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Abstract

Large language models (LLMs) have achieved
remarkable progress in multilingual machine
translation (MT), demonstrating strong perfor-
mance even with limited parallel data. How-
ever, effectively fine-tuning LLMs for MT
is challenging due to parameter interference,
which arises from the conflicting demands of
different language pairs and the risk of over-
writing pre-trained knowledge. To address this
issue, we propose MLAS-LoRA, a novel multi-
ple language-aware LoRA knowledge transfer
framework. MLAS-LoRA efficiently adapts
LLMs to MT by selectively transferring knowl-
edge from a large teacher to a small student
model. Our approach first evaluates the aware-
ness of neurons and extracts linguistic knowl-
edge in the teacher model to both the general
MT task and specific language pairs. We then
propose a multiple language-specific LoRA ar-
chitecture to inject the extracted knowledge
into the student model. During fine-tuning,
only the parameters of the relevant language-
general and language-specific LoRA modules
are updated. Experimental results on diverse
multilingual language pairs demonstrate that
MLAS-LoRA significantly outperforms strong
baselines by +1.7 BLEU on average, includ-
ing standard fine-tuning and other parameter-
efficient methods.

1 Introduction

Large language models (LLMs) have attained no-
table advancements in natural language process-
ing, particularly in challenging tasks such as mul-
tilingual machine translation (MT) (Zhu et al.,
2024d; Siu, 2024), with ongoing work exploring di-
verse strategies for further improvement (Zhu et al.,
2024c; Cui et al., 2024; Zhu et al., 2024a). As
the scale of LLMs increases, these models demon-
strate increasingly powerful capabilities, including

†Equal contribution.
*Corresponding author.

improved zero-shot and few-shot learning for trans-
lation (Schaeffer et al., 2024; Zhu et al., 2024e).
However, the training and inference of massive
LLMs are computationally expensive, requiring
substantial resources and hindering their deploy-
ment in applications (Wang and Li, 2024; Guo et al.,
2025).

To address these challenges, some works pro-
pose various efficient fine-tuning methods. These
methods aim to adapt LLMs to specific tasks with
minimal parameter updates, such as adapter (Alves
et al., 2023) and LoRA (Zhang et al., 2023b).
While these methods have demonstrated that task-
specific parameter adjustments are both detectable
and editable within a single model, the broader
question of whether such targeted knowledge is
transferable across different LLMs remains an open
and under-explored area (Zhong et al., 2024). An-
other research has focused on knowledge distil-
lation (KD) to transfer knowledge from a large
“teacher” model to a small “student” model (Gou
et al., 2021). Compared to adapter and LoRA,
it can leverage the knowledge encoded within a
large and powerful LLM to improve the perfor-
mance of a smaller model. However, current KD
approaches often focus on mimicking the teacher’s
output distributions (e.g., through soft labels) and
may overlook the rich, structured knowledge im-
plicitly stored within the teacher’s parameters them-
selves (Zhong et al., 2024).

Existing methods (Michel et al., 2019) have ex-
plored the saliency of attention heads in encoder-
decoder and encoder-only architectures, aiming to
identify task-relevant components and prune re-
dundant ones to improve efficiency in single-task
scenarios. In contrast, the present work focuses
on decoder-only LLMs for multilingual machine
translation, where understanding model behavior at
the neuron level is particularly critical. Recent in-
vestigations for LLMs have revealed the existence
of language-specific neurons (or parameters) (Cao

15645



et al., 2024; Zhu et al., 2024b; Tang et al., 2024).
These studies demonstrate that certain neurons ap-
pear to be specialized for particular languages,
while others are language-agnostic, contributing
to general linguistic processing (Liu et al., 2024a;
Huang et al., 2024). This specialization can also
lead to parameter interference, potentially causing
two key issues for KD and LoRA approaches: (1)
Distilling the entire teacher model’s parameters to
a student model often leads to performance degra-
dation in some tasks within a multi-task setting
(Zhong et al., 2024). (2) Applying LoRA indis-
criminately across different languages during fine-
tuning can result in a sub-optimal configuration
(Cao et al., 2024; Tian et al., 2025). This is be-
cause the fine-tuning process may inadvertently
disrupt the beneficial language-specific representa-
tions learned during pre-training.

To address these issues, we propose MLAS-
LoRA, a novel multiple language-aware LoRA
knowledge transfer framework for extracting
language-specific parameters from a teacher LLM
and subsequently injecting them into a student
model via LoRA for multilingual machine transla-
tion. Specifically, we first evaluate the MT aware-
ness of each neuron in the LLM’s layers, identify-
ing neurons that are significantly involved in the
overall MT task. For those MT-relevant neurons,
we further assess and extract the linguistic knowl-
edge of each neuron to each individual language
pair. Then, we propose a multiple language aware-
ness LoRA architecture. This acts as a bridge to
inject the knowledge extracted from both language
awareness parameters of the teacher model into the
student model. This facilitates efficient fine-tuning
of the student on multilingual MT, achieving the
knowledge transfer process. During fine-tuning,
only the parameters of the language awareness
LoRA modules corresponding to the current lan-
guage pair are updated. This targeted approach
minimizes parameter interference and maximizes
the transfer of relevant knowledge.

To summarize, the key contributions of this pa-
per are threefold: (1) We propose MLAS-LoRA
that identifies and extracts language-specific and
language-general knowledge from a teacher LLM’s
neurons, enabling more focused knowledge transfer
to a student model. (2) We design a new LoRA-
based method that selectively injects the extracted
knowledge into the student, updating only relevant
parameters for each language pair, minimizing in-
terference and improving efficiency. (3) Experi-

ments on ten language pairs show that our model
achieves the state-of-the-art results compared to
previous strong baselines and demonstrate the ro-
bustness of the proposed model under various set-
tings.

2 Related Work

LLMs have shown remarkable success on a wide
range of NLP tasks, including multilingual MT
(Chowdhery et al., 2023; Touvron et al., 2023). Re-
cent years have witnessed growing research interest
in fine-tuning LLMs for domain-specific applica-
tions.

Prominent examples include adapter-based meth-
ods (Pfeiffer et al., 2021; Nguyen and Le, 2024).
Houlsby et al. (2019a) introduce adapter modules,
which are small bottleneck layers inserted between
layers of a pre-trained Transformer, allowing for
task-specific adaptation with minimal parameter
updates. Pfeiffer et al. (2021) extend this with
AdapterFusion, combining knowledge from mul-
tiple adapters trained on different tasks. Another
approach is LoRA (Hu et al., 2022), which updates
a low-rank decomposition of the weight matrices.
Other approaches include prompt tuning (Lester
et al., 2021), which prepends trainable soft prompts
to the input, and prefix tuning (Li and Liang, 2021),
which prepends trainable continuous prefixes to
each layer’s activations. Guo et al. (2021) find
that fine-tuning multilingual LLMs do not always
bring about improvements, and sometimes even
undermine translation quality due to catastrophic
forgetting.

Another significant body of work explores
knowledge distillation (KD) for transferring capa-
bilities and knowledge from a teacher LLM to a
smaller student model (Hinton et al., 2015; Liao
et al., 2025). Jain et al. (2023) develop a method for
selecting the most informative multilingual data for
distillation, focusing on high-resource languages
to improve low-resource performance. Recentlly,
Xu et al. (2024) explore weight selection for uni-
formly selecting parameters from a larger teacher
model to initialize a smaller variant. Other studies
concentrate on function-preserving methods (Hon-
ovich et al., 2023; Wang et al., 2023), ensuring the
initialized large model replicates the behaviors of
the original small model.

Recent work has explored language-agnostic
components within multilingual LLMs (Bhat-
tacharya and Bojar, 2023; Qin et al., 2024). Neu-
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Figure 1: Illustration of the proposed MLAS-LoRA.

ron analysis, inspired by neurobiology (Patel et al.,
2022), is gaining traction. Studies have shown that
neurons can encode specialized contextual informa-
tion (Gurnee et al., 2023), positional information
(Voita et al., 2024), and linguistic properties (Marco
and Fraser, 2024; Gurnee et al., 2024). However,
much prior work on multilingual LLMs hasn’t fully
addressed negative language interaction. Assuming
shared representations can be detrimental when lan-
guages require specialized processing. Fine-tuning
or distilling without considering language-specific
aspects can lead to interference. In this work,
we explicitly identify and leverage both language-
specific and language-general knowledge within a
teacher LLM. By selectively extracting and trans-
ferring this knowledge using a multiple language
awareness LoRA, we minimize negative language
interaction and achieve more efficient and effective
multilingual MT.

3 Methodology

The proposed MLAS-LoRA is illustrated in Fig-
ure 1. We first analyze which layers of the teacher
LLM have strong relevance to a source-target lan-
guage pair, and evaluate the strength of awareness
of neurons at those layers to the given language
pair. Then, we extract language-aware parametric
knowledge from the teacher model. In order to use
extracted language-aware knowledge, we propose
a multiple language-aware LoRA as a bridge to

inject the knowledge from the teacher model into
the student.

3.1 Evaluating the Language Awareness of
Neurons

As our goal is to transfer knowledge of a teacher
model to a student model, we need to select a sub-
set of layers from the teacher model that are most
crucial for the MT. The number of selected lay-
ers should match the number of layers in the stu-
dent model. We adapt a representation analysis
approach, inspired by the concept of measuring
activation differences between layers (Zhu et al.,
2024b), to quantify the contribution of each layer
in the teacher model. For a given language pair
(s, t), we consider the forward pass of a source sen-
tence xs through the teacher model. Let Ai(x

(n))
represent the activation vector of layer i during
the n-th forward propagation, and N be the total
number of forward propagations. We compute the
layer relevance score Ri for each layer i as the L1-
norm of the difference between the activations of
consecutive layers:

Ri(s, t) =
1

N

N∑

n=1

||Ai+1(x
(n))−Ai(x

(n))||1 (1)

After calculating Ri(s, t) for all layers in the
teacher model, we select the top L layers with the
highest values. L is equal to the number of layers
of the student model to be updated.
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LLMs training enables knowledge transfer but
also causes interference, largely due to optimiza-
tion conflicts among various languages (Tan et al.,
2024). Therefore, within the L selected relevant
layers, we further analyze individual neurons to
determine their language awareness. we divide neu-
rons into language-general neurons and language-
specific neurons. Language-general neurons cap-
ture knowledge that might include general linguis-
tic principles across languages. Language-specific
neurons are specialized for a particular language
pair to address parameter interference.

To quantify neuron awareness, we design a
sensitivity-based approach inspired by Taylor ex-
pansion methods. For a given neuron j in layer
l, We define its awareness score Φl,j(s, t) for the
language pair as follows:

Φl,j(s, t) =

∣∣∣∣
∂L
∂hl,j

· hl,j

∣∣∣∣ (2)

L is the loss function. hl,j is the output of neuron
j in layer l. ∂L

∂hl,j
is the gradient of the loss with

respect to the output of neuron j. This score ap-
proximates the change in the loss function if the
output of neuron j is set to zero. We calculate
Φl,j(s, t) by performing a forward and backward
pass with seed sentences of the language pair.

To categorize neurons into language-general and
language-specific neurons, we analyze the distri-
bution of their awareness scores across different
language pairs. For neuron j in layer l, we com-
pute a set of awareness scores:

Φl,j = {Φl,j(s1, t1),Φl,j(s2, t2), ...,Φl,j(sn, tn)}
(3)

If Φl,j(si, ti) has highest awareness score and
Φl,j(si, ti) < λ, neuron j in layer L is classified as a
language-general neuron. If the highest awareness
score Φl,j(si, ti) > λ, neuron j in layer l is classi-
fied as a language-specific neuron. The threshold
λ is a hyperparameter that distinguishes language-
general neurons from language-specific neurons.
We set the value of λ as 0.2 according to a previous
evaluation (Zhu et al., 2024b). We examine the
effect with different values of λ in Appendix A.6.

3.2 Extracting Parameters from
Language-Aware Neurons

We face a practical challenge that the dimension-
ality of the teacher model’s neurons typically ex-
ceeds that of the student. Therefore, we need a
method to extract a relevant subset of parameters

from the teacher model that is compatible with the
student. For each selected layer l, and for each
two-dimensional weight matrix WT ∈ RM×N in
the teacher model, we aim to extract a submatrix
WT ∈ Rm×n, where M > m and N > n are the
corresponding dimensions in the teacher and stu-
dent model. We use the neuron awareness scores
Φl,j to guide this extraction. Unlike simple di-
mensionality reduction, our goal is to preserve the
structural integrity of the most relevant parts of the
teacher’s weight matrices. We perform this extrac-
tion separately for language-general and language-
specific neurons.

Let WT be a weight matrix in a selected layer.
We define two sets of indices Igen and Ispe. Igen
is set of indices of language-general neurons. Ispe
is set of indices of language-specific neurons asso-
ciated with a language pair. For language-general
neurons, we extract a submatrix W

gen
s as follows:

Wgen
s = Extract(WT , Igen,m, n) (4)

For language-specific neurons associated with
a language pair, we extract a submatrix W

spe
s as

follows:

Wspe
s = Extract(WT , Ispe,m, n) (5)

Extract(.) is awareness-based scoring function.
For each submatrix, they compute an aggregate
awareness score. For a language-general subma-
trix, this score is the sum of the average awareness
scores of all the involved general neuron. For a
language-specific matrix, this score is the sum of
language-specific awareness values.

3.3 Multiple Language-Aware LoRA
To effectively transfer knowledge from the teacher
to the student model and address the challenges
of parameter interference in multilingual MT, we
introduce a novel LoRA-based architecture MLAS-
LoRA. This architecture builds upon the core idea
of Low-Rank Adaptation (LoRA), which modifies
a pre-trained weight matrix W ∈ Rd×k by adding
a low-rank decomposition:

W′ = W +BA (6)

where B ∈ Rd×r, A ∈ Rr×kand the rank r <<
min(d, k) Only B and A are updated during fine-
tuning, significantly reducing the number of train-
able parameters.

However, standard LoRA is language-agnostic
and does not address the specific challenges of
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multilingual fine-tuning. Inspired by the concept of
intrinsic language-specific subspaces (Voita et al.,
2024), and the observation that some neurons are
language-general and some are language-specific,
we propose a dual-LoRA structure within each
layer of the student model. This structure consists
of language-general LoRA and language-specific
LoRA. Language-general LoRA is a single LoRA
module (Bgen,Agen), that is shared across all
language pairs. This module aims to capture
and transfer general translation knowledge that
is beneficial regardless of the specific languages.
Language-specific LoRA is a set of LoRA modules
{(Bspe(s1, t1),Aspe(s1, t1)), (Bspe(s2, t2),Aspe(
s2, t2)), ..., (Bspe(sn, tn),Aspe(sn, tn))}, where
each module (Bspe(si, ti),Aspe(si, ti)) is associ-
ated with a specific language pair. These modules
aim to capture and transfer knowledge that is
unique to the nuances of each language pair,
mitigating parameter interference by isolating
language-specific adaptations.

The key to transferring knowledge lies in how
we initialize these LoRA modules. We first use
the extracted language-general submatrix W

gen
s

to initialize the language-general LoRA module.
We perform Singular Value Decomposition (SVD)
W

gen
s = UΣV T . Then, we set:

Bgen = U [:, : rgen] · Σ[: rgen, : rgen]

Agen = V T [: rgen, :]
(7)

where rgen is the rank of the language-general
LoRA module. Similarly, we use the extracted
language-specific submatrix W

spe
s to initialize the

corresponding language-specific LoRA module us-
ing SVD W

spe
s = UΣV T as follows:

Bspe = U [:, : rspe] · Σ[: rspe, : rspe]

Aspe = V T [: rspe, :]
(8)

During fine-tuning, we adopt a sparse activation
mechanism to further enhance parameter efficiency
and to strictly enforce the separation between
language-general and language-specific knowledge.
For given an input language pair i, The language-
general LoRA module (Bgen,Agen) is always ac-
tivated. Only the language-specific LoRA mod-
ule corresponding to the current language pair
(Bspe(si, ti),Aspe(si, ti)) is activated. All other
language-specific LoRA modules are frozen. The
modified weight matrix W′, given the input lan-

guage pair i, is computed as:

W′ = W+BgenAgen+(Bspe(si, ti)Aspe(si, ti))
(9)

During backpropagation, only the pa-
rameters in the activated LoRA modules
(Bgen,Agen,Bspe(si, ti),Aspe(si, ti)) are up-
dated. The original student model parameters and
the parameters of the inactive language-specific
LoRA modules remain frozen. This selective
updating further reduces the number of trainable
parameters and prevents interference between
different language pairs.

4 Experiments

We conducted extensive experiments on a large
number of language pairs on Gemma-2-2b-it
(Team, 2024) and compared them with a series
of strong baselines.

4.1 Datasets
In the fine-tuning stage, we selected 14 language
pairs (as described in 3) to adjust the language-
specific LoRA and language-general LoRA of
LLM. All original training data are from the train-
ing set part of the WMT 18 dataset1, and the data
for calculating the awareness score come from the
validation set of WMT 18. All data follow a li-
cense that can be used freely for research purposes.
Specifically, we randomly extracted 200,000 sen-
tence pairs for each translation direction, and ran-
domly extracted 1,000 sentences for calculating
the awareness score. In addition, we used the fol-
lowing translation instruction fine-tuning templates
and applied them to our parallel data:

Translate from [SRC] to [TGT] : (10)

where [SRC] and [TGT] denote the source and
target language name of the language pair, respec-
tively. We evaluated the performance of our model
using the established test set (WMT18). Addition-
ally, to demonstrate the generalization ability of
our model across different datasets, we conducted
evaluations on the FLORES-200 (Costa-Jussà et al.,
2022) devtest set, with detailed results provided in
Appendix A.5.

4.2 Settings and Baselines
Setting We executed a freezing operation on the
parameters of non-current language-specific LoRA

1https://www.statmt.org/wmt18/
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while exclusively fine-tuning the parameters within
current language-specific LoRA and language-
general LoRA. During the model fine-tuning stage,
we configured the fintuning hytper-parameters as
follows: the fine-tuning epoch was set to 3, the
number of language pairs was specified as 14, the
batch size was set 64, and the AdamW optimizer
was employed. Additionally, the learning rate was
set to 1e-4. Furthermore, we introduced a gradi-
ent accumulation operation, updating the model
parameters every 8 iterations to enhance conver-
gence. The teacher model used in our experiments
is Gemma-2-9b-it, and the student model used is
Gemma-2-2b-it.

Baselines We compared MLAS-LoRA with In-
context Learning (Zhang et al., 2023a), which is
a training-free approach that allows the LLMs to
perform downstream tasks (we used 5 random
shots as in-context demonstrations); P-tuning (Liu
et al., 2022), which is a highly efficient prompt
tuning method that achieves performance compara-
ble to fine-tuning; LoRA (Hu et al., 2022), which
fine-tunes a model for a downstream task by con-
verting certain structures into low-rank matrices;
and LoRA-Flow (Wang et al., 2024), which in-
troduces dynamic fusion weights to combine Lo-
RAs for generative tasks; MELoRA (Ren et al.,
2024), improves parameter-efficient fine-tuning by
using mini-ensemble low-rank adapters; AFLoRA
(Liu et al., 2024b), is a parameter-efficient fine-
tuning method that improves performance by in-
crementally freezing low-rank projection matrices;
Full parameter fine-tuning, which fine-tunes all
model parameters for the task; Adapter (Houlsby
et al., 2019b), which facilitates the acquisition of
new knowledge by incorporating additional adapter
modules. LSLo (Cao et al., 2024), introduces
language-specific LoRA for efficient fine-tuning
of multilingual neural machine translation models.
Detailed baselines are described in A.4. For evalu-
ating translation performance, we used automatic
evaluation metrics sacreBLEU.2

4.3 Main Results
Table 1 highlights the BLEU scores of various mod-
els and adaptation strategies on a multilingual MT
across 10 language pairs. We also show the cor-
responding METEOR and COMET results in the
Appendix A.3, and put the results of the remain-
ing 4 language directions in Appendix A.7. The

2BLEU+case.mixed+numrefs.1+smooth.none+tok.13a
+version.2.2.1

0-shot row establishes the baseline performance
of the untuned Gemma-2-2b-it model, revealing
its inherent, yet limited, multilingual MT. BLEU
range considerably (e.g., 24.26 for cs-en, but only
6.41 for en-et), indicating that while the LLM pos-
sesses some cross-lingual understanding, it’s far
from optimized for translation.

For fine-tuning methods, we observe a clear im-
provement across all approaches compared to the
zero-shot and in-context baselines. However, sig-
nificant differences emerge among the fine-tuning
techniques themselves, revealing the importance
of how knowledge is adapted. Methods like stan-
dard LoRA, MELoRA, AFLoRA, and Adapter
do not explicitly distinguish between language-
general and language-specific knowledge. They
apply parameter updates within a shared parameter
space for all languages. This can lead to param-
eter interference, where updates that benefit one
language pair may degrade performance on oth-
ers (we will demonstrate this in section 5.2). In
contrast, ours consistently outperforms all base-
lines across every reported language pair and direc-
tion. This substantial and consistent improvement
demonstrates the effectiveness of our core innova-
tions: the explicit separation and targeted transfer
of language-specific and language-general knowl-
edge. By identifying neurons relevant to the overall
MT task and further categorizing them based on
their language awareness, ours avoids the pitfalls of
indiscriminate parameter updates. The use of multi-
ple language-specific LoRA modules allows for fo-
cused adaptation to each language pair, minimizing
interference and maximizing the positive transfer
of knowledge from the teacher model. The results
strongly suggest that a language-aware approach,
which considers both the shared and unique aspects
of different languages, is crucial to achieve optimal
performance in multilingual MT with LLMs.

4.4 Ablation Study
To validate the effectiveness of our method, we
conducted an ablation study with ten experimental
settings: -R-i, -R-a, -R-s, -M-i, -Ms-a, -Ms-spe,
-Ms-gen, -Mr-a, -Mr-spe and -Mr-gen. These set-
tings fall into four broad categories: (2)-M-i uses
multiple randomly initialized LoRAs (one per lan-
guage pair); (3) -Ms-* employs multiple LoRAs
per layer, initialized with part parameters extracted
from random layers of the teacher model; (4) and
-Mr-* also uses multiple LoRAs per layer, but ini-
tialized using our proposed MLAS-LoRA extrac-
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Methods cs-en en-cs de-en en-de et-en en-et fi-en en-fi ru-en en-ru

Basic LLM Model
0-shot 24.26 10.52 34.99 21.11 17.54 6.41 17.19 6.90 26.83 16.57

In-context 16.87 9.99 23.57 19.63 9.37 7.65 12.28 8.45 17.94 15.47
Prior Similar Studies

Full fine-tune 21.63 11.03 30.14 18.15 17.98 11.10 15.18 8.80 22.18 13.16
P-tuning 22.10 12.35 34.42 23.16 20.37 11.09 17.71 9.29 24.95 16.23
Adapter 26.60 13.03 36.36 26.72 22.98 11.46 19.51 10.59 27.39 19.28
LoRA 26.03 13.17 36.16 25.10 22.16 11.23 19.03 9.55 26.73 19.44

MELoRA 26.75 13.86 36.45 26.69 22.84 11.47 19.47 10.63 27.31 19.59
AFLoRA 26.80 13.64 36.52 26.28 22.44 11.50 19.52 10.44 27.40 19.64

LSLo 27.07 13.49 36.66 25.83 22.06 11.19 19.53 10.26 27.31 19.74
LoRA-Flow 27.03 13.50 36.90 25.98 22.21 11.62 19.75 10.34 27.65 19.81

Ours
MLAS-LoRA 28.80 15.56 38.64 29.46 24.04 13.31 21.25 13.39 28.83 21.31

Table 1: BLEU scores on the 10 language pairs for xx-to-English and English-to-xx translation. The highest score
on each translation direction is highlighted in bold.

Methods en-cs en-de en-et en-fi
MLAS-LoRA 15.56 29.46 13.31 13.39

-R-i 13.17 25.10 11.23 9.55
-R-a 12.56 26.46 11.31 9.89
-R-s 13.03 26.14 11.61 10.20
-M-i 13.59 26.93 11.19 10.66

-Ms-a 13.29 26.16 10.61 9.72
-Ms-spe 13.33 26.22 10.80 9.93
-Ms-gen 13.63 26.39 11.02 10.37

-Mr-a 14.33 27.04 11.87 11.02
-Mr-spe 14.72 28.10 12.13 12.18
-Mr-gen 14.83 28.49 12.35 12.21

Table 2: Ablation Study

tion method.
The specific details for each setting are as fol-

lows:

• -R-i: Use a single LoRA for all language pairs,
with random initialization.

• -R-a: Use a single LoRA for all language
pairs, with LoRA parameters derived from
related layers of the teacher model, without
distinguishing between language-specific and
language-general.

• -R-s: Use a single LoRA for all language pairs,
with LoRA parameters derived from randomly
selected layers of the teacher model, without
distinguishing between language-specific and
language-general.

• -M-i: Use a specific LoRA for each language
pair, with random initialization.

• -Ms-a: Use a specific LoRA for each language
pair, with LoRA parameters derived from ran-
domly selected layers of the teacher model,
without distinguishing between language-
specific and language-general.

• -Ms-spe: Use a specific LoRA for each lan-
guage pair, with LoRA parameters derived
from randomly selected language-specific pa-
rameters of the teacher model.

• -Ms-gen: Use a specific LoRA for each lan-
guage pair, with LoRA parameters derived
from randomly selected general language pa-
rameters of the teacher model.

• -Mr-a: Use a specific LoRA for each language
pair, with LoRA parameters derived from re-
lated layers of the teacher model, without
distinguishing between language-specific and
language-general.

• -Mr-spe: Use a specific LoRA for each lan-
guage pair, with LoRA parameters derived
from related language-specific parameters of
the teacher model.

• -Mr-gen: Use a specific LoRA for each lan-
guage pair, with LoRA parameters derived
from related general language parameters of
the teacher model.
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Figure 2: BLEU improvements achieved on other lan-
guage pairs using the our method for fine-tuning only
one language pair.

Table 2 presents the BLEU scores for each of
these settings across the four language pairs (en-cs,
en-de. en-et and en-fi).

Comparing to the single-LoRA (-R-*), the dif-
ferent multiple-LoRA (-Mr-* and -Ms-*) show im-
provement over the single-LoRA baselines, sug-
gesting that simply providing separate parameter
spaces for each language pair is beneficial. com-
paring -Ms-* and -Mr-* ,we can find that -Mr-*
can get much better results. This shows the ef-
fectiveness of our method, explicitly separating
language-specific and language-general parame-
ters during extraction and injection, leads to the
best overall performance. This separation allows
for targeted fine-tuning that minimizes interference
and maximizes positive knowledge transfer, result-
ing in substantial gains in translation quality. This
demonstrates that carefully selecting and transfer-
ring knowledge from the teacher model, guided
by neuron awareness and language specificity, is
critical for effective multilingual fine-tuning.

5 Analysis

5.1 MLAS-LoRA Improves Transfer
Learning across Languages

We examined the transfer learning ability of MLAS-
LoRA in different translation directions. We fine-
tuned the model using only parallel data from a
particular language direction. In other words, we
fine-tuned only the language-general and language-
specific parameters for that language pair, and then
observed the performance of the model in other

Figure 3: The effect of the number of training language
pairs on en-de in terms of BLEU.

language directions. The Y-axis of Figure 2 shows
the single language direction that we have fine-
tuned, and the X-axis shows the language direction
of the test data, which is plotted as the improve-
ment in the model’s translation performance before
and after the fine-tuning. Since LLM is a model
that is not mainly trained on a parallel corpus, its
translation performance before fine-tuning is poor,
which is the reason for the large improvement in
the model’s translation performance. We observe
that when fine-tuning one language direction, the
results of other language directions can also be sig-
nificantly improved, which proves that our method
is effective in facilitating transfer learning between
languages.

5.2 Effect of Increasing the Number of
Language Pairs

In Figure 3, we investigate the impact of increas-
ing the number of language pairs in the training
data on the en-de translation performance. We first
train the model using en-de data and then use other
data. The X-axis represents the number of language
pairs included in the training set, while the Y-axis
shows the BLEU score on the en-de translation task.
We compare three configurations: a single, shared
LoRA (denoted as “LoRA”), a multi-LoRA setup
where each language pair has its own dedicated
LoRA module (implictly shown as “LoRA-Flow”),
and our proposed method.

A key finding is the decreasing performance of
the single shared LoRA as more languages are
added, demonstrating the detrimental effect of pa-
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Figure 4: Comparison of BLEU scores on the WMT
test set across ten language directions for fine-tuning
the LLaMA3.1-8b model using LoRA, LoRA-Flow and
our proposed method.

rameter interference. The multi-LoRA configura-
tion, by providing separate modules for each lan-
guage pair, mitigates this interference and main-
tains relatively stable performance. Crucially, our
method, which combines multiple LoRAs with a
mechanism for sharing language-general knowl-
edge, exhibits a positive trend: performance im-
proves as more language pairs are included. This
highlights the ability to leverage both language-
specific and language-general knowledge, demon-
strating its scalability and robustness in a multilin-
gual setting, and showcasing the benefits of cross-
lingual transfer learning.

5.3 Results on Other LLMs

We also fine-tuned the LLaMA3.1-8b model
(teacher model is LLaMA3.1-70b) using the our
method and compared it with the LoRA and LoRA-
Flow fine-tuning approach. Results are shown
in Figure 4. We observe that across the 14 lan-
guage directions selected our proposed method out-
performs the LoRA and LoRA-Flow fine-tuning
method. This demonstrates the applicability of the
our method across different models, achieving opti-
mal results not only in the gemma models but also
in the LLaMA model.

6 Conclusion

In this paper, we have presented MLAS-LoRA, a
novel framework for knowledge transfer in mul-
tilingual MT of LLMs. Our approach addresses
the critical challenges of parameter interference,
which commonly hinder the effective fine-tuning
of LLMs for diverse language pairs. We propose
a two-stage process: (1) identifying and extract-
ing both language-general and language-specific
knowledge from a pre-trained teacher model (2)
injecting this extracted knowledge into a student
model using a multiple language-specific LoRA
architecture. Experimental results across a wide
range of language pairs and benchmark datasets
demonstrate that MLAS-LoRA consistently outper-
forms strong baselines.
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for improvement in the applicability of datasets.
The model will adapt to the text style of a specific
dataset during training, but when faced with a dif-
ferent text style of a new dataset, it may not be able
to adjust quickly. Considering the complexity and
diversity of datasets in actual application scenarios,
how to further optimize the model to better adapt
to the differences between different datasets is still
an important direction that needs to be focused on
in future research.
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A Appendix

A.1 Task Formulation

Our primary goal is to improve the performance
of a student model on a multilingual MT task by
transferring language awareness knowledge from a
teacher model. The teacher model is parameterized
by ΓT , and the student model is parameterized by
ΓS . Typically, |ΓT | > |ΓS |, meaning the teacher
model has significantly more parameters than the
student model. Let τ represent the multilingual
MT task, which encompasses a set of language
pairs Φ = {(s1, t1), (s2, t2), ..., (sn, tn)}, where
si denotes the source language and ti denotes the
corresponding target language. We focus on trans-
ferring knowledge awareness to specific source-
target language pairs, which can effectively avoid
parameter interference. In order to achieve this, we
identify and extract parameters from the teacher
model, that are particularly relevant to the specific
language pair. We represent this extraction process
formally as a function:

Γ
(S,T )
T = Extract(ΓT ,ΓS ,ΓT ) (11)

The extracted parameters Γ
(S,T )
T are then in-

jected into the student model. This injection modi-
fies the student model’s parameters, resulting in a
new parameter set Γ′

S . We represent this injection
process as:

Γ′
S = Inject(Γ

(S,T )
T ) (12)

After the injection, the student model Γ′
S can

be optionally fine-tuned on a training dataset spe-
cific to the language pair. This fine-tuning step
allows the student model to further adapt the in-
jected knowledge to the specific characteristics of
the language pair. During the fine-tuning, we only
adjust a small part from Γ′

S .

A.2 Detail Languages

Each language and its ISO 639 code are shown in
Table 3.

A.3 Results on METEOR and COMET

In addition to BLEU, we use two machine trans-
lation quality metrics, METEOR and COMET, to
evaluate the translation results generated by the
Gemma-2-2b-it to more fully explain the superi-
ority of our method. When we use COMET to
evaluate translation quality, the model we use is

ISO 639 Language

cs Czech
de German
en English
et Estonian
fi Finnish
ru Russian
tr Turkish
zh Chinese

Table 3: ISO 639 Language Codes and Names

Unbabel/wmt22-comet-da.3 The results are shown
in Table 4 and 5, respectively.

A.4 Detail Baselines
• In-context (Zhang et al., 2023a) refers to the

ability of large language models (LLMs) to
use contextual information around the input
text to improve performance when perform-
ing tasks. In the study of machine translation,
it is reflected in the specific application of
few-shot prompting. In few-shot prompting,
the model will receive a small number of la-
beled examples, which are presented to the
model as contextual information to help the
model better understand the task. For exam-
ple, in a translation task, these examples will
be connected to the test input according to a
specific template, and the model will improve
the translation quality by learning the input
and output patterns of these examples.

• P-tuning (Liu et al., 2022) is a type of prompt
tuning. In the case where the parameters of
the pre-trained language model are frozen, it
completes specific tasks by adjusting contin-
uous prompts (i.e., adding trainable contin-
uous embeddings), rather than updating the
entire model parameter set like fine-tuning.
P-tuning includes techniques such as reparam-
eterization (although its effectiveness varies
depending on tasks and datasets), adjusting
the prompt length (simple classification tasks
prefer shorter prompts, while hard sequence
tagging tasks prefer longer prompts), multi-
task learning (which can jointly optimize mul-
tiple tasks before fine-tuning a single task to
provide better initialization), and using a ran-
domly initialized classification head instead

3https://huggingface.co/Unbabel/wmt22-comet-da
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Methods cs-en en-cs de-en en-de et-en en-et fi-en en-fi ru-en en-ru

Basic LLM Model
0-shot 54.03 42.94 61.66 48.30 47.42 33.75 47.02 33.68 56.02 55.16

In-context 41.28 39.34 47.12 45.62 31.08 34.23 36.81 35.94 40.44 50.54
Prior Similar Studies

Full fine-tune 52.20 44.87 58.71 48.85 48.81 43.45 45.58 38.58 52.49 53.79
P-tuning 53.08 45.39 59.12 50.02 49.73 44.05 46.94 38.79 53.98 54.22
Adapter 53.74 46.85 60.38 57.96 52.83 42.70 48.25 40.53 54.20 59.55
LoRA 54.23 47.03 60.68 57.66 52.62 42.68 48.59 40.90 54.82 59.76

MELoRA 54.28 47.08 60.74 57.72 52.67 42.72 48.64 40.94 54.88 59.82
AFLoRA 54.45 47.13 60.89 57.85 52.75 42.83 48.77 41.09 55.05 59.97

LSLo 54.31 47.10 60.81 57.74 52.70 42.75 48.66 40.97 54.90 59.84
LoRA-Flow 54.27 47.97 61.41 58.09 52.86 42.97 48.71 41.33 55.19 59.80

Ours
MLAS-LoRA 56.12 48.91 63.99 59.16 53.12 44.93 49.18 42.11 56.40 60.45

Table 4: METEOR scores on the 10 language pairs for xx-to-English and English-to-xx translation. The highest
score on each translation direction is highlighted in bold.

Methods cs-en en-cs de-en en-de et-en en-et fi-en en-fi ru-en en-ru

Basic LLM Model
0-shot 79.97 69.99 83.63 71.70 75.63 56.28 79.30 65.20 82.07 74.47

In-context 67.40 66.84 69.62 68.54 57.89 59.16 67.40 70.45 68.71 71.87
Prior Similar Studies

Full fine-tune 79.43 68.53 83.23 72.95 77.28 67.08 78.46 70.26 80.84 76.64
P-tuning 80.53 70.45 84.71 73.84 78.24 68.32 79.59 72.74 81.31 77.49
Adapter 83.03 78.56 86.34 84.06 81.56 69.35 82.03 78.93 83.85 86.91
LoRA 82.94 78.40 86.14 84.22 81.53 68.96 82.78 78.64 83.22 86.73

MELoRA 83.02 78.49 86.32 84.30 81.69 69.03 82.86 78.76 83.38 86.82
AFLoRA 83.11 78.56 86.23 84.39 81.61 69.10 82.95 78.80 83.30 86.91

LSLo 83.08 78.48 86.26 84.29 81.65 69.06 82.93 78.72 83.35 86.84
LoRA-Flow 83.19 78.64 86.40 84.47 81.77 69.17 83.03 78.87 83.47 87.00

Ours
MLAS-LoRA 84.38 79.78 87.52 85.60 83.08 71.18 84.90 81.55 84.78 88.02

Table 5: COMET scores on the 10 language pairs for xx-to-English and English-to-xx translation. The highest score
on each translation direction is highlighted in bold.
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of a language modeling head for prediction.

• LoRA (Low-Rank Adaptation) (Hu et al.,
2022) is a method designed to efficiently adapt
large pre-trained models to specific down-
stream tasks without the need for full fine-
tuning. Instead of retraining all model param-
eters, LoRA freezes the pre-trained weights
and inserts trainable low-rank matrices (de-
compositions) into each layer of the Trans-
former architecture. This significantly reduces
the number of trainable parameters, lowering
both memory requirements and computational
cost.

• Adapter tuning (Houlsby et al., 2019b) is a
parameter - efficient transfer learning method
for NLP. Adapter modules are added between
layers of a pre - trained network. In the Trans-
former architecture, two serial adapters are
inserted after each of the attention and feed
- forward sub - layers in each Transformer
layer. They are applied to the output of the
sub - layer, after the projection back to the
input size but before the skip connection, and
the output of the adapter is passed to the fol-
lowing layer normalization.

• MELoRA (Mini-Ensemble Low-Rank
Adapters) (Ren et al., 2024) is an extension
of the LoRA method designed to improve
parameter-efficient fine-tuning (PEFT) of
large pre-trained language models. While
LoRA reduces the number of trainable
parameters by using low-rank matrices, it can
sometimes suffer from generalization errors
on specific tasks. MELoRA addresses this by
training an ensemble of mini LoRAs, each
with a small number of parameters, while
maintaining a higher rank than LoRA.

• AFLoRA (Adaptive Freezing of Low-Rank
Adaptation) (Liu et al., 2024b) is a parameter-
efficient fine-tuning (PEFT) method designed
to improve the efficiency of adapting pre-
trained models. It builds upon LoRA by
adding parallel paths of trainable low-rank
matrices (down-projection and up-projection),
each followed by a feature transformation
vector. During fine-tuning, AFLoRA uses a
“freezing score” to incrementally freeze these
projection matrices, reducing the number of

trainable parameters and helping to mitigate
overfitting.

• LoRA-Flow (Wang et al., 2024) is an exten-
sion of the LoRA method designed to im-
prove the combination of multiple LoRAs for
generative tasks. While previous approaches
to combining LoRAs use task-level weights,
which apply the same weights to all tokens
or examples, LoRA-Flow introduces dynamic
weights that adjust the contribution of differ-
ent LoRAs depending on the specific tokens
or parts of the task.

• LSLo (Cao et al., 2024) introduces language-
specific LoRA for efficient fine-tuning of mul-
tilingual neural machine translation (NMT)
models. Instead of fine-tuning all model pa-
rameters, which can lead to inefficiency and
negative interactions among languages, the
proposed method isolates each language’s in-
trinsic subspace, fine-tuning only a small frac-
tion of parameters specific to that language.
The approach includes architecture learning
techniques and a gradual pruning schedule
during fine-tuning to explore the optimal set-
tings and minimal subspaces for each lan-
guage.

A.5 Results on Other Datasets
In addition to the main evaluation on the WMT18
test set, we also conducted tests on the FLORES-
200 devtest set to assess the generalization capa-
bility of our model on a different dataset. Note
that all fine-tuning procedures, including language-
specific and language-general LoRA adjustments,
as well as neuron identification processes, were
exclusively performed using the WMT18 training
and validation data. The evaluation on FLORES-
200 was purely for testing purposes and no further
fine-tuning was done on this dataset. The results on
FLORES-200 devtest in Table 7 demonstrate that
our model maintains strong performance across
diverse datasets, indicating good generalization be-
yond the original fine-tuning data.

A.6 The effect of λ
We define λi as the normalized Φ, which is the
value of Φl,j(si, ti) for a specific language pair
(si, ti) divided by the sum of Φ values for all lan-
guage pairs. We assume that the number of lan-
guage pairs is N . Specifically, λi is given by:
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Methods tr-en en-tr zh-en en-zh
BLEU COMET BLEU COMET BLEU COMET BLEU COMET

Basic LLM Model
0-shot 17.65 78.33 6.24 61.71 18.21 77.56 8.59 49.04

In-context 10.36 62.38 9.18 69.08 14.68 69.44 22.25 72.07
Prior Similar Studies

Full fine-tune 19.39 80.68 11.59 76.92 14.68 77.79 21.92 79.65
P-tuning 21.54 81.63 11.98 78.85 17.05 78.96 26.69 81.02
Adapter 23.50 84.13 13.74 83.31 19.92 81.16 28.41 84.53
LoRA 23.63 83.33 13.34 82.73 19.75 80.93 28.34 84.85

MELoRA 23.47 83.42 13.44 82.82 19.81 81.07 28.58 84.94
AFLoRA 23.36 83.50 13.47 82.90 19.85 81.07 28.62 85.02

LSLo 23.27 83.45 13.54 82.86 19.36 81.04 27.93 84.98
LoRA-Flow 23.78 83.58 13.59 82.98 19.84 81.13 28.30 85.11

Ours
MLAS-LoRA 24.14 85.06 14.19 84.94 20.47 82.36 29.48 86.02

Table 6: BLEU and COMET scores on the 4 language pairs for xx-to-English and English-to-xx translation. The
highest score on each translation direction is highlighted in bold.

Methods fi-en en-fi tr-en en-tr

Basic LLM Model
0-shot 23.23 8.99 24.76 10.56

In-context 14.08 8.20 10.95 8.96
Prior Similar Studies

Full fine-tune 21.63 8.80 22.15 9.60
P-tuning 22.10 9.29 23.45 10.22
Adapter 22.98 10.11 24.66 11.05
LoRA 24.39 10.05 26.59 13.19

MELoRA 24.97 10.47 27.15 13.65
AFLoRA 25.60 10.80 27.85 14.10

LSLo 25.15 10.26 27.09 13.50
LoRA-Flow 26.12 10.97 28.10 14.40

Ours
MLAS-LoRA 27.25 11.50 29.60 15.14

Table 7: BLEU scores on the 4 language pairs for xx-to-
English and English-to-xx translation. The highest score
on each translation direction is highlighted in bold.

Figure 5: En-de Translation Quality as λ Changes.

λi =
Φl,j(si, ti)∑N

n=1Φl,j(sn, tn)

We tested the translation quality in the en-de lan-
guage direction with different λ settings, as shown
in the Figure 5.

A.7 More Results
In addition to the language directions mentioned
above, we also used Gemma-2-2b-it to conducted
experiments on the remaining four language direc-
tions of WMT18. The experimental results are
shown in Table 6.
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