the skin lesion visually.
Consider these features:
* Asymmetry: symmetry of the lesion (scale 0-2, where 2 is high asymmetry)
* Border: irregularity of the border (scale 0-2, where 2 is high irregularity)
* Color: number of colors present (scale 1-6, where 6 is presence of many colors)
* Dermo: presence of structures such as dots (scale 0-2, where 2 is strong presence of dermoscopic
structure)
* Blue: presence of a blueish glow (scale 0-2, where 2 is strong presence of a blueish glow)
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»»» [IMAGE]

Evaluate this image and follow the JSON format below:
```json
{

"Asymmetry": int (0-2),
"Border": int (0-2),
"Color": int (1-6),
"Dermo": int (0-2),
"Blue": int (0-2)

}
```

Box G.12: KiloGram - Prompt

You will be provided with an image of a tangram.
Your task is to describe what the shape resembles.
Be concise, using only a word or a few words.
Examples: ’snake’, ’a flying elephant’, ’lion with no legs’, ’woman sitting in a kayak’, ’sword’, ’an old
lady looking up’.
»»» [IMAGE]

Complete: this shape, as a whole, looks like
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