
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15950–15965
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Adaptive and Robust Translation from Natural Language to
Multi-model Query Languages

Gengyuan Shi, Chaokun Wang, Yabin Liu, Jiawei Ren
School of Software, BNRist, Tsinghua University, Beijing 100084, China

shigy19@mails.tsinghua.edu.cn,chaokun@tsinghua.edu.cn,
liu-yb23@mails.tsinghua.edu.cn,rjw0238@gmail.com

Abstract
Multi-model databases and polystore systems
are increasingly studied for managing multi-
model data holistically. As their primary inter-
face, multi-model query languages (MMQLs)
often exhibit complex grammars, highlighting
the need for effective Text-to-MMQL trans-
lation methods. Despite advances in natural
language translation, no effective solutions for
Text-to-MMQL exist. To address this gap, we
formally define the Text-to-MMQL task and
present the first Text-to-MMQL dataset involv-
ing three representative MMQLs. We propose
an adaptive Text-to-MMQL framework that in-
cludes both a schema embedding module for
capturing multi-model schema information and
an MMQL representation strategy to generate
concise intermediate query formats with error
correction in generated queries. Experimen-
tal results show that the proposed framework
achieves over a 9% accuracy improvement over
our adapted baseline methods.

1 Introduction

With the development of diverse data management
technologies, modern applications increasingly rely
on multi-model data or multiple types of databases
simultaneously. On top of this tendency, multi-
model databases (a.k.a. polystores) have been pro-
posed and widely studied according to the “No one
size fits all” principle (Stonebraker and Çetintemel,
2005). These systems provide multi-model query
languages (MMQLs) as unified interfaces to access
and analyze multi-model data, enabling compre-
hensive insights and enhancing decision-making
processes in many modern data management appli-
cations (Ooi et al., 2023; Shi et al., 2024b).

As an essential task in natural language process-
ing studies (Li et al., 2023a), natural language to
query generation becomes especially challenging
in multi-model data management scenarios, due to
the lack of a standardized MMQL and the signifi-
cant grammatical diversity across existing MMQLs

(Zhang et al., 2018). While recent advancements
in Text-to-SQL translation show promise (Li et al.,
2023a,b; Wang et al., 2020; Scholak et al., 2021;
Hui et al., 2022; Fu et al., 2023), these methods are
not directly applicable to MMQLs due to grammat-
ical discrepancies. The Text-to-MMQL task faces
inherent challenges, including the lack of datasets
and the complexity of MMQLs, as illustrated in
Figures 1a and 1b based on the partial data schema
of the UniBench (Zhang et al., 2018; Zhang and Lu,
2021) benchmark for multi-model databases, with
MMQLs including AQL (ara, 2025) and ECQL
(Shi et al., 2024a).
Lack of datasets. To the best of our knowledge, no
publicly available dataset currently exists for the
Text-to-MMQL task, preventing the application of
data-driven learning approaches. While large lan-
guage models (LLMs) have demonstrated strong
performance on Text-to-SQL generation (Liu et al.,
2023; Dong et al., 2023; Ren et al., 2024), their
parametric knowledge constraints lead to perfor-
mance degradation when handling MMQLs out-
side their training corpus. For example, Figure 1b
shows GPT-4 (Achiam et al., 2023) generates a
Cypher query instead of the expected ECQL query
with nested SQL sub-queries.
Complexity of multi-model databases and
MMQLs. The Text-to-MMQL task presents three
fundamental challenges: (1) Schema Heterogene-
ity: While multi-model schema information im-
prove translation accuracy (Li et al., 2023a,b; Ren
et al., 2024), their unified representation remains
problematic (Stonebraker and Çetintemel, 2005).
Current relational schema-focused methods can-
not adequately capture multi-model schema infor-
mation such as graph edges and nested document
structures, as shown in Figure 1a. (2) Language
Heterogeneity: Existing MMQLs’ grammatical di-
versity invalidates SQL-specific techniques based
on sketches (Li et al., 2023a), intermediate rep-
resentation (Gan et al., 2021; Fu et al., 2023),

15950

Order
{
 "person_id": string,
 "order_date": date,
 "total_price": decimal,
 "orderline": {
 "product_id": string,
 "title": string,
 "identification_number": string,
 "price": decimal,
 "brand": string
 }
}

Dcustomer
customer_id text
first_name text
last_name text
gender char(1)

birthday date
create_date date
location text

browser_used text
place integer

R

Person
G

Knows

Product
{
 "identification_number": string,
 "title": string,
 "price": decimal,
 "img_url": string,
 "brand": string
}

D

Graph

Relational

Document

R

D

G

How many movies are there that are directed by "Steven Spielberg" and featuring "Matt Damon"?Question

FOR director IN Director
 FILTER director.name == "Steven Spielberg"
 FOR movie IN 1 INBOUND director DirectedBy
 FILTER IS_SAME_COLLECTION("Movie", movie)
 FOR actor IN 1 INBOUND movie Cast
 FILTER IS_SAME_COLLECTION("Actor", actor)
 FILTER actor.name == "Matt Damon"
 COLLECT m = movie WITH COUNT INTO cnt
 RETURN cnt

MATCH (actor:Actor)-[:Cast]->(movie:Movie),
 (movie)-[:DirectedBy]->(director:Director)
WHERE actor.id = {
 SELECT actor.id FROM actor
 WHERE actor.name = 'Matt Damon'}
AND director.id = {
 SELECT director.id FROM director
 WHERE director.name = 'Steven Spielberg' }
WITH COUNT (*) AS cnt
RETURN cnt

FOR movie IN Movie
 FOR director, directedBy IN 1 INBOUND movie DirectedBy
 FILTER director.name == "Steven Spielberg"
 FOR actor, cast IN 1 OUTBOUND movie Cast
 FILTER actor.name == "Matt Damon"
 RETURN COUNT(movie)

MATCH (movie:Movie)-[:DirectedBy]->(director:Director),
 (actor:Actor)-[:Cast]->(movie)
WHERE director.name = 'Steven Spielberg'
 AND actor.name = 'Matt Damon'
RETURN COUNT(movie) AS movie_count

Gold query Query generated by GPT-4

{
 "schema": {
 "bsonType": ["object"],
 "properties": {
 "Order": {
 "bsonType": ["object"],
 "properties": {
 "person_id": {"bsonType": ["string"]},
 "order_date": {"bsonType": ["date"]},
 "total_price": {"bsonType": ["number"]},
 "orderline": {
 "bsonType": ["array"],
 "items": {
 "bsonType": ["object"],
 "properties": {
 "identification_number": {"bsonType": ["string"]},
 "title": {"bsonType": ["string"]},
 "prime": {"bsonType": ["number"]},
 "img_url": {"bsonType": ["string"]},
 "brand": {"bsonType": ["string"]}
 }}}}}}}
}

Relational Graph

Document

table customer (
 customer_id text,
 first_name text,
 last_name text,
 gender char(1),
 birthday date,
 create_date date,
 location text,
 browser_used text,
 place integer
 primary key (customer_id)
)

nodes = [{
 "labels": ["Person"],
 "identity": -115
}]
relationships = [{
 "labels": ["Follow"],
 "identity": -104,
 "start": -115,
 "end": -115
}]

(a) Partial multi-model schema derived from UniBench.

(b) Gold and GPT-generated MMQL queries based on the proposed dataset.
(c) The multi-model schema representation
corresponding to the partial UniBench schema.

AQL AQL

ECQL ECQL

Wrong edge directions

Misuse of COUNT function

Misplacement of attributes

Figure 1: Illustration of multi-model schema and the Text-to-MMQL translation task.

and rule-based post-processing (Fu et al., 2023).
LLM-based methods also face performance degra-
dation on unfamiliar MMQLs. As shown in Figure
1b, GPT-4 incorrectly uses SQL-like COUNT() in
AQL, where the correct syntax requires “COLLECT
movie WITH COUNT”. (3) Language Ambiguity:
Loose constraints in multi-model databases and
polystores complicate error detection in the gener-
ated queries. As demonstrated in Figure 1b, GPT-4
generates syntactically valid but semantically in-
correct queries that fail to be pruned by existing
rule-based syntax correction strategies.

Against these challenges, this paper formally
defines the Text-to-MMQL task and proposes an
adaptive and robust Text-to-MMQL framework. To
overcome the dataset scarcity problem, we design
a specialized Text-to-MMQL dataset with complex
multi-model data schemas and typical MMQLs.
Our framework incorporates a holistic representa-
tion for multi-model schemas, an adaptive inter-
mediate representation for diverse MMQLs with
error-correction strategies for robust generation.

The main contributions of this paper are summa-
rized as follows.

1) This paper establishes a formal task definition
for Text-to-MMQL (Section 2), which has not
been previously presented in the literature.

2) To the best of our knowledge, this paper devel-
ops the first Text-to-MMQL dataset that incor-
porates three diverse MMQLs (Section 3).

3) This paper proposes MMTrans, an adaptive and
robust Text-to-MMQL framework (Section 4).
MMTrans leverages a multi-model schema em-
bedding module and an MMQL intermediate
representation strategy to handle heterogeneous
schemas and diverse MMQL grammars.

4) Comprehensive experimental results on the pro-
posed dataset show the state-of-the-art perfor-
mance of MMTrans, which improves end-to-
end Text-to-MMQL accuracy by more than 9%
compared with our adapted baseline methods
(Section 5).

2 Preliminaries

In this section, we give definitions related to
MMQLs and the Text-to-MMQL problem. For
a target MMQL P , we denote the corresponding
database as DP , which accepts queries written in
the grammar of P and outputs the execution re-
sults. The multi-model schema information S con-
sists of different schemas from diverse data mod-
els. Therefore, we represent S as a list of pairs:
S = [(σ1, S1), · · · , (σ|S|, S|S|)], where σi is the i-
th scope (name of data model) and Si is the schema
representation within σi. Definition 1 formally de-
fines the Text-to-MMQL problem.
Definition 1 (Text-to-MMQL). Given a natural
language question Q = (q1, · · · , q|Q|) as a se-
quence of tokens, the target MMQL P , and the cor-
responding multi-model data schema S , the goal of
Text-to-MMQL problem is to generate a query yP

15951

Movie Director

DirectedBy
FOR director IN Director
 FILTER director.name == "Steven Spielberg"
 FOR movie IN 1 INBOUND director DirectedBy
 FILTER movie.release_year > 2006
 RETURN movie.title

MovieKeyword

(Nested) FOR movie IN movie
 FILTER POSITION(movie.tags, "iraq-war")
 RETURN movie.title

Figure 2: An example of relationships and nested arrays
in the multi-model schema of IMDB dataset as well as
AQL queries that access these schema items.

that conforms to the grammar of P and captures
the semantic of Q.

Figure 1c illustrates a multi-model schema rep-
resentation S corresponding to the schema shown
in Figure 1a. For instance, the document schema
is represented as (σ3, S3), where σ3 = Document
and S3 is a JSON object that describes the nested
structure of the Order and the Product documents.

3 Text-to-MMQL Dataset

To evaluate the effectiveness of Text-to-MMQL ap-
proaches, we present, to the best of our knowledge,
the first Text-to-MMQL dataset. Specifically, this
dataset is adapted from the IMDB (Yaghmazadeh
et al., 2017) dataset, originally designed for the
Text-to-SQL task. IMDB is suitable for the multi-
model scenario due to its complex multiple-table
join queries, which can be effectively transformed
into multi-model queries in MMQL.

The construction of the Text-to-MMQL dataset
involves two steps: (1) we convert the original
relational schema into a multi-model schema (see
Subsection 3.1), and (2) we prepare MMQL queries
corresponding to the natural language questions
(see Subsection 3.2).

3.1 Schema Conversion

We transform the IMDB dataset’s relational schema
into a multi-model schema, which is essential to
evaluate Text-to-MMQL methods. The target multi-
model schema incorporates graph and document
data models besides the relational data model, as
illustrated in Figure 2.
Graph. To convert the relational schema into the
graph schema, we use vertices and edges to repre-
sent entity tables and edge tables, respectively. We
first create vertex classes and edge classes in the
graph schema, followed by creating graph vertices
and edges that hold identical attributes compared
to the relational tables. For instance, we transform
each row in the movie table into a vertex with label
Movie, and each row in the Director table into a

Table 1: Statistics of the variants of the proposed Text-
to-MMQL dataset.

Statistics IMDB-
AQL

IMDB-
ECQL

IMDB-
SQL++

Single-model Samples 33% 33% 33%
Multi-model Samples 67% 67% 67%
Average Tokens 52.17 75.54 38.18
Average Entities 2.78 3.28 2.66
Average Cross-model Joins
in Multi-model Samples 1.33 2.02 1.03

Aggregates 25.80% 15.32% 4.84%
Sorts 8.87% 8.87% 8.87%
Nested Sub-queries 0.0% 67.7% 68.5%

vertex with label Director. We further transform
each row in the directed_by edge table, which
links movies to directors, into an edge with la-
bel DirectedBy that connects a Movie vertex to
a Director vertex. The conversion procedure is
further illustrated in Appendix A.1.
Document. We transform a part of tables into
nested arrays or documents. We first create docu-
ment collections in the document schema, followed
by creating nested documents corresponding to the
relational edge tables. For instance, each row of
the tags edge table specifies a keyword of a movie.
We transform all keywords associated with a movie
into an array nested in the movie document. The
conversion procedure is further illustrated in Ap-
pendix A.2.

3.2 MMQL Query Preparation
We implement multi-model queries in the IMDB
dataset in three typical MMQLs, namely AQL,
SQL++, and ECQL, whose characteristics are de-
tailed in Section 6. Specifically, the gold SQL
queries in the IMDB dataset are manually rewrit-
ten to conform to the grammar rules of the three
MMQLs. This is based on the grammar diversity
and the optimal expression considerations. First,
different MMQLs have varied syntax structures,
making direct query interpretation technically chal-
lenging. Second, the most appropriate implementa-
tion of a query often differs across MMQLs. Our
manual rewriting ensures that the MMQLs leverage
the structures that fit their corresponding styles.

Our dataset enables a comprehensive evaluation
across unified grammar and composite grammar.
While AQL and SQL++ adhere to unified grammar
rules, ECQL combines grammar rules from vari-
ous single-model query languages. To account for
these differences, we structure them as distinct vari-
ants, denoted as IMDB-AQL, IMDB-SQL++, and

15952

Query Operation
Templates Extractor

TableScan Filter

GroupBy OrderBy

Limit

NodeScan

Expand

Aggregate ...

Forward Compiler

Pre-trained
Language Model

actor
actor.name = 'Ronald Reagan'
actor.id
(actor:Actor)
(actor)-[r:Cast]->(movie:Movie)
actor.id = actor[R].id
COUNT(*) AS cnt
cnt

TableScan
Filter
Project
NodeScan
Expand

CrossJoin
Aggregate
Return

Operator Operands
MIR (Gold)

actor
actor.name = 'Ronald Reagan'
actor.id
(actor:Actor)
(actor)<-[r:Cast]-(movie:Movie)
actor.id = actor[R].id
COUNT(*) AS cnt
cnt

TableScan
Filter
Project
NodeScan
Expand

CrossJoin
Aggregate
Filter

Operator Operands
MIR (Predicted)Error-Tolerant

Backward Compiler

Keyword Correction

Schema Correction

Clause Reorder

Symbol Matching

Training Stage

Preprocessing Stage

Inference Stage

①

②

③

User

Actor[R].name

Movie[G]

Movie[R].id
Movie[G].Cast
Actor[G]
Actor[R]
Actor[R].id

Movie[R]

Selected
Multi-model

Schema

MMQL (Predicted)
MATCH (actor:Actor)-[r:Cast]->(movie:Movie)
WHERE actor.id = {
 SELECT actor.id
 FROM actor
 WHERE actor.name = 'Ronald Reagan'
}
WITH COUNT (*) AS cnt
RETURN cnt

MATCH (actor:Actor)-[r:Cast]->(movie:Movie)
WHERE actor.id = {
 SELECT actor.id
 FROM actor
 WHERE actor.name = 'Ronald Reagan'
}
WITH COUNT (*) AS cnt
RETURN cnt

MMQL (Gold)

Text-to-MMQL Dataset

Universal MMQL
Intermediate Representation

Multi-model Schema G

Scoped Property GNN

How many movies did
"Ronald Reagan" acted in ?

NL Question Q

Schema Item Sequence Concatenation

Token Sequence

Initial Node Embedding

d-dimension

Probability of Occurrence

Path Augmentation

Mo
vi
e[
G]

Mo
vi
e[
R]

Mo
vi
e[
R]
.i
d

Mo
vi
e[
G]
.C
as
t

Ac
to
r[
G]

Ac
to
r[
R]

Ac
to
r[
R]
.i
d

Ac
to
r[
R]
.n
am
e

Di
re
ct
or
[G
]

Wr
it
er
[G
]

..
.

θ

Multi-model
Schema Embedding

Multi-model
Database

Figure 3: An overview of the proposed MMTrans framework. MIR is short for MMQL Intermediate Representation.

IMDB-ECQL respectively. Table 1 summarizes the
statistics of the constructed Text-to-MMQL dataset.
All variants share identical distributions of single-
model (33%) and mutli-model (67%) samples, en-
suring a detailed breakdown analysis over single-
model queries or cross-model queries. Further-
more, all variants include more than one average
cross-model joins, reflecting practical challenges
in multi-model querying.

4 MMTrans Framework

As depicted in Figure 3, the proposed MMTrans
framework addresses the Schema Heterogeneity
problem through a Multi-model Schema Embed-
ding method to effectively capture the multi-model
schema information, and proposes a novel interme-
diate representation strategy for MMQLs.

The workflow of MMTrans consists of three
stages. In the preprocessing stage, we automati-
cally convert the gold MMQL queries into their
intermediate representation as training and testing
samples. In the training stage, we utilize the pre-
pared samples to finetune the Pre-trained Language
Model (PLM) based on sequence-to-sequence ar-
chitecture, while training the multi-model schema
embedding module. MMQL queries in training

samples are represented with the proposed interme-
diate representation format. In the inference stage,
MMTrans predicts the schema items related to the
input natural language question Q and utilizes the
PLM to predict a sequence in the intermediate rep-
resentation format. The generated sequence is fi-
nally compiled to the MMQL format.

4.1 Multi-model Schema Embedding

We propose the multi-model schema embedding
module against the Schema Heterogeneity chal-
lenge that the schema of different data models
may adopt diverse representations. Specifically, we
model the multi-model schema as a Scoped Prop-
erty Graph (SPG) and propose a method based
on Graph Neural Networks (GNNs) to effectively
learn the multi-model schema embedding. We first
give the definition of SPG in Definition 2, followed
by the details of the proposed method.

Definition 2 (Scoped Property Graph). A scoped
property graph is denoted as G = (V,E,Σ), where
V and E are the sets of vertices and edges, respec-
tively, and Σ = {σ1, · · · , σ|S|} represents the set
of scopes. Each vertex v ∈ V is a tuple v = (l, σ),
where l is the label of v, σ ∈ Σ is the scope of v.
Each directed edge e ∈ E is a tuple e = (vs, vt),

15953

where vs, vt ∈ V are the source and target vertices,
respectively.

SPG offers a significant advantage in modeling
complex relationships within multi-model schemas.
For instance, SPG can intuitively represent the
relationships Movie-DirectedBy-Director with
schema vertices, as depicted in Figure 2. In con-
trast, this schema relationship is difficult to cap-
ture with sequential schema representation meth-
ods, since the MMQLs under consideration do not
explicitly declare foreign keys.

We model the multi-model schema items as the
nodes of a global SPG and propose a Scope Prop-
erty Graph Neural Network (SPGNN) framework
that fuses the node features from the embedding
features learned by the PLM. We also incorporate a
path augmentation strategy to encourage the PLM
to predict schema items that form a connected sub-
graph. In the training stage, we first leverage the
PLM to obtain the embeddings of all schema items
in the context of question Q. These embeddings are
used as the initial node embeddings of the SPGNN,
which is trained to predict the probability of occur-
rence of each schema item. In the inference stage,
we select the schema items whose probability of
occurrence is greater than the threshold θs.
Initial node embedding. Given the natural lan-
guage question Q and the SPG G, we construct a
token sequence composed of the tokens in Q and
the labels of the vertices in G. The embedding
Qemb ∈ R(|Q|+|V |)×d is calculated as:

Qe = E
(
Q∥v1.σ∥v1.l∥ · · · ∥v|V |.σ∥v|V |.l

)
, (1)

where E(·) denotes the embedding function for a
token sequence, d denotes the embedding dimen-
sion, and ∥ denotes vector concatenation. Various
pre-trained embedding models can be adopted.
Schema embedding GNN. The GNN model is
trained to perform a binary classification for each
node v, where the two categories indicate occur-
rence and absence respectively. The Negative Log
Likelihood (NLL) loss is adopted to measure the
discrepancy between the predicted and the real oc-
currences of schema items.
Path augmentation. Based on the observation
that the nodes which actually appear in queries are
expected to form a connected subgraph of G, we
propose the path augmentation strategy to encour-
age the GNN model to classify connected nodes as
occurring. Specifically, for one node vi, the prob-
ability of occurrence of every neighbor node vj is

aggregated to vi, as long as either of the following
conditions holds: (1) Belonging condition: vi rep-
resents an entity in its data model and vj represents
an attribute of this entity, and (2) Join condition:
Both vi and vj represent entities and there exists
another neighbor of vi, as denoted by vk, that sat-
isfies vk represents an entity and vk ̸= vj . Given
P = [p+1 , · · · , p+|V |, p

−
1 , · · · , p−|V |] where p+i and

p−i are the probability of occurrence and absence
respectively, the aggregated probability of occur-
rence of vi is calculated as:

Agg(p+i) = p+i +
∑

vj∈Neighbor(vi)∧
(B(vi,vj)∨J(vi,vj))

p+j (2)

p+′
i , p−′

i = Softmax(Agg(p+i), p
−
i), (3)

where B(·) and J(·) represent the belonging con-
dition and the join condition, respectively.

4.2 Adaptive MMQL Intermediate
Representation

To address the Language Heterogeneity challenge,
this paper proposes MIR, an adaptive MMQL
Intermediate Representation strategy. MIR en-
hances Text-to-MMQL performance with a suc-
cinct representation format, automatic query op-
eration template extraction, and robust rule-based
query correction.
Overview. As illustrated in Figure 3, the proposed
MIR consists of three stages. During the prepro-
cessing stage, we automatically extract the query
operation templates corresponding to the target
multi-model database. The forward compiler com-
piles each gold query in the MMQL dataset into its
MIR format. The preprocessed dataset is then uti-
lized to finetune the PLM in the training stage. In
the inference stage, for each query in MIR format
predicted by the PLM, the error-tolerant backward
compiler performs proposed error correction rules
and compiles the query back to its MMQL format.

The core idea of the proposed strategy is to
utilize the serialized logical query plans in PLM
training and inference. Benefiting from this de-
sign, MMTrans transforms MMQL queries into
succinct form and therefore reduces token numbers.
Besides, MIR format provides an opportunity to
perform robust error correction on the generated
queries for various MMQLs, not limited by the
specific grammars.

15954

4.2.1 Forward Compilation
In the preprocessing stage, we compile each gold
MMQL query yP to its MIR format rP and extract
its skeleton sP . Specifically, we first extract the
query operator templates according to the query
parser of DP . Each query operator template t con-
sists of an operator name op and an operand number
n. We then specify the representation of the logical
query plan corresponding to DP as Definition 3.

Definition 3 (Logical Query Plan). A logical query
plan is a binary tree whose nodes are query op-
erators. Each query operator o is a 3-tuple o =
(op, t,m), where op is the operator name, t is the
template corresponding to o, and m is the number
of children of o.

For each logical query plan, we obtain its post-
order traversal sequence as rP , with sP by concate-
nating o.op for each node in rP . The compilation
algorithm is analyzed in detail in Appendix B.1.

4.2.2 Error-Tolerant Backward Compilation
To enhance the robustness of MMTrans, we pro-
pose a rule-based error correction strategy that
reduces the error-predicted tokens by PLM. We
present four categories of the proposed correction
rules, namely Keyword Correction, Schema Correc-
tion, Clause Reorder, and Symbol Matching. Fur-
thermore, we propose an execution-level lossless
algorithm that compiles the MIR query backward
to its MMQL format.
Keyword Correction (KC). KC aims to de-
tect wrong predicted keywords and correct them.
Specifically, for each literal value v in the predicted
MIR query and each keyword w in question Q, if
the word-level similarity between v and w is greater
than the threshold θq, then v is replaced by w.
Schema Correction (SC). SC aims to correct
the predicted clauses that violate the multi-model
schema observed from DP .
Clause Reorder (CR). CR aims to recognize
clauses that are invalid in terms of multi-model
database execution logic. CR rules correct a MIR
by removing or reordering invalid clauses. For ex-
ample, a Return clause in an AQL query is always
expected to be the final clause.
Symbol Matching (SM). SM aims to identify and
correct the clauses with error-predicted operator
names or operands. SM also recognizes the clauses
whose operands do not conform to any operator
template, seeking for the most similar operator tem-
plate and filling the operands with default values.

Backward Compilation (BC) algorithm. Af-
ter performing correction rules on the predicted
MIR query r̂P , we finally compile r̂P backward to
MMQL query ŷP . The BC algorithm reconstructs
a logical query plan from its postorder traversal
sequence. Benefiting from our query operator tem-
plate extraction, we can prove that the proposed
algorithm is plan-level lossless: if the MIR query
is accurate, i.e. r̂P = rP , then the BC algorithm
guarantees to reconstruct ŷP with the same logi-
cal query plan as that of yP . The BC algorithm is
analyzed in detail in Appendix B.2.

5 Experimental Results

5.1 Experimental Setup

Environments. All experiments are conducted on
a Linux server with 10-core Intel Xeon E5 CPU
with 320GB memory and one NVIDIA GeForce
RTX 3090 GPU with 24GB memory. The operating
system is Ubuntu 20.04.5 LTS version.
Datasets. We conduct experiments on the dataset
variants proposed in Section 3. The dataset variants
are named IMDB-AQL, IMDB-SQL++, and IMDB-
ECQL to avoid ambiguity. We adopt k-fold cross-
validation on these datasets.
Multi-model databases and MMQLs. We set
up multi-model database environments to evaluate
MMQL queries. For AQL (ara, 2025) queries, we
adopt ArangoDB v3.10.5-community. For ECQL
(Shi et al., 2024a) queries, we implement a query
processor on top of PostgreSQL (pos, 2025) v13.4
and Neo4j (neo, 2025) v3.5.22 as database engines.
Relational data and graph data are stored in Post-
greSQL and Neo4j, respectively. Besides, doc-
ument data are stored as PostgreSQL’s JSONB
format. Multi-model data are imported to the
multi-model databases in advance. We imple-
ment the corresponding drivers in Python v3.9.20
style. In determining the EX matching of two
MMQL queries, we compare their corresponding
execution results in Python data types. Our sup-
plementary materials can be accessed at https:
//github.com/stone-ts15/text_to_mmql.
Baseline approaches. We mainly consider three
categories of baseline approaches. First, we adapt
Seq2Seq (Dong and Lapata, 2016) to the Text-to-
MMQL task. For PLMs, we select BART (Lewis,
2019) and T5 (Raffel et al., 2020) which both adopt
the transformer architecture. We also compare
LLM-based approaches. For zero-shot methods,
we adopt GPT-4/GPT-4o (Achiam et al., 2023). We

15955

https://github.com/stone-ts15/text_to_mmql
https://github.com/stone-ts15/text_to_mmql

Table 2: Overall Text-to-MMQL translation accuracy on the proposed datasets.

Method
IMDB-AQL IMDB-ECQL IMDB-SQL++

LF (%) EX (%) LF (%) EX (%) LF (%) EX (%)

Seq2Seq
Based

Seq2Seq 0.81 0.81 0.74 0.74 2.35 2.35
Seq2Seq + Attn. 3.15 4.70 3.96 6.31 3.08 3.08

PLM
Based

BART-large 8.52 11.74 1.54 1.54 6.10 6.90
T5-base 69.33 73.29 58.40 64.85 22.82 23.62
T5-large 73.36 75.64 57.52 65.51 22.01 24.36

LLM
Based

GPT-4o (Zero Shot) 10.20 40.80 0.0 19.59 0.0 3.96
GPT-4 (Zero Shot) 5.05 43.07 0.0 20.47 0.0 4.77
PURPLE-GPT4o 56.78 62.29 52.82 62.43 34.63 49.60
PURPLE-GPT4 56.85 59.20 52.02 59.20 34.56 51.21

Proposed MMTrans-base 79.67 85.10 67.86 77.32 69.54 80.48
MMTrans-large 82.83 85.10 67.72 74.83 64.71 74.91

also implement PURPLE (Ren et al., 2024) which
selects queries similar to the input question from
the training dataset as demonstrations. It should be
noted that most of the state-of-the-art approaches
for Text-to-SQL task are excluded from our experi-
ments due to their SQL-specific optimization strate-
gies, which are not directly applicable to MMQLs.
Metrics. We adopt two typical evaluation metrics:
(1) Logical Form (LF) accuracy that compares the
predicted query with its corresponding gold query
exactly at word level, and (2) Execution (EX) ac-
curacy that compares the execution result of the
predicted query with its corresponding gold query.

5.2 Overall Performance Evaluation Results

Table 2 reports overall evaluation results on the
proposed datasets. MMTrans outperforms the com-
pared approaches by more than 10.42% in LF
and 9.46% in EX on IMDB-AQL, and 9.46% in
LF and 12.47% in EX on IMDB-ECQL, show-
ing the effectiveness of MMTrans. Most of the
compared approaches present lower accuracy on
IMDB-ECQL compared to IMDB-AQL, indicat-
ing the complexity of grammar of ECQL. Although
LLM-based methods achieve a slightly higher accu-
racy on single-model query prediction, they show
lower overall performance on both datasets. This
is mainly because LLMs are not trained with ade-
quate materials in terms of the target MMQLs and
only learn limited grammar information. Although
PURPLE introduces a demonstration approach in
prompt construction, it still fails to learn accurate
patterns from these demonstrations.

We also observe that larger models do not re-
sult in an performance improvement. For instance,
on IMDB-ECQL, the LF accuracy of T5-large

Table 3: Ablation studies on multi-model schema em-
bedding and MIR.

Method
AQL ECQL SQL++

LF EX LF EX LF EX

MMTrans 79.67 85.10 67.86 77.32 69.54 80.48

Results for multi-model schema embedding

Full Schema 70.42 75.05 56.78 64.63 54.58 64.78
No Schema 69.54 75.71 56.71 63.83 50.62 57.73

Results for MMQL intermediate representation

-w/o. KC 76.52 81.95 66.25 75.71 66.39 77.32
-w/o. SC 77.32 82.76 64.63 76.52 67.20 78.87
-w/o. CR 77.32 82.76 67.13 76.59 68.74 79.67
-w/o. SM 76.73 81.43 67.86 77.32 66.46 77.40

-w/o. ETBC 70.35 75.05 62.29 74.17 59.27 73.36

-w/o. Skeleton 77.47 80.55 67.79 74.98 70.21 78.80

-w/o. ETBC
/Skeleton 74.31 77.40 61.41 70.21 65.51 76.52

-w/o. MIR 71.75 74.83 59.94 66.98 21.13 25.17

(57.52%) is 0.88% lower than that of T5-base
(58.40%), showing that the difficulties introduced
in Text-to-MMQL problem can hardly be elimi-
nated by larger models. Without loss of generality,
we select T5-base as the PLM in the following
experiments, which mainly aim to investigate the
effectiveness of our proposed components.

5.3 Ablation Studies

Multi-model schema embedding. Table 3 (up-
per) reports the evaluation results for the multi-
model schema embedding. For a fair comparison,
all compared approaches are trained on the MIR for-
mat without skeletons and error-correction strate-
gies. The evaluation results show that the multi-
model schema embedding module brings perfor-
mance improvement by 4.77% LF and 1.69% EX

15956

Table 4: Comparison of schema item prediction accu-
racy.

Method AUC Max
F1-Score

Parameter
Number

Fix
PLM

RE-SC 0.9324 0.6080 18M
SPGNN-GAT 0.9694 0.8060 49K
SPGNN-GCN 0.9809 0.8308 49K

Finetune
PLM

RE-SC 0.9457 0.9465 18M
SPGNN-GAT 0.9935 0.9691 49K
SPGNN-GCN 0.9939 0.9705 49K

1 2 4 8 16
Number of search beams

60

65

70

75

80

Ac
cu

ra
cy

 (%
)

First candidate query
All candidate queries

(a) Varying number of beams
in translation.

0.0 0.2 0.4 0.6 0.8 1.0
0.5

0.6

0.7

0.8

0.9

1.0

F1
-S

co
re

 (%
)

SPGNN-GAT SPGNN-GCN RE-SC

(b) Varying θs in schema item
prediction.

Figure 4: Results on the impact of parameters.

on IMDB-AQL, as well as 4.70% LF and 6.38%
EX on IMDB-ECQL. We also observe that sim-
ply using full schema sequence would not greatly
improve the prediction performance and even de-
crease EX accuracy from 75.71% to 75.05% on
IMDB-AQL. One possible reason is that the full
schema sequence increases the input token length
without providing the schema information that is
closely relevant to the input question.

We also report the schema item prediction accu-
racy in F1-Score and area under curve of receiver
operating characteristic curve (ROC-AUC) metrics
in Table 4. We compare Graph Convolutional Net-
work (GCN) and Graph Attention Network (GAT)
as the GNN implementation inside our proposed
SPGNN. We also implement the schema classi-
fier of RESDSQL for schema item prediction, as
denoted by RE-SC. The results show that GCN
and GAT achieve comparable highest AUC score
and F1-score, outperforming RE-SC under both
fix-PLM and finetune-PLM situations. Further-
more, the model size in terms of parameter number
of SPGNN is significantly (more than two magni-
tudes) smaller than that of RE-SC, enabling effi-
cient training for schema item prediction.
MIR. Table 3 (lower) reports the evaluation results
for MIR. All approaches compared are equipped
with multi-model schema embedding. The results
show that by introducing MIR, MMTrans achieves
more than 7% overall accuracy improvements, in-
dicating that introducing a succinct intermediate

Table 5: Study on the scalability of MIR.

Metric Method AQL ECQL SQL++

Average
Tokens

Raw 52.17 75.54 38.18
MIR 43.46 68.69 25.95

End-to-end
Prediction
Time (ms)

Raw 107.18 101.22 109.43
MIR 102.35 90.47 107.17

- Inference 102.19 90.32 106.87
- ETBC 0.16 0.15 0.30

representation can effectively reduce the impact of
the complexity of MMQL grammar rules.

5.4 Parameter Sensitivity and Scalability

Parameter sensitivity. Figure 4a reports the pre-
diction LF accuracy under various searching beams
of the candidates generated by PLM. The results
show that MMTrans achieves the highest accu-
racy at 4 beams, while increasing the number of
searching beams does not improve accuracy. Con-
sequently, we adopt 4 searching beams in our ma-
jor experiment settings. Figure 4b reports the F1-
scores of schema item prediction under various
threshold θs, showing that SPGNN achieves robust
schema item prediction where the value of θs does
not significantly influence the accuracy. Specifi-
cally, SPGNN-GAT and SPGNN-GCN ensure F1-
scores no less than 0.9648 and 0.9689, respectively.
Scalability. We measure the token lengths and in-
ference time of MIR. As shown in Table 5, queries
written in MIR format are 16.70% shorter than the
raw format in terms of token length, which results
in 4.51% end-to-end inference time speedup on
IMDB-AQL. For IMDB-ECQL, MIR queries are
9.07% shorter, which results in 10.62% end-to-end
inference time speedup. The results show that the
time cost of ETBC is dominated by the PLM infer-
ence time.

6 Related Work

In this section, we briefly review the research ef-
forts on natural language to query language trans-
lation. Besides, we summarize studies on multi-
model schema representations and MMQLs.
Natural Language to Query Language Trans-
lation. Significant developments are made in the
Text-to-SQL task with the studies of deep learn-
ing technologies. Modern PLM-based Text-to-
SQL methods (Wang et al., 2020; Scholak et al.,
2021; Hui et al., 2022; Li et al., 2023a,b) adopt
a sequence-to-sequence architecture. Semantic

15957

rules (Fu et al., 2023) and intermediate represen-
tations (Gan et al., 2021) are studied to improve
prediction accuracy. However, most of the learning-
based Text-to-SQL approaches strongly rely on the
SQL grammar and are not applicable for MMQLs.
LLMs show promise in Text-to-SQL tasks in re-
cent studies ((Li et al., 2024a)), including zero-shot
methods (Dong et al., 2023; Liu et al., 2023) and
few-shot approaches (Pourreza and Rafiei, 2023,
2024; Ren et al., 2024) which search query sam-
ples most related to the input question as demon-
strations. However, LLM-based approaches suf-
fer from a performance degradation in Text-to-
MMQL task due to inadequate data related to tar-
get MMQLs. The adaptation for existing Text-to-
SQL methods to the Text-to-MMQL task relies
on Text-to-MMQL datasets with high quality. Ex-
isting Text-to-SQL datasets, such as Spider (Yu
et al., 2018), BIRD (Li et al., 2024b), and Spi-
der 2.0 (Lei et al., 2024), involve complex SQL
constructs, including geometric functions, branch
statements, and other advanced features. Conse-
quently, it is challenging to interpret these SQL
queries into equivalent MMQL representations.

There are also studies that focus on the transla-
tion from natural language to NoSQL query lan-
guages. SPBERT (Tran et al., 2021) aims to trans-
late questions into SPARQL (Pérez et al., 2009)
queries based on BERT (Devlin et al., 2018). The
Seq2Seq (Dong and Lapata, 2016; Gu et al., 2016)
model is evaluated on a Text-to-Cypher dataset
SpCQL (Guo et al., 2022), showing the challenges
for Text-to-Cypher task with complex grammars.
MMQLs and Multi-model Schema Represen-
tation. Existing multi-model databases and poly-
stores usually design their query languages based
on their own holistic data models. An abstract
data model based on category theory is imple-
mented as a multi-model query language (Čontoš,
2021; Holubova et al., 2021; Uotila et al., 2021).
ArangoDB’s AQL (ara, 2025) is designed based
on the link-document structure for graph and doc-
ument data. As adopted by many databases (ori,
2025; ast, 2025), SQL++ (Ong et al., 2014) query
language is proposed based on the data model
that includes JSON data apart from relational data,
while gSQL++ (Glenn and Carey, 2024) further
extends SQL++ to support graph operations. There
are also approaches that incorporate multiple in-
terfaces from different data models to provide a
holistic MMQL. CloudMdsQL (Kolev et al., 2016)
and ECQL (Shi et al., 2024a) combine sub-queries

written in different single-model query languages.
Polypheny-DB (Vogt et al., 2018, 2020) accepts
single-model query languages corresponding to
its data stores. The query language adopted in
XDB (Gavriilidis et al., 2023a,b) extends SQL
with key-value operations. There are existing stud-
ies on MMQL query generation for benchmark-
ing purpose, including template-based generation
methods (Cheng et al., 2022; Shi et al., 2024b)
and LLM-based generation methods (Zheng et al.,
2024). However, these approaches are not capa-
ble for Text-to-MMQL translation. To the best of
our knowledge, there do not exist approaches for
Text-to-MMQL translation.

7 Conclusion and Future Work

In this paper, we formally define the Text-to-
MMQL task and propose the first Text-to-MMQL
dataset. We propose an adaptive and robust Text-
to-MMQL framework that includes a novel multi-
model schema embedding module as well as an
MMQL intermediate representation that enables
succinct query formats and rule-based error cor-
rection. Experimental results show that MMTrans
improves the Text-to-MMQL performance com-
pared with the adapted baseline methods.

Our future work includes validation of Text-to-
MMQL approaches on larger datasets. For the
purpose of adapting multi-domain Text-to-SQL
datasets such as Spider and Spider 2.0, an extensi-
ble schema conversion is in need to automatically
and reasonably schedule the multi-model schema
according to the original relational schema.

Limitation

Although our experimental evaluation shows the
priority of the proposed framework, there are still
limitations within this paper. As a start, our Text-
to-MMQL dataset is proposed on top of a single-
domain dataset with three MMQLs, while the con-
struction of multi-domain Text-to-MMQL datasets
remains a challenging problem that needs to be fur-
ther considered. Besides, our proposed framework
is only responsible for supervised Text-to-MMQL
translation.

Acknowledgments

This work is supported in part by the National Nat-
ural Science Foundation of China (No. 62372264,
62021002, 92467203). Chaokun Wang is the corre-
sponding author.

15958

References
2025. Arangodb. [Online; accessed May 30, 2025].

2025. Asterixdb. [Online; accessed May 30, 2025].

2025. Neo4j. [Online; accessed May 30, 2025].

2025. Orientdb. [Online; accessed May 30, 2025].

2025. Postgresql. [Online; accessed May 30, 2025].

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Audrey Cheng, Xiao Shi, Aaron Kabcenell, Shilpa
Lawande, Hamza Qadeer, Jason Chan, Harrison Tin,
Ryan Zhao, Peter Bailis, Mahesh Balakrishnan, et al.
2022. Taobench: An end-to-end benchmark for so-
cial network workloads. Proceedings of the VLDB
Endowment, 15(9):1965–1977.

Pavel Čontoš. 2021. Abstract model for multi-model
data. In International Conference on Database Sys-
tems for Advanced Applications, pages 647–651.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
33–43, Berlin, Germany. Association for Computa-
tional Linguistics.

Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao,
Yunjun Gao, Jinshu Lin, Dongfang Lou, et al. 2023.
C3: Zero-shot text-to-sql with chatgpt. arXiv
preprint arXiv:2307.07306.

Han Fu, Chang Liu, Bin Wu, Feifei Li, Jian Tan, and
Jianling Sun. 2023. Catsql: Towards real world natu-
ral language to sql applications. Proceedings of the
VLDB Endowment, 16(6):1534–1547.

Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver,
John R Woodward, John Drake, and Qiaofu Zhang.
2021. Natural sql: Making sql easier to infer from
natural language specifications. In Findings of the
Association for Computational Linguistics: EMNLP
2021, pages 2030–2042.

Haralampos Gavriilidis, Kaustubh Beedkar, Jorge-
Arnulfo Quiané-Ruiz, and Volker Markl. 2023a.
In-situ cross-database query processing. In 39th
IEEE International Conference on Data Engineer-
ing, ICDE 2023, Anaheim, CA, USA, April 3-7, 2023,
pages 2794–2807. IEEE.

Haralampos Gavriilidis, Leonhard Rose, Joel Ziegler,
Kaustubh Beedkar, Jorge-Arnulfo Quiané-Ruiz, and
Volker Markl. 2023b. XDB in action: Decentral-
ized cross-database query processing for black-box
DBMSes. Proc. VLDB Endow., 16(12):4078–4081.

Galvizo Glenn and Michael J. Carey. 2024. Graphix:
“One user’s JSON is another user’s graph”. In 2024
IEEE 40th International Conference on Data Engi-
neering (ICDE). IEEE.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor O.K. Li.
2016. Incorporating copying mechanism in sequence-
to-sequence learning. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1631–
1640, Berlin, Germany. Association for Computa-
tional Linguistics.

Aibo Guo, Xinyi Li, Guanchen Xiao, Zhen Tan, and Xi-
ang Zhao. 2022. Spcql: A semantic parsing dataset
for converting natural language into cypher. In Pro-
ceedings of the 31st ACM International Conference
on Information & Knowledge Management, 2022,
pages 3973–3977. ACM.

Irena Holubova, Pavel Contos, and Martin Svoboda.
2021. Categorical management of multi-model data.
In 25th International Database Engineering & Appli-
cations Symposium, pages 134–140.

Binyuan Hui, Ruiying Geng, Lihan Wang, Bowen Qin,
Yanyang Li, Bowen Li, Jian Sun, and Yongbin Li.
2022. S2sql: Injecting syntax to question-schema
interaction graph encoder for text-to-sql parsers. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 1254–1262.

Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez,
Ricardo Jiménez-Peris, Raquel Pau, and José Pereira.
2016. The CloudMdsQL multistore system. In Pro-
ceedings of the 2016 International Conference on
Management of Data, pages 2113–2116.

Fangyu Lei, Jixuan Chen, Yuxiao Ye, Ruisheng
Cao, Dongchan Shin, Hongjin Su, Zhaoqing Suo,
Hongcheng Gao, Wenjing Hu, Pengcheng Yin, et al.
2024. Spider 2.0: Evaluating language models on
real-world enterprise text-to-sql workflows. arXiv
preprint arXiv:2411.07763.

M Lewis. 2019. Bart: Denoising sequence-to-
sequence pre-training for natural language genera-
tion, translation, and comprehension. arXiv preprint
arXiv:1910.13461.

Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen.
2023a. Resdsql: Decoupling schema linking and
skeleton parsing for text-to-sql. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 13067–13075.

Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xi-
aokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan,
Cuiping Li, and Hong Chen. 2024a. Codes: Towards
building open-source language models for text-to-sql.
Proc. ACM Manag. Data, 2(3):127.

15959

https://www.arangodb.com
https://asterixdb.apache.org
https://neo4j.com
http://orientdb.org
https://www.postgresql.org/
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1004
https://doi.org/10.18653/v1/P16-1154
https://doi.org/10.18653/v1/P16-1154

Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin,
Chenhao Ma, Nan Huo, Fei Huang, Wenyu Du, Luo
Si, and Yongbin Li. 2023b. Graphix-t5: Mixing
pre-trained transformers with graph-aware layers for
text-to-sql parsing. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pages
13076–13084.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua
Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying
Geng, Nan Huo, et al. 2024b. Can llm already serve
as a database interface? a big bench for large-scale
database grounded text-to-sqls. Advances in Neural
Information Processing Systems, 36.

Aiwei Liu, Xuming Hu, Lijie Wen, and Philip S
Yu. 2023. A comprehensive evaluation of chat-
gpt’s zero-shot text-to-sql capability. arXiv preprint
arXiv:2303.13547.

Kian Win Ong, Yannis Papakonstantinou, and Romain
Vernoux. 2014. The SQL++ unifying semi-structured
query language, and an expressiveness benchmark of
SQL-on-Hadoop, NoSQL and NewSQL databases.
CoRR, abs/1405.3631.

Beng Chin Ooi, Gang Chen, Mike Zheng Shou, Kian-
Lee Tan, Anthony Tung, Xiaokui Xiao, James
Wei Luen Yip, Bingxue Zhang, and Meihui Zhang.
2023. The metaverse data deluge: What can we do
about it? In 2023 IEEE 39th International Confer-
ence on Data Engineering (ICDE), pages 3675–3687.
IEEE.

Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez.
2009. Semantics and complexity of sparql. ACM
Transactions on Database Systems (TODS), 34(3):1–
45.

Mohammadreza Pourreza and Davood Rafiei. 2023.
Din-sql: Decomposed in-context learning of
text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Dts-sql: Decomposed text-to-sql with small large
language models. arXiv preprint arXiv:2402.01117.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Tonghui Ren, Yuankai Fan, Zhenying He, Ren Huang,
Jiaqi Dai, Can Huang, Yinan Jing, Kai Zhang, Yifan
Yang, and X. Sean Wang. 2024. PURPLE: making
a large language model a better SQL writer. In 40th
IEEE International Conference on Data Engineering,
ICDE 2024, Utrecht, The Netherlands, May 13-16,
2024, pages 15–28. IEEE.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for
constrained auto-regressive decoding from language

models. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
pages 9895–9901.

Gengyuan Shi, Chaokun Wang, and Yabin Liu. 2024a.
Ecql: Towards succinct and extensible modeling of
multi-model query results. In International Con-
ference on Conceptual Modeling, pages 112–130.
Springer.

Gengyuan Shi, Chaokun Wang, Minghao Zhang, and
Binbin Wang. 2024b. Font: a flexible polystore evalu-
ation platform. In 2024 IEEE 40th International Con-
ference on Data Engineering (ICDE), pages 5489–
5492. IEEE.

Michael Stonebraker and Ugur Çetintemel. 2005. "one
size fits all": An idea whose time has come and gone
(abstract). In Proceedings of the 21st International
Conference on Data Engineering, ICDE 2005, 5-8
April 2005, Tokyo, Japan, pages 2–11.

Hieu Tran, Long Phan, James T. Anibal, Binh T.
Nguyen, and Truong-Son Nguyen. 2021. SPBERT:
an efficient pre-training BERT on SPARQL queries
for question answering over knowledge graphs. In
Neural Information Processing - 28th International
Conference, ICONIP 2021, Proceedings, Part I, vol-
ume 13108 of Lecture Notes in Computer Science,
pages 512–523. Springer.

Valter Uotila, Jiaheng Lu, Dieter Gawlick, Zhen Hua
Liu, Souripriya Das, and Gregory Pogossiants. 2021.
Multi-model query processing meets category theory
and functional programming. In SEA-Data@ VLDB,
pages 48–49.

Marco Vogt, Nils Hansen, Jan Schönholz, David Leng-
weiler, Isabel Geissmann, Sebastian Philipp, Alexan-
der Stiemer, and Heiko Schuldt. 2020. Polypheny-
DB: Towards bridging the gap between polystores
and HTAP systems. In Heterogeneous Data Man-
agement, Polystores, and Analytics for Healthcare
- VLDB Workshops, Poly 2020 and DMAH 2020,
August 31 - September 4, 2020, volume 12633 of
Lecture Notes in Computer Science, pages 25–36.
Springer.

Marco Vogt, Alexander Stiemer, and Heiko Schuldt.
2018. Polypheny-DB: Towards a distributed and
self-adaptive polystore. In 2018 IEEE International
Conference on Big Data (Big Data), pages 3364–
3373. IEEE.

Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr
Polozov, and Matthew Richardson. 2020. Rat-sql:
Relation-aware schema encoding and linking for text-
to-sql parsers. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 7567–7578.

Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and
Thomas Dillig. 2017. Sqlizer: query synthesis
from natural language. Proc. ACM Program. Lang.,
1(OOPSLA):63:1–63:26.

15960

https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1
https://doi.org/10.1109/ICDE.2005.1

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li,
Qingning Yao, Shanelle Roman, Zilin Zhang, and
Dragomir R. Radev. 2018. Spider: A large-scale
human-labeled dataset for complex and cross-domain
semantic parsing and text-to-sql task. In Proceedings
of the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, Brussels, Belgium, 2018,
pages 3911–3921. Association for Computational
Linguistics.

Chao Zhang and Jiaheng Lu. 2021. Holistic evaluation
in multi-model databases benchmarking. Distributed
and Parallel Databases, 39(1):1–33.

Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen.
2018. UniBench: A benchmark for multi-model
database management systems. In Technology Con-
ference on Performance Evaluation and Benchmark-
ing, pages 7–23. Springer.

Xiuwen Zheng, Arun Kumar, and Amarnath Gupta.
2024. Generating cross-model analytics workloads
using llms. In Proceedings of the 33rd ACM Inter-
national Conference on Information and Knowledge
Management, pages 4303–4307.

A Schema Conversion

We transform the relational schema of the original
IMDB dataset into a comprehensive multi-model
schema. The target multi-model schema incorpo-
rates graph and document data models besides the
relational data model.

A.1 Conversion to Graph Schema
The conversion from an entity table to graph ver-
tices takes the following steps. We take the con-
version from the movie table to the Movie vertex
class as an example. First, we create a vertex class
corresponding to the entity table (e.g., creating the
Movie vertex class corresponding to the movie ta-
ble). Second, for each tuple in the entity table,
we create a vertex whose identification key corre-
sponds to the primary key attribute value of this
tuple (e.g. creating vertex Movie {_id: 1} cor-
responding to the tuple in the movie table where
msid = 1). Third, for other columns in the tuple,
we copy their attribute values to the created vertex.

The conversion from an edge table to graph
edges takes the following steps. We take the conver-
sion from the cast table to the Cast edge class as
an example. First, create an edge class correspond-
ing to the edge table (e.g. creating the Cast edge
class corresponding to the cast table). Second, for
each tuple in the edge table, find the source vertex
and the target vertex whose identification keys are
equal to the foreign keys in this tuple, respectively

Algorithm 1: Forward Compilation
Input: Target multi-model database P , query yP , and delimiter.
Output: Intermediate representation rP and skeleton sP .

1 plan← P.parse(q) ;
2 C ← PostorderTraversal(plan) ;
3 rP ← empty list ;
4 sP ← empty list ;
5 for c in C do
6 t← template corresponding to the operator c.op ;
7 sP ← sP + [c.op, “_", delimiter] ;
8 rP ← rP + [c.op] ;
9 for i = 1 to t.n do

10 rP ← rP + [c.operands[i]] ;
11 end
12 rP ← rP + [k] ;
13 end
14 return rP , sP ;

(e.g. finding source vertex Actor {_id: 4} and
target vertex Movie {_id: 2}). Third, create an
edge, which belongs to the edge class correspond-
ing to this edge table, from the source vertex to
the target vertex (e.g. creating edge r: (Actor
{_id: 4})-[r:Cast]->(Movie {_id: 2})). Fi-
nally, for other columns in the tuple, copy their
attribute values to the created edge.

A.2 Conversion to Document Schema
The conversion from an entity table and an edge
table to arrays nested in documents takes the fol-
lowing steps. We take the conversion from the
keyword table and the tags table to arrays nested
in the Movie documents as an example. First, for
each document in the document class, we add an
attribute whose key equals the edge table name and
value is an empty array (e.g. setting movie.tags
= []). Second, for each tuple in the edge table,
we find the document whose identification key is
equal to the foreign key in this tuple (e.g. find-
ing movie where movie.id = 1). Third, we find
the tuple in the entity table whose primary key is
equal to the foreign key in this edge tuple, convert
this entity tuple into a document, and append this
document in the array created in the first step (e.g.
appending Keyword {keyword: "iraq-war"} to
movie.tags).

B Algorithms Analysis

This section discusses the proposed forward com-
pilation algorithm and backward compilation algo-
rithm in detail, along with their time complexity
analysis.

B.1 Forward Compilation
As shown in Algorithm 1, the forward compilation
procedure first invokes the parser corresponding
to MMQL P to obtain the logical query plan as a

15961

TableScan
(actor)

Filter
(actor.name = 'Ronald Reagan)

Project
(actor.id)

NodeScan
(actor:Actor)

Expand
(actor)-[r:Cast]->(movie:Movie)

CrossJoin
(actor.id = actor[R].id)

Aggregate
COUNT(*) AS cnt

Return
cnt

Graph
Operator

Relational
Operator Visited

(a) Logical query plan.

TableScan
(actor)

Filter
(actor.name = 'Ronald Reagan)

Project
(actor.id)

NodeScan
(actor:Actor)

Expand
(actor)-[r:Cast]->(movie:Movie)

CrossJoin
(actor.id = actor[R].id)

Aggregate
COUNT(*) AS cnt

Return
cnt

1

2

3

4

5

6

7

8

ID Operator
Operand
Number

0

0

1

1

1

1

1

2

(b) MIR query.

TableScan
(actor)

Filter
(actor.name = 'Ronald Reagan)

Project
(actor.id)

NodeScan
(actor:Actor)

Expand
(actor)-[r:Cast]->(movie:Movie)

CrossJoin
(actor.id = actor[R].id)

Aggregate
COUNT(*) AS cnt

Return
cnt

1

2

3

4

5

6

7

8

0

2

0

ID Operator Operand
Number

TableScan
(actor)

Filter
(actor.name = 'Ronald Reagan)

Project
(actor.id)

NodeScan
(actor:Actor)

Expand
(actor)-[r:Cast]->(movie:Movie)

CrossJoin
(actor.id = actor[R].id)

Aggregate
COUNT(*) AS cnt

Return
cnt

1

2

3

4

5

6

7

8 0

ID Operator Operand
Number

(c) Backward compilation.

Figure 5: An example of MMQL intermediate representation of the query specified in Figure 3.

binary tree denoted as plan (Line 1). The operator
sequence C is then calculated as the post-order
traversal of plan (Line 2). rP and sP are initialized
as empty lists (Lines 3-4). For each operator c ∈ C,
its corresponding template t is identified through
c.op (Lines 5-6). The skeleton sequence of c is
[c.op, “_”, delimiter] (Line 7). The representation
of c consists of the operator name c.op, operands
of number t.m, and the delimiter (Lines 8-12). It
is noteworthy that any symbol that does not bring
syntactic ambiguity can be used as the delimiter.
In this paper, we select the semicolon symbol (;),
since it is not included in the original grammar
rules of the MMQLs in our datasets.

Figure 5a shows the logical query plan corre-
sponding to the gold MMQL query in Figure 3. It
is noteworthy that although a query operator o may
have various templates, its children number o.m
is uniquely determined by o.op. An example of
compiled MIR is shown in Figure 5b, involving 8
different query operators. The extracted skeleton
is “TableScan _ ; Filter _ ; Project _
; NodeScan _ ; Expand _ ; CrossJoin _ ;
Aggregate _ ; Return _ ;”. Compared with the
raw MMQL query that involves a complex nested
sub-query, the MIR query adopts a sequential struc-
ture with a list of clauses.
Complexity analysis. The time complexity of the
forward compilation is O(N max (m)), where N
is the number of operators and max (m) is the
largest number of operands.

B.2 Error-Tolerant Backward Compilation

The error-tolerant backward compilation procedure
consists of error correction and backward compila-
tion. First, correction rules are applied to correct
potential errors in the MIR query r̂P predicted by

the PLM. Second, the updated MIR query r̂P is
compiled to the predicted MMQL query ŷP .

The backward compilation algorithm guarantees
that if the generated MIR query r̂P is equal to the
gold MIR query rP , then the algorithm reconstructs
ŷP with the same logical query plan as that of yP .
Since the proposed MIR is a post-order traversal
sequence of the original logical query plan, our
goal is to prove that any non-empty binary tree T
can be uniquely determined by its post-order traver-
sal sequence, denoted by PT , given the number of
children for each node. In particular, a node PTi

in PT is a leaf node if its corresponding operator
takes no input operands, such as Scan operators.
Considering that the number of children for a node
of T can be 0, 1, or 2, we define two types of
non-empty binary trees in the following proof pro-
cedure:

1) A (0, 1, 2)-tree, where each node has 0, 1, or 2
children nodes.

2) A (0, 2)-tree, where each node has 0 or 2 chil-
dren nodes.

We first present Lemma 1 as follows.

Lemma 1. Given PT as a post-order traversal
sequence of a non-empty (0, 2)-tree T , for any
longest sub-sequence of PT consisting of l con-
secutive leaf nodes starting from PTi, denoted
as [PTi, · · · , PTi+l−1], the nodes PTi+l−2 and
PTi+l−1 must be sibling nodes in T .

Proof. Assume, for contradiction, that PTi+l−2

and PTi+l−1 are not sibling nodes. (1) If PTi+l−1

is the right child of its parent, denoted as PTparent,
then the left child of PTparent must exist (since
T is a (0, 2)-tree) and must be exactly PTi+l−2,

15962

according to the definition of post-order traver-
sal. This outcome contradicts the assumption that
PTi+l−2 and PTi+l−1 are not sibling nodes. (2) If
PTi+l−1 is the left child of its parent node, denoted
as PTparent, then the right child of PTparent must
exist (since T is a (0, 2)-tree) and must be exactly
PTi+l, according to the definition of post-order
traversal. However, this outcome would result in a
longer sub-sequence of consecutive leaf nodes with
length l + 1, which conflicts with the assumption
that the longest sub-sequence of PT contains only
l nodes.

Based on Lemma 1, we present Theorem 1 as
follows.

Theorem 1. A non-empty (0, 2)-tree T can be
uniquely determined by its post-order traversal se-
quence PT given the number of children for each
node of T .

Proof. Consider any longest sub-sequence of
PT with l consecutive leaf nodes, namely
[PTi, · · · , PTi+l−1]. Given PTi+l−2 and PTi+l−1

are sibling nodes according to Lemma 1, the
node PTi+l is uniquely identified as the parent
of PTi+l−2 and PTi+l−1. By removing PTi+l−2

and PTi+l−1 from PT , a new sequence PT ′ of
length N − 2 is obtained. This procedure can be
repeated ⌊N/2⌋ times, progressively determining
all parent-child relationships.

We finally prove Theorem 2, which is equivalent
to our main objective.

Theorem 2. A non-empty (0, 1, 2)-tree T can be
uniquely determined by its post-order traversal se-
quence PT given the number of children for each
node of T .

Proof. Consider the first node with exactly one
child, denoted as PTi. The node PTi−1 is uniquely
identified as the child of PTi. By removing PTi−1

from PT and assigning the number of children
for PTi as PTi−1.m, a new sequence with length
N − 1 is obtained. This procedure can be repeated
at most N − 1 times until all nodes which have one
child are eliminated. The resulting sequence can
further uniquely determine a (0, 2)-tree according
to Theorem 1.

Algorithm 2 shows the error-tolerant backward
compilation procedure. In the error correction
step (Lines 1-10), variable u is assigned to indi-
cate whether the predicted MIR query r̂P is mod-
ified in one round of correction (Line 2). In each

Algorithm 2: Error-Tolerant Backward
Compilation

Input: Target multi-model database DP , generated MIR query r̂P ,
and correction rule set L.

Output: Predicted MMQL query ŷP .
// Error correction

1 while true do
2 u← false ;
3 for rule in L do
4 r̂′P ← ApplyRule(rule, r̂P) ;
5 if r̂′P ̸= r̂P then
6 u← true , r̂P ← r̂′P , break;
7 end
8 end
9 if u = false then break;

10 end
// Backward compilation

11 for o in r̂P do
12 if o.m = 1 then o.children← null;
13 if o.m = 2 then o.children← (null, null);
14 end
15 N ← |r̂P |, Nvisited ← 0 ;
16 visited← array with size N filled with false;
17 for i = 1 to N do
18 o← r̂P [i] ;
19 if o.m = 1 then
20 o.children← r̂P [i− 1] ;
21 visited[i− 1]← true, Nvisited ← Nvisited + 1

;
22 o.m← r̂P [i− 1].m ;
23 end
24 end
25 while Nvisited < N − 1 do
26 s← 0 ; // Number of consecutive leaf nodes
27 for i = 1 to N do
28 if visited[i] = true then continue;
29 o← r̂P [i] ;
30 if o.m = 0 then s← s + 1 ;
31 else
32 tail← recursively find the tail child from o ;
33 tail.children← (r̂P [i− 1], r̂P [i− 2]) ;
34 visited[i− 1]← true,

visited[i− 2]← true,
Nvisited ← Nvisited + 2 ;

35 o.m = 0 ;
36 s← 0 ;
37 end
38 end
39 end
40 ŷP ← DP .synthesize(r̂P [N − 1]) ;
41 return ŷP ;

round, correction rules are repetitively applied to
r̂P (Lines 3-8). The correction procedure ends
when no more modifications of r̂P are detected
(Line 9). In the backward compilation step (Lines
13-41), we first create a children placeholder for
each node o according to its children number (Lines
11-14). We set N as the length of r̂P , Nvisited = 0
as the number of visited nodes, and visited an
array denoting whether a node is visited (Lines
15-16). For each node o = r̂P [i] whose children
number o.m = 1 (Lines 17-19), its child is marked
visited (Lines 20-21). o.m is then assign with the
child number of its child (Line 22). As the construc-
tion of a (0, 2)-tree according to Theorem 1 (Lines
25-39), we first set s = 0 as the number of consec-
utive leaf nodes in current loop (Line 26). We then
enumerate each unvisited node (Lines 27-29), accu-
mulating s by 1 if o is a leaf node (Line 30). When

15963

List "James Bond" directorsQuestion

Predicted
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "Jim Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;

Corrected
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;

Error(s)
Correction(s)

(a) Keyword correction.

List "James Bond" directorsQuestion

Predicted
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie INBOUND DirectedBy ;
Return director.name ;

Corrected
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;

Error(s)
Correction(s)

(b) Schema correction.
List "James Bond" directorsQuestion

Predicted
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;
Return actor ;

Corrected
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;

Error(s)
Correction(s)

(c) Clause reorder.

List "James Bond" directorsQuestion

Predicted
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Filter director.name ;

Corrected
PIR Query

EnumerateCollection movie Movie ;
Filter movie.title == "James Bond" ;
Traversal director 1 movie OUTBOUND DirectedBy ;
Return director.name ;

Error(s)
Correction(s)

(d) Symbol matching.

Figure 6: Illustration of the cases with respect to different error correction rules.

an internal node o = r̂P [i] is detected, its children
are recognized as (r̂P [i−1], r̂P [i−2]) and merged
into the last child node from o (Lines 31-33). These
children nodes are marked visited and o is marked
as a leaf node (Lines 34-35). Besides, s is reset
to zero (Line 36). This procedure is repeated until
all nodes except the last root r̂P [N − 1] node are
visited. Node r̂P [N − 1] is the root of a recon-
structed logical query plan and can be converted to
an MMQL query ŷP by the multi-model database
(Line 40).

Figure 5c illustrates the backward compilation
of the MIR query in Figure 5b. In the first step
(reconstruction from (0, 1, 2)-tree), all children of
the operators whose children number is equal to
1 are visited (operators 1, 2, 4, 6, and 7). In the
second step (reconstruction from (0, 2)-tree), two
consecutive leaf nodes (operators 3 and 5) are rec-
ognized and merged into the children of operator 6.
The output logical query plan preserves the same
structure with the original logical query plan shown
in Figure 5a.

B.2.1 Time Complexity

The time complexity of the error correction step
is O(|L|2W 2H), where |L| denotes the amount of
correction rules, W denotes the largest word length,
and H denotes the largest predicted token length.
The time complexity of the backward compilation
step is O(N2) where N is the number of operators
in the predicted MIR query.

C Supplementary Experiments

C.1 Experimental Settings

Implementation details. MMTrans is imple-
mented based on PyTorch v2.4.1, in Python v3.9.20
environment. We implement both the base version
and the large version of T5 as the PLM of MM-
Trans. In training the PLM, we adopt Adafactor
optimizer with learning rate set to 0.0001. We set
the batch size to 8 and searching beam number to
4. In the training of the multi-model schema em-
bedding module, we set learning rate to 0.0001 and
node embedding dimension to 768.

In the construction of LLM prompts, we incor-
porate necessary grammar information, the multi-
model schema, and the input question as the
prompts in terms of GPT-4/GPT-4o. PURPLE se-
lects relevant SQL queries according to the pre-
dicted schema items, which are not directly appli-
cable to the multi-model schema of the proposed
dataset. For a fair comparison, for each MMQL
query y in the validation dataset, we manually as-
sign the training queries which are determined as
the most relevant to y according to PURPLE’s clas-
sification strategy as the demonstrations.

C.2 Case Study

In this subsection, we discuss several cases to show
the effectiveness of the proposed components in
MMTrans.
MIR. Figure 6 illustrates cases that the proposed
ETBC strategy corrects the wrong predicted MIR
queries.

15964

Find all movies featuring "Kate Winslet"Q

MMTrans

FOR actor IN Actor
 FILTER actor.name == "Kate Winslet"
 FOR movie IN 1 OUTBOUND actor Cast
 FILTER IS_SAME_COLLECTION("Movie", movie)
 RETURN movie.title

GPT-4

FOR actor IN Actor
 FILTER actor.name == "Kate Winslet"
 FOR movie IN 1 INBOUND actor Cast
 FILTER IS_SAME_COLLECTION("Movie", movie)
 RETURN movie.title

PURPLE

FOR actor IN Actor
 FILTER actor.name == "Kate Winslet"
 FOR movie IN 1 OUTBOUND actor CastIn
 FILTER IS_SAME_COLLECTION("Movie", movie)
 RETURN movie.title

Movie

How many movies did "Quentin
Tarantino" direct before 2010?

DirectorDirectedBy

Movie.release_year Director.name

Movie DirectorDirectedBy

Movie.title

Cast

Actor Actor.name

SPGNN (Correct)

RE-SC

Q

(a) Predicted MMQL queries. (b) Predicted schema items.

Figure 7: Case study results.

Keyword Correction. Figure 6a illustrates the
KC case, where the measured similarity between
the predicted string value and the keyword in
the question is calculated as sim(v, w) = 1 −
3/(max(8, 9)) = 0.7 > θq, where θq = 0.5.
Schema Correction. As shown in Figure 6b, the
predicted MIR query contains a Traversal clause
that specifies wrong direction of the edge collec-
tion DirectedBy from Movie vertices to Director
vertices, since the multi-model schema indicates
that only edges with one direction exist. SC rules
modify the edge direction to obtain a semantically
correct Traversal clause. The original predicted
MIR query is also syntactically valid and cannot
be recognized by the execution guidance strategy,
which is widely used in Text-to-SQL tasks.
Clause Reorder. As shown in Figure 6c, the
predicted MIR query, containing two consecutive
Return clauses, would not be compiled to a valid
MMQL query. CR strategy analyzes the operands
of each Return clause and removes the clause
with invalid fields. In this example, the second
Return clause is removed under CR rules, since
its operand actor cannot be recognized among the
former clauses.
Symbol Matching. As shown in Figure 6d, the
last clause of the predicted MIR query is a Filter
clause. However, its operand conforms to the
template of a Return clause rather than a Filter
clause. SM rules correct the predicted operator
name back to Return.
ETBC. Figure 7a illustrates a case where MMTrans
correctly predicts the gold AQL query, while GPT-
4 and PURPLE-GPT4o both predict with errors.
Specifically, GPT-4 predicts the wrong direction of
the edge collection Cast and PURPLE predicts the
wrong name of the edge collection Cast, showing
that LLMs face challenges to precisely learn the
multi-model schema from the input prompt. In con-
trast, MMTrans corrects these errors during ETBC.

Schema item prediction. Figure 7b displays the
schema items predicted by SPGNN and RE-SC.
Benefiting from the path augmentation, SPGNN
predicts schema items as SPG nodes that form a
connected sub-graph. However, RE-SC only con-
siders relationships between tables and columns,
while fails to predict the item Cast, which repre-
sents an edge class in the multi-model schema.

15965

