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Abstract

Vision-Language Models (VLMs) have demon-
strated great potential in real-world applica-
tions. While existing research primarily fo-
cuses on improving their accuracy, the effi-
ciency remains underexplored. Given the real-
time demands of many applications and the
high inference overhead of VLMs, efficiency
robustness is a critical issue. However, previ-
ous studies evaluate efficiency robustness un-
der unrealistic assumptions, requiring access
to the model architecture and parameters—an
impractical scenario in ML-as-a-service set-
tings, where VLMs are deployed via infer-
ence APIs. To address this gap, we propose
VLMInferSlow, a novel approach for evaluat-
ing VLM efficiency robustness in a realistic
black-box setting. VLMInferSlow incorporates
fine-grained efficiency modeling tailored to
VLM inference and leverages zero-order op-
timization to search for adversarial examples.
Experimental results show that VLMInferSlow
generates adversarial images with impercepti-
ble perturbations, increasing the computational
cost by up to 128.47%. We hope this research
raises the community’s awareness about the
efficiency robustness of VLMs. !

1 Introduction

Large vision-language models (VLMs) have re-
cently achieved impressive performance across a
wide range of multi-modal tasks, including image
captioning, visual question answering, and visual
reasoning (Li et al., 2022; Alayrac et al., 2022).
The success of these models is driven by their un-
derlying billions of parameters, which require sub-
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Figure 1: Our VLMInferSlow attack adds perturbations
to input images, causing VLMs to generate longer se-
quences, resulting in reduced inference efficiency.

stantial computational resources for effective de-
ployment (de Vries, 2023).

When deploying VLMs in real-world applica-
tions, inference efficiency is a critical concern.
For example, applications like Microsoft’s See-
ing Al (Microsoft) and Be My Eyes (BeMyEyes)
depend on VLMs to deliver real-time object de-
scriptions for individuals with visual impairments.
If these models fail to provide instant feedback,
users may face safety risks in critical situations.
In addition to meeting real-time performance re-
quirements, energy efficiency is also a critical fac-
tor. Both NVIDIA and Amazon Web Services re-
port that the inference phase during deployment
accounts for over 90% of the total machine learn-
ing energy consumption, highlighting the signifi-
cance of inference efficiency of these VLM appli-
cations (Patterson et al., 2021).

While prior work mainly focuses on optimizing
the accuracy of VLMs, their robustness in terms of
efficiency remains largely unexplored. Adversarial
attacks are a widely used approach to evaluate the
robustness of machine learning models. Although
some adversarial attacks have targeted VLM infer-
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ence efficiency, they all operate under an unrealistic
assumption—namely, the white-box assumption.
In real-world scenarios, however, VLMs are pre-
dominantly deployed as API services, making it
unlikely for an attacker to have access to model pa-
rameters or architectures. Thus, existing methods
may fail to accurately reflect the real-world threat
of these models. To bridge this gap, in this paper,
we seek to answer the following question:

Can we make unnoticeable adversarial in-
puts to significantly increase the computa-
tional consumption of VLMs with only the
VLM inference API?

To address the aforementioned question, we in-
troduce VLMInferSlow. Unlike existing works,
evaluating the efficiency and robustness of VLMs
using only their inference API presents several
unique challenges. Firstly, without access to the
model architecture and parameters, gradient-based
approaches are unavailable. To overcome this prob-
lem, we propose a novel zero-order optimization
method, which relies solely on objective function
values rather than gradients. While the derivative-
free optimization enables black-box evaluation, it
introduces another challenge: zero-order methods
may struggle when the objective function exhibits
sharp changes in the loss surface. To mitigate this
issue, we develop a fine-grained objective model-
ing approach tailored to our adversarial goals, in-
creasing the victim VLM’s computational resource
consumption.

We evaluate VLMInferSlow on four widely
used VLMs across two datasets against four base-
lines. Experimental results demonstrate that
VLMInferSlow significantly increases the compu-
tational cost of VLMs up to 128.47%, outperform-
ing existing methods in the black-box setting sig-
nificantly. Moreover, comparisons with white-
box baselines show that despite operating in a
black-box setting, VLMInferSlow achieves effec-
tiveness comparable to white-box methods, which
require access to the VLMs’ architecture and pa-
rameters. Further experiments on adversarial ex-
amples quality, defense evaluation, robustness to
different sampling strategies, and an ablation study
validate the effectiveness and generalization ability
of VLMInferSlow.

We summarize our contribution as follows:

* Problem Novelty: To the best of our knowl-

edge, we are the first to study the efficiency
robustness of VLMs under a black-box setting.
This scenario better reflects real-world scenar-
ios in which commercial VLLMs are deployed
as API services, providing a more accurate
assessment of potential threats.

* Technical Novelty: We design and implement
VLMInferSlow, which applies zero-order opti-
mization and fine-grained efficiency modeling
with a dynamic importance strategy to assess
the efficiency robustness of VLMs through
adversarial attacks.

* Empirical Evaluation: We conduct a sys-
tematic evaluation of various VLMs, and the
results show that an adversary can gener-
ate imperceptible inputs that significantly in-
crease the computational cost of VLMs up to
128.47%. This highlights the need for future
research on improving and safeguarding the
efficiency robustness of VLMs.

2 Background & Related Work

Vision-Language Models. VLMs (Li et al.,
2022; Alayrac et al., 2022; Wang et al., 2022; Xiao
et al., 2024) are a class of multimodal architec-
tures designed to process image and text data si-
multaneously. Typically, VLMs adopt an encoder-
decoder architecture F(-) = {&(-), D(-)}, where
the input * = {Z,7} consists of an image Z
and a text prompt 7. The encoder transforms Z
and 7 into hidden representations, which are in-
tegrated into a unified representation h and then
fed into the decoder for generation. The decod-
ing process in VLMs is autoregressive, starting
with a special token (e.g., beginning-of-sequence
or BOS token) and generating tokens sequentially.
Formally, the decoder produces the i-th token by
taking the representation h and preceding tokens
as input. It computes the probabilities of the i-
th token over the entire vocabulary V, denoted as
Pr(y;|Z) = D(h;y1,--- ,yi—1), and then samples
y; on )V based on this distribution. The autore-
gressive nature of this process inherently prevents
parallel token generation, as each token depends
on previously generated tokens. Longer sequences
therefore lead to more decoder calls, and reduced
inference efficiency, with both computational cost
and inference time growing in proportion to the
length of the generated sequence.

DNNs Efficiency. High model accuracy typi-
cally entails a large model, leading to substantial
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Figure 2: Comparison of VLMInferSlow and existing
works in terms of attack goals (accuracy vs. efficiency)
and attack types (white-box vs. black-box).

computational costs and low efficiency. Endeavors
have been made towards fastening the inference
process. Existing works include offline pruning re-
dundant neurons (Kurtz et al., 2020; Hoefler et al.,
2021), and adaptively skipping some parts during
inference (Zhou et al., 2020; Meng et al., 2022)
to reduce computational consumption. However,
these methods are not robust against adversarial at-
tacks (Haque et al., 2022, 2023; Zhang et al., 2023;
Chen et al., 2023b), i.e., they cannot effectively re-
duce computational consumption when processing
adversarial inputs.

Adversarial Attacks. Adversarial attacks aim to
fool the model by modifying benign input. Most
works target the accuracy surface, aiming to reduce
the accuracy of victim models. Based on the acces-
sibility of the full model, they can be categorized
into white-box methods (Shayegani et al., 2023;
Qi et al., 2024; Zhang et al., 2024; Chang et al.,
2024) and black-box methods (Guo et al., 2019;
Al-Dujaili and O’Reilly, 2020; Zhao et al., 2023;
Cheng et al., 2024).

Another important but overlooked problem is the
efficiency vulnerability of DNNs. A few studies
have explored the efficiency attack (Feng et al.,
2024; Chen et al., 2023a, 2022a; Haque et al.,
2023). For example, NICGSlowdown (Chen et al.,
2022b) delays the occurrence of EOS token to in-
crease decoder calls in the image captioning task,
while Verbose Images (Gao et al., 2024) designs
specific losses for VLMs to increase computational
consumption. However, these methods are con-
fined to the white-box attack paradigm, while our
work pioneers the investigation of efficiency attack
in a more practical black-box setting. Fig. 2 il-
lustrates the difference between our approach and
existing methods.

3 Preliminary

3.1 Threat Model

Adversarial Goal. Unlike existing adversarial
attacks that primarily aim to compromise a model’s
integrity, our attack specifically targets the avail-
ability of VLMs, with the goal of disrupting their
functionality and accessibility. The aim is to create
imperceptible adversarial images that significantly
increase the computational resource consumption
of target models. This is achieved by forcing VLMs
to generate excessively long sequences. Moreover,
the adversarial images should be indistinguishable
from benign images to human observers while
maintaining realism in real-world contexts.

Such an attack could have severe consequences.
For example, if VLMs are deployed on mobile de-
vices, our attack could drain the device’s battery,
rendering it unusable. Similarly, if VLMs are de-
ployed on servers offering services, the attack could
occupy GPU memory, degrade service quality, and
cause disruptions for legitimate users.
Adversarial Assumption and Capability. Our
approach contrasts with existing works (Gao et al.,
2024) that assume full access to the VLM’s archi-
tecture and parameters, which is unrealistic. In-
stead, we consider a more realistic machine learn-
ing as a service (MLaaS) scenario, where the adver-
sary behaves as a benign user, querying the VLM’s
API with inputs. In this scenario, the deployed
VLM API returns the corresponding textual out-
puts and logits. This scenario is valid and realistic,
as most mainstream commercial VLM providers,
including OpenAl, Google Gemini, and others, de-
ploy their model APIs in this manner.

3.2 Problem Formulation

We consider a victim VLM F(-) with input & =
(Z,T), where Z is input image and 7 is text prompt.
Our work focuses on the image modality of the
VLM'’s input, as some commercial VLMs do not
allow modification of the hidden input prompt 7.
The goal of our attack is to find an optimal image
T’ that satisfies the conditions described in Sec. 3.1.

As stated in Sec. 3.1, the adversarial goal is to
generate human-unnoticeable perturbations to im-
ages to decrease the victim VLMs’ efficiency dur-
ing inference. Specifically, the adversarial objec-
tive concentrates on three factors: (1) Effective-
ness. The generated adversarial image should in-
crease the victim VLM’s computational resource
consumption; (2) Unnoticeability. The adversarial
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Figure 3: Design overview of VLMInferSlow.

image cannot be differentiated by humans from the
benign image; and (3) Realistic. The adversarial
image should be realistic in the real world.

A = argmaxs RCxr(Z + 9)

st ol <en @+ ep P

We formulate our problem as a constrained opti-
mization problem in Eq. 1, where Z is the benign
input, F denotes the victim VLM under attack, e
is the maximum allowable adversarial perturbation,
and RC (-) measures the resource consumption of
JF when processing a given input. Our proposed ap-
proach, VLMInferSlow, aims to identify an optimal
perturbation A that maximizes the computational
resources required to handle Z + §, while ensuring
the perturbation remains imperceptible to humans
(i.e., ||0]| < €) and preserves realism in real-world
scenarios (i.e., (Z + J) € [0, 1]", where n denotes
the dimension of the image input).

4 Approach

4.1 Design Overview

The framework of our method VLMInferSlow is
illustrated in Fig 3. We iteratively modify the in-
put data to generate adversarial images. For each
iteration, firstly, we design objectives to approx-
imate the adversarial goal (Sec. 4.2). Secondly,
without access to model architectures and parame-
ters, we propose a zero-order optimization module
to estimate the gradient (Sec. 4.3). After this, we
update the adversarial image while satisfying the
perturbation constraint (Sec. 4.4).

4.2 Adversarial Objective Approximation

Our attack aims to maximize the resource consump-
tion RCx(-) (Eq. 1). However, there is no exist-
ing objective to represent this metric. As stated
in Sec.2, longer sequences lead to more decoder
calls, and thus reduce VLMs’ efficiency. Motivated

by this, we approximate the RCx(-) by design-
ing three efficiency-oriented adversarial objectives,
elaborated as follows.

Longer Sequence Generation. The most straight-
forward target is to prolong the length of the out-
put sentence to increase the number of decoder
calls. It is notable that even if this objective is non-
differentiable, it suits our derivative-free approach
since no actual gradient is calculated.

Lien(6) = Length(F(Z +6)). )

Slower Termination Occurrence. We extend
the generated sequence by slowing the occurrence
of the termination signal, i.e., the end-of-sequence
(EOS) token. Denote the probability of the i-th to-
ken as Pr(y;| Z 4 0), which is assumed to be acces-
sible. We decrease the corresponding probability
of the EOS token. Moreover, VLMs are not static
during inference (i.e., their output length varies).
Considering this, we introduce a dynamic weight
decay strategy to enable the adversarial search to
focus on output tokens that most impact model effi-
ciency. Specifically, greater weights are attached to
probabilities whose positions are closer to the end
of the sequence. Formally, it is:

N
=Y NP (| T+6), )

i=1
where PrfOS(y; | Z + §) is the probability of the
i-th output token in the sequence being sampled
as an EOS token, NV is the length of the generated
sequence, and w < 1 is the hyper-parameter for
controlling the weight decay speed. We set w = 0.1
in practice.
Variable Output Production. We propose to
encourage VLMs to produce more variable and
less predictable tokens, thereby resulting in more
complex and longer sequences. We achieve this by
aligning the probability distribution Pr(-) of each
token more closely with a discrete uniform distribu-
tion . In this way, the probability of diverse token
candidates being sampled is increased. However,
the vocabulary size is usually huge, making the
objective difficult to optimize. To tackle this, for
each token, we extract the top-k probabilities and
normalize them to form a new probability distri-
bution Pr(-). The objective is then formulated as
the sum of the KL divergence between Pr(-) and U/
across all positions:

»Ceos (6)

N
1
Lyar(0) = NZ kL(Pr(yi | Z+0)[|U). (4)
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In practice, we set k = 100. Tokens at all positions
are assigned equal weights, as they collectively
enhance the variability of the generated sentence.
Final Objective. Our final objective is:

ﬁ(d) = £len(6) + aﬁeos((s) + Bﬁvar((s)y (5)

where « and (3 are hyper-parameters for weighting
different objectives.

4.3 Gradient Estimation

As stated in Eq. 1, we optimize the perturbation §
by maximizing the approximated adversarial ob-
jective £(J) for each input image Z. Since the
gradient-based approach is unavailable in our black-
box setting, we adopt a derivative-free optimization
method to estimate the gradient. Following Natural
Evolution Strategies (Wierstra et al., 2014; Ilyas
et al., 2018), we maximize the expected value of
the objective under a search distribution 7(z|0):

70) = Ex L)) = [ £()m(a18) dz. (©
Then, the gradient of J(J) is computed as:
VsJ(6) = Errz6)[L£(2)Vslogm(z]6)].  (7)

The detailed derivation is provided in Ap-
pendix D. We take the search distribution 7(z|d)
as N'(6,1I), where 7 is search variance. Follow-
ing Salimans et al. (2017), we sample a popula-
tion of z; as follows. Firstly, we sample ¢ gaus-

sian noises /; from N'(0, I), and set pig4; = —f1;,
j € {1,2,--- ,q}. Then, we use z; = 0 + nu;
to obtain z;, i € {1,2,---,2q}. In this way, the

gradient V.J(9) is estimated as:
2q

~ 1
VsJ(6) = I § wil(6 +npi).  (8)
=1

This estimation is theoretically guaranteed:

Theorem 1 (Ilyas et al., 2018). Denote V as the
estimation of gradient and V as the true gradient.
As search variance n — 0, we have:

P{U-OIVIZ<IVI?< (1 +QIVI*} = 1-2p,

where 0 < ¢ < 1 and ¢ = O(—(2log(p)).

4.4 Adversarial Example Update

After obtaining the estimation of gradient V.J(5),
we update the perturbation via gradient ascent
while adhering to the constraint. The perturba-
tion is updated as § = & + v x VsJ() , optimiz-
ing toward maximizing the approximated objective
(Eq. 5). Then, we clip the updated perturbation to
adhere to the unnoticeability constraint ||J] < e
(Eq. 1). Formally, it is:

) if 9] < €
5
€ X g else.

Clip(6, €) = { )
This constraint limits the Lo norm of perturbation
added to the image Z to a maximum of €. After
resizing the perturbation ¢ to ensure it satisfies the
imperceptibility constraints, we also apply a clip-
ping operation to the perturbed image to ensure it
meets the realistic constraint, consistent with exist-
ing work (Madry, 2017). The complete procedure
of our VLMInferSlow attack is summarized in the
Algorithm 1 in Appendix B.

5 [Evaluation

5.1 Evaluation Setup

Datasets and Models. We evaluate our ap-
proach on the image captioning task using two
public datasets containing images from diverse
scenes: MS-COCO (Lin et al., 2014) and Ima-
geNet (Deng et al., 2009). As for the victim mod-
els, we choose four different vision-language mod-
els, which are FLAMINGO (Alayrac et al., 2022),
BLIpP (Li et al., 2022), GIT (Wang et al., 2022) and
FLORENCE (Xiao et al., 2024). We use their de-
fault text prompt for our task. More details of these
models are provided in Appendix C.

Comparison Baselines. To the best of our knowl-
edge, we are the first to evaluate the efficiency and
robustness of VLMs in the black-box setting, with
no existing off-the-shelf black-box baselines. To
address this, we compare VLMInferSlow against
(1) two state-of-the-art white-box approaches,
NICGSlowdown (Chen et al., 2022b) and Verbose
Images (Gao et al., 2024); and (2) two widely-
used natural image corruptions, including Gaus-
sian noise (Xu et al., 2017; Hendrycks and Diet-
terich, 2019) and JPEG compression (Liu et al.,
2019), as our comparison baselines.

Black-box Evaluation Setting. For black-box
methods (Gaussian, JPEG, and VLMInferSlow),
adversarial images are directly optimized and eval-
uated on the target model itself. For white-box
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MS-COCO ImageNet-1k

Models Methods I-length I-latency I-energy I-length I-latency I-energy
Gaussian -4.15 -0.16 6.92 427 112 6.96
JPEG 7.92 0.13 5.03 3.95 526 6.28
. NICGSlowdown-B  -3.54 0.19 0.22 114 012 174
Flamingo Verbose-B 293 5.56 0.13 20.63 5.26 -1.70
VLMInferSlow 12847 10556  115.19  103.44 78.42 70.32
Gaussian 18.92 18.19 26.43 20.50 20.42 24.50
JPEG 28.86 27.27 39.34 35.87 42.43 37.54
NICGSlowdown-B  -9.40 9.09 -3.54 6.09 11.24 4.29
BLIP Verbose-B -6.98 424 -0.84 9.02 15.28 7.06
VLMInferSlow 71.95 54.98 65.41 74.38 66.89 55.58
Gaussian -18.33 521 -16.68 42.56 38.46 15.54
JPEG 21.47 30.09 17.25 14.53 13.85 5.67
GIT NICGSlowdown-B ~ 4.27 6.67 5.89 11.64 16.15 17.79
Verbose-B 8.23 9.31 11.22 1821 8.48 9.21
VLMInferSlow 75.93 66.67 78.59 93.86 115.38 84.82
Gaussian 1.75 3.03 0.61 -0.40 -3.57 -1.92
JPEG 0.02 3.03 127 -0.83 -5.36 20.28
NICGSlowdown-B  -2.56 -6.59 454 2.07 -1.79 0.40
Florence Verbose-B -3.01 -6.06 -7.88 -3.08 178 251
VLMInferSlow 51.96 42.42 51.50 47.39 42.86 65.83

Table 1: Results of the relative increase in sequence length (I-length, %), in response latency (I-latency, %), and in
energy consumption (I-energy, %). NICGSlowdown-B and Verbose-B refer to that we evaluate these two white-box

methods in the black-box setting. Best results are in bold.

methods (NICGSlowdown and Verbose), they do
not support the black-box setting. Therefore, fol-
lowing the existing transferability setting, adversar-
ial images are generated using accessible surrogate
models (excluding the target model) and then trans-
ferred to the target VLM for evaluation.
Evaluation Metrics. Following Chen et al.
(2022b) and Gao et al. (2024), we use three metrics:
the relative increase in sequence length (I-length),
in response latency (I-latency), and in energy con-
sumption (I-energy), to represent the inference effi-
ciency of VLMs. Their formal definitions are:

_ length(Z + 0) — length(Z)

I-length = 100
cne length(Z) x 100%
Llatency — latency(Z + §) — latency(Z) « 100%
y= latency(Z) ’
Ieneray — energy(Z + 9) — energy(Z) < 100%
energy(Z) ’

where 7 is the original image and ¢ is the added
perturbation. length(-), latency(-), energy(-) are
functions to calculate the sequence length, response
latency, and energy consumption respectively.
Implementation Details. For each model, we
update the perturbation for 7' = 500 iterations
with step size v = 5. We set a = 0.5 and § = 0.1
in the objective function (Eq. 5). More details are
provided in Appendix C.

Models Methods I-length I-latency I-energy
NICGSlowdown  47.62 44.44 49.08
Flamingo Verbose 122.39 105.32 97.89
VLMInferSlow  128.47 105.56 115.19
NICGSlowdown  53.83 44.55 53.21
BLIP Verbose 125.10 90.21 96.43
VLMInferSlow 71.95 54.98 65.41
NICGSlowdown  44.46 59.62 43.10
GIT Verbose 100.31 106.93 95.21
VLMInferSlow 75.93 66.67 78.59
NICGSlowdown  43.05 36.97 45.47
Florence Verbose 20.31 18.18 31.09
VLMInferSlow 51.96 42.42 51.50

Table 2: Comparison with two white-box baselines
on MS-COCO. Best results are in bold. Results for
ImageNet-1k are in Appendix E.

5.2 Main Results

Results in Black-box Setting. To evaluate the
effectiveness and severity of our VLMInferSlow
attack in the black-box setting, we measure the
I-length, I-latency, and I-energy against the four
VLMs during inference. The results are present
in Tab. 1. It demonstrates that compared to base-
line methods, our VLMInferSlow significantly in-
creases three metrics on all four VLMs. Specifi-
cally, VLMInferSlow achieves an average increase
in I-length of 82.08% and 76.98% on MS-COCO
and ImageNet-1k, respectively. The baseline meth-
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ods are ineffective in consistently performing well
in the black-box setting, and some even cause
a reduction in the metrics. This suggests that
VLMInferSlow is effective while simple natural
image corruptions and white-box methods are not
reliably applicable in practical black-box scenarios.
We present the distribution of the length of
generated sequences on original images and our
VLMInferSlow generated adversarial images in
Fig. 4. It shows that the sequences generated on
our adversarial images tend to be longer than those
on original images. Notably, our VLMInferSlow
works on diverse VLMs and settings. For example,
FLAMINGO typically generates concise sequences,
while FLORENCE already produces long sequences.
The VLMInferSlow generated images can yield
four different VLMs to generate longer sequences,
demonstrating its effectiveness in reducing the in-
ference efficiency of diverse VLMs.
Comparison with White-box Baselines. We
also compare VLMInferSlow with two white-box
methods under the white-box setting, where full
access to the model is assumed. As shown in Tab. 2,
VLMInferSlow, even in the black-box setting,
achieves performance comparable to NICGSlow-
down and Verbose Images in the white-box setting.

5.3 Quality of Generated Images

We measure the Lo distance and the image feature
dissimilarity (detailed in Appendix C) between the
original images and adversarial images generated
by different methods. We use the image encoder
of CLIP (Radford et al., 2021) to extract the fea-
tures of images. The results, as shown in Tab. 3,
indicate that the average Lo distance and image
feature dissimilarity for adversarial images gener-
ated by VLMInferSlow are 10.63 and 0.03, respec-
tively. These values are slightly higher than those
of the two white-box methods but much smaller
than those of natural image corruptions. This is
because the optimization of VLMInferSlow is not
as precise as white-box methods, leading to slightly
larger Lo distance and image feature dissimilarity
scores than white-box methods. As for natural im-
age corruptions, they simply modify or add noise
to the original images, leading to obvious discrep-
ancies between the original and generated images.
Examples of benign images and their correspond-
ing adversarial images are shown in Fig. 5, demon-
strating that the perturbations are imperceptible to
human observers. We also present examples of
benign and adversarial images and their generated

sequences in Appendix F.

Distances Methods COCO IN-1Ik  Avg.
Gaussian 39.36  40.51  39.94
JPEG 123.49 107.07 115.28
Lo NICGSlowdown  3.40 3.77 3.59
Verbose 6.39 7.82 7.11
VLMInferSlow 10.12 11.14  10.63
Gaussian 0.20 0.19 0.20
Image JPEG 0.43 0.43 0.43
feature NICGSlowdown  0.01 0.01 0.01
dissimilarity Verbose 0.01 0.02 0.02

VLMInferSlow 0.03 0.03 0.03

Table 3: L, and image feature dissimilarity of original
and adversarial images. Results are for FLAMINGO.

5.4 Ablation Study

We study the effect of the approximated objectives
on decreasing efficiency of VLMs. In Sec. 4.2, we
propose Licn, Leos, and L4, as the optimization
objectives, aiming to generate longer sequences,
delay the generation termination, and enhance the
variability of output. We conduct an ablation study
by adopting one or two of the three objectives. The
results are shown in Tab. 4. It can be observed that
each objective contributes to the reduced efficiency.
More specifically, L;., has the most significant
individual impact (e.g., 63.74% for I-length on MS-
COCO). Employing all three objectives yields the
best performance, validating that each objective
contributes to the reduced inference efficiency. We
provide more ablation studies in Appendix E.

Lien Leos Luvar | Ilength I-latency I-energy
v 63.74 43.52 52.62
v 33.02 20.13 26.31
v 26.73 15.81 23.02
v v 93.73 71.69 72.36
v v 76.13 49.48 59.20
v v 35.25 29.85 29.60
v v v 128.47 105.56 115.19

Table 4: Ablation results of three designed objectives.
Results are from FLAMINGO on MS-COCO.

6 Discussion

Efficiency VS. Accuracy. VLMInferSlow is pro-
posed to reduce the inference efficiency of VLMs.
To further investigate whether it affects accuracy,
we measured the BLEU score and text feature dis-
similarity (detailed in Appendix C) of captions gen-
erated on original and adversarial images, using
MS-COCO captions as references. The text fea-
tures are extracted by BERT (Devlin, 2018). Re-
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Figure 5: Examples of original images (upper row) and
adversarial images (lower row).

sults are presented in Tab. 5. It can be observed
that VLMInferSlow reduces the BLEU score by up
to 38.46% while increasing the text feature dissim-
ilarity by up to 14.81%. This demonstrates that
VLMInferSlow not only significantly reduces the
efficiency, but also lowers the accuracy of VLMs.

Metrics Models Ori. Adv. Change (%)
Flamingo 021 0.15 28.57 (1)
BLIP 024 0.19 20.83 (1)
BLEU GIT 0.30  0.20 33.33 ()
Florence 0.13 0.08 38.46 ({)
Flamingo 029 0.31 6.90 (1)
Text BLIP 0.26 0.28 7.69 (1)
 feature GIT 0.28 030 7.14 (1)
dissimilarity  Florence  0.27  0.31 14.81 (1)

Table 5: BLEU score and text feature dissimilarity of the
sequences generated on original and adversarial images.

Balance Between Efficiency and Unnoticeabil-
ity. We study the effect of varying optimization
iterations and Lo perturbation restriction. It can
be observed in Fig. 6 that as iteration increases,
I-length increases. Similarly, a large L2 restriction
results in longer generated sequences. However,
more optimization iterations and a larger pertur-
bation lead to more perceptible perturbed images.
These parameters balance the effectiveness and un-
noticeability factors mentioned in Sec. 3.2.

Effect of Defense Method. To evaluate whether
VLMInferSlow can bypass existing defense mech-
anisms, we employ Quantization (Xu et al., 2017)

Figure 6: Effects of iteration (left) and Lo restriction €
(right). Results are from FLAMINGO on MS-COCO.

as a defense method. As shown in Tab. 6, neither
the efficiency nor the accuracy is significantly im-
pacted by the defense method, demonstrating that
Quantization is ineffective against VLMInferSlow.

Efficiency Accuracy
Defense I-length I-latency I-energy | BLEU dissim.
w/o defense 128.47 105.56 115.19 0.15 0.31
w/ Quantization | 124.36 101.07 110.25 0.15 0.31

Table 6: Efficiency and accuracy metrics for FLAMINGO
on MS-COCO with and without Quantization defense.

. . e
o e > _
| People shovel snow from the sidewalk in front

1 of a building on the corner of astreetin ...
1

I
I
I
I
I
1 A Ji

I atrain traveling down a straight snowy road
I with green trees covered with snow in the ...

a train on snowy road

Figure 7: Examples of original images (left) and adver-
sarial images (right), and their GradCAM visualizations.

Visual Interpretation. In Fig. 7, we employ Grad-
CAM (Selvaraju et al., 2017) to visualize image
regions that contribute to sequence generation for
both original and adversarial images. It demon-
strates that for original images, VLM mainly fo-
cuses on regions containing objects relevant to the
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generated sequence, while for adversarial images,
the attention maps are dispersed across the entire
image. This suggests that the longer sequence gen-
erated for adversarial images may be attributed to
the dispersed attention for visual inputs.

Other discussions, such as robustness to different
sampling strategies, are presented in Appendix E.

7 Conclusion

In this paper, we introduce VLMInferSlow, a novel
black-box attack framework designed to evaluate
the efficiency robustness of VLMs. Extensive ex-
periments demonstrate that VLMInferSlow signifi-
cantly increases the computational cost across four
VLMs during inference while generating impercep-
tible adversarial perturbed images. We hope this
work raises the community’s awareness about the
efficiency robustness of VLMs.

Limitations

We pioneer an efficiency attack approach under the
black-box setting. However, our work has limita-
tions. Firstly, the VLMInferSlow attack requires
more optimization iterations compared with white-
box approaches, which restricts its effectiveness
in scenarios with limited request quotas within a
given timeframe.

Secondly, our work primarily focuses on de-
veloping an efficiency attack approach for VLM,
with limited exploration of defense strategies. We
hope future research will propose more robust al-
gorithms to defend against such efficiency attacks,
particularly in the black-box setting. This would
enhance the trustworthiness and security of VLMs
in real-world applications.

Ethical Considerations

We acknowledge that our proposed efficiency at-
tack could potentially be exploited for malicious
purposes. However, our goal is not to enable such
actions but rather to reveal the efficiency vulnera-
bilities in vision-language models that have been
largely overlooked and to raise awareness within
the research community. By doing so, we aim
to motivate the development of robust defenses
against such attacks. We are committed to ethical
research and firmly oppose any harmful or unethi-
cal use of our findings.
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A Background

A.1 Natural Efficiency Variance

VLMs terminate token generation if the end-of-
sequence (EOS) token is sampled or the maximum
sequence length is reached. However, presetting
an optimal maximum length is challenging due to
the inherent variability in the semantic content of
different images, as illustrated in Fig. 8. As a result,
the common practice is to set a sufficiently large
value for the maximum length to avoid generating
truncated sequences.

Image Caption

-

i | An airplane landed on runway 5

Length

A man, his arm across the woman next to

him, stands in a blandly colored kitchen

area, in front of a black-rimmed window, 43
next to a counter with microwave, plates

with and without food, and wine bottles

Figure 8: Images in MS-COCO with different lengths
of captions.

B Algorithm

We provide the complete procedure of our
VLMInferSlow approach as follows.

Algorithm 1 VLMInferSlow

Input: Benign image Z, victim model F(+), opti-
mization iteration 7', number of sampled Gaussian
noise ¢, search variance 7, update step size -y, max-
imum perturbation e

Output: Adversarial perturbation &

1:6=0 > Initialize perturbation
2: foriter = 1to 7 do

3: g=20 > Initialize gradient g
4 fori =1toqdo > Estimate gradient
5: i = N(O, I)

6: 0 =0+nu; 60— =080 —nu;

7 Gi = 95 [£(0+) — L(0-)]ui >Eq. 5,8
8 9=0+ 3ai

9 end for

> Update perturbation

10: d=0+v7x%xg
) > Clip perturbation

11: d = Clip(6, €
12: end for
13: return 0

C Implementation Details

C.1 Evaluated Datasets and Metrics

Datasets. Following Gao et al. (2024), We evalu-
ate our approach on the image captioning task using
MS-COCO (Lin et al., 2014) and ImageNet (Deng
et al., 2009). From each dataset, we randomly se-
lect 1000 images for evaluation.

Test Hardware. Following Gao et al. (2024) and
Chen et al. (2022b), we use I-length, I-latency, and
I-energy as the evaluated metrics. Latency and
energy depend on the hardware. We clarify that all
metrics are measured on a single NVIDIA GeForce
RTX 3090 GPU.

Definition of Feature Dissimilarity. In Sec. 5.3
and Sec. 6, we use the image feature dissimilar-
ity and text feature dissimilarity as the distance
metrics. Here we clarify the formal definition as
follows. Given two features f; and fo (image fea-
tures extracted by CLIP (Radford et al., 2021) or
text features extracted by BERT (Devlin, 2018)),
their dissimilarity is:

fife
I f1llll f2ll

In our results, we calculate the dissimilarity be-
tween the feature of the original image (or corre-
sponding generated sequence) and the feature of
the adversarial counterpart.

dissimilarity(fi, fo) =1 —

C.2 Target Models

In our work, we employ four VLMs as our target
victim models: FLAMINGO (Alayrac et al., 2022),
BLIP (Li et al., 2022), GIT (Wang et al., 2022),
and FLORENCE (Xiao et al., 2024). The details
of these models are elaborated as follows. All the
models are open-sourced and can be downloaded
from HuggingFace.

Settings for FLAMINGO. Suggested by Alayrac
et al. (2022), we employ the CLIP ViT-large-
patch14 and OPT-125M LM. The image resolution
is 224x224, and a placeholder () is taken as the
prompt text 7.

Settings for BLIP. We use the BLIP with the
basic multimodal mixture of encoder-decoder in
the 224M version. Following Li et al. (2022), for
our image captioning task, the image resolution
is 384x384, and a placeholder ) is taken as the
prompt text 7.

Settings for GIT. We utilize the base-sized ver-
sion of the GIT model which has been fine-tuned
on MS-COCO. The image resolution is 224 x224,
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and the prompt text 7 is a placeholder (), follow-
ing Wang et al. (2022).

Settings for FLORENCE. We choose the base-
sized FLORENCE-2 SD3 (Xiao et al., 2024) as the
victim model. The image resolution is 224 x224,
and we use the default text prompt: <DESCRIP-
TION> Describe this image for the image caption-
ing task.

C.3 Optimization and Setting Details

Optimization Details. We provide more details
of our approach. The maximum perturbation is set
as e = 64. As for the parameters of the sampled
gaussian noise stated in Sec. 4.3, we set ¢ = 5 and
n = 0.1. For the sequence generation process, we
adopt greedy search as the sampling strategy.
Black-box Evaluation Setting Details. We as-
sume that the model architecture and parameters
are inaccessible. In our baselines, we compare
our VLMInferSlow with two white-box methods
(NICGSlowdown and Verbose Images) and two nat-
ural image corruptions (Gaussian and JPEG). We
measure the performance of two white-box meth-
ods as follows. For one model (e.g., FLAMINGO),
we test the performance of the perturbed images
optimized on the three other models (e.g., BLIP,
GIT, and FLORENCE).

Results of White-box Baselines. We also com-
pare VLMInferSlow in the black-box setting with
the results of two baselines NICGSlowdown and
Verbose Images in the white-box settings. We run
for 50 iterations for two white-box methods.

D Derivation of Gradient Estimation

As stated in Sec. 4.3, we maximize the expected
value of the objective £(-) under a search distribu-

tion 7(z|0):
/E m(z|d) d

Then, the gradient V.J(§) can be computed as:

J((S): 7r(z|5
VsJ(6) = V(;/E(z)ﬂ'(z
:/g(zm 7(2]8) dz
= z 7V6 77(2’5)71' z z
= [ £ (el

_ / £(2) V5 log 7(]8)] 7 (2]5) d=
= IE7r(z|5) [ﬁ(Z)V(; IOgﬂ-(Z‘é)]

We obtain z; by z; = 6 + nu;, i € {1,2,---,2q},
where p; is the gaussian noise sampled from
N(0,I). Then, m(z|0) is a normal distribution
N(6,12I). In this way, we have:

U, log m(2]0) = 220 = %

,,72

Thus, the gradient V5.J(9) can be estimated as:

Zuz (8 -+ npss).

E Additional Results

Vs J(8

E.1 Comparison with White-box Methods

Due to page limit, in Sec. 5.2, we only provide the
results for two white-box baselines of MS-COCO
in Tab. 2. Here we provide the results of ImageNet-
1k as in Tab. 7. We can find that even if optimized
in a black-box setting, our VLMInferSlow achieves
comparable performance with white-box methods
which assume total access to the target model. This
aligns with our observation in the main paper.

Models Methods I-length I-latency I-energy
NICGSlowdown  51.35 36.84 43.82
F]dmlngo Verbose 137.92 105.26 101.15
VLMInferSlow 103.44 78.42 70.32
NICGSlowdown  71.61 70.14 81.48
BLIP Verbose 134.35 121.24 105.72
VLMInferSlow 74.38 66.89 55.58
NICGSlowdown 74.05 61.54 78.26
GIT Verbose 119.21 138.46 107.86
VLMInferSlow 93.86 115.38 84.82
NICGSlowdown 37.07 41.21 51.59
Florence Verbose 23.86 23.21 50.92
VLMInferSlow 47.39 42.86 65.83

Table 7: Comparision with two white-box baselines on
ImageNet-1k. Best results are in bold.

E.2 Hyperparameter Sensitivity

Effect of w in L.,s. We adopt the dynamic weight
decay strategy in L.,s, in which w controls the
weight decay speed. We study the parameter sensi-
tivity of w. As shown in Fig. 9, it can be observed
that the optimal performance is achieved when w
is set as 0.1. When w = 1.0 (i.e., the average of
the EOS token probabilities across all positions is
used), performance slightly declines. This validates
the efficacy of our dynamic weight decay strategy.
Effect of k in L. In L,,-, we select the
top-k probabilities in Pr(-) and normalize them
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MS-COCO

ImageNet-1k

Models Methods I-length I-latency I-energy I-length I-latency I-energy
Gaussian 8.76 1.85 0.88 9.12 391 14.77
JPEG -12.87 -1.03 -4.73 12.38 10.82 7.93
LLaVA  NICGSlowdown-B -8.31 -0.96 -3.42 3.32 2.48 -0.73
Verbose-B 1.41 0.11 2.32 2.14 1.67 0.48
VLMInferSlow 78.56 81.29 63.48 8247 70.21 67.64
Gaussian 5.62 1.18 10.89 -10.53 -4.23 -1.33
JPEG 3.21 4.56 1.78 -2.43 -4.69 -1.91
Qwen NICGSlowdown-B -0.23 -0.78 -2.67 -0.55 -0.57 -2.72
Verbose-B 2.59 1.74 2.52 1.91 0.88 3.97
VLMInferSlow 61.32 57.95 49.90 67.94 60.82 52.10
Gaussian -15.13 -2.34 -12.58 -12.17 -18.39 -17.42
JPEG 11.71 8.63 3.44 9.34 2.55 5.32
MiniGPT NICGSlowdown-B 4.56 3.78 0.24 0.31 6.66 1.78
Verbose-B 3.95 1.33 591 1.83 0.43 3.45
VLMInferSlow 47.41 64.98 49.57 56.09 42.77 50.13

Table 8: Results on more VLMs. Best results are in bold.

to form a new probability distribution Pr(-). We
set k = 100 in practice since the large size of the
vocabulary can make the objective difficult to op-
timize. To investigate the impact of k, we vary k
under [10, 100, 1000, 10000] in Fig. 9. It can be
observed that when k& = 100, the optimal result is
yield, and further increasing k provides no addi-
tional performance improvement.

35 30
i —

~_~ ~ A i “ _______ A
X 30 X 20

N N

< g

o0 &0

5 5

225 210

— o

20

0.01 0.1 0.5 1.0 0 10 100 1000
0] k

10000

Figure 9: Effects of w in L5 (left) and &k in L4, (right).
Results are from FLAMINGO on MS-COCO.

E.3 Effect of Different Sampling Strategies

In our main results, we use the greedy search sam-
pling strategy for sequence generation. We fur-
ther investigate the impact of different sampling
strategies, including nucleus sampling, top-k sam-
pling, and beam search. As shown in Tab. 9,
VLMInferSlow consistently generates longer se-
quences across all scenarios, demonstrating its ef-
fectiveness in reducing the efficiency of VLMs un-
der different sequence generation policies.

E.4 Results of More VLMs

We evaluate the effectiveness of VLMInferSlow
on more VLMSs, including LLaVA1.5 (Liu et al.,

Strategies I-length I-latency I-energy
Greedy search 128.47 105.56 115.19
Beam search 123.58 93.83 109.57
Top-k sampling 113.30 85.22 93.98
Nucleus sampling ~ 130.42 111.95 120.74

Table 9: Results of different sampling strategies against
FLAMINGO on MS-COCO.

2023), Qwen2.5-VL (Bai et al.,, 2025), and
MiniGPT4 (Zhu et al., 2023). The experimental
setup is the same as in the main paper. Results are
presented in Tab. 8. It shows that for all VLMs,
VLMInferSlow significantly outperforms baselines
for decreasing efficiency of VLMs in the black-box
evaluation setting, which aligns with the conclusion
in our main paper.

F Visualization

In this section, we present examples of the
original and adversarial images generated by
VLMInferSlow, along with their corresponding
generated sequences against four different VLMs.
The figures and output sequences are presented in
Fig. 10 and Fig. 11. It can be observed that the
perturbations added to adversarial images are im-
perceptible to human observers, and all four VLMs
generate longer sequences on adversarial images
than original images.

16048



VLM: Flamingo
0?2
(=)

@ ared public telephone box. @ the sign at the corner of the streets

[6 tokens] is a good example of the kind of
thing that can happen when you
are in the middle of a city and you
have no other way to get around.
[39 tokens]

VLM: BLIP
9
=)

@ ?6”1[2”@':;3‘9 on a bench @ two men sitting on benches, one
reading a paper, and the other
reading the paper on the other
bench
[21 tokens]

@ @ meal of the day ) A table with a large metal pan
[5 tokens] with food and a glass of water, a
glass of water, a glass, a glass of
water, a spoon, and a glass of
water
[37 tokens]

Figure 10: Visualization of original images (left) and adversarial images (right) generated by VLMInferSlow against
Flamingo, BLIP, and GIT, along with their corresponding output sequences.
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VLM: Florence

y)
=)

D » .
%j Describe this image.

@ A man is holding a white plate
= with a sandwich and fries on it.

He wears a black shirt and glasses.

He has a black beard. His mouth
is open and he is smiling. There is
a man standing behind him. He's
wearing a white and black shirt.
There are people sitting at tables
behind him in the background.
[68 tokens]

é% Describe this image.

Captured from a low-angle
perspective, a man with dark hair
and a goatee is holding a white
plate with a sandwich and a small
bowl of sauce. He is smiling, his
lips are slightly parted, and his
eyes are slightly open. His hair is
neatly combed, and he is wearing
a black t-shirt. The plate is held in
his left hand, and the sandwich is
cut into four slices. The sandwich
is a golden yellow, with a few
pieces of bread on the side. The
bowl of red sauce is in the bottom
left corner of the plate, and there
are golden french fries on the left
side of the frame. The man's face
is slightly turned to the right, and
aman in a white t- shirt and black
shorts is in front of him. The
backdrop is blurred, butit is a
restaurant with a counter and a
clock on the wall.

[182 tokens]

Figure 11: Visualization of an original image (left) and an adversarial image (right) generated by our proposed
VLMInferSlow against Florence, along with its corresponding output sequence.
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