Removal of Hallucination on Hallucination: Debate-Augmented RAG

Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, Li Qing


Abstract
Retrieval-Augmented Generation (RAG) enhances factual accuracy by integrating external knowledge, yet it introduces a critical issue: erroneous or biased retrieval can mislead generation, compounding hallucinations, a phenomenon we term Hallucination on Hallucination. To address this, we propose Debate-Augmented RAG (DRAG), a training-free framework that integrates Multi-Agent Debate (MAD) mechanisms into both retrieval and generation stages. In retrieval, DRAG employs structured debates among proponents, opponents, and judges to refine retrieval quality and ensure factual reliability. In generation, DRAG introduces asymmetric information roles and adversarial debates, enhancing reasoning robustness and mitigating factual inconsistencies. Evaluations across multiple tasks demonstrate that DRAG improves retrieval reliability, reduces RAG-induced hallucinations, and significantly enhances overall factual accuracy. Our code is available at https://github.com/Huenao/Debate-Augmented-RAG.
Anthology ID:
2025.acl-long.770
Volume:
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Month:
July
Year:
2025
Address:
Vienna, Austria
Editors:
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, Mohammad Taher Pilehvar
Venue:
ACL
SIG:
Publisher:
Association for Computational Linguistics
Note:
Pages:
15839–15853
Language:
URL:
https://preview.aclanthology.org/landing_page/2025.acl-long.770/
DOI:
Bibkey:
Cite (ACL):
Wentao Hu, Wengyu Zhang, Yiyang Jiang, Chen Jason Zhang, Xiaoyong Wei, and Li Qing. 2025. Removal of Hallucination on Hallucination: Debate-Augmented RAG. In Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15839–15853, Vienna, Austria. Association for Computational Linguistics.
Cite (Informal):
Removal of Hallucination on Hallucination: Debate-Augmented RAG (Hu et al., ACL 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/landing_page/2025.acl-long.770.pdf