
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15800–15811
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Masks Can be Learned as an Alternative to Experts

Peiyu Liu1, Tianwen Wei3 , Bo Zhu3, Wayne Xin Zhao2* , Shuicheng Yan3,4

1 University of International Business and Economics
2 Renmin University of China, 3 Skywork AI, 4 National University of Singapore

liupeiyustu@163.com,tianwen.wei@kunlun-inc.com,zhubo@singularity-ai.com,
batmanfly@gmail.com,shuicheng.yan@gmail.com

Abstract

In this work, we investigate how to sparsify a
pre-trained dense large language model into
a mixture-of-experts (MoE) architecture for
faster inference. Our approach applies mask
matrix to the activations for each expert, con-
strained by L0 regularization to minimize the
number of activated parameters. To ensure min-
imal performance loss under this constraint, we
initialize the model with all parameters active
and progressively sparsify it during training.
This approach proves more efficient than one-
shot sparsification techniques, which typically
require significant resources for performance
recovery. Moreover, our approach automati-
cally identifies shared, token-specific, and in-
active experts, allowing for more efficient al-
location of computational resources. Through
extensive experiments, we achieve up to 97%
performance retention on downstream tasks
with only 50% of the feed-forward parame-
ters activated in dense models. Beyond im-
proving inference efficiency, this strategy of
sharing computational units among experts pro-
vides a principled foundation for building more
scalable and generalizable MoE architectures,
paving the way for future expert-based model
designs. Our code is available at https://
github.com/lpyhdzx/Mixture-of-Masks.

1 Introduction

Under the guidance of scaling laws, the parameter
count in large language models (LLMs) has contin-
ued to rise, with models ranging from LLaMA 7B
to 70B parameters. To alleviate the substantial com-
putational burden associated with model inference
and deployment, various model compression tech-
niques have been proposed. However, their appli-
cation to LLMs often results in unacceptable degra-
dation of performance. Thus, a critical challenge
remains: how to effectively reduce inference com-
putation without sacrificing model performance?

* Corresponding author.

Table 1: Comparison of MoM and MoE. “Flexibility”
refers to the adaptability in expert structure design,
“Mem” indicates memory usage, and “Training Cost”
reflects the computational budget required for training.

Methods Flexibility Mem Training
Cost

MoE Regid High High
MoEfication Regid Low Low

MoM Flexible Low Minimal

One promising direction is sparse activation. A
notable example is the Mixture-of-experts (MoE)
approach, which designs multiple expert structures
with extensive parameters but activates only a sub-
set during computation This limits the number
of active parameters and effectively mitigates the
computational load. Despite the effectiveness of
current sparse activation methods, they typically
require training from scratch, which incurs pro-
hibitive computational costs. An alternative re-
search direction explores converting existing dense
models into sparsely activated ones. Techniques
such as MoEfication (Zhang et al., 2022), LLaMA-
MoE (Zhu et al., 2024), and Turbo Sparse (Song
et al., 2024) exemplify this approach by treating
specific dimensions 1 of the weights in the feed-
forward network (FFN) as expert structures, selec-
tively activating these dimensions during forward
computation. Although these methods avoid the
need to retrain from scratch, they rely on heuristic-
based expert construction (e.g., equally partitioning
the dimensions of weight matrices across experts),
which neglects the varying significance of differ-
ent dimensions within large language models. This
can lead to suboptimal performance, as it overlooks
the fact that some dimensions can be pruned while
others can be shared across experts.

1In this paper, we use the term dimension to refer to each
feature channel in the hidden state, along with the correspond-
ing rows or columns in the projection weight matrices.

15800

https://github.com/lpyhdzx/Mixture-of-Masks
https://github.com/lpyhdzx/Mixture-of-Masks


To address these challenges, our approach is
guided by the principle of maximizing efficiency
while maintaining model performance and struc-
ture integrity. Building on this principle, and
drawing inspiration from MoEfication (Zhang
et al., 2022), we focus on a key component of
Transformer-based models, i.e., FFN. Specifically,
we propose transforming the dense FFN structure
into a sparse MoE module, leveraging a routing
mechanism to enable the selective activation of
parameters. However, achieving activated spar-
sity with MoEfication style is non-trivial due to
the following practical challenges: (1) identifying
the varying importance of different weight dimen-
sions. (2) minimizing performance degradation.

To this end, we propose a novel sparsifica-
tion framework for large language models, named
Mixture-of-Masks (MoM) . MoM introduces a
learning-based mechanism that dynamically selects
and activates a subset of parameters through binary
mask matrices. These masks are integrated into
the FFN structure, serving as substitutes for tra-
ditional expert modules. By training the masks
with L0 norm constraints, MoM adaptively learns
which dimensions to share, specialize, or prune, en-
abling token-specific expertization without relying
on heuristic-based construction methods. To ensure
a smooth sparsification process, masks are initial-
ized with all ones, preserving the dense model’s
original structure at the beginning of training. This
design minimizes performance degradation while
allowing the model to gradually prune parameters
and integrate multiple compression techniques dur-
ing continued pre-training.

We conducted comprehensive experiments to
evaluate the performance of MoM, focusing on
model accuracy restoration, data efficiency, and
inference costs. In publicly available evaluation
benchmarks, MoM outperformed existing methods
with fixed expert allocation, restoring 97% of the
dense model’s accuracy compared to 90% achieved
by MoEfication (Zhang et al., 2022). MoM effec-
tively maintains model performance while exhibit-
ing superior data efficiency during training. In addi-
tion, starting from the original dense model, MoM
gradually prunes parameters with minimal accu-
racy loss, achieving the compression target after
processing just 10B tokens. In contrast, methods
with static expert partitioning introduce significant
structural changes, resulting in prolonged training
times to restore model accuracy.

In addition, we also conducted an in-depth anal-

ysis to shed light on why MoM works well. Upon
analyzing the experts obtained through MoM train-
ing, we observed that the experts were automati-
cally divided into shared experts, independent ex-
perts, and ineffective experts. Both shared and
ineffective experts can be excluded from routing,
thereby reducing the model’s inference costs and
further improving efficiency. This observation is
consistent with conclusions from some of the most
advanced model structures (Dai et al., 2024; Yang
et al., 2024), opening new directions for us to ex-
plore the characteristics of MoE architectures.

2 Methods

We now detail our proposed method, Mixture-of-
Masks (MoM), which is designed to produce com-
pact models by selectively activating a subset of
parameters. This approach achieves sparsity and
computational efficiency while maintaining strong
performance within a modest resource budget.

2.1 Preliminary

We first present the background for our approach
to mixture-of-experts architecture and the pruning
methods.

Mixture-of-Experts. MoE enhances the Trans-
former architecture by introducing multiple Feed-
Forward Networks (FFNs), known as “experts”,
within each Transformer block. During compu-
tation, only a subset of these experts is activated
based on the input, significantly increasing model
capacity while keeping computational costs low.
Formally, the output of MoE architecture y can be
computed as:

h = Σn
i=1pi(x)Ei(x), (1)

where pi(x) and Ei(x) are the gate value and the
output vector of the i-th expert for a given input x,
respectively. Inspired by this, recent works (Zhang
et al., 2022; Zhu et al., 2024) have shown that trans-
forming a dense model into an MoE structure ef-
fectively achieves activation sparsity. However,
current methods randomly assign hidden dimen-
sions to experts, disregarding the fact that different
dimensions contribute unequally to model perfor-
mance. Such suboptimal assignments can lead to
notable performance degradation, highlighting the
need for approaches that construct expert modules
that adapt to both model structure and the underly-
ing pretraining data.

15801



Input tensor

Self Attention

gate up

down

FFN

Mask 2

Mask 1

Mask 3
gate

up

down

Router

MoE-FFN

Router

MoM-FFN

Mask 2

Mask 3

Mask 1

𝑒!
𝑒"

Training

1, 0, 1, 0

Router

Regularized with 𝐿#

𝑒!
1, 0, 0, 1

𝑒"

𝑒"

𝑒! Shared expert

Pruned expert

Construct Experts Router

Input tensor

𝑊$% =

Inference Optimization

Weight tying with 
𝑊$%

Figure 1: Overview of MoM architecture. MoM-FFN trains multiple masks as experts instead of multiple copies.
For training, the masks are regularized by L0 normalization. For inference, we construct experts based on the
learned expert allocation pattern. Specifically, columns that are never routed to any expert are pruned (crossed box),
while columns that are consistently routed across all cases are explicitly shared among all experts (pink box).

Model Pruning. Pruning aims to achieve spar-
sity in large models by removing less important
weights or components. Common approaches in-
clude structured pruning (removing specific struc-
tures) and unstructured pruning (removing individ-
ual weights). However, for large language models,
scaling laws indicate that a large number of param-
eters is crucial for optimal performance. Directly
reducing the total number of parameters can harm
the model’s capacity. Therefore, we propose the
concept of “activation pruning”, which maintains
the total number of parameters while pruning only
the activated ones. This approach aims to preserve
the model’s advanced capabilities while reducing
computational costs. In this context, we follow the
study (Louizos et al., 2017) of L0 regularization to
constrain the sparsity of large language models.

2.2 Constructing Experts by Masks
Following the work (Zhang et al., 2022), we treat
the dimensions of weights in FFN as the minimal
unit, and experts are constructed by grouping mul-
tiple dimensions together. Instead of manually as-
signing dimensions to experts, our objective is to
dynamically group related dimensions into experts
based on their interrelationships. In this section, we
introduce Mixture-of-Masks (MoM),a mask-based
expert construction approach that enables dynamic
selection of dimensions.

To implement this, we adopt a LLaMA (Tou-
vron et al., 2023) style decoder-only model with
N Transformer layers. Let Wgate,Wup ∈ Re×d

denote the weight matrices for the gate and up

projections, respectively, and let Swish(·) be the
activation function. The output y ∈ Rd of FFN can
be described as follows:

h = xWup ⊙ Swish(xWgate),

y = hWdown. (2)

Our goal is to insert mask variables (denoted as
v ∈ Rd) at various positions in this formulation to
achieve sparse activation of different components.
Depending on where the masks are inserted, we
then introduce our method within two steps: (1)
basic masking method that selects and masks in-
termediate hidden dimensions shared by both pro-
jections in the FFN, and (2) fine-grained strategies
that apply independent masking to the two projec-
tion weights to further increase sparsity.

Basic Masking Method. The basic characteristic
of the FFN structure is that expanding through the
gate and up components can increase model capac-
ity, but it also introduces significant redundancy.
Our approach involves adding a mask module with
values {0,1} after the gate and up outputs. Then,
the output of the FFN becomes:

h = [xWup ⊙ Swish(xWgate)]⊙ v. (3)

We frame mask determination as a constrained opti-
mization problem, allowing the masks to be dynam-
ically learned during training rather than statically
assigned, as was done in previous work (Zhang
et al., 2022; Zhu et al., 2024). This dynamic ap-
proach allows dimensions corresponding to similar

15802



tokens to be grouped together after training, align-
ing with the core idea of the MoE structure, i.e.,
similar tokens activate similar sets of parameters,
improving both efficiency and specialization. Fi-
nally, the sparsity is computed as:

R(v) =

∑d
i=1 I(vi = 0)

d
, (4)

where I is a indicator function and d is the dimen-
sionality of the vector v.

Fine-grained Masks Strategies. While the basic
masking method provides an initial reduction in
redundancy, further improvements can be achieved
by targeting specific components of the FFN with
more fine-grained masking strategies. This is be-
cause different components, such as the gate and up
projections, contribute unequally to overall model
performance and may benefit from different spar-
sity levels (Song et al., 2024), thereby enabling
more targeted and effective pruning.

Then, we extend the masking approach to fine-
grained modules (i.e., gate, up, and hidden states
separately). For gate and up projections, the final
sparsity is calculated as RFFN = (Rgate ⊙ Rup).
To further improve sparsity, we also apply mask-
ing to the FFN inputs. This is based on the ob-
servation that only a small subset of input dimen-
sions typically needs to be projected into higher-
dimensional space. The final sparsity is thus calcu-
lated as Rh ⊙RFFN .

2.3 Training with L0 regularization
Building on the mask construction strategy de-
scribed earlier, the final set of experts is determined
by the parts of the model that are retained by the
learned masks. To increase sparsity and reduce the
number of active parameters, we frame this as a
constrained optimization problem. Specifically, the
objective is to learn mask matrices that dynamically
select sub-dimensions conditioned on the input to-
kens, mirroring the expert selection behavior in
MoE architectures.

Inspired by the L0 regularization
method (Louizos et al., 2017), we parameterize
the masks to model hard concrete distributions.
These distributions are defined on the interval
[0, 1] but concentrate their probability mass at 0
or 1, enabling discrete decisions to either prune
or retain specific dimensions. In addition, by
starting with all parameters active, the model is
progressively sparsified during training, ensuring
minimal performance loss.

To formalize this process, let l, and E represent
the number of layers and the number of experts per
layer, respectively. Given a target sparsity ratio Rt,
the optimization objective for each layer is defined
as:

Lmask =

l∑ E∑
(Re −Rt) + (Re −Rt)

2, (5)

where Re denotes the actual sparsity ratio of a layer
after applying the learned mask. At the beginning
of training, we initialize Re = 1.0 , indicating
no sparsity is applied. As training progresses, the
mask is learned dynamically to gradually reduce
the sparsity ratio toward the target Rt , typically
set to values such as 0.25 or 0.5. This objective
encourages the model to meet the desired sparsity
level while mitigating potential performance degra-
dation.

Since each expert learns independently, the
model naturally categorizes dimensions into three
types: shared dimensions (across all experts), inde-
pendent dimensions (specific to individual experts),
and unused dimensions (not allocated to any ex-
pert). By automating this process, we reduce the
risk of introducing prior biases and improve the
efficiency of the model’s sparse activation mecha-
nism. Then we will introduce inference optimiza-
tion based on identified expert types.

2.4 Inference Optimization via Expert Pattern
Identification

In this section, we leverage the expert patterns de-
rived from L0 regularization to optimize inference,
using tailored strategies for shared, independent,
and redundant experts:
• Shared experts. Shared experts are dimen-

sions that remain active across all experts. These
are processed only once, as their outputs can be
reused across different inputs, thereby reducing
memory usage and computational load.
• Independent experts. For independent ex-

perts, we introduce a routing mechanism that se-
lectively activates experts, following the standard
MoE routing strategy. This approach helps to sig-
nificantly decrease computational costs by activat-
ing only the necessary experts.
• Redundant experts. Redundant experts are

dimensions that are never routed across any of the
experts. These dimensions are pruned, as their
contribution to model performance is negligible,
further reducing the total number of parameters.

15803



Interestingly, several advanced studies (Dai et al.,
2024) have manually divided experts into shared
and independent groups, arguing that shared ex-
perts capture common knowledge while indepen-
dent experts focus on domain-specific tasks. Our
findings after applying MoM are consistent with
this, but in our case, the model automatically learns
this division. To further examine this automatically
learned expert allocation pattern, we analyze the
learned expert distributions in Section 3.4, which
reveal architectural principles for effective expert
assignment.

3 Experiments

In this section, we first set up the experiments and
then report the results and analysis. Then we con-
duct a detailed analysis for different MoE settings.

3.1 Experimental Setup

Datasets. By continuing pre-training process, we
aim to restore the performance when selectively
activating a subset of the parameters. So we use
a mixture of several data sources to cover several
domains, including: (1) RedPajama (Computer,
2023), a mixture of CommonCrawl, C4, Github,
Wikipedia, Books, arXiv, and StackExchange. We
try to cover a diverse set of domains for a better
performance restoration. (2) Dolma (Soldaini et al.,
2024), built from a diverse mixture of web con-
tent, scientific papers, code, public-domain books,
social media, and encyclopedic materials. (3) SkyP-
ile (Wei et al., 2023), a large-scale Chinese dataset
containing approximately 150B tokens. For eval-
uation, we follow the study (Wei et al., 2023; Zhu
et al., 2024) and utilize HellaSwag to evaluate the
model ability since the performance on HellaSwag
is reported to grow smoothly during pre-training.

For a comprehensive assessment of downstream
tasks, we follow Sheared LLaMA (Xia et al., 2024)
and use lm-evaluation-harness package (Gao et al.,
2024) to evaluate the following tasks: BoolQ (Clark
et al., 2019), PIQA (Bisk et al., 2020), SiQA (Welbl
et al., 2017), HellaSwag (Zellers et al., 2019) and
ARC easy (Clark et al., 2018).

Implementation. For the implementation of con-
tinued pre-training setting, we utilize the open-
source SkyWork model (Wei et al., 2023) with
300M parameters for our experiments. SkyWork
provides a general LLaMA-style model framework,
ensuring that our method can be easily transferred
to other similar frameworks. Additionally, since

all data associated with this model is accessible, it
provides a fair platform for comparing the effec-
tiveness of different methods. Based on this model,
we start from a checkpoint trained with 200 billion
tokens. According to the Section 2.2, we provide
four variants of different masking strategies: MoM,
MoMFH , MoMFW and MoMFWH :
• MoM serves as the base variant, applying

coarse-grained masks to the intermediate activa-
tions in the FFN module.
• MoMFH extends MoM by introducing fine-

grained masks over the input hidden state dimen-
sions.
• MoMFW applies fine-grained masking to the

FFN weights, specifically separating the gate and
up projections.
• MoMFWH combines both MoMFH and

MoMFW , applying masks to both hidden states
and weights to achieve higher sparsity.

Subsequently, we assess how well each method
recovers model performance under limited training
resources. To further demonstrate the scalability
of our approach, we also conduct experiments on
a larger LLaMA-3-8B model (AI@Meta, 2024).
In the next section, we will present the detailed
experimental results.

Baseline Models. Here we introduce relevant
methods as our baselines.
• MoEfication (Zhang et al., 2022) for sparse ac-

tivation. MoEfication converts dense models into a
MoE version by splitting the FFN weights into mul-
tiple partitions as experts, with dimensions evenly
distributed across experts.
• Pruning. We additionally employ model prun-

ing as a baseline to validate the effectiveness of
activation-based compression in comparison to full
parameter pruning. Specifically, when the total
number of experts is set to 1, our method degener-
ates into conventional pruning approaches, reduc-
ing the total number of parameters. We use this
configuration as a variant of pruning to provide a
comparative baseline.

3.2 Main Results

Comparing with MoEfication. First, we show
dense downstream task evaluation results on both
dense models and activation pruning methods. As
shown in Table 2, MoM uses limited training to-
kens and outperforms MoEfication in all tasks.
Specifically, MoM preserves 97% of original dense

15804



Table 2: Models with MoM outperforms publicly available methods of sparsification. Models with “†” are our
reproduced result.

Commonsense & Reading Comprehension

Model (#tokens for training) #Activated BoolQ PIQA SiQA HellaSwag (10) ARC-E Average

Dense (200B) 100% 58.4 67.8 39.1 36.9 49.5 50.3

MoEfication (20B)† 50% 59.4 58.5 36.5 29.3 42.0 45.1
MoM (20B) 75% 60.0 66.9 36.3 35.3 46.6 49.0
MoMFH (20B) 50% 59.5 65.6 37.2 34.9 48.2 49.1

(a) Training Loss. (b) Activated Sparsity. (c) Accuracy of HellaSwag.

Figure 2: Model loss and activated sparsity. (a) shows the comparison between MoM and MoEfication. (b) and (c)
illustrate the compression rate and downstream task performance of our method under the fine-grained masking
strategy.

model’s performance (49.1 vs. 50.3), while MoEfi-
caiton only preserves around 90% (45.1 vs. 50.3).

As for the data efficiency, we observe obviously
from Figure 2 (a), that our method (red curve)
quickly converges to the same loss as the MoEfi-
cation (blue curve), whereas MoEfication requires
nearly 20B tokens to achieve a similar level. This
demonstrates that MoM achieves better data effi-
ciency through its near-lossless compression strat-
egy, where learned masks minimize performance
degradation more effectively than one-shot sparsifi-
cation methods like MoEfication.

As for the effect of our method during the com-
pression process, Figure 2 (b,c) shows that the re-
covery of model performance remains stable across
various compression rates. Specifically, perfor-
mance recovery stays within 92% of the dense
model (i.e., 34.2 vs. 36.9), indicating minimal
degradation even with significant compression. In
the early stages of training, there is a slight drop
in performance, despite a low loss value, but this
is quickly corrected as training continues. The
overall trend suggests that our method ensures per-
formance stabilizes and recovers effectively. These
results confirm the robustness of our approach,

(a) Loss (b) Sparsity

Figure 3: Extending experiments on LLaMA-3-8B.

demonstrating that it achieves substantial compres-
sion without severely affecting model accuracy.

To demonstrate the scaling effect, we extend to
the LLaMA3-8B model (see Figure 3). As for data
preparation, existing work has shown that more
complex datasets are often required to recover the
model after compression, including data ratios (Xia
et al., 2024) and larger data sizes (Zhu et al., 2024).

Therefore, we adopt a classic dataset preparation
pipeline to ensure a fair comparison (Wei et al.,
2023). The results show that our method can still
achieve faster model compression on the 8B model.
It is worth noting that in LLaMA-8B, the compres-
sion process can be completed more quickly, requir-

15805



(a) MoM vs. Pruning (b) Masking Strategies (c) L0 vs. L1

(d) MoM vs. Pruning (e) Masking Strategies (f) L0 vs. L1

Figure 4: Influence of Masking Strategies for different metrics. Figures (a,d) denote the comparison with pruning.
Figures (b,e) denote the ablation of different masking strategies. Figures (c,f) denote the ablation study of different
learning strategies.

ing only a budget of 15B tokens. However, model
recovery is a more prolonged process. Overall, the
model performance gradually improves, while the
recovery process for MoEfication might be a more
long-term task. This result demonstrates that our
method offers greater data efficiency compared to
MoEfication.

Comparing with Pruning. In order to demon-
strate the strength of reducing activated parame-
ters over pruning total parameters, we design two
comparison ablation experiments: (1) continue
pre-train with static sparsity. We set the sparsity
to {25%, 50%} and do continue pre-train to see
whether the performance can restore to the original
level. This study is to test the ability to restore
performance after pruning. (2) continue pre-train
with dynamic sparsity. We learn the masks using
L0 normalization similar to MoM. While, we con-
strain the number of experts to only 1. Specifically,
as shown in Figure 4 (a,d), direct pruning meth-
ods fail to match the compression rate achieved by
MoM when maintaining comparable performance.
This highlights the advantage of our progressive,
mask-based approach, which enables more effec-
tive sparsification without sacrificing accuracy.

3.3 Detail Analysis

Here we provide detailed studies of two important
aspects of learning masks: masking strategies and
learning strategies.

Masking Strategies. As introduced in Sec-
tion 3.1, we categorize the masking strategies based
on their target modules. Then, to further com-
pare the impact of these strategies on model perfor-
mance, we continue pretraining the 300M models
on 20B tokens and report the evaluations on the
HellaSwag dataset in Figures 4 (b) and (e). From
the sparsity ratio, we find that MoMFH achieves
a lower sparsity ratio than the others. Meanwhile,
these compression gains sacrifice the performance
as we can see from the evaluation in Hellaswag.
Therefore, we recommend using MoMFH when
performance is the priority. If a larger training bud-
get is available, MoMFWH can be advantageous
as it results in more sparsified models, which may
be better suited for low-resource machines.

Learning strategies. In practice, optimizing bi-
nary masks can be challenging due to their discrete
nature. Therefore, it is crucial to design an ap-
propriate technique for learning effective masks.
Popular approaches include normalization methods

15806



(a) Expert-2.

(b) Expert-4.

Figure 5: Visulizaton of experts selection.

such as L1 and L0 regularization. To evaluate the
effectiveness of these techniques, we performed an
ablation study and present the results in Figure 4 (c,
f). As shown in the figure, applying L1 regulariza-
tion results in a significant degradation in model
performance at the early stages of training, with the
loss rapidly increasing. This indicates that L1 is not
well-suited for sparsification tasks. Consequently,
we halted the L1 experiment after training with
less than 10B tokens, as the sparsity achieved was
considerably lower compared to L0. In contrast,
the L0 regularization technique proved to be much
more effective in achieving sparsity, validating its
suitability for tasks involving sparse activation.

3.4 Analysis for the Experts

Experts Selection Across Layers. As shown in
Section 2.4, our method automatically learns to
assign dimensions into shared, independent, and
pruned experts. To further understand this result,
we visualize the experts at different layers in the
Figure 5. We observe varying levels of preference
for the experts across layers. For example, Expert 2
shows a relatively even level of participation, with
activation remaining below 50% and spread across
all layers. In contrast, Expert 4 exhibits activation
in some layers that reaches approximately 80%,
but the number of activated layers remains rela-
tively low, around 30%, which maintains higher
efficiency.

Then we analyze the roles of shared, indepen-
dent, and pruned experts across layers and their
relationship to activation sparsity. Specifically, “8-

hit” dimensions are those routed to all eight experts,
indicating shared usage (blue bars), while “0-hit”
dimensions are never selected and are considered
pruned (red bars) (see Figure 6 in Appendix A.2).
Our analysis reveals two notable patterns that shed
light on how expert roles evolve across model lay-
ers: (1) in the earlier layers, a larger number of
experts are pruned, indicating that the model
primarily focuses on general, token-agnostic rep-
resentations. This results in higher activation
sparsity, as many parameters contribute little to
early-stage processing. As the model progresses to
deeper layers, sparsity decreases, suggesting that
more experts are needed to capture increasingly
complex semantic features. (2) In the final layers
(21-23), we observe a rise in shared experts, even
though these layers may handle more complex
and nuanced semantic tasks. This implies that,
despite the increased task complexity, there are
underlying patterns or features that remain consis-
tent across tasks, captured effectively by shared
experts. This discovery reflects the emergence
of shared representations and may underpin the
model’s generalization ability. Together, our find-
ings offer valuable insights into the interpretability
and efficiency of deep MoE models, showing how
expert roles evolve across layers. Understanding
these dynamics could lead to more efficient model
architectures that balance the trade-off between
task-specific adaptations and shared knowledge ex-
traction.

Experts Selection Across Tasks. Then we empir-
ically investigate whether different experts contain
domain-specific information. For the dataset, we
use the benchmark of MMLU where the tasks are
categories into four groups (Hendrycks et al., 2021).
First, we collect the output of the gate projections
across all the layers and form a gate distribution
vector of the dimension of 8 (experts per layer)
× 24 (layers). Then we calculate the cosine sim-
ilarity of the vectors and report the results in the
Figure 6 (b) in Appendix A.2. Higher similarity
indicates that tasks activate experts in a similar
pattern, suggesting shared domain characteristics;
lower similarity implies domain divergence. We
observe a clear distinction between the STEM and
humanities subjects, as shown by the clustering
patterns in the heatmap. Additionally, three his-
tory tasks—high school european history,
high school US history, and high school
world history—exhibit strong correlations with

15807



each other, more so than with other tasks. This is
likely due to the significant overlap in the subject
matter across these history topics, which makes
them more similar compared to other tasks.

Notably, even though our experts are constructed
using masks rather than the traditional MoE ap-
proach, they still successfully learn to capture
domain-specific information and categorize tokens
based on their content. This demonstrates that
our approach retains the essential characteristics of
MoE models while offering greater flexibility.

4 Related Work

Pruning. Existing models are often impracti-
cal to deploy due to their large parameter count.
A direct solution to this issue is pruning (Xia
et al., 2024), which involves the removal of model
weights. Pruning generally follows two primary
approaches. The first approach is structured prun-
ing (Xia et al., 2024), which typically achieves
higher compression rates and enhances inference
efficiency. However, this method often results
in significant performance degradation due to the
coarse granularity of pruning, which inadequately
preserves essential weights. Consequently, exten-
sive retraining is often necessary to recover model
performance. The second approach is unstructured
pruning (Song et al., 2024; Wang et al., 2024),
which eliminates non-essential weight values. This
finer-grained method effectively retains important
weights, resulting in minimal performance loss.
However, it does not substantially improve infer-
ence speed. The traditional work focus on reducing
the total parameters which may not against the
spirit of scaling laws (Kaplan et al., 2020): the
large language models where the superior ability
comes from a large number of parameters.

Sparse Methods. In contrast to pruning, activat-
ing fewer parameters during computation main-
tains model capabilities without increasing compu-
tational load. A common approach is the Mixture
of Experts structure (Fedus et al., 2022; Lepikhin
et al., 2020), where multiple FFN structures serve
as experts, with only a subset activated during com-
putation, reducing parameter usage. Numerous
studies have validated the efficiency of this method
in large-scale models, such as Mixtral (Jiang et al.,
2024), which implements a standard MoE at a 7B
scale, and DeepSeek (Dai et al., 2024), which com-
bines shared and unique experts for different tasks.
Existing pre-trained models can also be converted

into MoE structures through “MoEfication” (Zhang
et al., 2022), successfully applied to models from
BERT to Llama-MoE (Zhu et al., 2024). However,
these structural changes often cause performance
degradation, which this paper seeks to address.

5 Conclusion

We propose Mixture-of-Masks (MoM), a novel ap-
proach to transforming dense models into sparsely
activated architectures that achieve high efficiency
while maintaining strong performance. With MoM,
we achieved 97% of the performance of the dense
counterpart, activating only 50% of the FFN param-
eters, significantly reducing computational costs
within a 10B parameter training budget. Compared
to traditional MoE, MoM demonstrates superior
efficiency in both parameter utilization and com-
putational overhead. Beyond its performance ad-
vantages, MoM provides valuable insights into the
distribution of experts, uncovering key design prin-
ciples that can guide the development of more in-
terpretable and efficient MoE architectures. These
findings deepen our understanding of optimizing
sparse models and open new avenues for balancing
performance and efficiency in large-scale language
models. Next, we will extend MoM to attention
and others for further parameter efficiency.

Acknowledgments

This work was partially supported by National Nat-
ural Science Foundation of China under Grant No.
92470205. Peiyu Liu and Xin Zhao are the corre-
sponding authors.

References
AI@Meta. 2024. Llama 3 model card.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In NAACL.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind

15808

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://doi.org/10.1609/AAAI.V34I05.6239
https://doi.org/10.1609/AAAI.V34I05.6239


Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Together Computer. 2023. Redpajama: an open dataset
for training large language models.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. Deepseekmoe: Towards ultimate
expert specialization in mixture-of-experts language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 1280–1297. Association
for Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach.
Learn. Res., 23:120:1–120:39.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,
Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,
Jason Phang, Laria Reynolds, Hailey Schoelkopf,
Aviya Skowron, Lintang Sutawika, Eric Tang, An-
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.
2024. A framework for few-shot language model
evaluation.

Dan Hendrycks, Collin Burns, Steven Basart, Andy
Zou, Mantas Mazeika, Dawn Song, and Jacob Stein-
hardt. 2021. Measuring massive multitask language
understanding. Proceedings of the International Con-
ference on Learning Representations (ICLR).

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de Las Casas,
Emma Bou Hanna, Florian Bressand, Gianna
Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts. CoRR, abs/2401.04088.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2020.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. arXiv preprint
arXiv:2006.16668.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2017. Learning sparse neural networks through l0
regularization. CoRR, abs/1712.01312.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin
Schwenk, David Atkinson, Russell Authur, Ben Bo-
gin, Khyathi Raghavi Chandu, Jennifer Dumas, Yanai
Elazar, Valentin Hofmann, Ananya Harsh Jha, Sachin
Kumar, Li Lucy, Xinxi Lyu, Nathan Lambert, Ian
Magnusson, Jacob Morrison, Niklas Muennighoff,
Aakanksha Naik, Crystal Nam, Matthew E. Peters,
Abhilasha Ravichander, Kyle Richardson, Zejiang
Shen, Emma Strubell, Nishant Subramani, Oyvind
Tafjord, Evan Pete Walsh, Luke Zettlemoyer, Noah A.
Smith, Hannaneh Hajishirzi, Iz Beltagy, Dirk Groen-
eveld, Jesse Dodge, and Kyle Lo. 2024. Dolma:
an open corpus of three trillion tokens for language
model pretraining research. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), ACL
2024, Bangkok, Thailand, August 11-16, 2024, pages
15725–15788. Association for Computational Lin-
guistics.

Yixin Song, Haotong Xie, Zhengyan Zhang, Bo Wen,
Li Ma, Zeyu Mi, and Haibo Chen. 2024.
Turbo sparse: Achieving LLM SOTA perfor-
mance with minimal activated parameters. CoRR,
abs/2406.05955.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hongyu Wang, Shuming Ma, Ruiping Wang, and Furu
Wei. 2024. Q-sparse: All large language models can
be fully sparsely-activated. CoRR, abs/2407.10969.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu,
Lijie Wang, Haihua Yang, Biye Li, Cheng Cheng,
Weiwei Lü, Rui Hu, Chenxia Li, Liu Yang, Xilin
Luo, Xuejie Wu, Lunan Liu, Wenjun Cheng, Peng
Cheng, Jianhao Zhang, Xiaoyu Zhang, Lei Lin, Xi-
aokun Wang, Yutuan Ma, Chuanhai Dong, Yanqi Sun,
Yifu Chen, Yongyi Peng, Xiaojuan Liang, Shuicheng
Yan, Han Fang, and Yahui Zhou. 2023. Skywork:
A more open bilingual foundation model. Preprint,
arXiv:2310.19341.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. 2017.
Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-
generated Text, NUT@EMNLP 2017, Copenhagen,
Denmark, September 7, 2017, pages 94–106. Associ-
ation for Computational Linguistics.

Mengzhou Xia, Tianyu Gao, Zhiyuan Zeng, and Danqi
Chen. 2024. Sheared llama: Accelerating language
model pre-training via structured pruning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

15809

https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://jmlr.org/papers/v23/21-0998.html
https://jmlr.org/papers/v23/21-0998.html
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.48550/ARXIV.2401.04088
https://doi.org/10.48550/ARXIV.2401.04088
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1712.01312
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://aclanthology.org/2024.acl-long.840
https://doi.org/10.48550/ARXIV.2406.05955
https://doi.org/10.48550/ARXIV.2406.05955
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2407.10969
https://doi.org/10.48550/ARXIV.2407.10969
https://arxiv.org/abs/2310.19341
https://arxiv.org/abs/2310.19341
https://doi.org/10.18653/V1/W17-4413
https://openreview.net/forum?id=09iOdaeOzp
https://openreview.net/forum?id=09iOdaeOzp


An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. CoRR, abs/2407.10671.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? In Proceedings
of the 57th Annual Meeting of the Association for
Computational Linguistics.

Zhengyan Zhang, Yankai Lin, Zhiyuan Liu, Peng Li,
Maosong Sun, and Jie Zhou. 2022. Moefication:
Transformer feed-forward layers are mixtures of ex-
perts. In Findings of the Association for Computa-
tional Linguistics: ACL 2022, Dublin, Ireland, May
22-27, 2022, pages 877–890. Association for Com-
putational Linguistics.

Tong Zhu, Xiaoye Qu, Daize Dong, Jiacheng Ruan,
Jingqi Tong, Conghui He, and Yu Cheng. 2024.
Llama-moe: Building mixture-of-experts from
llama with continual pre-training. arXiv preprint
arXiv:2406.16554.

A Appendix

A.1 Analysis of the Hyperparameters
Table 3 summarizes the training hyperparameters
used in our experiments, including the learning rate,
mask learning rate, batch size, weight decay, and
Adam optimizer parameters. These configurations
are kept consistent across all training setups unless
otherwise specified.

Initial Learning Rate: lr 2e-5
Mask Learning Rate: mlr lr ∗ 1e4

Global Batch Size: bs 2048
Weight Decay: wd 0.1

Adam Parameters: beta1,beta2 0.9,0.95

Table 3: Training hyperparameters.

A.2 Visualization of the Gating.
First, we analyze the roles of shared, independent,
and pruned experts across layers and their relation-
ship to activation sparsity. Specifically, we use 8-hit

dimensions to represent shared experts (blue bars)
and 0-hit dimensions to represent pruned experts
(red bars) in Figure 6 (a). Then we empirically in-
vestigate whether different experts contain domain-
specific information. Specifically, we calculate the
cosine similarity of the vectors and report the re-
sults in the Figure 6 (b). We observe a clear distinc-
tion between the STEM and humanities subjects,
as shown by the clustering patterns in the heatmap.
Additionally, three history tasks—high school
european history, high school US history,
and high school world history—exhibit strong
correlations with each other, more so than with
other tasks. This is likely due to the significant
overlap in the subject matter across these history
topics, which makes them more similar compared
to other tasks.

15810

https://doi.org/10.18653/V1/2022.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.71
https://doi.org/10.18653/V1/2022.FINDINGS-ACL.71
https://arxiv.org/abs/2406.16554
https://arxiv.org/abs/2406.16554


(a) (b)

Figure 6: Analysis of the experts. (a) denotes the visualization of experts’ selection and (b) denotes the routing
distribution similarity across MMLU 57 tasks.

15811


