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Abstract

Reward models (RMs) are crucial for the train-
ing and inference-time scaling up of large lan-
guage models (LLMs). However, existing re-
ward models primarily focus on human prefer-
ences, neglecting verifiable correctness signals
which have shown strong potential in training
LLMs. In this paper, we propose agentic re-
ward modeling, a reward system that combines
reward models with verifiable correctness sig-
nals from different aspects to provide reliable
rewards. We empirically implement a reward
agent, named REWARDAGENT, that combines
human preference rewards with two verifiable
signals: factuality and instruction following,
to provide more reliable rewards. We conduct
comprehensive experiments on existing reward
model benchmarks and inference time best-of-n
searches on real-world downstream tasks. RE-
WARDAGENT significantly outperforms vanilla
reward models, demonstrating its effectiveness.
We further construct training preference pairs
using REWARDAGENT and train an LLM with
the DPO objective, achieving superior perfor-
mance on various NLP benchmarks compared
to conventional reward models. Our codes are
publicly released to facilitate further research1.

1 Introduction

Reward models (RMs) are designed to score the
quality of responses and are typically used in the
post-training of large language models (LLMs),
such as RL (Ouyang et al., 2022) and DPO train-
ing (Rafailov et al., 2024), and in inference-time
scaling laws (Wu et al., 2024; Snell et al., 2024),
such as best-of-n search (Brown et al., 2024). Reli-
able RMs are key to the success of modern LLMs.

Despite the success of reward models, existing
RMs primarily focus on human preferences, which

* Equal contribution.
† Corresponding author: L.Hou
1https://github.com/THU-KEG/

Agentic-Reward-Modeling

Write a bio of Qomolangma within 100 words.

Consider these perspectives：
Helpfulness Coherence Honesty Fluency …

A is better than B

Human Preferences Reward Model

Agentic Reward Modeling

Qomolangma, the tallest 
mountain on Earth at 8,868.86 
meters, stands in the Himalayas 
on the Nepal-Tibet border. It 
attracts climbers … (132 words)

Response A:

Qomolangma is Earth‘s highest 
mountain above sea level. Its 
elevation (snow height) of 
8,848.86 m was most recently 
established in 2020.… (96 words)

Response B:

B is better than A…

Verification Agents
Factuality

Instruction-
Following

Judger
Router

Base Reward

Figure 1: An illustration of agentic reward modeling.

may be susceptible to subjective biases (Saito et al.,
2023; Singhal et al., 2023), while neglecting verifi-
able correctness signals like factuality (Liu et al.,
2024b; Tan et al., 2024). As illustrated in Figure 1,
existing RMs may prefer the response A due to its
language style and longer length (Singhal et al.,
2023), overlooking factual errors and failure to fol-
low instructions. This could affect the reliability
of reward models and further influence the relia-
bility of the trained LLMs (Singhal et al., 2023;
Chen et al., 2024c). Conversely, verifiable correct-
ness rewards exhibit notable potential in specific
scenarios (Guo et al., 2025), providing a valuable
complement to conventional reward models.

Based on the above considerations, we propose
agentic reward modeling, a reward system that com-
bines reward models with verifiable correctness sig-
nals from different aspects to provide more reliable
rewards. For example in Figure 1, a verification
agent that specifically provides correctness signals,
such as rule-based rewards (Mu et al., 2024), can be
used to assess factual accuracy or verify adherence
to instruction constraints. By integrating verifiable
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correctness rewards with human preferences, the re-
ward system selects the superior response B. Agen-
tic reward modeling enhances reliability through
multi-dimensional correctness signals, enables flex-
ible integration of diverse verification agents, and
improves the interpretability of the final reward.

In this paper, we empirically implement a reward
agent, named REWARDAGENT, which integrates
the conventional human preference-based reward
models with correctness signals from two key as-
pects: (1) factuality, which assesses the factual cor-
rectness of the claimed facts in the response, and
(2) instruction-following, which evaluates whether
the response adheres to the hard constraints in the
instruction (Zhou et al., 2023), such as length con-
straints, which significantly impact user experience
in real-world applications (Sun et al., 2024b; Qi
et al., 2024). The architecture of REWARDAGENT

is shown in Figure 1, consisting of three main mod-
ules: (1) Router, which analyzes the instruction
to determine the appropriate verification agents to
invoke. (2) Verification agents, which evaluate the
correctness of response in different aspects, includ-
ing factuality and instruction-following. Specifi-
cally, for factuality, we design a verification agent
that efficiently evaluates factual correctness com-
pared to the previous factuality evaluation frame-
work (Min et al., 2023) through a process including
pairwise comparison, query generation, evidence
generation, and verification, where evidence gen-
eration can utilize either a search engine or the
model’s parametric knowledge. For instruction-
following, we design a verification agent that ex-
tracts hard constraints, generates constraint checker
code, and executes the code for verification, where
the constraint checker is the Python code script to
verify whether a given response satisfies a specific
hard constraint. (3) Judger, which integrates the
correctness signals from the verification agents and
human preference scores from the reward models
to provide an overall reward score. We adopt Ar-
moRM (Wang et al., 2024a) as the reward model for
computing human preference scores in REWARDA-
GENT. We use GPT-4o mini (OpenAI, 2024a) and
Llama3-8B Instruct (Dubey et al., 2024) as the
backbone LLMs for all the modules and implement
REWARDAGENTMINI and REWARDAGENTLLAMA,
respectively, except that in REWARDAGENTLLAMA,
the LLM backbone of the instruction-following
agent is Qwen2.5-Coder 7B (Hui et al., 2024).

We conduct extensive experiments to validate the
effectiveness of REWARDAGENT. First, we con-

duct an evaluation on several reward model bench-
marks, including RM-Bench (Liu et al., 2024b) and
JudgeBench (Tan et al., 2024), as they contain re-
sponse pairs that involve factual correctness, and IF-
Bench, which is newly constructed for instruction-
following and contains 444 instances, each of
which includes an instruction with several hard
constraints, a chosen response that satisfies all con-
straints, and a rejected response that violates some
constraints. REWARDAGENT significantly out-
performs other advanced reward models on these
benchmarks. We further apply reward models in
real-world downstream tasks, including inference-
time best-of-n search and constructing training pref-
erence pairs. We evaluate best-of-n search on fac-
tuality question answering dataset TriviaQA (Joshi
et al., 2017) and instruction-following datasets,
IFEval (Zhou et al., 2023) and CELLO (He et al.,
2024). We adopt Llama3-8B Instruct and GPT-
4o (OpenAI, 2024b) as policy models to generate
32 responses for each instruction with 1.0 sam-
pling temperature. REWARDAGENT significantly
outperforms the base reward model AromRM in
the best-of-n search, suggesting its ability to select
superior responses and unleash inference scaling
laws. Finally, we apply REWARDAGENT to con-
struct training preference pairs and train an LLM
using DPO (Rafailov et al., 2024). Specifically, we
construct training data from two sources: Ultra-
Feedback (Cui et al., 2024) and on-policy data. We
adopt Zephyr-7B (Tunstall et al., 2023) as the pol-
icy model and train it using DPO. The LLM trained
on REWARDAGENT-constructed data consistently
outperforms those trained on AromRM annotations
on several NLP benchmarks, which further demon-
strates the effectiveness of REWARDAGENT. We
encourage the community to explore more verifi-
able correctness signals to develop reliable reward
systems for LLM development and alignment.

2 Preliminaries

In the LLM domain, a reward model is typically a
regression model that takes an instruction and a re-
sponse as input and outputs a reward score (Ouyang
et al., 2022), which can be formulated as rRM(x, y),
where x denotes an instruction and y represents a
response. Reward models are typically trained on a
large set of preference pairs based on the Bradley-
Terry (BT) model (Bradley and Terry, 1952).

However, due to the subjectivity and complex-
ity of human preferences and the capacity limita-
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tions of the BT model (Munos et al., 2023; Swamy
et al., 2024; Sun et al., 2024a), reward models of-
ten exhibit subjective bias, such as favoring longer
and detailed outputs (Saito et al., 2023), while ne-
glecting verifiable correctness signals like factual-
ity (Liu et al., 2024b; Tan et al., 2024). On the
other hand, training LLMs with verifiable correct-
ness signals has shown strong potential (Lambert
et al., 2024a; Guo et al., 2025). Based on these con-
siderations, we propose agentic reward modeling,
a reward system that integrates reward models with
verifiable correctness signals from different aspects
to provide more reliable rewards. Agentic reward
modeling can be formulated as follows:

r(x, y) = λ · rRM(x, y)︸ ︷︷ ︸
base reward

+
∑

i∈Ax

wi · ai(x, y)︸ ︷︷ ︸
correctness signals

(1)
λ denotes the weight of the base reward model. ai
denotes a specific verification agent that provides
verifiable correctness signals, such as rule-based
rewards (Mu et al., 2024). wi denotes the corre-
sponding weight for each verification agent, which
can be set as a hyper-parameter or adaptive to the
instruction. Ax is an index subset of the complete
set of verification agents A and is determined based
on the instruction x. Equation 1 provides the funda-
mental concept of agentic reward modeling, which
can be implemented in various ways to construct a
reward agent and our implementation is in § 3.

3 REWARDAGENT

In this work, we empirically implement a reward
agent, named REWARDAGENT, which integrates
the base human preference reward model with veri-
fiable correctness signals from two key aspects: fac-
tuality, which assesses the correctness of claimed
facts, and instruction-following, which evaluates
whether the response satisfies the hard constraints
specified in the instruction (Zhou et al., 2023). Both
aspects significantly impact reliability and user ex-
perience in real-world applications and are chal-
lenging to evaluate effectively with existing reward
models (Liu et al., 2024b). This section introduces
the overall model architecture (§ 3.1) and the spe-
cific modules (§§ 3.2 to 3.4) of REWARDAGENT.

3.1 Model Architecture

Following the concept in Euqation 1, the overall
architecture of REWARDAGENT is illustrated in
Figure 2, which consists of three main modules:

(1) Router, which analyzes the instruction and de-
termines which agents to invoke, corresponding to
Ax in Equation 1. As different instructions may re-
quire evaluations of different aspects of responses,
dynamically selecting verification agents helps re-
duce inference costs and mitigate potential cumula-
tive errors. (2) Verification agents, which evaluate
different aspects of response correctness. In our im-
plementation, we design two agents for assessing
factuality and instruction-following, both based on
LLMs augmented with additional tools. (3) Judger,
which integrates the scores from the verification
agents and human preferences from the base reward
model to produce a final reward, corresponding to
determining λ and wi in Equation 1. We will pro-
vide detailed descriptions in the following sections.

3.2 Router

Given an instruction, the router analyzes its re-
quirements to the response to select the appropri-
ate verification agents. The router is powered by
an existing LLM backbone. Specifically, we first
manually provide a concise description for each
verification agent, explaining its functionality and
specifying the conditions for its usage. Then, we
input the instruction with all agent descriptions into
the LLM, prompting it to select appropriate veri-
fication agents for correctness assessment. More
implementation details are placed in appendix A.

3.3 Verification Agents

Factuality Previous studies have proposed vari-
ous methods to evaluate the factuality of responses,
such as FactScore (Min et al., 2023), which can
be directly used as a verification agent. However,
these methods typically require extensive search
engine queries to verify the correctness of each
atomic fact, which is costly and inefficient for re-
ward scoring. Intuitively, pairwise scoring based
on only the differences between two responses can
effectively reduce search engine queries and time
costs. Therefore, we propose a pairwise factual-
ity verification agent for efficiently evaluating the
factual correctness of response pairs. The agent is
illustrated in Figure 2, which consists of four main
components: (1) Difference proposal, which identi-
fies key differences in claimed facts between two
given responses. (2) Query generation, which con-
structs queries based on the identified differences
to retrieve evidence for distinguishing these differ-
ences. (3) Evidence generation, which uses the
generated queries to retrieve supporting evidence
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Write a bio of Qomolangma within 100 words.

Qomolangma, the 
tallest mountain on Earth 
at 8,868.86. … (132 
words)

Response A
… Its elevation (snow 
height) of 8,848.86 m was 
most recently established 
in 2020.… (96 words)

Response B

Router
Please select the appropriate verification 
agents based on the instruction.

Factuality Instruction-Following

Factuality
Verification Agents 

Instruction-Following

1 Difference Proposal
8,868.86 vs 8,848.86 

2 Query Generation
How high is Qomolangma?

3 Evidence generation
The height is 8848.86m.

4 Verification
a(A) = 0    a(B) = 1

1 Constraint parsing
within 100 words

2 Code Generation
def check_following
(response):

num = response.
split(" ")
return num <= 100

3 Verification
a(A) = 0    a(B) = 1

Judger
r(x, y) = λ · rRM(x, y) + wfactuality · afactuality + winstruction-following · ainstruction-following

r(instruction, response A) < r(instruction, response B): B is better than A

Figure 2: The framework of REWARDAGENT, including three modules: Router, Verification Agents, and Judger.

using either external search engines or parametric
knowledge in LLMs. (4) Verification, which as-
signs an integer score from 0 to 1 to each response,
using the collected evidence and original responses
as inputs. The verification agent can effectively
capture subtle factuality differences (Jiang et al.,
2023) between responses while significantly reduc-
ing inference-time costs by verifying only their dif-
ferences rather than all claimed facts. All modules
are implemented using an LLM backbone. The
implementation details are placed in appendix A.

Instruction-Following The evaluation of the in-
struction following primarily assesses the adher-
ence to hard constraints (Zhou et al., 2023) spec-
ified in the instruction, such as length constraints.
Typically, instruction-following constraints can be
categorized into soft and hard constraints, where
the former focuses on semantic aspects, such as
language style, while the latter focuses on surface-
form constraints, such as format, which can be
objectively evaluated. For instruction-following,
our verification agent focuses on hard constraints,
which are difficult to evaluate with existing reward
models but can be efficiently verified using exter-
nal tools, such as Python code scripts. The agent is
shown in Figure 2, including three components: (1)
Constraint parsing, which extracts hard constraints
from the instruction. (2) Code generation and re-
finement, which generates Python scripts used to
check the adherence to the extracted constraints.
The generated code takes the response as input and
returns either 0 or 1, where 1 indicates that the con-
straint is satisfied, and 0 otherwise. We also incor-

porate a refinement step like Madaan et al. (2024)
to correct invalid or syntactically incorrect code.
Specifically, we execute the generated Python code
using a Python interpreter, and if an error occurs,
the error information and original code are fed back
into the model to generate a refined code script. (3)
Verification, which executes the generated code in
the Python interpreter to obtain a binary score (0
or 1). The final score is the average of all hard con-
straint scores. All the modules are implemented us-
ing LLMs. More details are placed in appendix A.

3.4 Judger

The judger integrates reward scores from verifi-
cation agents and human preferences from base
reward models. In our implementation, we use a
weighted sum as the judger, where λ and wi are
all set to 1.0, to compute the final reward score in
Equation 1. One can also adopt different λ and wi

for better applicability in different scenarios. Addi-
tionally, the judger can dynamically adjust λ and wi

based on the instruction like gating network (Wang
et al., 2024a), we leave it as future work.

4 Experiments

This section presents experiments on several re-
ward model benchmarks, including experimental
setup (§ 4.1), results (§ 4.2), and analyses (§ 4.3).

4.1 Experimental Setup

REWARDAGENT Implementation We adopt the
advanced and lightweight ArmoRM (Wang et al.,
2024a) as the base reward model to compute human
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Model RM-Bench JudgeBench IFBench Overall
Normal Hard Simple Normal Hard

ArmoRM-Llama3-8B-v0.1 76.7 34.6 51.9 72.3 66.2 59.5 56.5
INF-ORM-Llama3.1-70B 77.5 25.1 59.1 78.7 69.2 53.8 55.7
Skywork-Reward-Llama-3.1-8B-v0.2 78.0 31.8 57.8 78.7 69.2 59.8 58.1
Skywork-Reward-Gemma-2-27B 82.7 35.1 55.8 87.2 68.4 56.1 59.2
internlm2-7b-reward 72.6 19.9 56.2 74.5 61.7 55.7 52.0
internlm2-20b-reward 74.4 26.1 61.7 74.5 68.4 58.7 56.4

GPT-4o 71.4 27.9 64.6 85.1 66.2 54.4 56.3
GPT-4o mini 60.5 15.0 51.9 70.2 59.4 51.9 45.9
o3-mini 76.0 38.6 66.6 81.9 76.3 64.6 62.8
Llama3-8B Instruct 9.3 20.2 2.6 12.8 12.8 13.6 11.3
DeepSeek-R1 83.7 50.1 74.4 72.3 74.4 64.0 69.1
DeepSeek-R1-Distill-Llama-8B 42.1 56.8 47.7 53.2 55.6 54.2 50.3

REWARDAGENTLLAMA 79.3 53.5 52.9 70.2 63.9 67.8 63.2
w/ search engine 76.0 49.9 55.2 74.5 69.2 67.8 62.5

REWARDAGENTMINI 86.0 60.2 68.2 78.7 69.2 78.0 72.5
w/ search engine 84.2 59.7 60.7 68.1 80.5 76.1 70.3

Table 1: Experimental results (%) of all investigated baselines and REWARDAGENT. The overall score is the average
of RM-Bench, JudgeBench, and the micro-averaged score of three subsets of IFBench. By default, REWARDAGENT
relies on its parametric knowledge, and “w/ search engine” denotes using Google API as an external source.

preference scores. As REWARDAGENT is agnostic
to reward models, one can also adopt other ad-
vanced reward models. We use GPT-4o mini (Ope-
nAI, 2024a) as the LLM backbone for imple-
menting all modules and developing REWARDA-
GENTMINI. We also employ the open-source LLM
Llama3-8B Instruct (Dubey et al., 2024) and
Qwen2.5-Coder 7B (Hui et al., 2024) as the back-
bones and develop REWARDAGENTLLAMA. Specifi-
cally, the planner and the instruction-following ver-
ification agent are powered by Qwen2.5-Coder 7B.
We adopt two knowledge sources for the factuality
verification agent: an external search engine using
Google API and the LLM’s parametric parameters.
More details are placed in appendix A.

Evaluation Benchmarks Reward model bench-
marks typically involve an instruction and a re-
sponse pair and require selecting the better re-
sponse as the chosen one. We use RM-Bench (Liu
et al., 2024b), JudgeBench (Tan et al., 2024), and
a new benchmark IFBENCH as evaluation bench-
marks, as both RM-Bench and JudgeBench include
response pairs involving factual correctness. We se-
lect the chat subset of RM-Bench as the evaluation
set, using both the normal and hard settings. For
JudgeBench, we use the knowledge subset as the
evaluation set. We further construct a new bench-
mark IFBENCH to evaluate reward models on se-
lecting responses that better follow constraints in
instructions as there is no existing relevant bench-
mark. Specifically, we first construct instructions

with several implicit constraints, integrating the
constraint information with the primary task objec-
tive through paraphrasing. The constraints include
both hard constraints, such as length, format, and
keywords, as well as soft constraints, such as con-
tent and style. We then use GPT-4o to generate
8 responses for each instruction with a sampling
temperature of 1.0. For each instruction, we cre-
ate a response pair, selecting the one that satisfies
all constraints as the chosen response and other-
wise rejected. Based on the number of unsatis-
fied constraints (UC) in the rejected response, we
split IFBENCH instances into three subsets: simple
(#UC≥3), normal (#UC=2), and hard (#UC=1),
containing 47, 133, and 264 instances respectively.
We report the micro-averaged accuracy as the final
metric for IFBENCH. More evaluation details on
these benchmarks are provided in appendix B.

Baselines We mainly investigate two categories
of baselines: (1) typical reward models, which
are specifically trained for reward modeling and
typically implemented as regression models to
score each response and select the one with the
highest reward score as the chosen response. We
investigate several advanced and representative
reward models, including ArmoRM (Wang et al.,
2024a), INF-ORM-Llama3.1-70B (Infly, 2024),
Skywork-Reward (Liu et al., 2024a), internlm2
reward (Cai et al., 2024). (2) LLMs as generative
reward models, where large language models serve
as generative reward models to score responses or
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perform pairwise comparisons to select the best re-
sponse (Lambert et al., 2024b). We evaluate propri-
etary models, including GPT-4o (OpenAI, 2024b),
GPT-4o mini (OpenAI, 2024a), o3-mini (OpenAI,
2025), and open-source LLMs, including Llama3-
8B Instruct (Dubey et al., 2024), DeepSeek-R1,
and R1 distilled Llama3-8B model (Guo et al.,
2025). We evaluate all the baselines using the code
repository provided by Lambert et al. (2024b).

4.2 Experimental Results

Table 1 presents the experimental results, and we
can observe that: (1) Existing reward models fall
short in selecting more factual responses or better
adhering to hard constraints in instructions, which
may limit their reliability in real-world applications.
(2) REWARDAGENT significantly outperforms the
base reward model AromRM and the correspond-
ing LLM backbone GPT-4o mini and Llama3-8B
Instruct. It demonstrates that designing an appro-
priate reward agentic workflow can effectively en-
hance reward model performance. (3) Even when
using Llama3-8B Instruct as the LLM backbone,
REWARDAGENTLLAMA outperforms reward mod-
els with much more parameters and more advanced
proprietary LLMs such as GPT-4o, which suggests
that REWARDAGENT is more cost-efficient with-
out requiring additional reward modeling training
data or more parameters to achieve advanced per-
formance. (4) Using a search engine as an external
knowledge source for factuality slightly reduces
performance in RM-Bench and JudgeBench. One
possible reason is that the retrieved information
may contain noise or irrelevant information (Chen
et al., 2024a). We leave the detailed analysis and de-
sign of retrieval-augmented agents for future work.
(5) REWARDAGENT achieves significant improve-
ments on IFBench, particularly in the hard subset.
It suggests that while not perfectly solved, exist-
ing LLMs can effectively analyze hard constraints
and generate verification code, which can help the
training of advanced LLMs (Lambert et al., 2024a).
In conclusion, incorporating additional verification
agents for specific scenarios (Mu et al., 2024; Lam-
bert et al., 2024a), particularly those with verifi-
able correctness, can develop more reliable and
advanced reward systems, presenting a promising
direction for future reward model development.

4.3 Analysis

We first conduct an ablation study on the verifica-
tion agents in REWARDAGENT. Specifically, we

Model RM-Bench JudgeBench IFBench

REWARDAGENTMINI 73.1 68.2 75.5
– factuality verifier 54.0 52.9 73.6
– if verifier 74.7 66.2 60.4
– both 55.4 58.8 58.8

Oracle setting 76.7 70.1 77.5

REWARDAGENTLLAMA 66.4 52.9 66.9
– factuality verifier 51.9 51.6 65.8
– if verifier 58.0 57.5 57.2
– both 44.8 55.5 57.2

Oracle setting 79.5 73.1 68.5

Table 2: Experimental results (%) of ablation study and
the oracle setting. – factuality verifier and – if verifier
refer to the reduction of the corresponding verification
agent into a single LLM scorer. The results are the
micro-averaged scores of all the corresponding subsets.

investigate three settings: – factuality verifier, – if
verifier, and – both, where the corresponding verifi-
cation agents are reduced to a single step: using an
additional LLM backbone to directly score the re-
sponse, which is equivalent to the simple ensemble
of the reward model ArmoRM with the correspond-
ing LLM as a generative reward model (Coste et al.,
2024). The ablation results are shown in Table 2.
We can observe that removing the well-designed
verification agent leads to a significant performance
decrease. It demonstrates the importance of well-
designed verification agents, and we encourage the
community to develop more advanced verification
agents for a more reliable REWARDAGENT.

We also observe the oracle setting of REWARDA-
GENT that invokes the most appropriate verifica-
tion agents, that is, invoking the factuality agent on
RM-Bench and JudgeBench, and the instruction-
following verification agent on IFBench. The ex-
perimental results are shown in Table 2, and we
observe that both REWARDAGENTMINI and RE-
WARDAGENTLLAMA perform significantly better in
the oracle setting. This further demonstrates the
effectiveness of the verification agents and suggests
that the planner in REWARDAGENT still has a large
room for improvement and we leave developing a
more advanced planner for future work. This also
suggests that in some specific and well-defined sce-
narios, one can adopt the corresponding verification
agent alone to achieve better results.

5 Applications

This section explores applying REWARDAGENT to
inference-time search (§ 5.1) and the training of
LLMs (§ 5.2) to further validate its effectiveness.
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Figure 3: Best-of-n results (%) on TriviaQA, IFEval, and CELLO using the base reward model ArmoRM and
REWARDAGENT to search. “+Oracle” denotes using the oracle setting of REWARDAGENT as mentioned in § 4.3.

DPO Training Data MMLU MMLU-Pro TriviaQA TruthfulQA IFEval CELLO MT-Bench

– 58.9 28.8 54.8 39.5 43.3 51.5 5.2

Original UF 58.7 29.3 54.0 42.0 56.8 62.0 6.0
ArmoRM-UF 58.1 29.9 52.5 45.0 58.6 60.8 6.0
REWARDAGENTLLAMA-UF 59.1 30.5 55.1 44.1 59.4 60.1 5.8

ArmoRM-OP 58.4 30.4 51.6 44.4 52.7 58.1 6.0
REWARDAGENTLLAMA-OP 59.5 31.3 55.3 48.5 58.2 65.7 6.1

Table 3: Experimental results (%) of LLMs trained with DPO on different training data. “ArmoRM-UF” denotes
using ArmoRM to construct preference pairs from UltraFeedback. “UF” and “OP” are short for UltraFeedback
and on-policy data, respectively. “Original UF” refers to using the original GPT-4 annotated preference pairs from
UltraFeedback to train the LLM. “–” denotes the original LLM zephyr-7b-sft-full without further DPO training.

5.1 Best-of-N Search

One important application of reward models is to
conduct the inference-time search to find a better
response (Brown et al., 2024; Zhang et al., 2024a),
which unleashes the inference-time scaling laws of
LLMs (Snell et al., 2024; Wu et al., 2024). There-
fore, we explore applying REWARDAGENT to the
best-of-n search on downstream tasks. Specifically,
we evaluate the best-of-n performance searched by
REWARDAGENT on factuality question answering
and constrained instruction following tasks.

Experimental Setup We conduct the best-of-
n experiments on the factuality question answer-
ing dataset TriviaQA (Joshi et al., 2017), and
the instruction-following datasets IFEval (Zhou
et al., 2023) and CELLO (He et al., 2024). We
use Llama3-8B Instruct and GPT-4o as the policy
models to generate 32 responses for each instruc-
tion with 1.0 sampling temperature. We perform
best-of-n search using the base reward model Ar-
moRM (Wang et al., 2024a), REWARDAGENTMINI,
and the oracle setting of REWARDAGENTMINI. The
oracle setting refers to invoking the factuality ver-
ification agent on TriviaQA, and the instruction-

following verification agent on IFEval and CELLO.

Experimental Results The results of the best-
of-n experiments using Llama3-8B Instruct as the
policy model are shown in Figure 3. We can ob-
serve that REWARDAGENT significantly improves
the best-of-n performance compared to using the
base reward model ArmoRM, and the oracle setting
further improves the results. It further validates the
effectiveness of REWARDAGENT. The results us-
ing GPT-4o as the policy model are provided in ap-
pendix B, demonstrating the same trends and con-
clusions. We encourage the community to design
more verification agents to unleash the inference
scaling laws of LLMs across different scenarios.

5.2 DPO Training

Reward models are primarily used to train LLMs
using RL (Ouyang et al., 2022) or DPO (Rafailov
et al., 2024). Considering RL training is resource-
intensive, we explore employing REWARDAGENT

to construct preference pairs for DPO training to
validate its effectiveness in real-world applications.

Experimental Setup We construct two training
datasets based on: (1) UltraFeedback (Cui et al.,
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2024), where each instruction contains 4 responses
sampled from various LLMs. (2) on-policy, which
contains 20, 000 instructions sampled from Ultra-
Feedback and each instruction contains 8 responses
sampled from the policy model itself with 1.0 sam-
pling temperature. We use reward models to score
each response, taking the highest-scored response
as the chosen one and the lowest as the rejected one
to construct training pairs. We adopt the zephyr-7b-
sft-full (Tunstall et al., 2023) model as the policy
model to conduct DPO training because it is trained
only using SFT (Ouyang et al., 2022). We evalu-
ate the DPO-trained LLMs on various NLP bench-
marks, including MMLU (Hendrycks et al., 2020),
MMLU-Pro (Wang et al., 2024b), TriviaQA (Joshi
et al., 2017), TruthfulQA (Lin et al., 2022), IFE-
val (Zhou et al., 2023), CELLO (He et al., 2024),
and MT-Bench (Zheng et al., 2023). More experi-
mental details are provided in appendix B.

Experimental Results The experimental results
are shown in Table 3. We can observe that LLMs
trained with data constructed by REWARDAGENT

generally outperform those trained with ArmoRM,
especially on the factuality question answering and
instruction-following datasets. The improvement
is more significant in on-policy data. Furthermore,
models trained with REWARDAGENT-annotated
data consistently outperform those trained on origi-
nal UltraFeedback that is constructed with GPT-4.
Notably, REWARDAGENTLLAMA uses open-source
Llama3-8B Instruct and Qwen2.5-Coder 7B as the
LLM backbones, at a much lower cost than GPT-4.
The results further validate the effectiveness and ap-
plicability of REWARDAGENT. We believe using a
more powerful LLM backbone in REWARDAGENT

can achieve more advanced results and encourage
the community to explore more advanced reward
agents for better performance and reliability.

6 Related Work

Reward models are typically employed to score
responses and are crucial to the success of modern
LLMs. Since the emergence of RLHF (Ouyang
et al., 2022), numerous studies have focused on
developing more advanced reward models to help
train LLMs. The approaches mainly include design-
ing model architectures (Wang et al., 2024a; Dorka,
2024; Chen, 2025) and utilizing more high-quality
data or new training objectives (Infly, 2024; Yuan
et al., 2024; Park et al., 2024; Liu et al., 2024a; Cai
et al., 2024; Cao et al., 2024; Lou et al., 2024; Li

et al., 2024; Wang et al., 2024c). There are also
various studies exploring using LLMs as generative
reward models (Zheng et al., 2023; Mahan et al.,
2024; Shiwen et al., 2024; Cao et al., 2024; Tan
et al., 2024; Yu et al., 2024; Alexandru et al., 2025).
Reward models are typically used for inference-
time scaling laws (Irvine et al., 2023; Wu et al.,
2024; Snell et al., 2024; Brown et al., 2024; Xin
et al., 2024) or for training, such as RL(Ouyang
et al., 2022) or DPO (Rafailov et al., 2024).

Despite the success of reward models, they pri-
marily focus on human preferences, which may
be susceptible to subjective biases or reward hack-
ing (Saito et al., 2023; Singhal et al., 2023; Gao
et al., 2023; Zhang et al., 2024b; Chen et al., 2024c).
A notable limitation is verbosity bias (Saito et al.,
2023), where reward models tend to favor longer
responses (Singhal et al., 2023; Liu et al., 2024b).
Additionally, some studies have shown that reward
models may overlook correctness signals, such as
factuality (Lin et al., 2024; Liu et al., 2024b; Tan
et al., 2024). These limitations affect the reliability
of reward models, thereby impacting the perfor-
mance of the trained LLMs (Singhal et al., 2023).

Recently, several studies have shown that rule-
based reward models or verifiable reward signals
achieve impressive results in specific domains such
as math (Guo et al., 2025), safety (Mu et al., 2024),
instruction-following (Lambert et al., 2024a), med-
ical (Chen et al., 2024b), and finance (Qian et al.,
2025). The simplicity and advanced performance
of rule-based reward models demonstrate signif-
icant potential for training LLMs, but it is still
non-trivial to generalize to general domains. In this
paper, we explore combining human preferences
from reward models with verifiable correctness sig-
nals to develop more reliable reward systems. We
believe that combining human preferences with ver-
ifiable correctness signals is a promising direction
and encourage further research efforts in this area.

7 Conclusion

In this paper, we propose agentic reward modeling,
a reward system that integrates the human prefer-
ences from conventional reward models with veri-
fiable correctness signals to provide more reliable
rewards. We empirically implement a reward agent,
named REWARDAGENT, which consists of a router,
well-designed verification agents for factuality and
instruction-following, and a judger. We conduct
extensive experiments on reward modeling bench-

15941



marks, best-of-n search, and DPO training. RE-
WARDAGENT significantly outperforms other re-
ward models and LLMs as generative reward mod-
els. We encourage more research efforts to develop
more advanced and reliable reward systems.

Limitations

The main limitations of this work lie in the imple-
mentation of REWARDAGENT: (1) The verification
agents are far from providing perfect rewards, as
the average score on reward modeling benchmarks
only reaches 72.5%. This suggests that achieving
perfect rewards is challenging and requires further
research efforts. (2) We only implement verifica-
tion agents for factuality and instruction-following,
which we believe are current weaknesses in reward
models (Liu et al., 2024b) and important factors af-
fecting LLM applications and user experiences. We
encourage the community to explore more verifi-
able correctness signals. In conclusion, we believe
the contribution of agentic reward modeling con-
cept is substantial, and we look forward to develop-
ing more advanced reward systems in the future.

Ethical Considerations

We discuss the ethical considerations here: (1) In-
tellectual property. We have strictly adhered to the
licenses of all utilized artifacts, including datasets,
models, and code repositories. We will open-source
REWARDAGENT, code, and IFBench under the
MIT license2. (2) Intended use and potential risk
control. We propose agentic reward modeling, a
reward system that integrates human preferences
with correctness signals. We implement a reward
agent named REWARDAGENT to provide more re-
liable rewards. We believe that all data used is
well anonymized. Our model does not introduce
additional ethical concerns but may provide incor-
rect rewards due to performance limitations. Users
should not conduct reward hacking (Skalse et al.,
2022) and should carefully check important infor-
mation. (3) AI assistance. We have used ChatGPT
to refine some sentences.
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Appendices

A REWARDAGENT Details

Tables 6 to 8 present the LLM prompts used for the
implementation of REWARDAGENT. We employed
Serper3 to implement our external search engine
and we utilize the gpt-4o-mini-2024-07-18
model in the REWARDAGENTMINI version.

B Experimental Details

In this section, we provide a detailed description
of the evaluation process, divided into three parts:
the construction and distribution details of IF-
BENCH B.1, the evaluation dataset settings B.2,
and additional experimental results B.3.

B.1 IFBENCH Details
IFBENCH is a benchmark designed to evaluate
reward models for multi-constraint instruction-
following. The dataset comprises 444 carefully
curated instances, each containing: an instruc-
tion with 3 to 5 multi-constraints, a chosen re-
sponse satisfying all constraints, and a rejected re-
sponse violating specific constraints. All instances
were constructed using gpt-4o-2024-11-20 ver-
sion through the following systematic pipeline.

Instruction Construction We sampled 500 ini-
tial instructions from the Open Assistant (Köpf
et al., 2023). To ensure clarity and simplicity, we
constrained the initial instruction length to 5 to 20
words. Subsequently, we employed GPT-4o to gen-
erate five distinct categories of constraints for each
initial instruction. It then autonomously selected 3
to 5 constraints and paraphrased them into 1 to 2
sentences. The paraphrased constraints were inte-
grated into the initial instruction. Finally, we use
GPT-4o to evaluate the final instructions and filter
out those with internal contradictions, resulting in
a final set of 444 instructions.

• Content Constraints: Specify conditions
governing response, including topic focus,
detail depth, and content scope limitations.

• Style Constraints: Control linguistic char-
acteristics such as tone, sentiment polarity,
empathetic expression, and humor.

• Length Constraints: Dictate structural re-
quirements including word counts, paragraph
composition, and specific opening phrases.

3https://serper.dev/

• Keyword Constraints: Enforce lexical con-
straints through keyword inclusion, prohibited
terms, or character-level specifications.

• Format Constraints: Define presentation
standards that include specific formats such
as JSON, Markdown, or Python, along with
section organization and punctuation rules.

Response Construction For each instruction, we
generated 8 candidate responses using GPT-4o with
temperature 1.0 to maximize diversity. The cho-
sen response was selected as the unique candidate
satisfying all constraints through automated veri-
fication. Rejected responses were systematically
selected to ensure balanced distributions of unsat-
isfied constraint (UC) categories and counts. As
shown in Figure 4, instances are stratified by dif-
ficulty: simple (#UC≥3), normal (#UC=2), and
hard (#UC=1), with detailed information of UC
category distributions. Specifically, (a) shows
the distribution by the number of unsatisfied con-
straints in the rejected responses, where the sum
of all parts equals the total number of instances.
(b) presents the distribution by the categories of all
unsatisfied constraints, where the sum of all parts
equals the total number of unsatisfied constraints.
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Figure 4: Proportion (%) of data in IFBENCH based on
the number of unsatisfied constraints per instance and
the categories of all unsatisfied constraints.

B.2 Evaluation Details

Best-of-N For the TriviaQA, we sample 500 in-
stances from the validation split in rc.nocontext
version. The model is prompted to generate di-
rect answers, and we report the exact match ac-
curacies. For the IFEval, we report the average
accuracy across the strict prompt, strict instruction,
loose prompt, and loose instruction settings. For
the CELLO, we report the average score based on
the official evaluation script. All three tasks are
conducted under a zero-shot setting.
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Figure 5: Best-of-n results (%) on TriviaQA, IFEval, and CELLO using the base reward model ArmoRM and
REWARDAGENT to search. “+Oracle” denotes using the oracle setting of REWARDAGENT as mentioned in § 4.3.

Router Correct FP (Instruction Following) FN (Instruction Following) FP (Factuality) FN (Factuality)

Llama3-8B-Instruct 80 1 1 0 19
GPT-4o mini 84 0 2 3 13

Table 4: Error analysis of different routers. FP denotes false positive. FN denotes false negative.

DPO Training For MT-Bench and CELLO, we
employ FastChat4 and the official evaluation script
respectively, to conduct the evaluations and report
the average scores. For the other tasks, we use the
lm-evaluation-harness5 for evaluation. Specif-
ically, we adopt a 5-shot setting for the MMLU
and MMLU-Pro tasks, while using a zero-shot set-
ting for TriviaQA and TruthfulQA. Notably, for
TruthfulQA, we use the truthfulqa_gen setting.

B.3 More Results on Best-of-N

We conduct best-of-n search experiments using
gpt-4o-2024-11-20 as the policy model, with the
results presented in Figure 5. The results demon-
strate that REWARDAGENT significantly improves
best-of-n performance compared to the base reward
model ArmoRM, even when applied to a more pow-
erful policy model than REWARDAGENT.

B.4 Analytical Experiments on the Router

We measure the individual accuracy of the router.
We construct 100 data samples by sampling 50
prompts from IFEval and TriviaQA, respectively.
We manually annotate each prompt to determine
whether it requires instruction-following or factu-
ality verification. We implement the router using
Llama3-8B-Instruct and GPT-4o mini, with the re-
sults as in Table 4. We observe that the routers are

4https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge

5https://github.com/EleutherAI/
lm-evaluation-harness

mostly correct, and the majority of the errors are
false negatives in factuality. We further explore
using different routers for the same reward agent.
Specifically, we replace the router in REWARDA-
GENTMINI (GPT-4o mini) with Llama3-8B-Instruct.
The results are shown in Table 5, which suggests
that Llama3-8B-Instruct underperforms GPT-4o
mini as the router, demonstrating the importance
of an advanced router. We leave developing more
advanced routers to future work.

15947

https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness


Router RMBench-Normal RM-Bench-Hard JudgeBench IFBench

Llama3-8B-Instruct 82.2 59.9 57.8 74.8
GPT-4o mini 86.0 60.2 68.2 75.5

Table 5: Experimental results (%) of the same reward agent with different routers.

Given the following instruction, determine whether the following check in needed.

[Instruction]
{instruction}

[Checks]
{ “name”: “constraint check”, “desp”: “A ‘constraint check’ is required if the instruction contains any additional constraints or
requirements on the output, such as length, keywords, format, number of sections, frequency, order, etc.”, “identifier”: “[[A]]” },
{ “name”: “factuality check”, “desp”: “A ‘factuality check’ is required if the generated response to the instruction potentially
contains claims about factual information or world knowledge.”, “identifier”: “[[B]]” }

If the instruction requires some checks, please output the corresponding identifiers (such as [[A]], [[B]]).
Please do not output other identifiers if the corresponding checkers not needed.

Table 6: Our prompt for the router, where the {instruction} part varies based on the input.

Prompt For Difference Proposal
[Answers]
{formatted_answers}

[Your Task]
Given the above responses, please identify and summarize one key points of contradiction or inconsistency between the claims.

[Requirements]
1. Return a Python list containing only the most significant differences between the two answers.
2. Do not include any additional explanations, only output the list.
3. If there are no inconsistencies, return an empty list.

Prompt For Query Generation
[Original question that caused the inconsistency]
{instruction}

[Inconsistencies]
{inconsistencies}

[Your Task]
To resolve the inconsistencies, We need to query search engine. For each contradiction, please generate a corresponding query
that can be used to retrieve knowledge to resolve the contradiction.

[Requirements]
1. Each query should be specific and targeted, aiming to verify or disprove the conflicting points.
2. Provide the queries in a clear and concise manner, returning a Python list of queries corrresponding to the inconsistencies.
3. Do not provide any additional explanations, only output the list.

Prompt For Verification
Evaluate which of the two answers is more factual based on the supporting information.
[Support knowledge sources]:
{supports}

[Original Answers]:
{formatted_answers}

[Remeber]
For each answer, provide a score between 1 and 10, where 10 represents the highest factual accuracy. Your output should only
consist of the following:
Answer A: [[score]] (Wrap the score of A with [[ and ]])
Answer B: «score» (Wrap the score of B with « and »)
Please also provide a compact explanation.

Table 7: Our prompt for assessing factuality in verification agents, with the {formatted_answers}, {supports},
{inconsistencies}, {instruction} and {supports} parts varying based on the input.
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Prompt For Constraint Parsing
You are an expert in natural language processing and constraint checking. Your task is to analyze a given instruction and identify
which constraints need to be checked.

The ‘instruction’ contains a specific task query along with several explicitly stated constraints. Based on the instructions, you
need to return a list of checker names that should be applied to the constraints.

Task Example:
Instruction: Write a 300+ word summary of the Wikipedia page “https://en.wikipedia.org/wiki/Raymond_III,_Count_of_Tripol”.
Do not use any commas and highlight at least 3 sections that have titles in markdown format, for example, *highlighted section
part 1*, *highlighted section part 2*, *highlighted section part 3*.
Response:
NumberOfWordsChecker: 300+ word
HighlightSectionChecker: highlight at least 3 sections that have titles in markdown format
ForbiddenWordsChecker: Do not use any commas

Task Instruction:
{instruction}

### Your task:
- Generate the appropriate checker names with corresponding descriptions from the original instruction description.
- Return the checker names with their descriptions separated by ‘\n’
- Focus only on the constraints explicitly mentioned in the instruction (e.g., length, format, specific exclusions).
- Do **not** generate checkers for the task query itself or its quality.
- Do **not** infer or output constraints that are implicitly included in the instruction (e.g., general style or unstated rules).
- Each checker should be responsible for checking only one constraint.

Prompt For Code Generation
You are tasked with implementing a Python function ‘check_following’ that determines whether a given ‘response’ satisfies a
constraint defined by a checker. The function should return ‘True’ if the constraint is satisfied, and ‘False’ otherwise.

[Instruction to check]:
{instruction}

[Specific Checker and Description]:
{checker_name}

Requirements:
- The function accepts only one parameter: ‘response’ which is a Python string.
- The function must return a boolean value (‘True’ or ‘False’) based on whether the ‘response’ adheres to the constraint described
by the checker.
- The function must not include any I/O operations, such as ‘input()’ or ‘ArgumentParser’.
- The Python code for each checker should be designed to be generalizable, e.g., using regular expressions or other suitable
techniques.
- Only return the exact Python code, with no additional explanations.

Table 8: Our prompt for assessing instruction-following in verification agents, with the {instruction} and
{checker_name} parts varying based on the input.
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