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Abstract

While Large Language Models (LLMs) ex-
cel at many natural language processing tasks,
they often suffer from factual inaccuracies in
knowledge-intensive scenarios. Integrating ex-
ternal knowledge resources, particularly knowl-
edge graphs (KGs), provides a transparent and
updatable foundation for more reliable reason-
ing. Knowledge Base Question Answering
(KBQA), which queries and reasons over KGs,
is central to this effort, especially for complex,
multi-hop queries. However, multi-hop reason-
ing poses two key challenges: (1) maintaining
coherent reasoning paths, and (2) avoiding pre-
maturely discarding critical multi-hop connec-
tions. To address these issues, we introduce
iQUEST, a question-guided KBQA framework
that iteratively decomposes complex queries
into simpler sub-questions, ensuring a struc-
tured and focused reasoning trajectory. Ad-
ditionally, we integrate a Graph Neural Net-
work (GNN) to look ahead and incorporate 2-
hop neighbor information at each reasoning
step. This dual approach strengthens the rea-
soning process, enabling the model to explore
viable paths more effectively. Detailed experi-
ments demonstrate the consistent improvement
delivered by iQUEST across four benchmark
datasets and four LLMs.

1 Introduction

Large language models (LLMs) have achieved
remarkable success across diverse Natural Lan-
guage Processing (NLP) tasks, yet they often ex-
hibit hallucinations and factual errors in special-
ized, knowledge-intensive domains (Huang et al.,
2024; Martino et al., 2023; Minaee et al., 2024).
Fine-tuning LLMs on curated datasets can embed
domain-specific knowledge into model parame-
ters, but it is computationally expensive, difficult
to update, and opaque in terms of interpretabil-
ity (Hu et al., 2023). As an alternative, Retrieval-
Augmented Generation (RAG) techniques query
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Figure 1: Examples of multi-step reasoning in a knowl-
edge graph, each starting from a topic entity. Ques-
tion 1 illustrates how maintaining coherent reasoning
paths can be challenging, whereas Question 2 shows
how critical multi-hop connections may be prematurely
discarded. Entities marked with ✓ are selected in the
reasoning path, and those marked with × are unselected.

external resources during inference, thereby re-
ducing reliance on repeated retraining (Gao et al.,
2023). Among these resources, knowledge graphs
(KGs) offer structured and trustworthy information
that is directly verifiable and maintainable, an es-
sential feature for high-stakes scenarios such as
healthcare and autonomous driving (Wen et al.,
2024).

In this context, Knowledge Base Question An-
swering (KBQA) has emerged as a crucial research
direction, aiming to query and reason over KGs
to answer natural language questions. Complex
KBQA tasks often require multi-hop reasoning or
multiple constraints (Lan et al., 2022), as illustrated
by questions like “In the North Pacific region, what
is the official flower of the affected area of the
cyclone Tropical Storm Fabio?” Answering such
queries necessitates iterative exploration of entities,
relations, and constraints within large, heteroge-
neous KGs.
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A straightforward way to handle complex
queries is the Chain-of-Thought (CoT) (Wei et al.,
2022) framework, which makes each inference step
explicit. Building on this idea, some methods treat
LLMs as agents that iteratively explore the KG
from a topic node (e.g., ToG (Sun et al., 2024),
Interactive-KBQA (Xiong et al., 2024)), while oth-
ers combine a smaller model with an LLM to gather
evidence before synthesizing the final answer (e.g.,
KG-CoT (Zhao et al., 2024)). Another direction
focuses on sub-question decomposition, either by
inserting delimiters into the original query (Huang
et al., 2023) or by using an LLM to break down the
query for a fine-tuned smaller model (Yixing et al.,
2024). Although these approaches have shown
promise, multi-step reasoning over KGs still face
two key challenges.

Difficulty in discovering effective reasoning
paths. Multi-hop inference demands sustained log-
ical focus. However, as reasoning involves multiple
interwoven subproblems, models often struggle to
maintain direction, losing track after just a few
steps. Additionally, ambiguous or tangential enti-
ties (e.g., “Mexico” in Question 1 of Figure 1) can
introduce noise, further disrupting the reasoning
path and hindering the identification of the correct
answer.

Prematurely discarding critical multi-hop
connections. Existing methods frequently rely on
local (1-hop) relations between the question and a
topic entity’s neighbors, risking the early elimina-
tion of valuable multi-hop paths. For instance, in
Question 2 of Figure 1, “Harry Potter Films” might
be incorrectly discarded due to a lower immediate
relevance score, even though its 2-hop neighbor
“John Williams” strongly matches the query. Such
oversights can derail the entire reasoning process
and lead to incorrect answers.

In complex problem-solving scenarios, people
often lose focus if their attention is not guided
continuously. However, research indicates that
by posing and solving smaller questions, humans
can maintain higher levels of attention during the
reasoning process, thereby improving decision-
making and problem-solving (Salmon and Barrera,
2021; Tofade et al., 2013). Inspired by this insight,
we propose to guide LLMs in multi-step KBQA by
iteratively posing simpler sub-questions, thereby
maintaining a clear reasoning trajectory over multi-
ple hops.

To discover more robust reasoning paths on KGs,
we devise an iterative question-guided framework

iQUEST which, at each iteration, generates a sub-
question fully answerable from the current context.
The LLM then targets that sub-question, retrieves
evidence entities, and returns an intermediate an-
swer. Concurrently, we mitigate the brittleness
of multi-hop exploration by integrating a Graph
Neural Network (GNN) to incorporate semantic
information from second-hop neighbors, thereby
helping the model look one step ahead and avoid
discarding potentially crucial connections.

The key contributions of this paper are summa-
rized as follows:

• We propose a question-guided reasoning
framework that differs from prior work fo-
cused solely on question decomposition. In-
stead of decomposing the original question
once, our method enables the LLM to iter-
atively generate a new sub-question at each
reasoning step based on the current state, ef-
fectively guiding the reasoning process over
the knowledge graph.

• We design a GNN-based method to aggregate
semantic information from second-hop neigh-
bors, allowing the model to look ahead in the
KG at each step and enhancing the robustness
and accuracy of multi-hop reasoning.

• We conduct extensive experiments on four
benchmark datasets, demonstrating the effec-
tiveness and generalizability of our proposed
methods.

2 Related Work

2.1 KBQA

Knowledge Base Question Answering (KBQA)
aims to leverage a KG to generate answers. Tradi-
tional methods are generally IR-based or SP-based:
the former retrieves candidate entities and relations
from a KG and then ranks them (Saxena et al.,
2020; Dai et al., 2023; Chen et al., 2022), whereas
the latter converts natural language questions into
executable structured queries (e.g., SPARQL) (Das
et al., 2021; Ye et al., 2022).

Recently, LLMs have introduced new possibili-
ties. Several approaches integrate LLMs in differ-
ent ways: Interactive-KBQA (Xiong et al., 2024)
iteratively refines SPARQL queries; ToG (Sun
et al., 2024) uses an LLM agent to explore a KG
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Figure 2: Overview of our framework, illustrating the reasoning trajectory, workflow, and multi-step reasoning
process over KGs.

for evidence; FlexKBQA (Li et al., 2024) syn-
thesizes training data for smaller models; KG-
CoT (Zhao et al., 2024) fuses small-model rea-
soning with LLM-based answer finalization. Other
work uses tool-like interfaces for external KG rea-
soning (Jiang et al., 2023) or multi-agent strate-
gies (Zong et al., 2024) to enhance KBQA perfor-
mance.

2.2 Question Decomposition

A central challenge in complex KBQA is decom-
posing the query into tractable sub-questions. Early
methods used neural architectures (e.g., Seq2Seq or
BERT+LSTM) to split questions, but often lacked
robustness or altered entity semantics (Zhang et al.,
2019; Gu and Su, 2022). Later work introduced
explicit delimiters to preserve meaning and sequen-
tially answer sub-questions (Huang et al., 2023).
Increasingly, LLMs have been adopted for decom-
position and subsequent reasoning (Yixing et al.,
2024). However, most focus on segmentation rather
than adaptive inference. In contrast, our approach
uses targeted intermediate prompts to guide and
validate each reasoning step, harnessing the LLM’s
capabilities more comprehensively.

2.3 Entity Exploration

Many KBQA systems rely on 1-hop neighbors for
candidate retrieval, employing text similarity (e.g.,
BM25), direct semantic relevance, or MLP-based
scoring (Sun et al., 2024; Xiong et al., 2024; Zhao
et al., 2024; Yixing et al., 2024). These methods of-
ten overlook 2-hop neighbors, potentially missing
critical inference paths. Our work addresses this
gap by explicitly incorporating 2-hop neighbors
into the search process, enabling more thorough
exploration and improved answer derivation.

3 Problem defination

We consider a KG G = {⟨e, r, e′⟩ | e, e′ ∈ E , r ∈
R}, where E and R represent the sets of entities
and relations, respectively. Each triple ⟨e, r, e′⟩
encodes a relationship r between entity e and entity
e′.

Given a natural language question Q that con-
tains a topic entity etopic, the goal is to identify
an answer entity eans ∈ E within G that correctly
answers Q. Unlike simple KBQA, where eans is di-
rectly connected to etopic, complex KBQA requires
multi-hop reasoning, as eans may be multiple hops
away from etopic.

4 Method

Our method, shown in Figure 2 and detailed in
Algorithm 1, consists of three modules: (1) Itera-
tive Question Guidance, (2) Two-hop Entity Explo-
ration, and (3) Answer Extraction. Given a com-
plex query, Iterative Question Guidance breaks it
down into simpler sub-questions, each guiding the
next exploration step. Two-hop Entity Exploration
expands relevant entities and relations by leverag-
ing both 1-hop and 2-hop connections. Finally,
Answer Extraction integrates the retrieved knowl-
edge to generate the final answer.

4.1 Iterative Question Guidance

Given a multi-step reasoning question Q, our goal
is to dynamically decompose it into simpler sub-
questions, guiding the knowledge graph explo-
ration step by step. For instance, given the original
question: "In the North Pacific region, what is the
official flower of the affected area of the cyclone
Tropical Storm Fabio?", our method first extracts
the most relevant sub-question: "Which area in the
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Algorithm 1: Question-Guided KBQA
Input: Natural language question Q; Topic

entity etopic; Knowledge graph G.
Output: Answer A to the question Q.
Initialization:
C ← ∅ // context
E ← { etopic} // candidate entities
for i← 1 to MaxIter do

(1) Subquestion Generation:
Qsub ← IGQ-LLM(Q, C);
(2) Neighbor Retrieval:
Nbr← SPARQL(G, E);
(3) GNN-based Entity Selection:

(a) Collect 2-hop neighbors:
E2h ←

⋃
e∈Nbr SPARQL(G, e);

(b) Relevance scoring:
Scores← GNN(E2h, Qsub);
(c) Top-k update:
E ← Top-k(Scores);

(4) Subquestion Answering:
Asub ← AE-LLM(Qsub, E);
(5) Context Update:
C ← C ∪ { (Qsub, Asub)};
(6) Sufficiency Check:
if AE-LLM(C) == “sufficient” then

break // exit if enough evidence

return AE-LLM(Q, C) // final answer

North Pacific region was affected by Tropical Storm
Fabio?".

To achieve this dynamic decomposition, we ex-
tract the next sub-question by considering both the
reasoning context C and the original question Q.
Here, the context C consists of previously gener-
ated sub-questions Q

(i)
sub and their corresponding

answers A(i)
sub, providing a structured history of rea-

soning steps. This process is formally described in
Step (1) of the Algorithm 1. The extraction process
can be formulated as:

Q
(n)
sub = IQG-LLM

(
Q, C

)
(1)

where C =
[
Q

(1)
sub, A

(1)
sub, Q

(2)
sub, . . . , A

(n−1)
sub

]
.

Following the Chain-of-Thought paradigm, we
iteratively update prompts to reflect new sub-
questions and answers. This structured, step-by-
step prompting ensures coherent reasoning and pre-
serves contextual consistency. At each step, the
LLM also decides whether further decomposition
is required. If not, the current sub-question is used

to guide exploration of the knowledge graph, en-
suring efficiency.

4.2 Two-Hop Based Entity Exploration
Neighbor Retrieval. To retrieve relevant knowl-
edge for each sub-question, we explore the neigh-
bors of the target entity via SPARQL queries, as
shown in Step (2) of Algorithm 1. We employ a
generic SPARQL template to extract 1-hop neigh-
bors. Since SPARQL query syntax of retrieving
neighbors is fixed, we can reuse a template to sys-
tematically obtain them. For instance, if we wish
to find all movies directed by Christopher Nolan,
we can issue the following SPARQL query:
SELECT ?tailEntity
WHERE {
ns:m.0bxtg ns:film.director.film ?tailEntity .

}

where ns:m.0bxtg is the Freebase ID for Christo-
pher Nolan, and ns:film.director.film is the
relevant predicate.

We repeat this process to retrieve all outgoing
edges and neighboring nodes for both head and tail
entities in the current state of reasoning, ensuring a
comprehensive collection of candidate neighbors.

Once we obtain the 1-hop neighbors of the cur-
rent entity, we score each neighbor according to its
relevance to the query. We then select the top k
neighbors as the next step in the reasoning process.

Two-Hop Neighbor Aggregation with GNN.
While 1-hop neighbors can be useful, they may not
provide sufficient semantic context. To incorporate
information from 2-hop neighbors, we perform an-
other round of SPARQL queries to retrieve these
nodes. We then employ a GNN to aggregate these
2-hop neighborhood signals, as shown in Step (3)
in Algotithm 1. Specifically, we first convert tex-
tual features of each node (e.g., entity descriptions
or relevant text) into dense vector representations
using BERT. Let h1h denote the representation for
a 1-hop neighbor e1h, while h2h stands for a 2-
hop neighbor e2h. We adopt a GraphSAGE-like
aggregation (Hamilton et al., 2017) to update the
representation of each 1-hop neighbor with its 2-
hop neighbors:

ĥ1h = σ
(
W·[h1h||AGG{h2h | e2h ∈ N (e1h)}]

)
,

(2)
whereN (e1h) denotes the set of neighbor nodes of
e1h, W is a trainable weight matrix, and AGG(·)
is an aggregation function such as mean-pooling,
which can aggregate neighboring nodes without
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any numerical limitations. By concatenating the
central node’s representation h1h with the aggre-
gated neighbor representation h2h, we preserve the
original information of the central node and miti-
gate the risk of diluting its identity.

Relevance Classification. After updating the
representation of each 1-hop neighbor to ĥ1h, we
concatenate it with the sub-question representation
Qsub, forming a combined vector h. We then feed
h through a two-layer MLP to perform a binary
classification (relevant vs. irrelevant). Formally,

ŷ = Softmax
(
W2 σ(W1 h+ b1) + b2

)
, (3)

where W1,W2 are weight matrices, b1,b2 are
biases, and σ(·) is a nonlinear activation function
such as ReLU. The Softmax function ensures that
the output ŷ represents the probability of the neigh-
bor being relevant or irrelevant. To obtain a nor-
malized relevance score, we take the probability
corresponding to the "relevant" class:

score = ŷ[1] ∈ (0, 1). (4)

Finally, we select the top-k entities with the high-
est scores as the supporting evidence for answering
the question.

We use cross-entropy loss with one-hot encoding
for training:

L = −
2∑

i=1

yi log(ŷi). (5)

Here, yi is the ground-truth label for class i, and ŷi
is the predicted probability of class i.

4.3 Answer Extraction LLM (AE-LLM)

After selecting the top-k most relevant entities, we
use an LLM to answer the current sub-question, fol-
lowing steps (4)–(6) in Algorithm 1. Specifically,
we construct a prompt instructing the LLM to gen-
erate an answer based on both the retrieved knowl-
edge and its internal knowledge. The generated an-
swer is then incorporated into the context C along
with the sub-question. Next, we assess whether C
contains sufficient information to directly answer
the original question. If so, we prompt the LLM
to synthesize all sub-questions and answers to pro-
duce the final response. Otherwise, we iteratively
generate additional sub-questions, retrieve relevant
entities, and obtain answers until enough informa-
tion is accumulated.

5 Experiments

Datasets We evaluate our approach on
four standard KBQA datasets, all of which re-
quire multi-hop reasoning: ComplexWebQuestions
(CWQ) (Talmor and Berant, 2018), WebQues-
tionsSP (WebQSP) (Yih et al., 2016), WebQues-
tions (Berant et al., 2013), and GrailQA (Gu et al.,
2021). Among them, GrailQA is also used to assess
the generalization ability of the retrieval model. All
these datasets are based on the Freebase knowledge
graph (Bollacker et al., 2008). Following previous
studies, we adopt Hit@1 score as the primary eval-
uation metric.

Implementation Details. For the LLMs, we
utilize GPT-4o (gpt-4o-2024-05-13), one of the
most advanced general-purpose LLMs, alongside
DeepSeek-R1 (70B), a recently released, pow-
erful open-source reasoning model (Guo et al.,
2025). Additionally, we incorporate LLaMA 3.1-
70B (hereafter referred to as LLaMA 70B) and a
smaller-scale model, LLaMA 3.2-3B (referred to
as LLaMA 3B), for comparative analysis.

For the GNN-based reasoning module, we use
bert-base-uncased as the encoder, with a hidden
dimension of 768. The GNN itself has a hidden
dimension of 128. During inference, we retrieve
the top-3 most relevant entities as supporting ev-
idence to answer the question. Since the GNN
evaluates the relevance between entities and the
question independently at each inference step, we
train its parameters using single-hop reasoning sam-
ples from the training datasets. Negative samples
are generated through random negative sampling.1

5.1 Main results

Table 1 presents our experimental results across
four standard KBQA benchmarks. Our iQUEST
achieves state-of-the-art performance on WebQSP
and WebQuestions and ranks second on CWQ and
GrailQA. Compared to baselines that do not fine-
tune LLMs, such as ToG and Interactive-KBQA,
our approach demonstrates superior reasoning over
large knowledge graphs. Interactive-KBQA em-
ploys Mistral-13B, whose relatively small size lim-
its performance, while ToG benefits from GPT-
4 through an API. Despite these differences, our
method significantly outperforms both, underscor-
ing its effectiveness without requiring LLM fine-
tuning.

1https://github.com/Wangshuaiia/iQUEST/tree/main
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Method
Multi-hop reasoning Generalization

CWQ WebQSP WebQuestion GrailQA
Question-Decomposion (Huang et al., 2023) 72.8 - - -
Chain-of-Question (Yixing et al., 2024) 78.8 78.10 - -
KG-CoT (Zhao et al., 2024) 62.3 84.90 68.00 -
FlexKBQA (Li et al., 2024) - 46.20 - 68.90
Interactive-KBQA (Xiong et al., 2024) 49.07 71.2 - -
ToG (Sun et al., 2024) 69.5 82.6 57.90 81.4
iQUEST (GPT-4o based) 73.85 88.93 81.23 73.52

Table 1: Performance comparison of different methods. Best results in bold and second-best in underline. All the
comparison results are taken from their corresponding papers.

For the GrailQA dataset (64k samples), ToG
randomly selected 1,000 instances to reduce com-
putation, and we followed the same strategy for
fairness, though results may vary slightly due to
different samples. On WebQuestions, where ambi-
guity is common in real user queries, our approach
uses the original question as guidance, achieving a
23% performance gain over ToG.

Among fine-tuned approaches, FlexKBQA,
KG-CoT, Chain-of-Question, and Question-
Decomposition deliver competitive results.
Chain-of-Question leverages GPT-3.5-turbo for
reasoning and a fine-tuned T5 model for question
decomposition, achieving strong performance.
Nevertheless, our method maintains an advantage
across most datasets. Overall, iQUEST excels in
multi-hop reasoning and generalization. Instead
of fine-tuning an LLM, it trains a GNN for
entity exploration, enhancing adaptability while
simplifying training.

5.2 Ablation Study

5.2.1 Assumptions
Ablation studies on LLM systems are challenging
due to their black-box nature. To analyze the im-
pact of our design choices, we explicitly outline
our assumptions based on prior knowledge and em-
pirical studies presented in the literature:
A1. The most relevant capabilities of an LLM
in terms of QA tasks are reasoning and internal
knowledge.
A2. LLMs with significantly smaller parameter
sizes generally exhibit lower overall capability. For
example, LLaMA 3B performs worse than LLaMA
70B and DeepSeek-R1 (70B), while GPT-4o is con-
sidered the most capable LLM.
A3. We assume that model size serves as a suffi-
cient proxy for internal knowledge. That is, LLMs
of similar size tend to have comparable levels of

internal knowledge.
A4. Based on prior empirical evidence and avail-
able information, we assume that DeepSeek-R1
surpasses LLaMA-70B in reasoning due to its
reasoning-focused pretraining, and DeepSeek-R1
has at least comparable reasoning capability to
GPT-4o. we summarize our assumptions about
each LLM in the following Table.

Model Reasoning Internal Knowledge Overall

LLaMA 3B Low Low Low
LLaMA 70B Medium Medium Medium
DeepSeek-R1 High Medium Medium
GPT-4o High High High

5.2.2 Experimental Design
In this paper, we introduce three key components
(C1-C3) and conduct corresponding ablations to
analyze their impact. The complete ablation results
can be found in Table 6 (Appendix A).

C1. KG Augmentation We integrate a KG with
a GNN-based forward-looking retrieval mechanism
to complement the LLM’s internal knowledge. We
investigate the following aspects:

• C1.1 KG effectiveness: Prior studies show
that KGs effectively enrich knowledge. While
this is not our primary focus, we conduct an
ablation where we exclude the KG to replicate
this conclusion.

• C1.2 GNN-based retrieval: Retrieving rel-
evant neighbors from the KG is challenging
due to the abundance of semi-relevant nodes.
Excluding too many may omit crucial infor-
mation, while including too many introduces
noise and reduces efficiency. We evaluate
the effectiveness of our GNN-based forward-
looking two-hop neighbor retrieval model in
balancing this trade-off.
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Model Combination
Dataset

CWQ WebQSP WebQuestion GrailQA

LLaMA 3B (AE) + GPT-4o (IQG) 20.14 40.42 48.65 32.87
LLaMA 3B (AE) + GPT-4o (IQG) + GNN 23.66 (+3.52) 43.73 (+3.31) 50.11 (+1.46) 34.19 (+1.32)

LLaMA 70B (AE) + GPT-4o (IQG) 47.24 83.07 74.61 58.46
LLaMA 70B (AE) + GPT-4o (IQG) + GNN 50.30 (+3.06) 84.36 (+1.29) 76.65 (+2.04) 60.45 (+1.99)

DeepSeek-R1 (AE) + GPT-4o (IQG) 52.44 80.43 74.63 58.23
DeepSeek-R1 (AE) + GPT-4o (IQG) + GNN 55.64 (+3.20) 83.21 (+2.78) 77.87 (+3.24) 60.27 (+2.04)

GPT-4o (AE) + GPT-4o (IQG) 68.42 88.10 80.20 69.30
GPT-4o (AE) + GPT-4o (IQG) + GNN 73.85 (+5.43) 88.93 (+0.83) 81.23 (+1.03) 73.52 (+4.22)

Table 2: GNN-based search across AE-LLMs and datasets.

Model Combination
Dataset

CWQ WebQSP WebQuestion GrailQA

GPT-4o (No IQG - Baseline) 63.34 84.25 77.72 67.42
GPT-4o (AE) + LLaMA 3B (IQG) 64.95 (+1.61) 85.70 (+1.45) 78.46 (+0.74) 67.69 (+0.27)
GPT-4o (AE) + LLaMA 70B (IQG) 67.46 (+4.12) 87.01 (+2.76) 79.78 (+2.06) 68.76 (+1.34)
GPT-4o (AE) + DeepSeek-R1 (IQG) 68.16 (+4.82) 87.85 (+3.60) 80.11 (+2.39) 69.45 (+2.03)
GPT-4o (AE) + GPT-4o (IQG) 68.42 (+5.08) 88.10 (+3.85) 80.20 (+2.48) 69.30 (+1.88)
GPT-4o (AE) + GPT-4o (IQG) + GNN 73.85 (+10.51) 88.93 (+4.68) 81.23 (+3.51) 73.52 (+6.10)

Table 3: Performance differences compared to GPT-4o (No IQG as baseline) across datasets.

C2. Iterative Question Guidance (IQG-LLM)
IQG-LLM serves as an interface between the KG
and the answer-generation LLM, effectively of-
floading the reasoning burden. To evaluate its im-
pact, we conduct the following ablations:

• C2.1 Removing IQG-LLM: We assess the
impact of directly generating answers without
this intermediate reasoning module.

• C2.2 Reasoning importance: We hypothe-
size that IQG-LLM primarily enhances rea-
soning. To test this, we examine whether
stronger reasoning LLMs perform better in
this role. Specifically, if the IQG-LLM has
strong reasoning capabilities while the AE-
LLM does not, the IQG-LLM should improve
the AE-LLM’s QA performance more than an
IQG-LLM with weaker reasoning abilities.

C3. Answer Extraction LLM (AE-LLM) AE-
LLM takes the question and retrieved context as
input and is responsible for understanding and sum-
marizing relevant information. We explore the fol-
lowing hypotheses:

• C3.1 Internal knowledge vs reasoning re-
quirement: We evaluate the extent to which
AE-LLM relies on its internal knowledge vs
reasoning. Our hypothesis is that if IQG-LLM
provides strong reasoning supports, the need
for AE-LLM to independently reason is signif-
icantly reduced. However, the internal knowl-
edge still plays an important role.

5.2.3 Results
In this section, we examine the impact of these
components by systematically removing or altering
them. Given the assumptions presented in Sec-
tion 5.2.1, we present our ablation results for each
component C1–C3 in detail.

C1.1 KG Effectiveness
To validate the importance of KG augmentation,
we remove the KG and observe its impact across
different models (rows without KG vs with KG).
The results in Table 6 show a substantial drop
in performance. For example, GPT-4o (without
KG) achieves only 40.14% on CWQ, compared to
63.34% with KG, indicating that even the strongest
LLMs significantly benefit from structured exter-
nal knowledge. This can be observed across all
datasets for larger LLMs (i.e., all LLMs except
for LLaMA 3B). Interestingly, for LLaMA 3B, the
QA capability decreases when the KG is present.
This suggests that smaller models may struggle to
effectively integrate external knowledge and may
even be hindered by conflicting or irrelevant KG
information.

C1.2 GNN-based Two-Hop Neighbor Retrieval
Our GNN-based retrieval model addresses the
trade-off between retrieving too many semi-
relevant nodes (introducing noise) and excluding
too many (losing critical information by looking
one step ahead and incorporating semantic informa-
tion from second-hop neighbors. Table 2 demon-
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IQG-LLM
Dataset

CWQ WebQSP WebQuestion GrailQA

DeepSeek-R1 (baseline) 46.15 82.64 73.41 57.61
LLaMA 70B (weaker reasoning) 47.13 (+0.98) 83.15 (+0.51) 74.36 (+0.95) 58.57 (+0.96)
GPT-4o (equivalent reasoning) 47.24 (-0.11) 83.07 (+0.08) 74.61 (-0.25) 58.46 (+0.11)

Table 4: Performance comparison for LLaMA 70B as AE-LLM across different IQG-LLM models. Numbers in the
parentheses indicate relative change from DeepSeek-R1 as AE-LLM (baseline).

AE-LLM
Dataset

CWQ WebQSP WebQuestion GrailQA

DeepSeek-R1 (baseline) 55.64 83.21 77.87 60.27
LLaMA 70B (weaker reasoning) 50.3 (-5.34) 84.36 (+1.15) 76.65 (-1.22) 60.45 (+0.18)
GPT-4o (stronger internal knowledge) 73.85 (+18.21) 88.93 (+5.72) 81.23 (+3.36) 73.52 (+13.25)

Table 5: Impact of AE-LLM selection on QA performance using GPT-4o as IQG-LLM with GNN-based retrieval.
Numbers in the parentheses indicate relative change from DeepSeek-R1 as AE-LLM (baseline).

strates that this mechanism consistently improves
performance across all datasets and model con-
figurations. Even GPT-4o (AE) + GPT-4o (IQG),
the strongest model pairing, benefits from GNN-
based search, particularly on CWQ (+5.43%) and
GrailQA (+4.22%). This highlights the importance
of fine-grained retrieval even for highly capable
models, particularly for complex multi-hop rea-
soning and generalization tasks. While stronger
AE-LLMs already perform well, they still lever-
age improved knowledge selection to refine answer
accuracy.

C2.1 Removing IQG-LLM
IQG-LLM plays a crucial role in structuring multi-
hop reasoning by breaking complex questions into
intermediate steps. As shown in Table 6, removing
IQG-LLM leads to performance drops across all
datasets. Particularly, we illustrate this for the most
capable LLM GPT-4o in Table 3. Even using a
much smaller LLaMA 3B as IQG-LLM increases
the QA performance.

C2.2 Reasoning Importance in IQG-LLM
We expect AE-LLMs with weaker reasoning abil-
ities, such as LLaMA 70B, to gain more from a
reasoning-capable IQG-LLM. Given our assump-
tion that DeepSeek-R1 has stronger reasoning than
LLaMA 70B and is at least as capable as GPT-4o
in reasoning, while GPT-4o has superior internal
knowledge and general capabilities, we analyze
how different IQG-LLMs with varying reasoning
strengths affect LLaMA 70B used as AE-LLM.
From Table 4 we see that using LLaMA 70B as
AE-LLM, replacing DeepSeek-R1 with LLaMA
70B as IQG-LLM improves performance across
all datasets. However, further upgrading to GPT-
4o as IQG-LLM results in minimal changes, with

slight improvements on WebQSP (+0.08%) but mi-
nor drops on CWQ (-0.11%) and WebQuestion (-
0.25%). These results indicate diminishing returns
beyond a certain IQG-LLM reasoning threshold.

C3.1 Internal Knowledge Requirement in
AE-LLM

Table 5 examines the impact of AE-LLM selec-
tion on QA performance when using GPT-4o as
IQG-LLM with GNN-based retrieval for the best
reasoning and external knowledge support. Re-
placing DeepSeek-R1 with LLaMA 70B as AE-
LLM results in only minor performance variations,
suggesting that AE-LLM with weaker reasoning
does not significantly affect the final QA outcome.
However, upgrading AE-LLM to GPT-4o leads to
substantial improvements across all datasets. This
indicates that AE-LLM benefits more from stronger
internal knowledge rather than reasoning.

6 Conclusion

In this paper, we present iQUEST, an iterative,
question-driven framework for multi-step reason-
ing in complex KBQA. It decomposes complex
queries into sub-questions to guide structured rea-
soning, using a GNN for knowledge aggregation
from relevant areas, which supports 2-hop forward-
looking reasoning. By combining sub-questions
and answers, iQUEST maintains a coherent reason-
ing path for more accurate results. Carefully de-
signed ablation studies on four benchmark datasets
and four LLMs demonstrate that generating ques-
tion effectively reduces the reasoning burden, im-
proving reasoning efficiency, knowledge extraction,
and utilization. These results confirm the effective-
ness of iQUEST in handling complex KBQA tasks.
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Limitations

Despite the effectiveness of our approach, several
limitations should be acknowledged. First, our
framework employs one LLM for question formula-
tion and guidance, followed by another LLM for an-
swering, which, while improving performance, in-
troduces additional computational overhead. This
increased cost may impact scalability, particularly
in real-time or resource-constrained applications.
We provide a detailed runtime comparison in Ap-
pendix B

Second, our GNN model is limited to captur-
ing information from 2-hop neighbors. While this
is sufficient for many cases, it may be inadequate
for certain domain-specific KGs where meaningful
reasoning requires a broader context. Future work
could explore more advanced path search strategies
that allow consideration of multi-hop neighbors dy-
namically, potentially enhancing the model’s ability
to leverage deeper relational structures within KGs.
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A Complete ablation results

Table 6 presents a comprehensive performance
comparison of various model combinations in
multi-hop reasoning and generalization tasks across
four benchmark datasets: CWQ, WebQSP, We-
bQuestion, and GrailQA. The results highlight the
effectiveness of different architectures and model
integration strategies, particularly focusing on the
impact of Knowledge Graphs (KG), Iterative Ques-
tion Generation (IQG), Answer Extraction (AE)
and Graph Neural Networks (GNN)-based infor-
mation retrieval. Additionally, the evaluation en-
compasses four large language models (LLaMA
3B, LLaMA 70B, DeepSeek-R1 (70B), and GPT-
4o), comparing their ability to enhance reasoning
capabilities and generalization performance.
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Model Combination Multi-hop Reasoning Generalization
CWQ WebQSP WebQuestion GrailQA

LLaMA 3B (without KG) 10.18 46.50 47.86 18.51
LLaMA 3B (with KG) 14.81 30.51 40.00 29.06
LLaMA 3B (AE) + LLaMA 3B (IQG) 16.65 31.97 41.56 29.73
LLaMA 3B (AE) + LLaMA 70B (IQG) 19.44 37.74 46.58 31.29
LLaMA 3B (AE) + DeepSeek-R1 (IQG) 19.86 38.56 48.11 32.75
LLaMA 3B (AE) + GPT-4o (IQG) 20.14 40.42 48.65 32.87
LLaMA 3B (A) + GPT-4o + GNN 23.66 43.73 50.11 34.19
LLaMA 70B (without KG) 35.85 69.66 58.42 32.48
LLaMA 70B (with KG) 42.65 80.43 71.11 56.35
LLaMA 70B (AE) + LLaMA 3B (IQG) 43.33 81.85 72.15 56.43
LLaMA 70B (AE) + LLaMA 70B (IQG) 46.15 82.64 73.41 57.61
LLaMA 70B (AE) + DeepSeek-R1 (IQG) 47.13 83.15 74.36 58.57
LLaMA 70B (AE) + GPT-4o (IQG) 47.24 83.07 74.61 58.46
LLaMA 70B (A) + GPT-4o + GNN 50.30 84.36 76.65 60.45
DeepSeek-R1 (without KG) 30.15 75.71 67.24 30.15
DeepSeek-R1 (with KG) 50.85 78.79 74.01 57.68
DeepSeek-R1 (AE) + LLaMA 3B (IQG) 51.02 79.13 74.18 57.91
DeepSeek-R1 (AE) + LLaMA 70B (IQG) 51.78 79.43 74.35 58.14
DeepSeek-R1 (AE) + DeepSeek-R1 (IQG) 52.05 79.08 74.56 58.05
DeepSeek-R1 (AE) + GPT-4o (IQG) 52.44 80.43 74.63 58.23
DeepSeek-R1 + GPT-4o + GNN 55.64 83.21 77.87 60.27
GPT-4o (without KG) 40.14 71.04 63.30 33.62
GPT-4o (with KG) 63.34 84.25 77.72 67.42
GPT-4o (AE) + LLaMA 3B (IQG) 64.95 85.70 78.46 67.69
GPT-4o (AE) + LLaMA 70B (IQG) 67.46 87.01 79.78 68.76
GPT-4o (AE) + DeepSeek-R1 (IQG) 68.16 87.85 80.11 69.45
GPT-4o (AE) + GPT-4o (IQG) 68.42 88.10 80.20 69.30
GPT-4o (A) + GPT-4o(IQG) + GNN 73.85 88.93 81.23 73.52

Table 6: Performance comparison of different model combinations in multi-hop reasoning and generalization tasks.

B Comparison of Relative Runtime

B.1 Overview

We present a detailed runtime comparison between
our iterative question-guided framework and ToG 2,
a representative baseline that also leverages LLMs
for question decomposition and reasoning over
knowledge graphs. Unlike our method, ToG does
not incorporate explicit question-guided prompting,
making it a suitable point of comparison in both
efficiency and effectiveness.

B.2 Evaluation Setup

Both methods were evaluated under identical ex-
perimental settings using GPT-4o via Azure Ope-
nAI. For each hop category (1-hop, 2-hop, and
3-hop), we randomly sampled 100 questions. The
n-hop category indicates that the shortest path be-
tween the topic and answer entities in the knowl-
edge graph is n.

B.3 Overall Performance Comparison

Table 7 summarizes the results in terms of the av-
erage number of LLM calls, runtime per query (in
seconds), and accuracy.

2https://github.com/GasolSun36/ToG

Our approach incurs higher latency due to in-
creased LLM calls, particularly for complex multi-
hop queries. However, the added reasoning steps
improve the completeness of path exploration,
yielding significantly better accuracy, especially
in 2-hop and 3-hop settings. In contrast, ToG fre-
quently terminates prematurely in harder cases, sac-
rificing accuracy for speed.

B.4 Controlled Runtime Analysis (Correct
Chains Only)

To isolate runtime differences independent of cor-
rectness variance, we conducted an additional anal-
ysis limited to cases where both methods success-
fully produced complete and correct reasoning
chains. Results are shown in Table 8.

The difference in LLM calls aligns with our
method’s structure: it introduces an explicit
question-guided step at each reasoning hop, result-
ing in approximately 3 (1-hop: 1 questioning +
1 reasoning + 1 summary), 5 (2-hop), and 7 (3-
hop) calls. In contrast, ToG performs around 2, 3,
and 4 calls respectively. Empirical averages match
the theoretical design, with our method using 0.81,
2.20, and 3.15 more calls per query for 1-hop, 2-
hop, and 3-hop questions, respectively.
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Hop Method LLM Calls Runtime (s) Hit@1

1-hop
ToG 2.32 3.41 87.0

iQUEST 3.09 (+0.77) 4.65 (+1.24) 88.0 (+1.0)

2-hop
ToG 2.56 3.96 72.0

iQUEST 5.86 (+3.30) 7.54 (+3.58) 78.0 (+6.0)

3-hop
ToG 3.88 6.03 37.0

iQUEST 7.93 (+4.05) 10.69 (+4.66) 46.0 (+9.0)

Table 7: Overall runtime and accuracy comparison between ToG and our method.

Hop Method LLM Calls Runtime (s)

1-hop
ToG 2.51 3.60

iQUEST 3.12 (+0.61) 4.82 (+1.22)

2-hop
ToG 3.65 5.23

iQUEST 6.05 (+2.40) 8.06 (+2.83)

3-hop
ToG 4.87 7.36

iQUEST 8.32 (+3.45) 11.04 (+3.68)

Table 8: Runtime comparison on correctly answered cases only.

C Handling Missing or Incomplete
Knowledge Graph Facts

In real-world scenarios, knowledge graphs (KGs)
are often incomplete or contain outdated informa-
tion. To address this challenge, our system em-
ploys two complementary strategies to ensure ro-
bust question answering despite such limitations:

1. Leveraging LLM Internal Knowledge:
When the required fact is not available in the
KG, IQUEST defers to the pretrained knowl-
edge of the large language model (LLM) by
directly querying it. This fallback mechanism
proves effective in approximately half of such
cases, as demonstrated in the example pro-
vided in Response 2.

2. Retrieving Indirect Supporting Facts:
In cases where the exact fact is missing,
IQUEST searches for semantically related
facts that can provide indirect support. For
example, even if the exact timezone of a lo-
cation is not found, knowing that Utah is in
the United States allows the model to infer a
plausible timezone.

Despite employing these strategies, their effective-
ness remains limited. In the following section, we

provide a detailed analysis of the impact of missing
or incorrect knowledge graph facts.

D Error Analysis: Missing Entities in the
Knowledge Graph

Some sub-questions fail during the reasoning pro-
cess due to missing entities or incomplete evidence
in the knowledge graph (KG). For instance, for
the question "About the school that publishes the
Harvard Review, what are its school colors?", the
generated sub-question retrieves only an unnamed
entity ID (m.01066g18), which lacks sufficient se-
mantic information to support further reasoning
steps.

To better understand the impact of such failures,
we manually analyzed and categorized errors based
on whether the relevant entity is missing in the KG
or exists but lacks a semantic name. The results,
broken down by dataset and whether iQUEST an-
swered the question correctly or incorrectly, are
summarized in Table 9.

These results show that while LLMs like
iQUEST are sometimes able to answer questions
using prior knowledge, the incompleteness of the
KG, either through missing entities or insufficient
semantic labeling, remains a significant obstacle.
Addressing this issue is critical for improving the
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Table 9: Percentage of sub-question failures due to missing or unnamed entities in the KG.

Dataset Entity Missing in KG Entity Exists but Name Missing
Correct Incorrect Correct Incorrect

CWQ 12% 17% 6% 13%
WebQSP 6% 4% 2% 4%
WebQuestion 3% 5% 1% 6%
GrailQA 3% 5% 14% 9%

robustness and generalization of KGQA systems.

E Failure Case Analysis

Original Question:
Which child actor played in the movie whose sound-
track is Forrest Gump: Original Motion Picture?

Reasoning Process via Sub-question Decom-
position:
To answer this complex question using a knowl-
edge graph, the system first attempts to decompose
it into simpler sub-questions. The goal is to resolve
intermediate entities (such as the movie) before
identifying the actor. The process unfolds as fol-
lows:

1. Sub-question 1: What movie is associated
with the soundtrack Forrest Gump: Original
Motion Picture Score?
→ No direct answer found in the knowledge
graph.

2. Sub-question 2: What is the soundtrack title
of the movie Forrest Gump?
→ No direct answer found.

3. Sub-question 3: What movie has the sound-
track titled Forrest Gump: Original Motion
Picture?
→ No direct answer found.

4. Sub-question 4: What movie features the
soundtrack titled Forrest Gump: Original Mo-
tion Picture?
→ Still no answer retrieved.

5. Sub-question 5: What movies did Asa Earl
Carter act in?
→ This sub-question appears off-topic and
indicates potential drift in the reasoning path.

6. Sub-question 6: What is the movie associated
with the soundtrack Forrest Gump: Original
Motion Picture?

→ No answer obtained, despite being a para-
phrase of earlier attempts.

7. Sub-question 7: What movie has the sound-
track titled “Forrest Gump: Original Motion
Picture”?
→ No result returned.

Final Answer Synthesis:
Despite no explicit answer found in the knowledge
graph for any sub-question, the system leverages
world knowledge to synthesize an answer. It rec-
ognizes that Forrest Gump: Original Motion Pic-
ture is the official soundtrack of the movie Forrest
Gump.

Further, among the limited child actors featured
in Forrest Gump, Haley Joel Osment is identified
as the actor who portrayed Forrest Gump’s son in
a brief but notable appearance. While not a main
character, he is the only prominent child actor in
the film.

Answer:
Haley Joel Osment

Analysis:
This failure case highlights a key limitation of our
method: when a generated sub-question fails to
retrieve an answer from the knowledge graph, the
reasoning process may stall or fall into repetitive,
unproductive loops. This leads to the generation of
redundant sub-questions and ineffective reasoning
paths.

Moreover, retrieving irrelevant information from
the graph can mislead the LLM to generate off-
topic sub-questions, such as "What movies did Asa
Earl Carter act in?", which are unrelated to the
original question.

These observations underscore a major chal-
lenge: the incompleteness of the knowledge graph
remains a significant bottleneck for our method’s
effectiveness.
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