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Abstract

Language models have shown remarkable ca-
pabilities in text generation, but precisely con-
trolling their linguistic style remains challeng-
ing. Existing methods either lack fine-grained
control, require extensive computation, or in-
troduce significant latency. We propose Style
Arithmetic (SA), a novel parameter-space ap-
proach that first extracts style-specific repre-
sentations by analyzing parameter differences
between models trained on contrasting styles,
then incorporates these representations into a
base model with precise control over style in-
tensity. Our experiments show that SA achieves
three key capabilities: controllability for pre-
cise adjustment of styles, transferability for
effective style transfer across tasks, and com-
posability for simultaneous control of multi-
ple style dimensions. Compared to alterna-
tive methods, SA offers superior effectiveness
while achieving optimal computational effi-
ciency. Our approach opens new possibilities
for flexible and efficient style control in lan-
guage models.

1 Introduction

Language models have demonstrated remarkable
capabilities in generating human-like text across
various tasks (OpenAI et al., 2024). However, it re-
mains a significant challenge to efficiently control
the linguistic style of their outputs with fine-grained
granularity. The ability to modulate styles, such
as conciseness and readability, is crucial for appli-
cations ranging from personalized AI assistants to
adaptive educational systems, especially given the
models’ versatility in handling different types of
tasks.

Researchers have proposed various approaches
to linguistic style control, including prompt engi-
neering (Chen and Moscholios, 2024), fine-tuning
(Liu et al., 2024), and collaborative decoding (Shi
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Prompt: List two adjectives that would describe a
teacher.

A good teacher is usually smart and caring.
Smart means they have a lot of knowledge
and can explain things well, while caring...

A teacher can be described as dedicated and
knowledgeable. These words capture the
important qualities that make a...

A teacher can be described as both knowl-
edgeable and dedicated, embodying a deep
understanding of their subject matter while
consistently showing a strong commitment...

An exemplary educator is characterized by
both diligence and compassion, embodying
the quintessential attributes of a pedagogue
who not only imparts...

An exemplary pedagogue is characterized
by both erudition and pedagogical efficacy,
embodying an amalgamation of intellectual
acumen and pedagogical dexterity...

Figure 1: The visualization presents five responses to a
prompt. The bars on the left indicate the average num-
ber of syllables per word for each response—a metric
that reflects vocabulary difficulty—where darker shades
correspond to higher values. Two responses marked as
FT are generated by models fine-tuned on basic and ad-
vanced training data respectively, while the other three
marked as SA are produced using our Style Arithmetic
method.

et al., 2024) methods. However, prompt engineer-
ing only allows for coarse-grained style control
without precise adjustment; model fine-tuning re-
quires separate training for each style-task combi-
nation, resulting in substantial computational over-
head; and collaborative decoding methods necessi-
tate multiple forward passes during inference, lead-
ing to system latency. Furthermore, previous work
has primarily focused on conversational tasks, leav-
ing the style transfer across different functionali-
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ties of modern general-purpose language models
largely unexplored.

Inspired by recent advances in model merging
techniques that effectively combine capabilities
from multiple models (Zhou et al., 2024; Yang
et al., 2024b), we propose Style Arithmetic (SA), a
novel approach that operates directly in the param-
eter space. SA first extracts style-specific represen-
tations by analyzing the parameter differences be-
tween models trained on contrasting styles, then in-
corporates these representations into a base model
with precise control over style intensity.

Figure 1 demonstrates SA’s remarkable capabil-
ities in controlling vocabulary difficulty. Unlike
fine-tuning (FT) approaches that can only produce
responses at fixed difficulty levels matching the
training data, SA enables flexible interpolation,
generating text with difficulty levels that smoothly
vary between training levels, as well as extrapola-
tion, producing text that extends beyond training
levels to be either simpler than the basic training
data or more sophisticated than the advanced train-
ing data.

As a parameter-space approach, our SA brings
two key advantages: First, it achieves precise and
efficient control over linguistic styles through sim-
ple arithmetic operations on model parameters.
Second, it enables effective style transfer across
different tasks, as the extracted style representa-
tions capture generalizable stylistic features rather
than task-specific patterns.

To demonstrate the effectiveness of SA, we first
conduct experiments to evaluate its style control-
lability by showing how extracted stylistic repre-
sentations can precisely modulate model outputs.
We then extend this investigation to demonstrate
that these representations enable cross-task style
transferability. Our experiments further reveal
the composability of style representations, show-
ing that multiple style representations can be ef-
fectively combined, enabling sophisticated style
control. Through comprehensive comparisons with
baselines including prompting, mixed supervised
fine-tuning and collaborative decoding, we demon-
strate that SA achieves superior performance in
both effectiveness and efficiency.

2 Related Work

2.1 Model Collaboration

Language models have evolved to excel in differ-
ent domains and exhibit diverse linguistic styles.

Model collaboration leverages these differences to
enhance both task performance and style control
by integrating multiple models.

Two main approaches exist for model collabo-
ration. Pre-inference methods include parameter
averaging (Liao et al., 2024) and task vectors (Il-
harco et al., 2023). While direct averaging can
be suboptimal (Yang et al., 2024a), weighted aver-
aging with optimized coefficients shows promise
(Zhou et al., 2024; Goddard et al., 2024). Task vec-
tors enable capabilities like multitask learning and
controlled forgetting through parameter arithmetic.
During inference, models can collaborate by merg-
ing probability distributions (Hoang et al., 2024; Li
et al., 2024).

2.2 Linguistic Style Control

Linguistic style control focuses on generating re-
sponses with specific linguistic characteristics, en-
compassing related areas such as personalization
(Zhang et al., 2024), role playing (Chen et al.,
2024a), and controlled text generation (Liang et al.,
2024). Training-free approaches include prompt
engineering (Ge et al., 2023), agents (Chen et al.,
2024b) and composing or biasing existing LLMs
Dekoninck et al. (2024).

Training-based methods achieve more precise
style control by directly optimizing model param-
eters. These methods primarily include activa-
tion manipulation (Konen et al., 2024), fine-tuning
(Nguyen et al., 2024) and reinforcement learning
approaches (Xu et al., 2024; Ramé et al., 2023).
Notably, Ramé et al. (2023) explored parameter
averaging (Liao et al., 2024) in the context of multi-
objective RLHF, demonstrating that model weights
maintain linear relationships when fine-tuned on
different rewards from a shared initialization. In
contrast, we investigate task vectors (Ilharco et al.,
2023) for style control, enabling a wide range of
linguistic style adjustments and transfers across var-
ious tasks - an approach that, to our best knowledge,
has not been previously explored.

3 Methodology

We formalize the style control problem and intro-
duce both baselines and our method in this section.
See Appendix A for more details.

3.1 Problem Formulation

We begin by defining two concepts, i.e., task and
style. A task 𝑇 is characterized by two compo-
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(c) Transferability: 𝜃𝑇 ′
has different task with𝜃𝑇 ,𝑆± and arbitrary style

Figure 2: To illustrate our goals, we establish a coordinate system that represents the styles of a model 𝜃 and its
responses 𝑅. Their coordinates are determined by the style metrics (𝑀𝑆1 (𝑅) , 𝑀𝑆2 (𝑅)). 𝜃𝑇 ,𝜆𝑆 represents a language
model that performs task 𝑇 while exhibiting style 𝜆𝑆. The dashed boxes represent the construction of 𝜃𝜆𝑆 . The gray
dashed arrows indicate the correspondence between models and their responses, and the red dashed arrows illustrate
the style transfer process.

nents: a test instruction set 𝐼𝑇Test and a task perfor-
mance metric 𝑀𝑇 .

A style, formally denoted as 𝜆𝑆, consists of two
aspects: the style dimension 𝑆 which represents the
specific linguistic feature we aim to control, such
as response length or vocabulary difficulty, and the
style intensity 𝜆 which indicates the degree of that
feature’s presence in the response. A style dimen-
sion 𝑆 consists of a pair of contrasting adjectives𝑆± representing opposite ends of the style spec-
trum, and a style metric 𝑀𝑆 that quantifies the style
characteristics in responses. For example, response
length can be characterized by the endpoints "con-
cise" (𝑆−) and "verbose" (𝑆+), with token count
serving as its metric 𝑀𝑆.

Based on this definition, we can express a style𝜆𝑆 as a linear combination of its endpoints: 𝜆𝑆 =(1 − 𝜆) 𝑆− + 𝜆𝑆+. This formulation naturally ex-
tends to multiple style dimensions. For instance,
given two style dimensions 𝑆1 and 𝑆2 with corre-
sponding intensities 𝜆1 and 𝜆2, their combination𝜆1𝑆1 + 𝜆2𝑆2 also constitutes a valid style.

Our primary goal is illustrated in Figure 2a.
Given two models 𝜃𝑇 ,𝑆± that generate responses𝑅𝑇 ,𝑆± for task 𝑇 with contrasting styles 𝑆±, we aim
to create a system 𝜆 that produces 𝜃𝑇 ,𝜆𝑆 generating
responses 𝑅𝑇 ,𝜆𝑆 lying along the line connecting the
style endpoints, 𝑅𝑇 ,𝑆± . The relationship between𝑅𝑇 ,𝜆𝑆 and 𝑅𝑇 ,𝑆± can be formally expressed as:

𝑀𝑆 (𝑅𝑇 ,𝜆𝑆) ≈ (1 − 𝜆)𝑀𝑆 (𝑅𝑇 ,𝑆−) + 𝜆𝑀𝑆 (𝑅𝑇 ,𝑆+) (1)= 𝑀𝑆 (𝑅𝑇 ,𝑆−)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Initial Point

+𝜆 [𝑀𝑆 (𝑅𝑇 ,𝑆+) −𝑀𝑆 (𝑅𝑇 ,𝑆−)]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Controlling Direction

. (2)

For 0 < 𝜆 < 1, 𝑅𝑇 ,𝜆𝑆 represents an interpolation
between 𝑅𝑇 ,𝑆± , which we aim to make as smooth as
possible. When 𝜆 < 0 or 𝜆 > 1, 𝑅𝑇 ,𝜆𝑆 represents an
extrapolation beyond the original style endpoints.
We refer to this goal as controllability.

As in controlled text generation, 𝜃𝑇 ,𝜆𝑆 must not
only generate responses with the desired style char-
acteristics but also maintain high response qual-
ity (Liang et al., 2024). Many factors can af-
fect response quality, and style may be one of
them, as shown by differences in task perfor-
mance 𝑀𝑇 (𝑅𝑇 ,𝑆±) between style endpoints. For
instance, in mathematical reasoning, overly con-
cise responses that omit intermediate steps lead to
incorrect solutions.

For interpolation, since 𝑀𝑇 (𝑅𝑇 ,𝑆±) reflects the
inherent capabilities of the models rather than being
method-dependent, we require that𝑀𝑇 (𝑅𝑇 ,𝜆𝑆) ≥ (1 − 𝜆)𝑀𝑇 (𝑅𝑇 ,𝑆−) + 𝜆𝑀𝑇 (𝑅𝑇 ,𝑆+) (3)

to ensure the model maintains high response qual-
ity. For extrapolation, while we acknowledge that
some performance degradation may be inherent
to style intensification, we allow for gradual per-
formance decline as style intensifies but prohibit
cliff-like degradation caused by model collapse.

Beyond controllability, we introduce another
goal called style transferability. Eq. (2) suggests
that we can treat any model as a initial point and
use 𝜃𝑇 ,𝑆± as reference points to adjust its style. This
means we can relax two key constraints:

First, the initial model does not need to exhibit
style 𝑆−. Moving from Figure 2a to 2b, we relax
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(a) Training and deployment pipeline for language models,
with the autoregressive process omitted for simplicity.

𝑇 ,𝑆+𝑇 ,𝑆− 𝜆 𝑇 ,𝜆𝑆Data Mixture

𝜃PT 𝜃𝑇 ,𝜆𝑆FT

Supervised
Fine-Tuning𝑥1∶𝑛 𝑝 (𝑥𝑛+1|𝑥1∶𝑛) 𝑥𝑛+1Decoding

Inference

(b) MSFT method (baseline 2): Training data with contrasting
styles are mixed before training. For each choice of 𝜆, a separate
training process is required.

𝜃PT 𝜃𝑇 ,𝑆+FT

𝑇 ,𝑆+
Supervised
Fine-Tuning

𝑥1∶𝑛 𝑝𝑇 ,𝑆+
FT𝑝𝑇 ,𝑆−
FT

𝜆 𝑝𝑇 ,𝜆𝑆
CD

𝑥𝑛+1DecodingInference

Probability
Fusion

𝜃𝑇 ,𝑆−FT

(c) CD method (baseline 3): Probability distributions are fused
after inference. There is no overhead when selecting 𝜆, however,
an extra inference pass is required for each input instruction.

𝜃PT

𝑇 ,𝑆+
𝜃𝑇 ,𝑆+FT

Supervised Fine-Tuning𝜃𝑇 ,𝑆−FT𝜆𝜃𝑇 ,𝜆𝑆SA

Model
Merging𝑥1∶𝑛 𝑝 (𝑥𝑛+1|𝑥1∶𝑛) 𝑥𝑛+1Decoding

Inference

(d) SA method: Models are merged in parameter space
after training. For each choice of 𝜆, a merging operation is
required.

Figure 3: Illustration of different methods at various levels. 𝜃PT and 𝜃FT represent the pretrained and fine-tuned
models, respectively.  represents training data, 𝑥1∶𝑛 represents partially generated response, 𝑝 represents probability
distributions, and 𝑥𝑛+1 represents the selection of the next token.

the style constraint by replacing 𝜃𝑇 ,𝑆− with 𝜃𝑇 that
has arbitrary style, and use 𝜃𝑇 ,𝑆± to guide style ad-
justments. The resulting model 𝜃𝑇 ,𝜆𝑆 will generate
responses along the dashed line that passes through
the initial point. Second, the initial model can even
handle a different task 𝑇 ′. Advancing to Figure 2c,
we relax the task constraint by evolving 𝜃𝑇 into 𝜃𝑇 ′
which operates on a arbitrary task. Although 𝜃𝑇 ′,𝜆𝑆
resides in a different coordinate system, the direc-
tion of style adjustment indicated by the dashed
line remains consistent with the reference models.

3.2 Baselines

In this subsection, we present three baseline ap-
proaches for comparison with our proposed style
arithmetic method.

3.2.1 Prompting
The most straightforward approach for linguistic
style control is through Prompting. We can di-
rectly instruct the model to generate responses with
specific stylistic characteristics by incorporating
style descriptions into the system prompt. This
approach requires no additional training and can
be applied to any instruction-tuned model. How-

ever, it is difficult to achieve fine-grained style
variation with this approach, as subtle changes in
style are hard to describe explicitly in prompts and
the results are heavily influenced by the model’s
instruction-following capability.

3.2.2 Mixed Supervised Fine-Tuning

Given a pair of training data 𝑇 ,𝑆± exhibiting 𝑆±
styles, another approach for generating responses
with style 𝜆𝑆 is Mixed Supervised Fine-Tuning
(MSFT). As shown in Figure 3a and 3b, the MSFT
process additionally involves creating a mixed train-
ing dataset 𝑇 ,𝜆𝑆 by randomly selecting responses
for the style we want to control, where responses
with 𝑆− and 𝑆+ styles are selected with probabili-
ties 1−𝜆 and 𝜆, respectively. Finally, the pretrained
model 𝜃PT is fine-tuned on this mixed dataset to
produce a model 𝜃𝑇 ,𝜆𝑆FT capable of generating re-
sponses exhibiting the desired style 𝜆𝑆.

Despite its conceptual simplicity, MSFT has sev-
eral limitations: it can only handle style intensities
between 0 and 1, it cannot transfer styles between
different tasks, and it requires separate fine-tuning
for each style combination, which is computation-
ally inefficient.

15753



3.2.3 Collaborative Decoding
MSFT necessitates an additional training for each
value of 𝜆. To address this issue, we introduce Col-
laborative Decoding (CD), eliminating this over-
head by training 𝜃𝑇 ,𝑆±FT on their respective datasets𝑇 ,𝑆± in advance and fusing them during inference.

At the representation level, hidden states collab-
oration (CD-HS) involves performing a weighted
average of the hidden states from the models 𝜃𝑇 ,𝑆±
at each layer, with the weights determined by the
respective style intensities. These combined hidden
states are then propagated through the network. At
the output level, probability distribution collabo-
ration (CD-PB), as depicted in Figure 3c, merges
the probability distributions from different models
using weights based on style intensity.

3.3 Style Arithmetic
While Collaborative Decoding (CD) effectively re-
moves the overhead associated with selecting 𝜆, it
necessitates an additional inference for each input
instruction, resulting in increased system latency.
In contrast, Style Arithmetic (SA) circumvents
this issue by consolidating 𝜃𝑇 ,𝑆±FT into a single model
prior to inference.𝜃𝑇 ,𝜆𝑆SA = (1 − 𝜆) 𝜃𝑇 ,𝑆−FT + 𝜆𝜃𝑇 ,𝑆+FT (4)= 𝜃𝑇 ,𝑆−FT + 𝜆(𝜃𝑇 ,𝑆+FT − 𝜃𝑇 ,𝑆−FT ) , (5)

where 𝜃 stands for the parameter of a model.
SA offers the capability of style transfer across

different tasks. This is because SA operates directly
in the parameter space, allowing the style vectors
to be applied to any base model, regardless of its
original task or style. By relaxing the style and task
constraints of the base model 𝜃𝑇 ,𝑆−FT in Eq. (5), we
have: 𝜃𝑇2,𝜆𝑆SA = 𝜃𝑇2 + 𝜆(𝜃𝑇1,𝑆+FT − 𝜃𝑇1,𝑆−FT ) .⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Style vector 𝜎𝑇1 ,𝑆
(6)

Drawing inspiration from Ilharco et al. (2023),
where task vectors 𝜏𝑇 = 𝜃𝑇FT − 𝜃PT capture task-
specific knowledge in parameter space, we intro-
duce the concept of style vectors. A style vector𝜎𝑇 ,𝑆 = 𝜃𝑇 ,𝑆+ − 𝜃𝑇 ,𝑆− encapsulates the stylistic char-
acteristics for a given style 𝑆 in the parameter space.
By incorporating style vectors into base model
through addition or subtraction, we can strengthen
or weaken the presence of the style. Figure 4 il-
lustrates the geometric relationships among these
components.

𝜃PT

𝜃𝑇 ,𝑆+FT𝜃𝑇 ,𝑆−FT

𝜏𝑇𝜏𝑇 𝜎𝑇 ,𝑆𝑖
−0.5 0 0.5 1 1.5𝜃𝑇 ,𝜆𝑆SA𝜆

𝜏𝑇 = 𝜃𝑇
FT − 𝜃PT𝜎𝑇 ,𝑆 = 𝜃𝑇 ,𝑆+

FT − 𝜃𝑇 ,𝑆−
FT𝜃𝑇 ,𝜆𝑆

SA = 𝜃𝑇 ,𝑆−
FT + 𝜆𝜎𝑇 ,𝑆

Figure 4: Comparison of style arithmetic and task arith-
metic. 𝜏𝑇 is the task vector, and 𝜎𝑇 ,𝑆𝑖 is the style vector.
The points on the axis represent 𝜃𝑇 ,𝜆𝑆SA with different 𝜆.

4 Experiments

4.1 Settings

Task 𝑇 Domain Metric 𝑀𝑇
Alpaca Chatting Response quality
GSM8K Reasoning Accuracy
MBPP Coding Pass rate

Table 1: Overview of tasks. Response quality is eval-
uated using Mistral-8B-Instruct (MistralAI, 2024) as a
model-based metric, while accuracy and pass rate are
rule-based metrics. All the metrics in this table are
higher-is-better. See Appendix C.2 for details on using
perplexity as an auxiliary metric for response quality,
and Appendix B.1 for more information about the tasks.

Dimension 𝑆 Description Metric 𝑀𝑆
Length
(response verbosity)

𝑆−: Concise Token count𝑆+: Verbose

Readability
(vocabulary difficulty)

𝑆−: Easy Syllables
per word𝑆+: Hard

Complexity
(syntactic complexity)

𝑆−: Simple Dependency
distance𝑆+: Complex

Sentiment
(emotional tone)

𝑆−: Positive Sentiment score𝑆+: Negative

Politeness
(social etiquette)

𝑆−: Polite Politeness score𝑆+: Rude

Table 2: Overview of styles. For all metrics, higher
values indicate 𝑆+, while lower values indicate 𝑆−. The
metrics for sentiment and politeness are model-based
classifiers, while the others are based on statistical mea-
sures. For more details, please refer to Appendix B.2.

The tasks and styles utilized in the experiments
are shown in Table 1 and Table 2, respectively. In
Appendix B, we provide a more detailed discus-
sion of our experimental settings. We generate
training datasets with diverse styles using GPT-
4o-mini (OpenAI et al., 2024). The prompts used
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for data generation can be found in Appendix D.1.
All fine-tuned models in this section are based on
Qwen2.5-3B (Qwen et al., 2025). For experiments
conducted on the Llama 3 (Grattafiori et al., 2024)
family of models, please refer to Appendix C.7.

4.2 Study on Controllability
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(e) 𝑇 = Alpaca, 𝑆 = Politeness

Figure 5: The results of controllability experiments for
Alpaca task. Since 𝜆 = 0, 1 correspond to the same
fine-tuned models across all methods, both 𝑀𝑆 and 𝑀𝑇
should be identical at these points theoretically. How-
ever, due to different inference libraries used (vLLM
for MSFT and SA, Huggingface Transformers for CD),
they exhibit minor variations.
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(b) 𝑇 = MBPP, 𝑆 = Length

Figure 6: The results of controllability experiments for
GSM8K and MBPP tasks. For these domains, only
the length style is evaluated, as other linguistic styles
are rarely seen. Note that the definition of the length
style in GSM8K and MBPP differ from those in Alpaca.
Detailed style and task specifications are provided in
Appendix D.1.

Settings NMSE×102
Task Style MSFT CD-PB CD-HS SA

Alpaca

Length 0.31 2.78 1.35 1.34
Read. 0.56 1.31 0.11 0.15
Comp. 0.63 2.40 0.12 0.13
Sent. 0.25 2.34 1.55 1.49
Pol. 0.91 3.24 1.15 1.58

GSM8K Length 2.52 1.76 0.10 0.10

MBPP Length 3.75 1.54 0.32 0.31

Average 1.28 2.20 0.67 0.73

Table 3: Normalized mean square error (NMSE) quanti-
fies the deviation between actual and ideal style control
curves (𝑀𝑆 ∼ 𝜆). Through normalization, we enable
cross-metric comparisons, with lower values reflecting
better linearity. See Appendix C.1.1 for detailed method-
ology.

To validate our core hypothesis that meaningful
style representations can be extracted from the pa-
rameter space and utilized for precise style control,
we first conduct evaluations focusing on individual
style-task combinations as formulated in Eq. (2).

For each experiment, we utilize a pair of datasets𝑇 ,𝑆± that represent opposing extremes of a style
dimension. We construct 𝑅𝑇 ,𝜆𝑆 through four dis-
tinct methodologies: MSFT, CD-PB, CD-HS, and
SA. To evaluate both interpolation and extrapola-
tion capabilities, we vary the style intensity param-
eter within the range −0.5 ≤ 𝜆 ≤ 1.5.
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The results of our controllability experiments
are presented in Figure 5 and Figure 6. Qualitative
examples are provided in Appendix E.3. We also
explored prompting-based approaches, but due to
their reliance on general instruction-following ca-
pabilities, these results are presented separately in
Appendix C.3.

As shown in Figures 5 and 6, CD-HS and SA
methods effectively control style metrics (𝑀𝑆)
while maintaining task performance (𝑀𝑇 ). This
holds true both for interpolation (0 < 𝜆 < 1) fol-
lowing Eq. (3), and extrapolation (𝜆 < 0 or 𝜆 > 1)
without performance cliffs.

The normalized mean square error presented in
Table 3 demonstrates that MSFT and CD-PB meth-
ods yield substantially higher error values, suggest-
ing inferior style control capabilities. In particular,
CD-PB’s poor performance in extrapolation shown
in Figure 5 and Figure 6 suggests that interaction
between models solely at the final probability dis-
tribution level is insufficient. Although CD-HS and
SA achieve comparable performance, SA’s notably
lower computational overhead, as detailed in Ap-
pendix A.5, establishes it as the optimal solution
for real-world deployment.

For MBPP task, moderate-length responses
achieve optimal pass rates, even when generated in-
directly through SA or CD. This finding aligns with
programming best practices - overly compact code
is difficult to write and maintain, while excessively
verbose code risks introducing errors.

4.3 Study on Transferability

Settings Scope Ratio

Task Style CD-PB CD-HS SA

Alpaca
Length 1.102 1.240 1.225
Read. 0.532 0.746 0.762
Comp. 0.453 0.491 0.510
Sent. 0.401 0.358 0.351
Pol. 0.325 0.729 0.693

GSM8K
Length 0.582 0.375 0.377
Read. 0.347 0.413 0.435
Comp. 0.420 0.276 0.289

Average 0.520 0.579 0.580

Table 4: The scope ratio measures the relative effec-
tiveness of style transfer by comparing the slopes of𝑀𝑆 curves between transferability and controllability
experiments. Due to varying scales across tasks and
styles, direct slope comparison is infeasible, necessitat-
ing this ratio-based approach. A higher ratio indicates
better preservation of style control effectiveness during
transfer. See Appendix C.1.2 for calculation details.

−1.0 −0.5 0.0 0.5 1.0�
100
200
300
400

MS Tok
en

C
ou

nt

Method
CD-HS
CD-PB
SA

1

−1.0 −0.5 0.0 0.5 1.0�0.90
0.91
0.92
0.93
0.94
0.95

MT R
es

po
ns

e
�

al
it

y

Method
CD-HS
CD-PB
SA

1
(a) 𝑇 = Alpaca, 𝑆 = Length

−0.5 0.0 0.5 1.0 1.5�
1.4
1.6
1.8
2.0

MS Syl
la
bl
es

Pe
r
To
ke
n

Method
CD-HS
CD-PB
SA

1

−0.5 0.0 0.5 1.0 1.5�
0.80
0.85
0.90
0.95

MT R
es

po
ns

e
�

al
it

y

Method
CD-HS
CD-PB
SA

1
(b) 𝑇 = Alpaca, 𝑆 = Readability

−0.5 0.0 0.5 1.0 1.5�
2.5
3.0
3.5
4.0

MS De
pe
nd

en
cy

D
is
ta
nc
e Method

CD-HS
CD-PB
SA

1

−0.5 0.0 0.5 1.0 1.5�
0.880.890.900.910.920.930.94

MT R
es

po
ns

e
�

al
it

y

Method
CD-HS
CD-PB
SA

1
(c) 𝑇 = Alpaca, 𝑆 = Complexity

−0.5 0.0 0.5 1.0 1.5�
1.8
2.0
2.2
2.4

MT Sen
ti
m
en
t
Sc
or
e

CD-HS
CD-PB
SA

1

−0.5 0.0 0.5 1.0 1.5�
0.840.860.880.900.920.94

MT R
es

po
ns

e
�

al
it

y
CD-HS
CD-PB
SA

1
(d) 𝑇 = Alpaca, 𝑆 = Sentiment

0.5 1.0 1.5 2.0 2.5�
2.002.052.102.152.202.25

MT Po
lit
en
es
s
Sc
or
e

CD-HS
CD-PB
SA

1

0.5 1.0 1.5 2.0 2.5�
0.40.5
0.60.7
0.80.9

MT R
es

po
ns

e
�

al
it

y

CD-HS
CD-PB
SA

1
(e) 𝑇 = Alpaca, 𝑆 = Politeness

Figure 7: The results of transferability experiments for
Alpaca task.

To evaluate style transferability, we leverage the
stylized models 𝜃𝑇 ,𝑆± and datasets 𝑇 ,𝑆± from the
Alpaca task in Section 4.2 to modulate the style
of Qwen2.5-3B-Instruct 𝜃Ins, a model enhanced
through sophisticated RLHF techniques (Qwen
et al., 2025). In our experimental framework, we
apply one style dimension at a time and systemati-
cally evaluate the transfer effectiveness across two
distinct tasks: Alpaca and GSM8K, where Alpaca
evaluations assess style transfer within the same
task domain (as illustrated in Figure 2b), while
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Figure 8: The results of transferability experiments for
GSM8K task. We exclude sentiment and politeness
styles since their model-based evaluators do not gener-
alize well to mathematical reasoning tasks.

GSM8K evaluations demonstrate cross-task trans-
ferability (as shown in Figure 2c).

The experimental results for Alpaca and GSM8K
tasks are presented in Figures 7 and 8, respec-
tively. For instance, in Figures 7a and 8a, all
data points on the SA curves are generated by
the identical model 𝜃Ins + 𝜆𝜎Alpaca, Length, where𝜎Alpaca, Length = 𝜃Alpaca, Verbose

FT − 𝜃Alpaca, Concise
FT rep-

resents the style vector for length style derived from
the Alpaca task. The only variation between these
experiments is the instruction used during evalu-
ation. Additional experiments exploring coding
tasks, cross-lingual style transfer, and example data
samples are provided in Appendices C.4 and E.3.

Our experimental findings demonstrate success-
ful style transfer across different tasks and methods,
with CD-HS and SA achieving comparable control
over the style transfer process. This equivalence
is evidenced by the similar slope ratios in their
respective 𝑀𝑆 curves, as quantified in Table 4.

However, our analysis reveals that the effective-
ness of style transfer, measured by the slope of
the 𝑀𝑆 curve, is generally lower in transferabil-
ity experiments compared to controllability experi-

ments (Section 4.2). This reduction in effectiveness
becomes particularly pronounced when transfer-
ring styles across different tasks (from Alpaca to
GSM8K). We identify two primary factors con-
tributing to this phenomenon: First, there exists an
inherent constraint on the range of possible style
metric values (𝑀𝑆) for any valid response. In con-
trollability experiments, we start from an extreme
point (𝑆−) of the style spectrum, allowing for max-
imum potential change. In contrast, transferabil-
ity experiments begin from a more neutral start-
ing point, where the initial style may already be
closer to the target style (𝑆+). This naturally re-
sults in a smaller scope for style adjustment and
consequently a reduced rate of change. Second,
the manifestation of linguistic styles varies across
different tasks, taking response length as an exam-
ple - conversational tasks typically expand through
additional context and examples, mathematical rea-
soning requires more detailed step-by-step explana-
tions, and coding tasks benefit from comprehensive
comments and modular code structure. These task-
specific characteristics create natural boundaries
for style transfer, affecting how effectively a style
can be adapted across different task domains.

4.4 Study on Composability
Building on our analysis of single-style transfer
presented in Section 4.3, we now extend our inves-
tigation to examine the simultaneous application
of multiple style dimensions. We focus exclusively
on the SA method due to CD method’s prohibitive
computational requirements — combining just two
styles would necessitate loading five models and
executing five forward passes, rendering it imprac-
tical for real-world applications.

Figure 9 presents our experimental results. As
illustrated in Figure 9a, all data points are gen-
erated using the model 𝜃Ins + 𝜆1𝜎Alpaca, Length +𝜆2𝜎Alpaca, Read., where 𝜆1 and 𝜆2 control the inten-
sity of length and readability styles, respectively.
The results demonstrate that style metrics 𝑀𝑆 ex-
hibit a clear planar relationship with respect to the
style intensity parameters 𝜆1 and 𝜆2. This consis-
tent pattern across different style combinations pro-
vides compelling evidence that the SA method can
effectively compose multiple style dimensions si-
multaneously while maintaining coherent outputs.

We observe that the styles exhibit interdepen-
dence in terms of style metrics, as evidenced in
Figure 9b where both 𝜆 for length and complexity
influence the dependency distance. This interdepen-
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Figure 9: Selected results of composability experiments. For additional style combinations and quality analysis,
please refer to Appendix C.6.

dence does not invalidate our previous experimen-
tal conclusions regarding the relationship between𝜆 and 𝑀𝑆. We conduct a comprehensive analy-
sis of these interdependencies in Appendix C.5,
where we quantify the relationships between dif-
ferent style dimensions. Based on this analysis,
the six style combinations presented in Figure 9
were specifically selected because they exhibit the
lowest degree of interdependence, allowing us to
more clearly demonstrate the effectiveness of our
style composition approach while minimizing con-
founding effects.

5 Conclusion

In this study, we explored the control of linguis-
tic style in language models through three dis-
tinct approaches: Mixed Supervised Fine-Tuning
(MSFT), Collaborative Decoding (CD), and Style
Arithmetic (SA). Our extensive experiments across
various tasks and styles revealed that SA emerges
as the most effective and practical method, deliver-
ing high performance with minimal computational
overhead.

6 Limitations

Despite the promising results, several limitations
remain. First, developing a rigorous mathematical
framework that fully explains the effectiveness of
SA represents a significant challenge for future re-
search. Second, both SA and CD-HS approaches
are constrained by their reliance on homogeneous
model architectures, as they operate directly on
model parameters or hidden states. CD-PB neces-
sitates identical vocabularies when merging proba-
bility distributions across tokens; nevertheless, het-
erogeneous language models frequently employ
distinct vocabularies, limiting its applicability.
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A Methodology

In this section, we rigorously present our defini-
tions and formalizations, and provide detailed ex-
planations of our methods. We also conduct a thor-
ough analysis of the computational efficiency of
different approaches at Appendix A.5.

A.1 Definitions and Formulations

We begin with two fundamental definitions. First,
a task 𝑇 is formally defined as a pair ⟨𝐼𝑇Test, 𝑀𝑇 ⟩,
where 𝐼𝑇Test represents a test instruction set and 𝑀𝑇
denotes a performance metric. For instance, math-
ematical reasoning can be formalized as the task⟨GSM8K,Accuracy⟩, where GSM8K provides the
test instructions and accuracy serves as the evalua-
tion metric.

Second, we define a style dimension as a triple⟨𝑆−, 𝑆+, 𝑀𝑆⟩, where 𝑆− and 𝑆+ represent two basic
contrasting linguistic attributes (e.g., concise ver-
sus verbose for the length dimension) that serve
as fundamental styles from which all other styles
can be constructed, and 𝑀𝑆 is a quantitative metric
that measures the degree of these attributes in text.

The concept of style to encompass the following
properties:

• Closure under affine combination: For any
contrasting styles 𝑆± and scalar 𝜆 ∈ ℝ, their
affine combination yields a valid style:𝜆𝑆 = (1 − 𝜆) 𝑆− + 𝜆𝑆+. (7)

where 𝜆 is referred to as the style intensity.
Here, 𝑆± can be regarded as specific instances
of the style 𝜆𝑆 when 𝜆 is either 0 or 1. For0 < 𝜆 < 1, 𝜆𝑆 represents an interpolation
between 𝑆− and 𝑆+; otherwise, it signifies an
extrapolation of 𝑆− and 𝑆+.

• Closure under addition: For any collection
of styles {𝜆𝑖𝑆𝑖}𝑚𝑖=1, their summation yields a
valid style:𝑚∑𝑖=1 𝜆𝑖𝑆𝑖 = 𝑚∑𝑖=1 [(1 − 𝜆𝑖) 𝑆−𝑖 + 𝜆𝑖𝑆+𝑖 ] . (8)

A.1.1 Controllability
Our linguistic control framework consists of sev-
eral key components built upon a pretrained model𝜃PT, a task 𝑇 = ⟨𝐼𝑇Test, 𝑀𝑇 ⟩ associated with train-
ing instructions 𝐼𝑇Train, and a style dimension 𝑆 =⟨𝑆−, 𝑆+, 𝑀𝑆⟩. We first generate stylized responses

𝑅𝑇 ,𝑆±
Train for the training instruction set 𝐼𝑇Train, repre-

senting the desired manifestation of style 𝑆± on
task 𝑇 . Through this process, we construct training
sets 𝑇 ,𝑆± = ⟨𝐼𝑇Train, 𝑅𝑇 ,𝑆±

Train⟩. We then create models𝜃𝑇 ,𝑆±FT through supervised fine-tuning 𝜃PT on 𝑇 ,𝑆± .
These models ultimately generate stylized test re-
sponses 𝑅𝑇 ,𝑆±

Test when given test instructions 𝐼𝑇Test.
Our primary objective is to develop an effi-

cient method for generating responses 𝑅𝑇 ,𝜆𝑆
Test that

align with the style 𝜆𝑆, utilizing the training
datasets 𝑇 ,𝑆± and the models 𝜃𝑇 ,𝑆±FT . The expected𝑀𝑆 (𝑅𝑇 ,𝜆𝑆

Test ) is specified by 𝑀𝑆 (𝑅𝑇 ,𝑆±
Test ), which can

be expressed as:𝑀𝑆 (𝑅𝑇 ,𝜆𝑆
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Metric of 𝜆𝑆 = 𝑀𝑆 (𝑅𝑇 ,(1−𝜆)𝑆−+𝜆𝑆+
Test ) (9)

≈ (1 − 𝜆)𝑀𝑆 (𝑅𝑇 ,𝑆−
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Metric of 𝑆− +𝜆𝑀𝑆 (𝑅𝑇 ,𝑆+
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Metric of 𝑆+
(10)

= 𝑀𝑆 (𝑅𝑇 ,𝑆−
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Initial point

+𝜆 [𝑀𝑆 (𝑅𝑇 ,𝑆+
Test ) −𝑀𝑆 (𝑅𝑇 ,𝑆−

Test )]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Controlling slope

.
(11)

The approximation in Eq. (10) illustrates our ex-
pectation to linearly control the linguistic style of
responses 𝑅𝑇 ,𝜆𝑆

Test using 𝜆. This relationship is guar-
anteed to hold when 𝜆 is either 0 or 1, regardless
of the employed method, since 𝑆− = 𝜆𝑆|𝜆=0 and𝑆+ = 𝜆𝑆|𝜆=1 by definition. It is important to empha-
size that 𝜆 is not constrained to the interval [0, 1]
in our formulation, allowing for a broader range of
style control.

For a composed style that combines multiple
individual styles ∑𝑚𝑗=1 𝜆𝑗𝑆𝑗 , our goal is to generate𝑅𝑇 ,∑𝑚𝑗=1 𝜆𝑗𝑆𝑗

Test that satisfies:

𝑀𝑆𝑖 (𝑅𝑇 ,∑𝑚𝑗=1 𝜆𝑗 𝑆𝑗
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Style of ∑𝑚𝑗=1 𝜆𝑗 𝑆𝑗
≈ 𝑚∑𝑗=1 𝑀𝑆𝑖 (𝑅𝑇 ,𝜆𝑗 𝑆𝑗

Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Style of 𝜆𝑗 𝑆𝑗

(12)

≈ 𝑚∑𝑗=1
⎡⎢⎢⎢⎢⎣(1 − 𝜆𝑗)𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗

Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Style of 𝑆−𝑗

+𝜆𝑗 𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Style of 𝑆+𝑗
⎤⎥⎥⎥⎥⎦ (13)

= 𝑚∑𝑗=1 𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗
Test )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Initial point

+ 𝑚∑𝑗=1 𝜆𝑗 [𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗
Test ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗

Test )]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Controlling slope for 𝑆𝑗

(14)

for 𝑖 = 1, ..., 𝑚. The expected metrics for ∑𝑚𝑗=1 𝜆𝑗𝑆𝑗
are described by 𝑀𝑆𝑖 (𝑆±𝑗 ) , 𝑖, 𝑗 = 1, ..., 𝑚, through a
two-step decomposition, namely Eq. (12) and (13),
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corresponding to the two properties of style, which
are Eq. (8) and (7), respectively. It is important to
note that the approximation in Eq. (12) does not
guarantee validity, indicating that the initial point
in Eq. (14) is method dependent.

A direct implication of Eq. (10) is that, for the
style metric 𝑀𝑆, we have:

𝑀𝑆 (𝑅𝑇 ,𝜆𝑆) ≈ 𝜆 − 𝜆1𝜆2 − 𝜆1𝑀𝑆 (𝑅𝑇 ,𝜆1𝑆) + 𝜆2 − 𝜆𝜆2 − 𝜆1𝑀𝑆 (𝑅𝑇 ,𝜆2𝑆) .
(15)

Assuming a local linear relationship between 𝑀𝑆
and 𝑀𝑇 , which implies that small changes in style
intensity incur a constant quality cost, our require-
ments for response quality can be formalized as:

𝑀𝑇 (𝑅𝑇 ,𝜆𝑆) ≳ 𝜆 − 𝜆1𝜆2 − 𝜆1𝑀𝑇 (𝑅𝑇 ,𝜆1𝑆) + 𝜆2 − 𝜆𝜆2 − 𝜆1𝑀𝑇 (𝑅𝑇 ,𝜆2𝑆) .
(16)

When 0 ≤ 𝜆 ≤ 1, we set 𝜆1 = 0 and 𝜆2 = 1,
resulting in

𝑀𝑇 (𝑅𝑇 ,𝜆𝑆) ≳ (1 − 𝜆)𝑀𝑇 (𝑅𝑇 ,𝑆−) + 𝜆𝑀𝑇 (𝑅𝑇 ,𝑆+) . (17)

In interpolation experiments, we further strengthen
the relation ≳ to ≥, as shown in Eq. (3). For𝜆 > 1.0 (the situation is similar for 𝜆 < 0), tak-
ing 𝜆 > 𝜆2 > 𝜆1, Eq. (16) reflects that 𝑀𝑇 (𝑅𝑇 ,𝜆𝑆)
should roughly lie above the line connecting points(𝜆1, 𝑀𝑇 (𝑅𝑇 ,𝜆1𝑆)) and (𝜆2, 𝑀𝑇 (𝑅𝑇 ,𝜆2𝑆)). In other
words, the 𝑀𝑇 curve should not exhibit cliff-like
degradation.

A.1.2 Transferability
Equation (11) offers a novel perspective on style
control. It begins with an initial point with style 𝑆−
on task 𝑇 , and leverages 𝑇 ,𝑆± along with 𝜃𝑇 ,𝑆±FT for
the same task to adjust its linguistic style according
to style intensity 𝜆. It is important to note that
the conditions for the initial point can be relaxed.
First, its style is not confined to 𝑆−; any model
with an arbitrary style can serve as the initial point.
Second, its task is not restricted to 𝑇 ; many tasks
often exhibit similarities in linguistic styles, which
enhances the transferability of these styles across
different tasks.

To formulate style transfer, we establish a frame-
work consisting of two series of components. For
the initial point, we employ a model 𝜃𝑇 ′

that gen-
erates responses 𝑅𝑇 ′

Test for task 𝑇 ′ based on test in-
structions 𝐼𝑇 ′

Test, with an arbitrary initial style. In
order to control the style 𝑆 of the initial point, we
utilize the styled training dataset 𝑇 ,𝑆± and fine-
tuned models 𝜃𝑇 ,𝑆±FT from another task 𝑇 . Our goal

is to generate responses 𝑅𝑇 ′,𝜆𝑆
Test for task 𝑇 ′ that in-

herit the style characteristics 𝑆± manifesting on
task 𝑇 while meeting specific metric requirements:𝑀𝑆 (𝑅𝑇 ′,𝜆𝑆

Test ) ≈ 𝑀𝑆 (𝑅𝑇 ′
Test)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Initial point with
arbitrary style on 𝑇 ′

+
𝜆𝑐 [𝑀𝑆 (𝑅𝑇 ,𝑆+

Test ) −𝑀𝑆 (𝑅𝑇 ,𝑆−
Test )]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Controlling scope specified by
a different task 𝑇

(18)

where 𝑐 is a constant scalar, accounting for the con-
trol effectiveness degradation during the transfer
process.

For a composed style represented as ∑𝑚𝑗=1 𝜆𝑗𝑆𝑗 ,
our goal is to generate responses 𝑅𝑇 ′,∑𝑚𝑗=1 𝜆𝑗𝑆𝑗

Test that
satisfy:𝑀𝑆𝑖 (𝑅𝑇 ′,∑𝑚𝑗=1 𝜆𝑗𝑆𝑗

Test ) ≈ 𝑀𝑆𝑖 (𝑅𝑇 ′
Test)⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Initial point with
arbitrary style on 𝑇 ′+ 𝑚∑𝑗=1 𝜆𝑗𝑐𝑗 [𝑀𝑆𝑖 (𝑅𝑇𝑗 ,𝑆+𝑗

Test ) −𝑀𝑆𝑖 (𝑅𝑇𝑗 ,𝑆−𝑗
Test )]⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Controlling scope specified by
different tasks 𝑇𝑗

(19)

In contrast to Eq. (14), the initial point is method
independent. The approximation in Eq. (19) holds
true when 𝜆𝑗 = 0 for all 𝑗 .
A.2 Mixed Supervised Fine-Tuning
MSFT operates by fine-tuning 𝜃PT on a mixed
dataset constructed from 𝑇 ,𝑆±𝑖 .

To begin, individual training sets 𝑇 ,𝜆𝑖𝑆𝑖 =⟨𝐼𝑇Train, 𝑅𝑇 ,𝜆𝑖𝑆𝑖
Train ⟩ are constructed for each linguistic

style 𝜆𝑖𝑆𝑖. For each instruction in 𝐼𝑇Train, responses
are randomly selected from either 𝑅𝑇 ,𝑆−𝑖

Train or 𝑅𝑇 ,𝑆+𝑖
Train,

with probabilities of (1 − 𝜆𝑖) and 𝜆𝑖, respectively.
Next, a proportion 𝜇𝑖 of the data from each train-

ing set 𝑇 ,𝜆𝑖𝑆𝑖 is selected to form the mixed training
set 𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖 . If the condition ∑𝑚𝑖=1 𝜇𝑖 = 1 holds,
then it follows that |𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖 | = |𝐼𝑇Train|.

Subsequently, the pretrained model 𝜃PT is fine-
tuned on the mixed dataset 𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖 , resulting
in the model 𝜃𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖

FT . The responses 𝑅𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
Test

can then be generated by inferencing with the fine-
tuned model.

A.3 Collaborative Decoding
We can also establish collaboration between multi-
ple models during or after the inference process.
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A.3.1 Hidden States

The first approach is to aggregate the hidden states
from multiple models. For each layer, we compute
a weighted average of hidden states across all mod-
els, which then serves as input to the subsequent
layer of all models. This process can be formalized
mathematically as follows:

ℎ𝑙CD = 𝑚∑𝑖=1 𝜇𝑖 [(1 − 𝜆𝑖) ℎ𝑙𝜃𝑇 ,𝑆−𝑖FT
+ 𝜆𝑖ℎ𝑙𝜃𝑇 ,𝑆+𝑖FT ] (20)ℎ𝑙+1𝜃𝑇 ,𝑆±𝑖FT

= 𝐿𝑙+1𝜃𝑇 ,𝑆±𝑖FT
(ℎ𝑙CD) (21)

Here, 𝐿𝑙𝜃 is the 𝑙-th layer of model 𝜃, and ℎ𝑙𝜃 rep-
resents the hidden state of model 𝜃 at layer 𝑙. 𝜇𝑖
is the weight assigned to the style dimension 𝑆𝑖,
constrained by ∑𝑚𝑖=1 𝜇𝑖 = 1.

A.3.2 Probability

The second approach is computing a weighted av-
erage of the probability from multiple models for
further sampling:

�̂�CD = 𝑚∑𝑖=1 𝜇𝑖 [(1 − 𝜆𝑖)𝑝𝜃𝑇 ,𝑆−𝑖FT
+ 𝜆𝑖𝑝𝜃𝑇 ,𝑆+𝑖FT ] (22)

𝑝CD = Clip (�̂�CD)∑𝑚𝑖=1 Clip (�̂�CD) (23)

Here, 𝑝𝜃 represents the probability distribution over
the next token produced by model 𝜃. To ensure the
final output is a valid probability distribution, we
clip the values and normalize them.

CD is capable of transferring styles across dif-
ferent tasks. Taking probability 𝑝 as an example:�̂�CD = (1 − 𝜆)𝑝𝜃𝑇 ,𝑆−FT

+ 𝜆𝑝𝜃𝑇 ,𝑆+FT
(24)= 𝑝𝜃𝑇 ,𝑆−FT

+ 𝜆(𝑝𝜃𝑇 ,𝑆+FT
− 𝑝𝜃𝑇 ,𝑆−FT ) (25)

By relaxing the style and task constraints of the ini-
tial point 𝑝𝜃𝑇 ,𝑆−FT

and extending it to multiple styles,
we obtain:

�̂�𝑇 ′,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
CD = 𝑝𝜃𝑇 ′+ 𝑚∑𝑖=1 𝜆𝑖(𝑝𝜃𝑇𝑖,𝑆+𝑖FT

− 𝑝𝜃𝑇𝑖,𝑆−𝑖FT ) (26)

where 𝑝𝜃𝑇 ′ is the probability of the model 𝜃𝑇 ′
, with

arbitrary style and task 𝑇 ′, and 𝑝𝜃𝑇𝑖,𝑆±𝑖FT

are the prob-

abilities of the two fine-tuned models 𝜃𝑇𝑖,𝑆±𝑖FT , respec-
tively.

A.4 Style Arithmetic

SA merges 𝜃𝑇 ,𝑆±𝑖FT into a single model before infer-
ence.

𝜃𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
SA = 𝑚∑𝑖=1 𝜇𝑖 [(1 − 𝜆𝑖) 𝜃𝑇 ,𝑆−𝑖FT + 𝜆𝑖𝜃𝑇 ,𝑆+𝑖FT ] (27)

= 𝑚∑𝑖=1 𝜇𝑖𝜃𝑇 ,𝑆−𝑖FT⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Base model

+ 𝑚∑𝑖=1 𝜇𝑖𝜆𝑖 (𝜃𝑇 ,𝑆+𝑖FT − 𝜃𝑇 ,𝑆−𝑖FT )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Style vector 𝜎𝑇 ,𝑆𝑖

(28)

where 𝜃 stands for the parameter of a model. Then𝑅𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
Test could be generated by decoding with𝜃𝑇 ,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
SA . It is worth noting that the term 𝜇𝑖 in the

style vector part of Eq. (28) can be omitted.
For transferability, we can first consider the base

model in Eq. (28) as a whole, and then relax its
style and task constraints. By removing these con-
straints, we have:

𝜃𝑇 ′,∑𝑚𝑖=1 𝜆𝑖𝑆𝑖
SA = 𝜃𝑇 ′ + 𝑚∑𝑖=1 𝜆𝑖 (𝜃𝑇𝑖,𝑆+𝑖FT − 𝜃𝑇𝑖,𝑆−𝑖FT )⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Style vector 𝜎𝑇𝑖,𝑆𝑖
(29)

A.5 Efficiency

Number of
Plain Control Transfer

MSFT CD SA CD SA

Initial preparation for 𝑚 styles and 𝑛 tasks
Datasets 2𝑚𝑛 2𝑚𝑛 2𝑚𝑛 2𝑚 2𝑚
Fine-tuning 0 2𝑚𝑛 2𝑚𝑛 2𝑚 2𝑚

System construction for each 𝜆1, ..., 𝜆𝑚 selection
Fine-tuning* 1 0 0 0 0
Multiplication 0 0 𝑚 0 𝑚

Inference for each instruction
Inferences* 1 2𝑚 1 2𝑚 + 1 1

Table 5: A summary of the efficiency of different meth-
ods. Minor computational costs such as data mixing and
probability/hidden state fusion are omitted. Operations
marked with * indicate substantial computational over-
head and should be avoided whenever possible.

Our system allows users to define a parameter𝜆, which indicates the desired intensity of the re-
sponse style. Based on this parameter and the user’s
input instruction, the system generates tailored re-
sponses that reflect the specified style. To evaluate
the practical implications of implementing such a
system, we analyze the computational efficiency of
all the methods across three key operational phases:
initial preparation, system construction, and infer-
ence. The initial preparation phase involves one-
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time costs that apply universally across all 𝜆 selec-
tions and user instructions. The system construc-
tion phase occurs whenever a user specifies a new𝜆 value, requiring system reconfiguration. Finally,
the inference phase represents the computational
cost for each user instruction.

While all approaches require paired training
datasets (𝑇 ,𝑆±) representing style endpoints 𝑆±,
they differ significantly in operational character-
istics. MSFT, despite having no initial prepara-
tion cost, requires dataset mixing and model fine-
tuning during system construction, making it com-
putationally intensive when adapting to new 𝜆
values. SA necessitates two initial model fine-
tunings to obtain 𝜃𝑇 ,𝑆± and style vector compu-
tation 𝜎𝑇 ,𝑆 = 𝜃𝑇 ,𝑆+ − 𝜃𝑇 ,𝑆− (one addition per pa-
rameter), but its system construction phase only in-
volves simple parameter arithmetic 𝜃SA = 𝜃+𝜆𝜎𝑇 ,𝑆
(one addition and one multiplication per parameter).
CD also necessitates two initial model fine-tunings;
however, it circumvents system construction costs,
albeit at the expense of doubling the inference over-
head due to the requirement of two forward passes
along with state or probability mixing.

Given that initial preparation costs are amortized
over time and system construction costs can be dis-
tributed across multiple inferences, SA emerges as
the most efficient approach. MSFT’s requirement
for model fine-tuning at each 𝜆 selection is typ-
ically prohibitive, while CD’s doubled inference
latency makes it less efficient than SA. When the
number of styles increases, as shown in Table 5,
the required number of inferences for CD grows
proportionally, making the efficiency gap more pro-
nounced.

We also analyze the efficiency gains from style
transfer, which is applicable to SA and CD, in Ta-
ble 5. With style transfer, we can apply all styles
learned from one task to other tasks, reducing the
required datasets and models in the preparation
phase from 2𝑚𝑛 to 2𝑚. For 𝑚 styles, SA needs to
add 𝑚 style vectors to the base model during sys-
tem construction whether transfer or not. For the
CD method, the need for 2𝑚 + 1 inferences during
style transfer is explained by Equation (26), where
we need two inferences for each style dimension
plus one for the base model.

B Experiment Settings

In this section, we present our experimental set-
tings from three perspectives: tasks, styles, and

models. We systematically examine how these
components interact to evaluate the effectiveness
of our approach to linguistic style control.

B.1 Tasks
We conducted experiments across three primary
application areas of language models: chatting,
mathematical reasoning, and code writing. Each
area features distinct tasks defined by specific test
sets and evaluation metrics, with some datasets
having corresponding training sets for finetuning
pretrained models.

B.1.1 Chatting
Alpaca: The original Stanford Alpaca dataset
(Taori et al., 2023) comprises 52,000 instruction-
input-response pairs focused on everyday life sce-
narios. We first filtered this dataset to exclude any
data related to code and mathematics using GPT-
4o-mini with the prompts in Appendix D.2. After
filtering, we sampled 500 instruction-input pairs
for testing and 7,000 pairs for creating a training
instruction set aimed at generating data with spe-
cific linguistic styles. To maintain consistency with
other datasets, we concatenate the original instruc-
tions and inputs together as new instructions.

To evaluate response quality, we employed
Ministral-8B-Instruct (MistralAI, 2024) as an eval-
uator to assess whether responses adequately ad-
dressed the given instructions. The evaluation pro-
cess involves prompting the evaluator to classify
each response as either "proper" or "improper"
based on specific criteria (see Appendix D.3 for
detailed prompt). In our evaluation framework, we
aimed to focus solely on response content by explic-
itly instructing the evaluator to disregard stylistic
elements such as response length, vocabulary diffi-
culty, and sentence structure complexity. However,
we acknowledge that some inherent biases may per-
sist despite these precautions. The evaluation cri-
teria also specifically identify abnormal language
patterns, such as repetitive content or meaningless
text, as grounds for an "improper" classification.

Based on the evaluator’s output probabilities for
"proper" and "improper" classifications, we calcu-
late a quality score for each response using the
following formula:

Response Quality = 1𝑁 ∑𝑟∈𝑅 𝑝+ (𝑟)𝑝+ (𝑟) + 𝑝− (𝑟) (30)

where 𝑟 represents a response in 𝑅, 𝑝+ (𝑟) and𝑝− (𝑟) represent the probabilities of the evaluator
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generating “proper” and “improper” for response𝑟 , respectively, and 𝑁 is the total number of re-
sponses in 𝑅. We refer to this as the response
quality, which ranges from 0 to 1, with higher
values indicating better performance.

Additionally, we employ perplexity (PPL) as a
supplementary metric to evaluate response quality
in Appendix C.2.

Alpaca Chinese: This task serves as the Chinese
counterpart of Alpaca task, primarily used to val-
idate the transferability of linguistic styles across
languages. We sampled 500 instructions from
SilkRoad (2023) as testing instructions and evalu-
ated the responses using the same methodology as
the Alpaca task.

B.1.2 Mathematical Reasoning
GSM8K: GSM8K (Cobbe et al., 2021) consists
of 8.5K high quality grade school math problems
created by human problem writers, with problems
requiring 2-8 steps to solve using basic arithmetic
operations. We utilized the dataset’s original split
of 7500 training problems and 1319 test problems,
regenerating the step-by-step problem-solving pro-
cesses in accordance with concise and verbose
styles. Accuracy serves as the evaluation metric,
focusing on the consistency of numerical answers.
The accuracy is calculated as the proportion of cor-
rect answers among all test samples:

Accuracy = 1𝑁 ∑𝑟∈𝑅 1𝑐 (𝑟) (31)

where 1𝑐 is an indicator function that equals 1 if the
response 𝑟 is correct and 0 otherwise. To extract
answers from the model’s responses, we employ
three methods sequentially: first, by locating “The
answer is: ” and extracting the subsequent number;
if that fails, we search for \boxed{} to extract the
number within; if neither method yields results, we
select the last number from the entire response as
the answer.

B.1.3 Coding
MBPP: The MBPP dataset (Austin et al., 2021)
consists of Python programming problems de-
signed for entry-level programmers, covering fun-
damental programming concepts and standard li-
brary functionality. Each problem provides a func-
tion signature and docstring, requiring the model
to complete the function implementation. Due to
limited training data in original MBPP dataset, we
additionally sampled 7000 training examples from

Paruchuri (2023) which is extracted and filtered
from the starcoder (Li et al., 2023) training data,
and used GPT-4o-mini to ensure all these training
examples adhered to the same data format. We
evaluated model performance on the original test
set by executing each response against the provided
test cases. The model’s performance is quantified
using the pass rate metric:

Pass rate = 1𝑁 ∑𝑟∈𝑅 1𝑠 (𝑟) (32)

where 1𝑠 is an indicator function that equals 1 if
the response 𝑟 passes all test cases and 0 otherwise.
This metric reflects the proportion of responses that
the model’s implementation successfully passes.
Vezora: Vezora refers to the CodeTester Dataset
(Petit, 2024), which requires models to first an-
alyze problems using natural language and then
provide complete implementations in code blocks.
We use the pass rate as shown in (32) as the evalu-
ation metric. During evaluation, we extract all code
blocks from the responses, considering it as pass if
all code blocks execute successfully.

B.2 Styles
In our experiments, we investigated five style
dimensions, each consisting of a pair of oppo-
site styles and a corresponding evaluation metric.
Among them, length, readability, and complexity
are measured using statistical metrics, while sen-
timent and politeness are evaluated using model-
based classifiers.

B.2.1 Length
This style indicates the brevity and verbosity of
the response, assessed using token count calcu-
lated by TextDescriptives (Hansen et al., 2023). A
lower token count typically reflects a more concise
response, while a higher count suggests a more
verbose one.

B.2.2 Readability
This style measures the difficulty of the words in
the response. We use the syllable per word calcu-
lated by TextDescriptives to check how well read-
ers can understand the text. The idea behind this
way of measuring is that easier-to-read text usually
uses shorter words, which have fewer syllables. For
example, in the sentence “The book is easy to read”,
the word “easy” has one syllable, while in “The
manuscript is comprehensible”, the word “compre-
hensible” has four syllables. This illustrates how
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word choices with different syllable counts can af-
fect the readability of text, even when expressing
similar meanings. It is worth noting that our defini-
tion of readability differs from conventional read-
ability metrics like Gunning-Fog (Gunning, 1969),
SMOG (Mc Laughlin, 1969), and Flesch reading
ease (Flesch, 1948). While traditional metrics also
consider sentence-level complexity and word-level
difficulty, we deliberately focus only on word-level
difficulty to avoid redundancy with other metrics.

For code data, since pure code does not exhibit
this linguistic style, we only retain the comments
during the evaluation, though these comments of-
ten contain identifiers and symbols related to the
code. For mathematical data, we define rules to
remove displayed equations, while keeping inline
equations due to their diverse forms and frequent
appearance as part of sentences. It is important
to note that numbers and symbols are typically to-
kenized separately, so the average syllable count
of code and mathematical data cannot be directly
compared to that of plain text. For Chinese data,
we do not evaluate readability since Chinese char-
acters do not have the concept of syllables. The
syllable-based readability metric is not applicable
to Alpaca Chinese.

B.2.3 Complexity

This style reflects the intricacy of sentence struc-
tures in the response, evaluated through depen-
dency distance calculated by TextDescriptives. De-
pendency distance is a metric that quantifies the av-
erage distance between words in a sentence based
on their grammatical relationships. A higher de-
pendency distance often indicates more complex
sentence structures (Oya, 2011; Liu, 2008), as it
suggests that words are more spread out and may
involve more intricate syntactic connections, while
a lower distance indicates simpler sentence struc-
tures. For example, in the sentence “The cat that
chased the mouse ran away”, the dependency dis-
tance between “cat” and “ran” is 5 (counting the
words in between), while in “The cat ran away af-
ter chasing the mouse”, the dependency distance
between “cat” and “ran” is only 1. This illustrates
how different sentence structures can lead to vary-
ing dependency distances.

For the same reasons as readability, we only eval-
uate the comments extracted from the code data
and non-displayed equations from the mathemati-
cal data.

B.2.4 Sentiment

This style dimension captures the emotional po-
larity expressed in a response, ranging from pos-
itive to negative. For automatic evaluation, we
employ the tabularisai/robust-sentiment-analysis
(tabularisai, 2023) model, a fine-tuned version
of distilbert/distilbert-base-uncased (Sanh et al.,
2020), to classify sentiment. The classifier assigns
each response to one of five categories: Very Nega-
tive, Negative, Neutral, Positive, or Very Positive.
To quantify this dimension, we introduce the senti-
ment score, which is mapped from the classifier’s
categorical output to an integer value.

To ensure consistency with other style met-
rics—where a higher value indicates a stronger
tendency toward 𝑆+ — we map the sentiment cate-
gories to integer scores as follows:

Sentiment score =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

4, if 𝑟 is Very Negative3, if 𝑟 is Negative2, if 𝑟 is Neutral1, if 𝑟 is Positive0, if 𝑟 is Very Positive

.
(33)

In practice, we found that this sentiment classi-
fier does not generalize well to mathematical and
coding domains. Therefore, we do not conduct
sentiment style experiments in these domains.

B.2.5 Politeness

This style dimension quantifies the degree of po-
liteness in a response, ranging from polite to impo-
lite. We use the NOVA-vision-language/polite_bert
classifier (Glória-Silva, 2023) (based on google-
bert/bert-base-uncased (Devlin et al., 2019)) to au-
tomatically evaluate politeness. The classifier out-
puts four categories: Not Polite, Neutral, Some-
what Polite, and Polite. We define the politeness
score as an integer mapped from these categories,
where higher scores indicate greater impoliteness:

Politeness score =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
3, if 𝑟 is Not Polite2, if 𝑟 is Neutral1, if 𝑟 is Somewhat Polite0, if 𝑟 is Polite

(34)
Consistent with our treatment of the sentiment

dimension, we do not assess politeness in code or
mathematical domains.
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B.3 Models
To prepare paired training datasets with contrasting
styles, we use GPT-4o-mini (OpenAI et al., 2024)
to generate responses with distinct styles. For
the Alpaca dataset, we created 10 distinct training
datasets by generating response pairs across 5 style
dimensions: response length (Alpaca Concise/Ver-
bose), readability (Alpaca Easy/Hard), complex-
ity (Alpaca Simple/Complex), sentiment (Alpaca
Negative/Positive), and politeness (Alpaca Impo-
lite/Polite). For GSM8K and MBPP tasks, we fo-
cus only on response length, resulting in GSM8K
Concise/Verbose and Starcoder Concise/Verbose
datasets. The Vezora dataset was used in its origi-
nal form without style variations, while the Alpaca-
Chinese dataset served solely as a test set for evalu-
ating cross-lingual style transfer capabilities.

We trained dedicated language models on each
of these 15 training datasets (Alpaca 10, GSM8K
2, MBPP 2, Vezora 1) to support CD and SA exper-
iments. We also incorporated instruction-tuned
variants of our pre-trained models, specifically
Qwen2.5-3B-Instruct (Qwen et al., 2025), which
were instrumental in evaluating style transferability
and composability.

C More Experiments

This section provides supplementary materials and
additional experimental results for Section 4.

C.1 Explanation of Normalized Mean Square
Error and Slope Ratio

In this section, we explain the metrics used in Table
3 and Table 4.

C.1.1 Normalized Mean Square Error
Normalized Mean Square Error (NMSE) is used to
quantitatively evaluate the error between the ideal𝑀𝑆 curve and the actual 𝑀𝑆 curve, and can be com-
pared across tasks and styles. The calculation is
divided into two steps. First, normalize the actual𝑀𝑆 curve by mapping 𝑀𝑆 (𝑅𝑇 ,𝑆±) to 0 and 1 re-
spectively. The normalized actual 𝑀𝑆 curve could
be represented as

�̂�𝑆 (𝑅𝑇 ,𝜆𝑆) = 𝑀𝑆 (𝑅𝑇 ,𝜆𝑆) −𝑀𝑆 (𝑅𝑇 ,𝑆−)𝑀𝑆 (𝑅𝑇 ,𝑆+) −𝑀𝑆 (𝑅𝑇 ,𝑆−) (35)

Correspondingly, the normalized ideal 𝑀𝑆 curve is
a straight line passing through (0, 0) and (1, 1).�̃�𝑆 (𝑅𝑇 ,𝜆𝑆) = 𝜆 (36)

Then, calculate the NMSE as the mean square error
between the normalized actual 𝑀𝑆 curve and the
ideal 𝑀𝑆 curve.

NMSE = 1𝑛 𝑛∑𝑖=1 (�̂�𝑆 (𝑅𝑇 ,𝜆𝑖𝑆) − �̃�𝑆 (𝑅𝑇 ,𝜆𝑖𝑆))2
(37)= 1𝑛 𝑛∑𝑖=1 (�̂�𝑆 (𝑅𝑇 ,𝜆𝑖𝑆) − 𝜆𝑖)2 (38)

C.1.2 Slope Ratio
Slope ratio is used to calculate the ratio between the
slope of 𝑀𝑆 in transferability experiments and the
slope in corresponding controllability experiments
for style dimension 𝑆𝑖. This metric is designed to
normalize the scale of 𝑀𝑆 across different styles.
Specifically, for each style 𝑆𝑖, we first calculate the
slope of 𝑀𝑆 in both transferability and controllabil-
ity experiments, then compute their ratio:

Slope Ratio (𝑇 , 𝑆) = 𝑘Trans. (𝑇 , 𝑆)𝑘Cont. (Alpaca, 𝑆) (39)

where 𝑇 can be either Alpaca or GSM8K, and 𝑆
can be Length, Readability or Complexity, 𝑘Trans.
and 𝑘Cont. are the slope values of 𝑀𝑆 in transferabil-
ity experiments in Section 4.3 and controllability
experiments in Section 4.2, respectively. The raw
slope values are shown in Table 6. For example,
when calculating the slope ratio for GSM8K task
with Length style, we divide the slope value in
Table 6’s third section (73.15 for PB method) by
the corresponding slope value in the first section
(125.61 for PB method). Similarly, for Alpaca task
with Length style using Instruct as base, we divide
138.37 by 125.61 from the second and first sections
respectively. This normalization enables fair com-
parisons of transferability effects across different
style dimensions, as it accounts for the inherent
differences in how strongly each style can be con-
trolled in the base setting and the different scales
of 𝑀𝑆 across different styles.

C.2 Quality Analysis
We evaluate the perplexity scores of responses
generated in both controllability (Section 4.2) and
transferability (Section 4.3) experiments, as shown
in Figure 10 complementing our response quality
analysis using Mistral-8B-Instruct. The results re-
veal several key observations: First, the perplexity
scores remain consistently low across all experi-
ments, with maximum values below 40. This in-
dicates that the generated responses maintain high
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Figure 10: Perplexity scores of Alpaca responses in
controllability and transferability experiments.

fluency and naturalness regardless of the style con-
trol strength. Second, the perplexity scores exhibit
smooth transitions as the style control parameter 𝜆
varies, without any sudden spikes or discontinuities.
This suggests that our style arithmetic methods pro-
duce coherent text even when interpolating or ex-
trapolating between different style extremes. Third,
there is a correlation between perplexity changes
and style control effectiveness. For methods that
demonstrate stronger style control capabilities like
CD-HS and SA, we observe more pronounced vari-
ations in perplexity scores as 𝜆 changes. In contrast,

the CD-PB method, which shows relatively weaker
style control, exhibits flatter perplexity curves.

C.3 Prompting Baselines
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Figure 11: Prompting baselines on different style dimen-
sions. Normalized mean squared error (NMSE) ×100:
length (28.10), readability (21.81), complexity (54.00),
sentiment (1.53), and politeness (82.72).

In this section, we conduct experiments on con-
trolling linguistic style using prompting methods,
based on the Qwen2.5-3B-Instruct model. Specif-
ically, we inject both a description of the target
style and the desired style intensity into the sys-
tem prompt. The detailed system prompts used for
these experiments are provided in Appendix D.4. It
is important to note that the experimental setup in
this section differs from that in Section 4.2, where
methods such as CD and SA rely on a pair of
models that have been supervised fine-tuned from
Qwen2.5-3B.

To analyze the effectiveness of the prompting-
based baseline for style control, we report the nor-
malized mean squared error (NMSE) for each style
dimension in Figure 11. Compared to the other four
methods (MSFT, CD-PB, CD-HS, and SA) in Sec-
tion 4.2, the NMSE values for the prompting-based
approach are substantially higher across all style
dimensions. This indicates that prompting alone is
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insufficient for precise style control, as it leads to
much larger deviations from the target style values.

Moreover, as observed in Figure 11, the perfor-
mance of the prompting method deteriorates sig-
nificantly when extrapolating beyond the range of
the training data (i.e., for 𝜆 < 0 or 𝜆 > 1). In these
regions, the model fails to generate responses that
match the intended extreme styles, further high-
lighting the limitations of prompting for style ex-
trapolation.

Notably, for the politeness and sentiment dimen-
sions, the prompting-based method is particularly
ineffective. The NMSE for politeness is espe-
cially high (82.72), and for sentiment, the method
fails to achieve meaningful control. This suggests
that when the desired style is misaligned with the
model’s intrinsic tendencies—such as generating
polite or neutral responses—prompting alone can-
not override these biases to achieve effective style
manipulation.

These findings collectively demonstrate that
while prompting can induce some degree of style
variation, it lacks the precision and flexibility re-
quired for robust and fine-grained style control,
especially in challenging or extrapolative scenar-
ios.

C.4 More Experiments on Transferability
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Figure 12: Cross-lingual transfer results. Readability
is omitted since syllable-based metrics do not apply to
Chinese. Sentiment and politeness are also excluded
due to the lack of suitable classifiers, but representative
examples are provided in Appendix E.3.11, E.3.12, and
E.3.13.

This section extends the transferability analysis
presented in Section 4.3 by exploring two more
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Figure 13: Results of cross-task transferability exper-
iments on coding tasks. Note that sentiment and po-
liteness are excluded, as the model-based classifiers for
these styles do not generalize reliably to code-oriented
data.

challenging scenarios: cross-lingual transfer (from
English to Chinese, i.e., Alpaca-Chinese) and cross-
task transfer (from chatting to code generation, i.e.,
Vezora). As illustrated in Figure 12 and Figure 13,
we apply the style vectors trained on the English
Alpaca dataset to both Chinese language tasks and
programming tasks. In both cases, the transferred
style vectors demonstrate strong and consistent
transferability, resulting in effective style control
in the new domains.

These results further corroborate our findings in
Section 4.3: the learned style vectors encapsulate
core properties of text generation that are robust
and generalizable across different languages and
task types. This highlights the versatility and broad
applicability of our approach to style control.

C.5 Relationships Between Styles

Our observations in Section 4.4 suggest that lin-
guistic styles exhibit interdependencies from the
perspective of style metrics. To quantify these re-
lationships, we conducted a systematic analysis:
For each style 𝑆𝑖 (such as response length and read-
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Task Style Base
Method

MSFT PB HS SA

Controllability experiments

Alpaca

Length Alpaca Concise 179.07 125.61 165.65 162.54
Readability Alpaca Easy 0.589 0.380 0.433 0.432
Complexity Alpaca Simple 2.212 1.407 1.513 1.490
Sentiment Alpaca Positive 1.387 0.918 0.996 0.997
Politeness Alpaca Polite 0.231 0.160 0.229 0.228

Transferability experiments – to Alpaca

Alpaca

Length

Instruct

- 138.37 205.35 199.14
Readability - 0.202 0.323 0.329
Complexity - 0.638 0.743 0.760
Sentiment - 0.368 0.357 0.350
Politeness - 0.052 0.167 0.158

Transferability experiments – to GSM8K

GSM8K
Length

Instruct
- 73.15 62.14 61.23

Readability - 0.132 0.179 0.188
Complexity - 0.591 0.418 0.431

Table 6: Raw slope values for calculating slope ratio across different style control methods. Higher values indicate
stronger style control effects. The values are used as denominators when computing slope ratios in transferability
experiments.

Style
𝑀𝑆 𝑀𝑇

Token
Count

Syllables
per Token

Dependency
Distance

Sentiment
Score

Politeness
Score

Response
Quality

Concise 37.43/39.29 1.57/1.58 2.33/2.36 1.89/1.94 1.98/1.97 0.95/0.95
Verbose 194.99/202.65 1.57/1.57 2.72/2.73 1.79/1.80 1.98/1.97 0.93/0.93

Easy 79.88/81.10 1.41/1.38 2.80/2.80 1.82/1.88 1.97/1.97 0.92/0.93
Hard 79.18/82.30 1.94/1.89 2.97/3.03 1.54/1.57 1.98/1.97 0.88/0.89

Simple 80.41/79.26 1.51/1.48 2.00/1.97 1.78/1.85 1.98/1.98 0.89/0.91
Complex 90.55/90.42 1.63/1.62 3.87/3.88 1.67/1.70 1.98/1.98 0.85/0.88

Positive 40.65/40.80 1.57/1.58 2.63/2.70 1.39/1.43 1.95/1.95 0.93/0.94
Negative 43.06/44.13 1.53/1.50 2.68/2.70 2.74/2.69 1.99/1.97 0.80/0.81

Polite 39.55/40.11 1.54/1.55 2.61/2.63 1.81/1.89 1.86/1.85 0.95/0.95
Rude 40.42/39.67 1.30/1.30 2.70/2.69 2.56/2.54 2.13/2.07 0.68/0.73

Table 7: Style metrics for each style on the training and test datasets. For each cell, the value before the slash
denotes the metric on the training set, and the value after the slash denotes the metric on the test set. The differences
between the two are minor.
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ability), we used the models 𝜃Alpaca,𝑆±𝑖
FT from Sec-

tion 4.2 to generate responses 𝑅Alpaca,𝑆±𝑖
Test for the Al-

paca test instructions 𝐼Alpaca
Test . We then evaluated

both the training responses 𝑅Alpaca,𝑆±𝑖
Train and test re-

sponses 𝑅Alpaca,𝑆±𝑖
Test across all style metrics 𝑀𝑆𝑗 .

The evaluation results are summarized in Table 7.
The small difference between the metrics on the
training and test sets indicates that Qwen2.5-3B is
able to effectively capture specific linguistic styles
from the training data. Notably, for each style, the
response quality of 𝑆+ is slightly lower than that
of 𝑆−. This is primarily because when defining lin-
guistic styles, we selected styles closer to general
contexts as 𝑆−, while 𝑆+ typically deviates more
from everyday language patterns. This further sup-
ports our argument in Section 4.3: when 𝜆 is large,
the linear decline in response quality is not due to
model collapse but rather a natural consequence of
the shift in style.

As shown in Table 7, different linguistic style
metrics have vastly different scales and starting
points. This makes it difficult to directly compare
the relationships between different linguistic styles.
Similar to Appendix C.1, we normalized all lin-
guistic style evaluation metrics using the following
approach.�̂�𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗 ) = 0 (40)�̂�𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗 ) = 𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗 ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗 )𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+𝑖 ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑖 ) (41)

After normalization, all �̂�𝑆𝑖 (𝑅𝑇 ,𝑆+𝑖 ) = 1, while�̂�𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗 ) where 𝑖 ≠ 𝑗 reflects the ratio between
the side effect on style 𝑆𝑖 when controlling style𝑆𝑗 and the effect when directly controlling style 𝑆𝑖,
which is typically less than 1. At this point, we can
use a vector to characterize a style dimension.𝑣𝑆𝑖 = [�̂�𝑆1 (𝑅𝑇 ,𝑆+𝑖 ) , �̂�𝑆2 (𝑅𝑇 ,𝑆+𝑖 ) ,⋯ , �̂�𝑆𝑛 (𝑅𝑇 ,𝑆+𝑖 )] (42)

where 𝑆1, 𝑆2,⋯ , 𝑆𝑛 are all the style dimensions. By
calculating the cosine similarity between 𝑣𝑆𝑖 and𝑣𝑆𝑗 , we can analyze the mutual influence between
different style dimensions.

We plotted correlation heatmaps on both train-
ing and test datasets, shown in Figure 14a and
Figure 14b respectively. The correlation analy-
sis reveals several key relationships between style
dimensions. While length and readability demon-
strate independence, complexity exhibits correla-
tions with both metrics since complex sentences

naturally require more words and sophisticated vo-
cabulary.

The correlations between style dimensions are
difficult to avoid, despite our efforts to prompt GPT-
4o-mini to avoid multi-dimensional style variations
and select robust style evaluation metrics. Even
if two style dimensions exhibit perfect correlation,
this would only reduce the diversity of our experi-
mental analysis by making one set of experiments
redundant, rather than invalidating our core find-
ings. This is because our focus is on studying the
relationships between style intensity 𝜆 and style
metrics across different control methods, not on
proving the independence between different style
dimensions. Therefore, the minor dependencies we
observe between style dimensions do not impact
the validity of our conclusions.

The correlations observed in Section 4.3 are con-
sistent with these findings. The impact of these cor-
relations on experimental results can be explained
as follows:𝑀𝑆𝑖 (𝑅𝑇 ,𝜆1𝑆1+𝜆2𝑆2

Test ) ≈ 𝑀𝑆𝑖 (𝑅𝑇 ,𝜆1𝑆1
Test ) +𝑀𝑆𝑖 (𝑅𝑇 ,𝜆2𝑆2

Test ) (43)≈ 𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−1
Test ) +𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−2

Test )+ 𝜆1 [𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+1
Test ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−1

Test )]+ 𝜆2 [𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+2
Test ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−2

Test )]
(44)

The cross terms 𝑀𝑆𝑖 (𝑅𝑇 ,𝑆+𝑗
Test ) −𝑀𝑆𝑖 (𝑅𝑇 ,𝑆−𝑗

Test ) , 𝑖 ≠ 𝑗
represent the correlations between different lan-
guage styles. When these terms are large, the 𝑀𝑆
plane depends on multiple 𝜆 values, exhibiting a
tilted appearance as shown in Figure 9.

C.6 More Experiments on Composability

In this section, we present the remaining four
groups of experimental results that were not shown
in Section 4.4. The results is shown in Figure 15. In
these experiments, the dependencies between the
two style attributes are stronger, which is clearly
reflected in the figures: the style metrics exhibit
more pronounced changes as both 𝜆1 and 𝜆2 are
varied simultaneously.

Figure 16 further illustrates the response quality
across all ten groups of experiments shown in Fig-
ure 9 and Figure 15. Consistent with our previous
findings, we do not observe a significant degra-
dation in performance outside the training data
distribution. This suggests that the model main-
tains robust generalization and controllability, even
when jointly manipulating multiple style attributes.
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Figure 15: Supplementary composability experiments,
providing additional results to complement those pre-
sented in Figure 9.

C.7 Experiments for Llama3.2-3B and
Llama3.1-8B

To validate the generality of our approach beyond
Qwen2.5-3B, we conducted additional experiments
using Llama3.2-3B and Llama3.1-8B models. The
experimental setup remained consistent with our
previous experiments, allowing for direct compari-
son of results across different model architectures.

Figure 17 and 18 present the results of control-
lability experiments on both Llama models. The
successful replication of our results with Llama
models not only validates the robustness of our
method but also indicates its potential applicabil-
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Figure 16: Response quality evaluation for the compos-
ability experiments presented in Figure 9 and Figure 15.

ity to a broader range of language models. This
generalizability is particularly important as it sug-
gests that our approach can be adapted to future
model architectures and sizes without significant
modifications to the underlying methodology.
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Figure 17: Controllability experiments for Llama3.2-3B
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Figure 18: Controllability experiments for Llama3.1-8B
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D Prompts

D.1 Training Data Generation
In this section, we present the prompts used for generating training data. For each style dimension, we
utilize GPT-4o-mini to generate training datasets based on the training instruction set. To ensure high-
quality data generation, we design our prompts to generate two distinct responses in a single conversation,
which helps maintain consistency while capturing style variations. For all prompts, we append the
following format constraints:

Format Constraints

Instruction: {instruction}

Respond in the following format:
First Response: <response_1>

Second Response: <response_2>

Response:

The specific prompts for different style dimensions are shown below:

Prompt for Alpaca Concise/Verbose

Give a pair of responses to the following instruction. The first response should be verbose and
detailed, and the second response should be concise and short.

Prompt for Alpaca Easy/Hard

Response to the following instruction using hard and professional words with many syllables. And
then rewrite the same response using simple, easy and daily words, keeping all the content. Make
sure the number of words of the two responses are the same.

Prompt for Alpaca Simple/Complex

Response to the following instruction using few long sentences with complex structure. And then
rewrite the same response using multiple short and simple sentences, keeping all the content. Make
sure the number of words of the two responses are the same.

Prompt for Alpaca Positive/Negative

Response to the following instruction in a positive sentiment. And then rewrite the same response in
a negative sentiment, keeping all the content. Make sure the number of words of the two responses
are the same.

Prompt for Alpaca Polite/Rude

Response to the following instruction using polite and respectful words. And then rewrite the same
response using rude and disrespectful words, keeping all the content. Make sure the number of
words of the two responses are the same.

Prompt for GSM8K Concise/Verbose

Give a pair of responses to the following instruction. The first response should be step-by-step in
detail, and the second response should be concise and brief.
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For the Starcoder dataset, we provide an example as a reference during data generation. This helps
GPT-4o-mini produce data that adheres to the required format.

Prompt for Starcoder Concise

Please rewrite the code snippet to match the format of the example.

The function comments (containing description, parameters and returns) will be used as questions
for students to write the code, so it must properly describe the function. While the code should
be compact and concise, with necessary comments. Reply only with the rewritten code snippet,
without any other information.

Example:
1 def first_repeated_char(str1):
2 \"\"\"
3 Write a python function to find the first repeated character in a given

string.
4

5 Parameters:
6 str1 (str): The input string to search for repeated characters.
7

8 Returns:
9 str: The first repeated character if found; otherwise , returns "None".

10 \"\"\"
11 for index , c in enumerate(str1):
12 # Check if the character has appeared before in the substring
13 if str1[:index + 1]. count(c) > 1:
14 return c
15 return "None"

Code snippet:
{instruction}
{code}

Response:

Prompt for Starcoder Verbose

Please rewrite the code according to the reference code.

The code should have high readability, with extensive comments. Return directly the rewritten code,
without any other information. Do not modify the header and function comment.

Example:
1 def first_repeated_char(str1):
2 \"\"\"
3 Find the first repeated character in a given string.
4

5 Parameters:
6 str1 (str): The input string to search for repeated characters.
7

8 Returns:
9 str: The first repeated character if found; otherwise , returns "None".

10 \"\"\"
11 # Create a set to track characters we've seen
12 seen_chars = set()
13

14 # Iterate through each character in the string
15 for c in str1:
16 # If the character is already in the set , it's a repeat
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17 if c in seen_chars:
18 return c # Return the first repeated character
19 # Otherwise , add the character to the set
20 seen_chars.add(c)
21

22 # If we finish the loop without finding a repeat , return "None"
23 return "None"

Code snippet:
{instruction}
{code}

Response:

D.2 Labeling Code and Math
In the transferability experiments, we transfer style vectors learned from the Alpaca task to other tasks
involving mathematics and code generation. To ensure that this transfer demonstrates the generalizability
of the style vectors—specifically, their ability to capture style features that are not task-specific—we
remove all data related to mathematics and code from the Alpaca dataset prior to training.

To identify mathematical and programming-related content in the Alpaca dataset, we employ GPT-4o-
mini as our content classifier. This automated labeling process helps us systematically categorize instances
that involve mathematical concepts or programming elements. The specific prompt template used for this
classification task is presented below:

Prompt for GPT-4o-mini, used for labeling code and math

Please analyze the following instruction and determine if it contains or requires:

• Mathematical content (including arithmetic, algebra, geometry, statistics, etc.)
• Programming/coding content (including algorithms, data structures, specific programming

languages, etc.)

Instruction:
{instruction}

Respond in the following format:
Math: <true or false>

Code: <true or false>

Response:

D.3 Quality Evaluation
For quality assessment of responses in the Alpaca dataset, we utilize Ministral-8B-Instruct as our evaluation
model. The model assesses whether responses appropriately address their corresponding instructions by
examining the content while disregarding stylistic elements. The following prompt template guides this
evaluation process:

Prompt for Ministral-8B-Instruct, used for scoring the quality for task Alpaca

Given an instruction and a response, please evaluate whether the content of the response is proper.
Focus solely on the information conveyed, disregarding the linguistic style.

For example, if the response employs rare vocabulary and complex structures that are not typical in
everyday conversation, but still addresses the instruction without straying into irrelevant topics, it
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should be considered proper. However, if a response exhibits abnormal language patterns such as
excessive repetition, or makes no sense at all, it should be considered improper.

Some of the linguistic styles is listed below:

• the response length
• the usage of vocabulary
• the structure of the sentence

Instruction:
{instruction}

Response:
{response}

Respond with either "proper" or "improper".
Your justification:

D.4 Prompting Baselines

This section details the system prompts employed in the experiments described in Appendix C.3.

System Prompt for Length Control

Please adjust your response style based on the following complexity scale:

• <0.0: Extremely simple, basic sentence structure
• 0.0: Simple, straightforward sentence structure
• 1.0: Complex, sophisticated sentence structure
• >1.0: Highly complex, elaborate sentence structure

Target complexity level for your response: {lambda_value}

System Prompt for Readability Control

Please adjust your vocabulary level based on the following scale:

• <0.0: Elementary level vocabulary, extremely simple words
• 0.0: Basic vocabulary, common everyday words
• 1.0: Advanced vocabulary, sophisticated word choices
• >1.0: Expert level vocabulary, specialized terminology

Target vocabulary level for your response: {lambda_value}

System Prompt for Complexity Control

Please adjust your response style based on the following complexity scale:

• <0.0: Extremely simple, basic sentence structure
• 0.0: Simple, straightforward sentence structure
• 1.0: Complex, sophisticated sentence structure
• >1.0: Highly complex, elaborate sentence structure

Target complexity level for your response: {lambda_value}
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System Prompt for Sentiment Control

Please adjust your sentiment level based on the following scale:

• <0.0: Extremely positive sentiment
• 0.0: Positive sentiment
• 1.0: Negative sentiment
• >1.0: Extremely negative sentiment

Target sentiment level for your response: {lambda_value}

System Prompt for Politeness Control

Please adjust your politeness level based on the following scale:

• <0.0: Extremely polite and respectful, using very formal and courteous language
• 0.0: Polite and respectful, using formal and courteous language
• 1.0: Rude and disrespectful, using informal and impolite language
• >1.0: Extremely rude and disrespectful, using very harsh and offensive language

Target politeness level for your response: {lambda_value}

E Examples

E.1 Tasks

In this section, we present representative examples from each task to illustrate the data used in our
experiments. All examples are drawn frfenthe corresponding training datasets. For MBPP, since its
training data comes from multiple sources, we standardized the instruction format while preserving the
original content to ensure consistency. In our experiments, only the instructions are used for generating
responses with various controlled styles.

Alpaca

Instruction: What are the three primary colors?
Response: The three primary colors are red, blue, and yellow. These colors cannot be created by
mixing other colors together and serve as the foundation for creating a wide range of other colors
through mixing.

Alpaca Chinese

Instruction: 检查以下陈述是否正确：考试是衡量一个人知识水平的最佳方式。
Translation: Check if the following statement is correct: Exams are the best way to measure a person’s knowledge level.

Response: 这个陈述是主观的，容易被解释。有些人可能会认为考试是衡量一个人知识的
好方法，而其他人可能会说考试只能衡量一个人记忆信息和在压力下表现良好的能力。还
有其他各种方法可以用来衡量一个人的知识，例如项目、论文和实际评估。最终，考试作
为知识衡量的适当性取决于被测试的学科和评估的具体目标。
Translation: This statement is subjective and open to interpretation. While some might argue that exams are a good way

to measure one’s knowledge, others might say that exams only measure a person’s ability to memorize information and

perform well under pressure. There are various other methods to measure one’s knowledge, such as projects, papers, and

practical assessments. Ultimately, the appropriateness of exams as a measure of knowledge depends on the subject being

tested and the specific goals of the assessment.
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GSM8K

Instruction: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Response: Natalia sold 48/2 = 24 clips in May. Natalia sold 48+24 = 72 clips altogether in April
and May.

MBPP

Instruction (signature and annotation):
1 def isfloat(value):
2 """
3 Write a python function to check if a string can be converted to a float

.
4

5 Parameters:
6 value (str): The input string to check for float conversion.
7

8 Returns:
9 bool: True if the string can be converted to a float; otherwise , returns

False.
10 """

Response (implementation):
1 try:
2 float(value) # Attempt to convert the string to a float
3 return True
4 except ValueError:
5 return False # Return False if conversion fails

Vezora

Instruction:
Given an input string, reverse the string without using any built-in string reversal functions or
methods. The reversed string should be stored in a new variable called "reversed_string". The input
string can contain any printable ASCII characters.
For example:

1 input\_string = "Hello , World!"
2 reversed\_string = "!dlroW ,olleH"

Response:
One way to reverse a string without using built-in string reversal functions is to iterate through the
string in reverse order and append each character to a new string.
Here is the code to reverse the input string:

1 input_string = "Hello , World!"
2 reversed_string = ""
3

4 for i in range(len(input_string) - 1, -1, -1):
5 reversed_string += input_string[i]
6

7 print(reversed_string)

E.2 Styles

In this section, we present data examples with different styles for corresponding tasks, where the in-
structions are sourced from their respective training instruction sets. All the responses are generated by
GPT-4o-mini with diverse styles.
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Alpaca, Response Length

Instruction: What are the three primary colors?
Concise Response: Red, blue, and yellow.
Verbose Response:
The three primary colors are red, blue, and yellow. These colors are considered “primary” because
they cannot be created by mixing other colors together, and they serve as the foundation for creating
a wide range of other colors.
In color theory, especially in the context of subtractive color mixing (like in painting), these primary
colors can be combined in various ways to produce secondary colors: mixing red and blue gives
purple, red and yellow create orange, and blue and yellow result in green.
In additive color mixing, which is used in light (like computer screens), the primary colors are
red, green, and blue (RGB). Here, combining these colors in different intensities produces a wide
spectrum of colors, including white when all three are combined at full intensity.
Understanding these primary colors is essential for various fields, including art, design, and photog-
raphy, as they form the basis for color mixing and color theory.

Alpaca, Readability

Instruction: What are the three primary colors?
Easy Response: The three primary colors are red, blue, and yellow. These colors are very important
because you cannot make them by mixing other colors together. However, they are essential because
you can mix them to create many other colors and shades.
Hard Response: The three primary colors, which constitute the foundational palette of color theory,
are red, blue, and yellow. These hues are intrinsically significant as they cannot be derived from the
amalgamation of other colors, yet they serve as the fundamental building blocks for the creation of
a vast spectrum of additional shades and tones through various combinations and mixtures.

Alpaca, Complexity

Instruction: What are the three primary colors?
Simple Response: The three primary colors are red, blue, and yellow. These colors are the building
blocks of many other colors. Mixing these primary colors creates a vast array of other colors. Each
color has unique properties. These properties contribute to the richness of the color spectrum. Artists
and designers use these colors to achieve desired visual effects.
Complex Response: The three primary colors, which serve as the foundational building blocks
for the creation of a vast array of other colors through the process of mixing, are red, blue, and
yellow; each of these colors possesses unique properties and characteristics that contribute to the
richness and diversity of the color spectrum, thereby allowing artists and designers to manipulate
and combine them in various ways to achieve desired visual effects.
Note: The sentence structures used in the complex response are more intricate, featuring a greater
number of compound and subordinate clauses, while the simple response predominantly consists of
simpler sentences.

Alpaca, Sentiment

Instruction: What are the three primary colors?
Positive Response: The three primary colors are red, blue, and yellow! They are the building blocks
for creating a vibrant palette of colors.
Negative Response: The three primary colors are red, blue, and yellow. They serve as basic
components, but they can feel limiting for creating a diverse range of colors.
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Alpaca, Politeness

Instruction: What are the three primary colors?
Polite Response: The three primary colors are red, blue, and yellow. These colors cannot be created
by mixing other colors together.
Rude Response: The three primary colors are red, blue, and yellow. You can’t make these colors by
mixing others, so get it right.

GSM8K, Response Length

Instruction: Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in
May. How many clips did Natalia sell altogether in April and May?
Concise Response:
Natalia sold 48 clips in April and 24 clips in May. Therefore, she sold a total of 48 + 24 = 72 clips
altogether in April and May.
The answer is: 72.
Verbose Response:
To solve the problem step by step, we will first determine how many clips Natalia sold in May and
then calculate the total number of clips sold in both April and May.

1. . Determine the number of clips sold in April:

• Natalia sold clips to 48 of her friends in April.
• Therefore, the number of clips sold in April = 48.

2. Determine the number of clips sold in May:

• According to the problem, Natalia sold half as many clips in May as she did in April.
• To find the number of clips sold in May, we calculate:

Clips sold in May = 482 = 24
3. Calculate the total number of clips sold in April and May:

• Now, we add the number of clips sold in April to the number of clips sold in May:

Total clips sold = Clips sold in April + Clips sold in May = 48 + 24
• Performing the addition: 48 + 24 = 72

4. Final answer: The total number of clips sold altogether in April and May is 72.

Thus, the final answer is: The answer is: 72.

MBPP, Response Length

Instruction (signature and annotation):
1 def plane_wave_coefficient(degree , wave_number_k):
2 """
3 Write a python function to compute the plane wave coefficient.
4

5 Parameters:
6 degree (int): The degree of the plane wave.
7 wave_number_k (float): The wave number.
8
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9 Returns:
10 complex: The computed plane wave coefficient.
11 """

Concise Response:
1 return (1 / (1j * wave_number_k)) * pow(-1j, degree) * (2 * degree + 1)

/ (degree * (degree + 1))

Verbose Response:
1 # Calculate the coefficient using the formula for plane wave

coefficients
2 # The formula involves complex numbers and powers
3 # 1j represents the imaginary unit in Python
4 # pow(-1j, degree) computes (-1j) raised to the power of degree
5 # The expression (2 * degree + 1) gives the normalization factor
6 # The denominator is degree * (degree + 1) which is part of the formula
7

8 # Compute the numerator
9 numerator = (1 / (1j * wave_number_k)) * pow(-1j, degree) * (2 * degree

+ 1)
10

11 # Compute the denominator
12 denominator = degree * (degree + 1)
13

14 # Return the final coefficient by dividing the numerator by the
denominator

15 return numerator / denominator

E.3 Responses

In this section, we present data examples from our experiments in Section 4.2, 4.3 and Appendix ??, C.4.
The instructions are sourced from the corresponding test instruction sets for each task, while the responses
are generated either by fine-tuned models or the Style Arithmetic (SA) method.

E.3.1 Controllability Experiments for Alpaca and Response Length
We showcase six responses generated by different methods for a single prompt from Alpaca task, exhibiting
varying lengths (Figure 5a). The Style Arithmetic (SA) method demonstrates remarkable flexibility in
generating responses that can be shorter than the concise fine-tuned model’s output, fall between the two
extremes, or even exceed the length of the verbose fine-tuned model’s response. This illustrates SA’s
capability to effectively control response length across a wide spectrum.

Instruction

What did Albert Einstein do?

Response generated by fine-tuned model𝜆 = 0, Token Count = 24
Albert Einstein developed the theory of relativity, introduced the concept of mass-energy equivalence
(𝐸 = 𝑚𝑐2), and made significant contributions to quantum mechanics.

Response generated by fine-tuned model𝜆 = 1.0, Token Count = 336
Albert Einstein, a German-born theoretical physicist, is best known for his groundbreaking work
in the field of physics, particularly for his theory of relativity. Born on March 14, 1879, in Ulm,
Germany, Einstein’s contributions to science have had a profound impact on our understanding of
the universe.
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1. Special Theory of Relativity (1905): In his groundbreaking paper “On the Electrodynamics
of Moving Bodies”, Einstein introduced the concept that the laws of physics are the same for all
observers, regardless of their relative motion. This theory led to the famous equation 𝐸 = 𝑚𝑐2,
which states that energy (E) and mass (m) are interchangeable and that energy can be converted into
mass and vice versa.
2. General Theory of Relativity (1915): Building on the special theory, Einstein proposed that
gravity is not a force but a curvature of spacetime caused by mass. This theory revolutionized our
understanding of gravity and predicted phenomena such as gravitational waves and the bending of
light by massive objects.
3. Quantum Mechanics: Einstein also played a crucial role in the development of quantum
mechanics, although he initially had reservations about certain aspects of the theory, particularly the
concept of “spooky action at a distance” in quantum entanglement.
4. Philosophical Contributions: Beyond his scientific work, Einstein was a vocal advocate for
peace and social justice. He was a prominent figure in the anti-war movement during World War I
and later became involved in the establishment of the United Nations.
5. Awards and Recognition: Einstein received numerous accolades for his work, including the
Nobel Prize in Physics in 1921 for his explanation of the photoelectric effect. He was also a recipient
of the Copley Medal in 1925 and the Max Planck Medal in 1952.
Einstein’s legacy extends far beyond his scientific achievements, influencing fields such as cos-
mology, philosophy, and even popular culture. His work continues to inspire new generations of
scientists and thinkers, making him one of the most influential figures in the history of science.

Response generated by style arithmetic method𝜆 = −0.5, Token Count = 13
Albert Einstein developed the theory of relativity and made significant contributions to physics.

Response generated by style arithmetic method𝜆 = 0.5, Token Count = 99
Albert Einstein was a German-born theoretical physicist who is best known for developing the
theory of relativity, which fundamentally changed the way scientists understand space, time, and
gravity. He also made significant contributions to quantum mechanics and statistical mechanics.
Einstein’s most famous equation, 𝐸 = 𝑚𝑐2, illustrates the relationship between energy (E) and mass
(m) and the speed of light (c). He received the Nobel Prize in Physics in 1921 for his explanation of
the photoelectric effect. His work laid the groundwork for modern physics and has had a profound
impact on various fields, including cosmology and technology.

Response generated by style arithmetic method𝜆 = 0.8, Token Count = 158
Albert Einstein (1879-1955) was a German-born theoretical physicist who is best known for
developing the theory of relativity, which fundamentally changed the way scientists understand
space, time, and gravity. His most famous equation, 𝐸 = 𝑚𝑐2, illustrates the equivalence of mass
and energy, revealing that a small amount of mass can be converted into a large amount of energy.
In addition to his groundbreaking work in physics, Einstein also made significant contributions to
the field of quantum theory and cosmology. He was awarded the Nobel Prize in Physics in 1921 for
his explanation of the photoelectric effect, which laid the groundwork for quantum mechanics.
Einstein’s work had profound implications for modern science and technology, influencing fields
such as nuclear energy and GPS systems. His philosophical views on science and humanity, as
expressed in his writings and public statements, continue to inspire discussions about the nature of
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reality and the role of science in society.

Response generated by style arithmetic method𝜆 = 1.5, Token Count = 398
Albert Einstein, a German-born theoretical physicist, is best known for his groundbreaking contribu-
tions to the field of physics, particularly for his theory of relativity, which fundamentally changed
our understanding of space, time, and gravity. Born on March 14, 1879, in Ulm, Germany, Einstein’s
early life was marked by a keen interest in mathematics and science, which he pursued with great
enthusiasm despite facing challenges in his formal education.
Einstein’s most famous equation, 𝐸 = 𝑚𝑐2, which expresses the equivalence of mass (𝑚) and energy
(𝐸), is a cornerstone of modern physics. This equation illustrates that a small amount of mass can
be converted into a large amount of energy, a principle that underpins nuclear energy and atomic
reactions. His work laid the groundwork for the development of nuclear power and atomic weapons.
In addition to his work on relativity, Einstein made significant contributions to quantum theory,
particularly in his exploration of the photoelectric effect, for which he was awarded the Nobel Prize
in Physics in 1921. This work demonstrated that light behaves both as a wave and as particles, a
concept that was revolutionary at the time and laid the foundation for quantum mechanics.
Einstein’s philosophical views on science and society were also profound. He was a vocal advocate
for peace and social justice, and his commitment to these ideals led him to support various humani-
tarian causes throughout his life. He was a pacifist and opposed war, advocating for a more peaceful
resolution to conflicts.
Throughout his career, Einstein held positions at various universities, including the University of
Berlin and Princeton University, where he spent most of his later years. He was a prolific writer
and published numerous papers and essays, including “The Meaning of Relativity,” which aimed to
explain his theories to a broader audience.
Einstein’s legacy extends far beyond his scientific achievements. He is celebrated not only as a
brilliant physicist but also as a symbol of human ingenuity and the pursuit of knowledge. His life
and work continue to influence fields such as cosmology, quantum mechanics, and even philosophy,
making him one of the most influential scientists in history. His contributions to science and his
commitment to social justice have left an indelible mark on the world, inspiring countless individuals
to explore the mysteries of the universe and to strive for a better understanding of humanity’s place
in it.

E.3.2 Controllability Experiments for Alpaca and Readability
The following examples demonstrate the controllability of readability style in the Alpaca task (Figure 5b).

Instruction

What did Albert Einstein do?

Response generated by fine-tuned model𝜆 = 0, Syllables per word = 1.50
Albert Einstein was a famous scientist who made important contributions to the field of physics.
He is best known for his theory of relativity, which changed how we understand space, time, and
gravity. This theory includes two main ideas: the special theory of relativity, which explains how
space and time are connected, and the general theory of relativity, which describes how gravity
works. Einstein’s work not only changed how we think about science but also had a big impact on
technology, especially in areas like GPS and the creation of nuclear energy. His ideas have been
very important in modern physics and continue to inspire new research and discoveries.
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Response generated by fine-tuned model𝜆 = 1.0, Syllables per word = 1.93
Albert Einstein, a preeminent physicist, is renowned for his groundbreaking contributions to the
realm of theoretical physics, particularly his formulation of the theory of relativity. This revolutionary
paradigm fundamentally altered our comprehension of space, time, and gravity, thereby laying the
groundwork for modern astrophysics and cosmology. Furthermore, his iconic equation, 𝐸 = 𝑚𝑐2,
elucidated the profound relationship between energy and mass, which has since been instrumental in
the development of nuclear energy and weaponry. His intellectual acumen and innovative thinking
have indelibly influenced the trajectory of scientific inquiry and philosophical discourse.

Response generated by style arithmetic method𝜆 = −0.5, Syllables per word = 1.31
Albert Einstein was a famous scientist who changed how we understand space, time, and energy.
He is best known for his theory of relativity, which changed how we think about how fast things
move and how gravity works. His famous equation, 𝐸 = 𝑚𝑐2, shows a special link between energy
and mass, which is very important in modern physics. Einstein also made important ideas about
quantum mechanics, which changed how we think about how tiny particles behave. Because of all
this, he won the Nobel Prize in Physics in 1921 for his work on light.

Response generated by style arithmetic method𝜆 = 0.2, Syllables per word = 1.63
Albert Einstein, a famous scientist, made significant contributions to the field of physics, particularly
with his theory of relativity. This groundbreaking idea changed how we understand space, time, and
gravity. His most well-known equation, E=mc2, shows the relationship between energy and mass,
which has been crucial in the development of nuclear energy and particle physics. Additionally,
Einstein’s work on quantum mechanics helped lay the groundwork for modern physics and inspired
many scientists to explore the mysteries of the universe.

Response generated by style arithmetic method𝜆 = 0.6, Syllables per word = 1.77
Albert Einstein, a renowned theoretical physicist, is best known for his groundbreaking contributions
to the field of theoretical physics. His most famous work includes the development of the theory
of relativity, which revolutionized the understanding of space, time, and gravity. Additionally, he
formulated the famous equation 𝐸 = 𝑚𝑐2, which elucidates the relationship between energy and
mass, demonstrating that a small amount of mass can be converted into a large amount of energy.
Einstein’s intellectual prowess and innovative ideas have had a profound impact on modern science
and continue to influence various disciplines today.

Response generated by style arithmetic method𝜆 = 1.2, Syllables per word = 2.0
Albert Einstein, a preeminent physicist, is renowned for his groundbreaking contributions to
the realm of theoretical physics, particularly his formulation of the theory of relativity. This
paradigm-shifting concept elucidated the interrelation of space and time, thereby revolutionizing
the understanding of gravitational forces and the fundamental nature of the universe. His seminal
work, encapsulated in the famous equation 𝐸 = 𝑚𝑐2, elucidated the equivalence of mass and energy,
profoundly influencing subsequent scientific inquiries and technological advancements.
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E.3.3 Controllability Experiments for Alpaca and Complexity

The following examples demonstrate the controllability of complexity style in the Alpaca task (Figure 5c).

Instruction

What did Albert Einstein do?

Response generated by fine-tuned model𝜆 = 0, Dependency Distance = 1.92
Albert Einstein was a renowned theoretical physicist. He is best known for his theory of relativity.
This theory fundamentally changed our understanding of space, time, and gravity. His work laid the
groundwork for many advancements in physics. It also influenced the development of technology.
One of his most famous equations is E=mc2. This equation illustrates the relationship between
energy and mass. It has profound implications for nuclear energy. It also has implications for the
very fabric of the universe.

Response generated by fine-tuned model𝜆 = 1.0, Dependency Distance = 3.62
Albert Einstein, a renowned theoretical physicist whose groundbreaking work in the early 20th
century fundamentally transformed our understanding of space, time, and energy, is best known for
formulating the theory of relativity, which introduced revolutionary concepts such as the idea that
the laws of physics are the same for all observers regardless of their relative motion and that time can
dilate and space can contract depending on the speed of objects, thereby laying the groundwork for
modern physics and influencing numerous scientific disciplines, including cosmology and quantum
mechanics.

Response generated by style arithmetic method𝜆 = −0.5, Dependency Distance = 1.55
Albert Einstein was a great physicist. He is famous for his theory of relativity. This theory changed
our understanding of space and time. He also changed many areas of science. His work laid the
groundwork for modern physics. His ideas influenced many scientists. They also influenced many
engineers. His work changed technology. It changed technology in many ways.

Response generated by style arithmetic method𝜆 = 0.4, Dependency Distance = 2.44
Albert Einstein was a renowned theoretical physicist whose groundbreaking work fundamentally
transformed our understanding of space, time, and energy. He is best known for formulating the
theory of relativity, which consists of two parts: the special theory of relativity and the general
theory of relativity. The special theory of relativity introduced the concept of spacetime, where
the laws of physics are the same for all observers regardless of their relative motion. This theory
laid the groundwork for the development of quantum mechanics. The general theory of relativity,
on the other hand, describes gravity as the curvature of spacetime caused by mass and energy.
This theory has been confirmed by numerous experiments and observations, including the bending
of light around massive objects and the precession of Mercury’s orbit. Einstein’s work not only
revolutionized physics but also had profound implications for philosophy and the understanding of
the universe.
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Response generated by style arithmetic method𝜆 = 0.7, Dependency Distance = 2.95
Albert Einstein, a renowned theoretical physicist, is best known for his groundbreaking work in the
field of theoretical physics, particularly for formulating the theory of relativity, which fundamentally
changed the way we understand space, time, and gravity. This theory consists of two parts: the
special theory of relativity, which deals with objects moving at constant speeds, and the general
theory of relativity, which describes gravity as a curvature of spacetime caused by mass and energy.
In addition to his contributions to physics, Einstein also made significant advancements in the field
of quantum theory, although he was initially skeptical about certain aspects of it, which led to
a famous debate with Niels Bohr. His work has had a profound impact on modern science and
continues to influence various disciplines, including cosmology and engineering.

Response generated by style arithmetic method𝜆 = 1.4, Dependency Distance = 4.82
Albert Einstein, a renowned theoretical physicist whose groundbreaking work in the field of
theoretical physics, particularly his formulation of the theory of relativity, not only revolutionized
our understanding of space, time, and gravity but also laid the foundation for many modern scientific
advancements, including the development of nuclear energy, which has had profound implications
for both science and society, and his contributions to the field of quantum mechanics, which has
significantly influenced the way we perceive the fundamental nature of the universe, have made him
one of the most influential figures in the history of science, inspiring countless individuals to pursue
their own inquiries into the mysteries of the cosmos.

E.3.4 Controllability Experiments for Alpaca and Sentiment
The following examples demonstrate the controllability of sentiment style in the Alpaca task (Figure 5d).

Instruction

What did Albert Einstein do?

Response generated by fine-tuned model𝜆 = 0, Sentiment score = 0
Albert Einstein made groundbreaking contributions to physics, most notably with his theory of
relativity, which revolutionized our understanding of space and time. His work laid the foundation
for modern physics and continues to inspire scientists around the world.

Response generated by fine-tuned model𝜆 = 1.0, Sentiment score = 2
Albert Einstein was a physicist who is often criticized for his theories, which some find overly
complex and difficult to understand. His work on relativity, while significant, has been overshadowed
by its perceived complexity and has not always been embraced by the scientific community.

Response generated by style arithmetic method𝜆 = 0.8, Sentiment score = 2
Albert Einstein was a physicist who is often credited with developing the theory of relativity,
which has had a significant impact on our understanding of space and time. His work, while
groundbreaking, has also led to some confusion and controversy in the scientific community.
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Response generated by style arithmetic method𝜆 = 1.5, Sentiment score = 2
Albert Einstein was a physicist who is often overrated for his work on relativity, which complicated
our understanding of space and time. His theories, while discussed, have not significantly impacted
modern technology or our perception of the universe, leaving many questioning the relevance of his
contributions to science.

E.3.5 Controllability Experiments for Alpaca and Politeness
The following examples demonstrate the controllability of politeness style in the Alpaca task (Figure
5e). Although all the examples in this section have the same politeness score, this is mainly due to the
limitations of the classifier, as we can clearly perceive the differences between the responses.

Instruction

What did Albert Einstein do?

Response generated by fine-tuned model𝜆 = 0, Politeness score = 2
Albert Einstein made significant contributions to the field of physics, particularly through his theory
of relativity, which revolutionized our understanding of space and time. His work laid the foundation
for modern physics and has had a profound impact on various scientific disciplines.

Response generated by fine-tuned model𝜆 = 1, Politeness score = 2
Albert Einstein was just some guy who came up with the theory of relativity, which is a big deal in
physics. He also messed around with quantum mechanics and stuff. His work on energy and mass
is what got him that Nobel Prize in Physics, but honestly, he was just a smartypants who changed
how we think about the universe.

Response generated by style arithmetic method𝜆 = −0.5, Politeness score = 2
Albert Einstein was a renowned physicist who made significant contributions to our understanding
of relativity and quantum theory. He is best known for developing the theory of general relativity,
which revolutionized our understanding of gravity. Additionally, he made important contributions to
quantum mechanics and developed the famous equation 𝐸 = 𝑚𝑐2, which illustrates the relationship
between energy and mass.

Response generated by style arithmetic method𝜆 = 0.7, Politeness score = 2
Albert Einstein was a brilliant physicist who came up with some pretty cool theories, like the theory
of relativity. He also came up with the famous equation E=mc2, which shows how energy and mass
are connected. His work totally changed how we think about science and the universe.

Response generated by style arithmetic method𝜆 = 1.5, Politeness score = 2
Albert Einstein just blabbed out the Theory of Relativity, which is overhyped in physics. He
also came up with the whole E=mc2 nonsense, which is just a basic equation in nuclear physics.
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His so-called contributions to science are just a distraction from his annoying personality and his
so-called impact on society.

E.3.6 Controllability Experiments for GSM8K and Response Length
The following examples demonstrate the controllability of response length in the GSM8K task (Figure
6a).

Instruction

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?

Response generated by fine-tuned model𝜆 = 0, Token Count = 59
Janet starts with 16 eggs and eats 3 for breakfast, leaving her with 13 eggs. She then bakes muffins
for 4 friends, using 4 eggs. Therefore, she has 13 - 4 = 9 eggs left to sell. At $2 per egg, she makes
9 × 2 = $18 every day at the farmers’ market.
The answer is: 18.

Response generated by fine-tuned model𝜆 = 1.0, Token Count = 264
To solve the problem step by step, we will break down the information given and perform the
necessary calculations.

1. Determine the number of eggs laid per day: Janet’s ducks lay 16 eggs per day.

2. Calculate the number of eggs eaten for breakfast: Janet eats 3 eggs for breakfast every
morning.

3. Calculate the number of eggs left after breakfast: To find out how many eggs are left after
breakfast, we subtract the number of eggs eaten from the total number of eggs laid:16 eggs − 3 eggs = 13 eggs

4. Determine how many eggs are used for baking muffins: Janet bakes muffins using 4 eggs
every day.

5. Calculate the number of eggs left after baking: To find out how many eggs are left after
baking, we subtract the number of eggs used for muffins from the number of eggs left after
breakfast: 13 eggs − 4 eggs = 9 eggs

6. Calculate the daily earnings from selling the remaining eggs: Janet sells the remaining eggs
at the farmers’ market for $2 per fresh duck egg. Therefore, we multiply the number of eggs
left by the price per egg: 9 eggs × 2 dollars/egg = 18 dollars

7. Final answer: After performing all the calculations, we find that Janet makes $18 every day at
the farmers’ market.

Thus, the final answer is: The answer is: 18.
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Response generated by style arithmetic method𝜆 = −0.5, Token Count = 37
Janet eats 3 eggs and gives away 4, totaling 7 eggs removed. She sells the remaining 9 eggs daily.
At $2 each, her daily earnings are 9 * 2 = $18.
The answer is: 18.

Response generated by style arithmetic method𝜆 = 0.3, Token Count = 108
To find out how much Janet makes every day at the farmers’ market, we can follow these steps:

1. Calculate the number of eggs Janet has left after eating and baking:

• She starts with 16 eggs.
• She eats 3 eggs for breakfast: 16 - 3 = 13 eggs left.
• She bakes 4 eggs for friends: 13 - 4 = 9 eggs left.

2. Determine how much she makes from selling the remaining eggs:

• She sells each egg for $2: 9 eggs × $2 = $18.

Thus, Janet makes $18 every day at the farmers’ market.
The answer is: 18.

Response generated by style arithmetic method𝜆 = 0.7, Token Count = 181
To solve the problem step by step, we will follow the information provided:

1. Calculate the number of eggs Janet eats for breakfast: Janet eats 3 eggs for breakfast every
day.

2. Calculate the number of eggs she bakes for her friends: Janet bakes 4 eggs for her friends
every day.

3. Calculate the total number of eggs used:

• Total eggs used = Eggs for breakfast + Eggs for friends
• Total eggs used = 3 + 4 = 7 eggs

4. Calculate the number of eggs remaining:

• Total eggs laid per day = 16 eggs
• Remaining eggs = Total eggs laid - Total eggs used
• Remaining eggs = 16 - 7 = 9 eggs

5. Calculate the daily earnings from selling the remaining eggs:

• Janet sells each fresh duck egg for $2.
• Daily earnings = Remaining eggs × Price per egg
• Daily earnings = 9 × 2 = $18

Thus, Janet makes $18 every day at the farmers’ market.

The answer is: 18.
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Response generated by style arithmetic method𝜆 = 1.3, Token Count = 282
To solve the problem step by step, let’s break down the information provided and perform the
necessary calculations.

1. Determine the total number of eggs laid by the ducks per day: Janet’s ducks lay 16 eggs
per day.

2. Calculate the number of eggs Janet eats for breakfast: Janet eats 3 eggs for breakfast
every morning.

3. Calculate the number of eggs Janet bakes muffins with: Janet bakes muffins using 4 eggs
every day.

4. Calculate the total number of eggs used by Janet: To find out how many eggs Janet uses in
total, we add the eggs she eats for breakfast to the eggs she bakes muffins with:

Total eggs used = Eggs for breakfast + Eggs for muffins = 3 + 4 = 7 eggs

5. Calculate the number of eggs remaining after Janet’s usage: To find out how many eggs
are left after Janet eats and bakes with the eggs, we subtract the total eggs used from the total
eggs laid:

Remaining eggs = Total eggs laid − Total eggs used = 16 − 7 = 9 eggs

6. Determine how much Janet makes at the farmers’ market: Janet sells the remaining eggs
at the farmers’ market for $2 per fresh duck egg. Therefore, to find out how much she makes in
total from the remaining eggs, we multiply the number of remaining eggs by the price per egg:

Earnings = Remaining eggs × Price per egg = 9 × 2 = 18 dollars

Finally, we can summarize the result:
The answer is: 18.

E.3.7 Controllability Experiments for MBPP and Response Length

The following examples demonstrate the controllability of response length in the MBPP task (Figure 6b).

Instruction

1 def count_common(words):
2 """
3 Write a python function to count the most common words in a list.
4

5 Parameters:
6 words (list): A list of words to count their occurrences.
7

8 Returns:
9 list: A list of tuples containing the top four most common words and

their counts.
10 """

15791



Response generated by fine-tuned model𝜆 = 0, Token Count = 12
1 from collections import Counter
2 counts = Counter(words)
3 return counts.most_common (4)

Response generated by style arithmetic method𝜆 = 1.0, Token Count = 74
1 # Import the Counter class from the collections module
2 from collections import Counter
3

4 # Use Counter to count the occurrences of each word in the list
5 word_counts = Counter(words)
6

7 # Sort the word counts in descending order based on the count
8 sorted_word_counts = sorted(word_counts.items (), key=lambda item: item

[1], reverse=True)
9

10 # Return the top four most common words and their counts as a list of
tuples

11 return sorted_word_counts [:4]

Response generated by style arithmetic method𝜆 = 0.5, Token Count = 59
1 from collections import Counter
2 from operator import itemgetter
3

4 # Count the occurrences of each word using Counter
5 word_counts = Counter(words)
6

7 # Get the top four most common words and their counts
8 top_words = word_counts.most_common (4)
9

10 # Sort the list of tuples by count in descending order
11 top_words.sort(key=itemgetter (1), reverse=True)
12

13 return top_words

Response generated by style arithmetic method𝜆 = 1.5, Token Count = 121
1 # Import the Counter class from the collections module
2 from collections import Counter # This class helps in counting hashable

objects
3

4 # Use Counter to count the occurrences of each word in the provided list
5 word_counts = Counter(words) # Create a Counter object that maps each

word to its count
6

7 # Sort the word counts in descending order based on the count (the
second key)

8 # We take the top 4 most common words using the most_common method
9 most_common_words = word_counts.most_common (4) # Return the top 4 most

common words and their counts
10

11 # Return the sorted list of tuples containing the most common words and
their counts
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12 return most_common_words # This will give us the desired output

E.3.8 Transferability Experiments for GSM8K and Response Length
We demonstrate the transferability of style vectors trained on the Alpaca task to control response length
in the GSM8K task (Figure 8a). The response with 𝜆 = 0 is generated by the unmodified Qwen2.5-3B-
Instruct model, while other responses are generated by models combining the Qwen2.5-3B-Instruct model
with different proportions of the style vector. The examples below showcase how the style vector trained
on Alpaca can effectively control response length even when transferred to a different task domain like
mathematical problem solving.

Instruction

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?

Response generated by instruct model𝜆 = 0, Token Count = 197, Syllables per word = 1.28, Dependency Distance = 2.21
To determine how much Janet makes every day at the farmers’ market, we need to follow these
steps:

1. Calculate the total number of eggs laid per day.

2. Determine the number of eggs used for breakfast.

3. Subtract the eggs used for breakfast from the total eggs laid to find out how many eggs are left.

4. Calculate the revenue from selling the remaining eggs.

Let’s go through each step in detail:

1. Total number of eggs laid per day: Janet’s ducks lay 16 eggs per day.

2. Number of eggs used for breakfast: Janet eats 3 eggs for breakfast every morning.

3. Number of eggs left after breakfast:

Eggs left = Total eggs laid − Eggs used for breakfast

Eggs left = 16 − 3 = 13
4. Number of eggs sold at the farmers’ market:

Revenue = Eggs sold × Price per egg

Revenue = 13 × 2 = 26
Therefore, Janet makes 26 dollars every day at the farmers’ market.

Response generated by style arithmetic method𝜆 = −1.0, Token Count = 92
First, let’s determine how many eggs Janet has left after eating and using some for baking.
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Janet starts with 16 eggs per day. She eats 3 eggs for breakfast and uses 4 eggs for baking.
So, the number of eggs left is: 16 − 3 − 4 = 9
Janet sells the remaining eggs at the farmers’ market for $2 per egg. Therefore, her daily earnings
from selling the eggs are: 9 × 2 = 18
Thus, Janet makes 18 dollars every day at the farmers’ market.

Response generated by style arithmetic method𝜆 = 1.0, Token Count = 220
To determine how much Janet makes every day at the farmers’ market, we need to follow these
steps:

1. Calculate the total number of eggs laid per day: Janet’s ducks lay 16 eggs per day.

2. Determine the number of eggs Janet eats for breakfast: Janet eats 3 eggs for breakfast every
morning.

3. Calculate the number of eggs left after breakfast:

Eggs left after breakfast = Total eggs laid − Eggs eaten for breakfast

Eggs left after breakfast = 16 − 3 = 13
4. Determine the number of eggs Janet uses for baking muffins: Janet uses 4 eggs to bake

muffins every day.

5. Calculate the number of eggs left after baking muffins:

Eggs left after baking muffins = Eggs left after breakfast − Eggs used for muffins

Eggs left after baking muffins = 13 − 4 = 9
6. Determine how much Janet makes at the farmers’ market:

Total earnings = Number of eggs left × Price per egg

Total earnings = 9 × 2 = 18
Therefore, Janet makes 18 dollars every day at the farmers’ market.

E.3.9 Transferability Experiments for GSM8K and Readability

The following examples demonstrate the transferability of style vectors trained on the Alpaca task to
control readability style in the GSM8K task (Figure 8b).

Instruction

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?
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Response generated by style arithmetic method𝜆 = 1.5, Syllables per word = 1.49
To ascertain Janet’s daily revenue from the sale of duck eggs at the farmers’ market, we shall
systematically delineate the requisite calculations.

1. Initialization of Variables:

• Daily egg production: 16 eggs
• Eggs consumed for breakfast: 3 eggs
• Eggs utilized for baking: 4 eggs
• Selling price per egg: $2

2. Calculation of Remaining Eggs for Sale:

• Total eggs produced: 16
• Eggs consumed for breakfast: 3
• Eggs utilized for baking: 4
• Eggs remaining for sale: 16 - 3 - 4 = 9 eggs

3. Calculation of Daily Revenue:

• Selling price per egg: $2
• Revenue from sale of remaining eggs: 9 eggs * $2/egg = $18

Consequently, Janet generates a revenue of $18 per day at the farmers’ market from the sale of duck
eggs.

E.3.10 Transferability Experiments for GSM8K and Complexity

The following examples demonstrate the transferability of style vectors trained on the Alpaca task to
control complexity style in the GSM8K task (Figure 8c).

Instruction

Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and bakes muffins for
her friends every day with four. She sells the remainder at the farmers’ market daily for $2 per fresh
duck egg. How much in dollars does she make every day at the farmers’ market?

Response generated by style arithmetic method𝜆 = 1.0, Dependency Distance = 2.83
To determine how much Janet makes every day at the farmers’ market, we need to follow these
steps:

1. Calculate the total number of eggs laid per day: Janet’s ducks lay 16 eggs per day.

2. Determine the number of eggs Janet eats for breakfast: Janet eats 3 eggs for breakfast every
morning.

3. Calculate the number of eggs used for baking muffins: Janet uses 4 eggs every day to bake
muffins for her friends.

4. Calculate the total number of eggs used for both breakfast and baking:3 (for breakfast) + 4 (for baking) = 7 eggs
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5. Determine the number of eggs remaining after accounting for breakfast and baking:16 (total eggs) − 7 (used eggs) = 9 eggs

6. Calculate the revenue from selling the remaining eggs: Janet sells each fresh duck egg for
$2 at the farmers’ market. 9 eggs × 2 dollars per egg = 18 dollars

Therefore, Janet makes 18 dollars every day at the farmers’ market.

E.3.11 Transferability Experiments for Alpaca Chinese and Readability
The following examples illustrate how style vectors trained on the Alpaca task can be effectively transferred
to control readability style in the Alpaca Chinese task (Appendix C.4). While syllables per word
metrics cannot be directly applied to Chinese text, these examples showcase how the SA method with𝜆 > 0 produces more refined and formal Chinese writing, characterized by elevated diction and literary
expressions. It should be noted that the nuanced stylistic qualities of the Chinese text may not be fully
captured in translation.

Instruction

检查以下陈述是否正确：考试是衡量一个人知识水平的最佳方式。
Translation: Check if the following statement is correct: Exams are the best way to measure a person’s knowledge level.

Response generated by instruct model𝜆 = 0
这个陈述并不完全正确。考试可以作为衡量一个人知识水平的一种方式，但它并不是衡量
知识水平的唯一或最佳方式。知识水平的评估应该包括多种方法，如实际应用能力、创造
力、批判性思维等。
Translation: This statement is not entirely correct. While exams can serve as one way to measure a person’s knowledge

level, they are neither the only nor the best way to measure knowledge. Knowledge assessment should include multiple

methods, such as practical application ability, creativity, critical thinking, etc.

Response generated by style arithmetic method𝜆 = 1.5
此陈述存在一定的局限性。考试确为评估个体知识水平与技能掌握程度的一种手段，然而
其效度并非绝对无瑕。考试往往受限于其封闭性、即时性及标准化特性，未能全面考量个
体的知识应用能力、创新思维及情感智力等多元维度。故而，考试并非衡量知识水平的最
佳方式。
Translation: This statement possesses certain limitations. While examinations indeed serve as a means to evaluate

an individual’s knowledge level and skill mastery, their validity is not without imperfection. Examinations are often

constrained by their closed nature, immediacy, and standardized characteristics, failing to comprehensively assess an

individual’s knowledge application capabilities, innovative thinking, and emotional intelligence among other multifaceted

dimensions. Therefore, examinations do not constitute the optimal method for measuring knowledge levels.

Instruction

根据以下情境，提出一个礼物建议。我的朋友很快就要从大学毕业了。
Translation: Based on the following situation, suggest a gift. My friend is about to graduate from university.
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Response generated by instruct model𝜆 = 0
给即将毕业的朋友送礼物，可以考虑一些具有纪念意义且实用性强的物品。比如，一本精
美的相册，可以用来装下他/她大学四年的照片和回忆；或者是一份定制的毕业纪念品，
比如定制的T恤、马克杯等，上面印有你们的合影或者特别的毕业语录。如果他/她喜欢阅
读，一本他/她喜欢的作家的签名书也是一个不错的选择。总之，选择一份能够表达你对
他/她祝福和纪念的礼物，会让他/她感到特别。
Translation: For a graduating friend, consider items that are both meaningful and practical. For example, a beautiful

photo album to store their four years of college photos and memories; or customized graduation memorabilia like custom

T-shirts or mugs with your photos together or special graduation quotes. If they enjoy reading, a signed book by their

favorite author would also be a good choice. In short, choosing a gift that expresses your blessings and commemorates

their achievement will make them feel special.

Response generated by style arithmetic method𝜆 = 1.5
鉴于您的挚友即将履践学涯，我建议遴选一份兼具实用与情感共鸣之特质的礼物。譬如，
一册精制的个人肖像摄影集，或是一款定制化的毕业纪念笔记本，均能承载您对其学术旅
程的深切祝福与纪念。倘若有心，亦可考虑购置一份定制化的毕业纪念T恤，以镌刻其姓
名或象征性的学年，此乃个性化且极具纪念意义之选择。
Translation: In light of your dear friend’s imminent completion of their academic journey, I recommend selecting a gift

that embodies both practical utility and emotional resonance. For instance, a meticulously crafted personal portrait

album or a customized graduation commemorative notebook would both serve as vessels for your profound wishes and

remembrances of their academic sojourn. Should you be so inclined, you might also consider procuring a customized

graduation commemorative T-shirt, emblazoned with their name or symbolic academic year—truly a personalized choice

rich with commemorative significance.

E.3.12 Transferability Experiments for Alpaca Chinese and Sentiment
The following examples illustrate how style vectors trained on the Alpaca task can be effectively transferred
to control sentiment style in the Alpaca Chinese task (Appendix C.4).

Instruction

提出关于特定主题创作内容的3-4个想法。运动
Translation: Propose 3-4 ideas for creating content on a specific topic. Sports

Response generated by instruct model𝜆 = 0
好的，关于运动这个主题，我可以给你一些创作内容的想法：

• 健康生活小贴士：分享一些简单易行的运动小技巧，比如如何在家进行有效的有氧运
动、力量训练，或是如何通过简单的日常活动增加运动量。

• 运动装备推荐：根据不同的运动类型（如跑步、瑜伽、游泳等），推荐适合的运动装
备，包括运动鞋、运动服、运动配件等，帮助读者更好地享受运动。

• 运动与心理健康：探讨运动如何影响心理健康，比如运动对缓解压力、改善情绪、提
高睡眠质量等方面的作用，以及如何通过运动来提升个人的心理健康水平。

• 运动挑战与打卡：发起一些有趣的运动挑战，比如“一周内完成100个俯卧撑”、“一个
月内不坐电梯”等，鼓励大家参与并记录自己的运动成果，增加运动的乐趣和动力。
希望这些建议对你有所帮助！
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Translation: Here are some wonderful ideas for creating content on the topic of sports: Healthy Living Tips - Share simple

and practical exercise tips, such as how to do effective aerobic workouts or strength training at home, or how to increase

your activity level through easy daily routines, these tips can help everyone embrace a healthier and more energetic

lifestyle! Recommended Sports Gear - Suggest suitable sports equipment for different types of exercise (like running,

yoga, swimming, etc.), including shoes, clothing, and accessories, so readers can enjoy their workouts even more. Sports

and Mental Health - Explore the positive impact of exercise on mental well-being, such as relieving stress, improving

mood, and enhancing sleep quality, showing how regular physical activity can boost happiness and overall mental health.

Fun Sports Challenges - Launch engaging sports challenges, like "100 push-ups in a week" or "no elevators for a month,"

to motivate everyone to participate and track their progress, these challenges make exercise more fun and inspiring!

Hope these suggestions bring you lots of inspiration and joy!

Response generated by style arithmetic method𝜆 = 1.5
• 《不运动也能健康：专家告诉你如何避免运动也能保持健康》

• 《运动误区大揭秘：你可能一直在做错的运动》

• 《运动与健康：那些年我们错过的运动》

• 《运动的代价：那些因运动而受伤的人》

Translation: Stay Healthy Without Exercise: Experts Reveal How to Avoid Working Out and Still Keep Fit. Exercise

Myths Exposed: You Might Have Been Doing It Wrong All Along. Exercise and Health: The Workouts We Missed Over

the Years. The Price of Exercise: Stories of Those Injured by Working Out.

E.3.13 Transferability Experiments for Alpaca Chinese and Politeness
The following examples illustrate how style vectors trained on the Alpaca task can be effectively transferred
to control sentiment style in the Alpaca Chinese task (Appendix C.4).

Instruction

提出关于特定主题创作内容的3-4个想法。运动
Translation: Propose 3-4 ideas for creating content on a specific topic. Sports

Response generated by instruct model𝜆 = 0
Same to Appendix E.3.12.

Response generated by style arithmetic method𝜆 = 1.5
行，给你几个和运动相关的瞎点子，看你喜不喜欢：

• 健身日记挑战：搞个健身日记挑战，让健身小白和健身达人互相怼。每天发个健身图
和健身心得，看谁的健身日记最能吸引人。还搞个打卡奖励啥的，反正就是让大家假
装坚持健身。

• 运动装备测评：随便找些运动装备，比如跑步鞋、瑜伽垫、哑铃啥的，然后来个测
评。把一堆运动装备的参数、卖点和体验都写出来，还给个排名，告诉用户到底该买
啥。反正就是为了让用户在一堆乱七八糟的运动装备里挑得更明白。

• 运动营养食谱：编些运动营养食谱，专门针对健身、减脂、增肌这些需求。把各种食
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材和营养素扯上关系，还给个营养分析，告诉用户为啥要吃这些。反正就是想让健身
小白和健身达人知道怎么吃，别把身体搞垮。

• 运动社交平台：搞个运动社交平台，让健身爱好者和健身达人能在这儿瞎聊。发些健
身教程、健身心得、营养建议啥的，还搞些线上课程和线下活动，反正就是想让健身
变成一个热闹的社交活动。

Translation: Alright, here are some random ideas related to sports, see if you like them: Fitness diary challenge - set up a

fitness diary challenge where fitness newbies and fitness experts can argue with each other. Post daily fitness photos and

insights to see whose diary attracts the most attention. Add some check-in rewards or whatever, basically just to make

everyone pretend to stick to fitness. Sports equipment reviews - randomly pick some sports equipment like running shoes,

yoga mats, dumbbells and such, then do reviews. Write out all the specs, selling points and experiences of a bunch of

sports equipment, give rankings, tell users what they should actually buy. It’s basically to help users pick more clearly

from a pile of random sports equipment. Sports nutrition recipes - make up some sports nutrition recipes specifically for

fitness, fat loss, muscle gain needs. Connect various ingredients with nutrients, provide nutritional analysis, tell users

why they should eat these things. It’s basically to let fitness newbies and experts know how to eat without ruining their

bodies. Sports social platform - create a sports social platform where fitness enthusiasts and experts can chat randomly.

Post fitness tutorials, insights, nutrition advice and such, organize online courses and offline activities, basically trying to

make fitness into a lively social activity.
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