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Abstract

The Mamba layer offers an efficient selective
state-space model (SSM) that is highly effec-
tive in modeling multiple domains, including
NLP, long-range sequence processing, and com-
puter vision. Selective SSMs are viewed as dual
models, in which one trains in parallel on the
entire sequence via an IO-aware parallel scan,
and deploys in an autoregressive manner. We
add a third view and show that such models can
be viewed as attention-driven models. This new
perspective enables us to empirically and theo-
retically compare the underlying mechanisms
to that of the attention in transformers and al-
lows us to peer inside the inner workings of
the Mamba model with explainability methods.
Our code is publicly available1.

1 Introduction

Recently, Selective State Space Layers (Gu and
Dao, 2023) (S6), also known as Mamba models,
have shown remarkable performance in diverse ap-
plications including large-scale language model-
ing (Lieber et al., 2024; Zuo et al., 2024), image
processing (Liu et al., 2024b; Zhu et al., 2024),
video processing (Li et al., 2025), medical imag-
ing (Liu et al., 2024a), tabular data (Ahamed and
Cheng, 2024), point-cloud analysis (Liang et al.,
2024), graphs (Wang et al., 2024a) N-dimensional
sequence modeling (Li et al., 2024) and more.
Characterized by their linear complexity in se-
quence length during training and fast RNN-like
computation during inference (left and middle pan-
els of Figure 1), Mamba models offer a 5x in-
crease in the throughput of Transformers for auto-
regressive generation and the ability to efficiently
handle long-range dependencies.

Despite their growing success, the information-
flow dynamics between tokens in Mamba models

*These authors contributed equally to this work.
1https://github.com/AmeenAli/

HiddenMambaAttn

and the way they learn remain largely unexplored.
Critical questions about their learning mechanisms,
particularly how they capture dependencies and
whether they resemble established layers, such as
RNNs, CNNs, or attention mechanisms, remain
unanswered. Additionally, the lack of interoperabil-
ity methods for these models may pose a significant
hurdle to debugging them and may also reduce their
applicability in socially sensitive domains in which
explainability is required.

Motivated by these gaps, our research aims to
provide insights into the dynamics of Mamba mod-
els and develop methodologies for their interpre-
tation. While the traditional views of SSMs are
through the lens of convolutional or recurrent lay-
ers (Gu et al., 2021b), we show that S6 layers are a
form of attention models. This is achieved through
a novel reformulation of Mamba computation us-
ing a data-control linear operator, unveiling hidden
attention matrices within the Mamba layer. This
enables us to employ well-established interpretabil-
ity and explainability techniques, commonly used
in transformer realms, to devise the first set of tools
for interpreting Mamba models. Furthermore, our
analysis of implicit attention matrices offers a di-
rect framework for comparing the properties and in-
ner representations of transformers (Vaswani et al.,
2017) and Mamba models.

Our main contributions encompass the follow-
ing aspects: (i) We shed light on the fundamental
nature of Mamba models, by showing that they rely
on implicit attention, which is implemented by a
unique data-control linear operator, as illustrated
in Figure 1 (right). (ii) Our analysis reveals that
Mamba models give rise to three orders of mag-
nitude more attention matrices than transformers.
(iii) We provide a set of explainability and inter-
pretability tools based on these hidden attention
matrices. (iv) For comparable model sizes, Mamba
model-based attention shows comparable explain-
ability metrics results to that of transformers. (v)
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We present a theoretical analysis of the evolution of
attention capabilities in SSMs and their expressive-
ness, offering a deeper understanding of the factors
that contribute to Mamba’s effectiveness.

2 Background

Transformers The Transformer architecture is
the dominant architecture in the recent NLP and
Computer Vision literature. It relies on self-
attention to capture dependencies between differ-
ent tokens. Self-attention allows these models to
dynamically focus on different parts of the input
sequence, calculating the relevance of each part to
others. It can be computed as follows:

Attention(Q,K, V ) = αV , α = Softmax
(
QKT

√
dk

)
,

(1)

where Q, K, and V represent queries, keys, and
values, respectively, and dk is the dimension of
the keys. Additionally, the Transformer utilizes H
attention heads to process information in parallel,
allowing the model to capture various dependen-
cies. The attention matrix α enables the models
to weigh the importance of tokens based on their
contribution to the context, and they can also used
for interpretability (Bahdanau et al., 2014), explain-
ability (Chefer et al., 2021b), and improved classi-
fication (Touvron et al., 2021; Chefer et al., 2022).

State-Space Layers State-Space Layers were
first introduced in (Gu et al., 2021b) and have
seen significant improvements through the sem-
inal work in (Gu et al., 2021a). These layers
have demonstrated promising results across sev-
eral domains, including NLP (Wang et al., 2023b;
Mehta et al., 2022; Fu et al., 2022), audio genera-
tion (Goel et al., 2022), image processing (Baron
et al., 2023; Nguyen et al., 2022), long video un-
derstanding (Wang et al., 2023a), RL (David et al.,
2022; Lu et al., 2024),and more. Given one chan-
nel of the input sequence x := (x1, · · · , xL) such
that xi ∈ R, these layers can be implemented us-
ing either recurrence or convolution. The recurrent
view, which relies on the state ht ∈ RN where N
is the state size, is defined as follows: given the
discretization functions fA, fB , and parameters A,
B, C and ∆, the recurrent rule for the SSM is:

Ā = fA(A,∆) , B̄ = fB(B,∆) , (2)

ht = Āht−1 + B̄xt , yt = Cht . (3)

This recurrent rule can be expanded as:

ht = ĀtB̄x0 + Āt−1B̄x1 + · · ·+ B̄xt (4)

yt = CĀtB̄x0 + CĀt−1B̄x1 + · · ·+ CB̄xt . (5)

Since the recurrence is linear, Eq. 4 can also be
expressed as a convolution, via a convolution kernel
K := (k1, · · · , kL), where ki = CĀi−1B̄, thus
allowing sub-quadratic complexity in sequence
length. The equivalence between the recurrence
and the convolution provides a versatile framework
that enables parallel and efficient training with sub-
quadratic complexity with the convolution view,
alongside a faster recurrent view, facilitating the
acceleration of autoregressive generation by decou-
pling step complexity from sequence length. As
the layer defined as a map from RL to RL, to pro-
cess D channels the layer employs D independent
copies of itself.

S6 Layers A recent development in state space
layers is S6 (Gu and Dao, 2023), which show
outstanding performance in large-scale NLP (Zuo
et al., 2024; Waleffe et al., 2024), vision (Liu
et al., 2024b; Zhu et al., 2024), graph classifica-
tion (Wang et al., 2024a), and more. These models
rely on time-variant SSMs, namely, the discrete
matrices Ā, B̄, and C of each channel are modi-
fied over the L time steps depending on the input
sequence. As opposed to traditional SSMs, which
operate individually on each channel, S6 layers
compute the SSM matrices Āi, B̄i, Ci for all i ≤ L
based on all the channels, and then apply the time-
variant recurrent rule individually for each chan-
nel. Hence, we denote the entire input sequence
by x̂ := (x̂1, · · · , x̂L) ∈ RL×D where x̂i ∈ RD.
The per-time matrices Āi, B̄i, and Ci are defined
as follows:

Bi = SB(x̂i) , Ci = SC(x̂i) , ∆i = Sp(S∆(x̂i)) ,
(6)

fA(∆i, A) = exp(∆iA) , fB(∆i, Bi) = ∆iBi , (7)

Āi = fA(∆i, A) , B̄i = fB(∆i, Bi) , (8)

where fA, fB represents the discretization rule,
SB, SC , S∆ are linear projection layers, and Sp
is the Softplus function that is a smooth approx-
imation of ReLU. While previous SSMs employ
complex-valued SSMs and non-diagonal matrices,
Mamba employs real-diagonal parametrization.

The motivation for input-dependent time-variant
layers is to make those recurrent layers more ex-
pressive, allowing them to capture more complex
dependencies. While other input-dependent mech-
anisms have been proposed, Mamba significantly
improves on these layers by presenting a flexible,
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Figure 1: Three Perspectives of the Selective State-Space Layer: (Left) Selective State-Space Models (S6) can be
efficiently computed with linear complexity using parallel scans, allowing for effective parallelization on modern
hardware, such as GPUs. (Middle) Similar to SSMs, the S6 layer can be computed via a recurrent rule. (Right) A
new view of the S6 layer, showing that it uses attention similarly to transformers (see Eq. 13). Our view enables the
generation of attention maps, offering valuable applications in areas such as XAI.

yet still efficient, approach. This efficiency was
achieved via the IO-aware implementation of asso-
ciative scans, which can be parallelized on modern
hardware via work-efficient parallel scanners (Blel-
loch, 1990; Martin and Cundy, 2017).

Mamba The Mamba block is built on top of
the S6 layer, Conv1D and other elementwise op-
erators. Inspired by Gated-MLP, given an input
x̂′ := (x̂′1, · · · x̂′L) it is defined as follows:

x̂ = SiLU( Conv1D( Linear(x̂′) ) ), ẑ = SiLU( Linear(x̂′) )

ŷ′ = Linear(S6(x̂)⊗ ẑ)) , ŷ = LayerNorm(ŷ′+ x̂′) . (9)

where ⊗ is elementwise multiplication. Mamba
models contain Λ stacked blocks and D channels
per block, and we denote the tensors in the i-th
block and j-th channel with a superscript, where
the first index refers to the block number.

Inspired by the vision transformer (ViT) (Doso-
vitskiy et al., 2020), both (Liu et al., 2024b; Zhu
et al., 2024) replace the standard self-attention
mechanism by two Mamba layers, where each layer
is applied in a bidirectional manner. The resulting
model (ViM) achieves favorable results compared
to the standard ViT in terms of both accuracy and
efficiency, when comparing models with the same
number of parameters.

Explainability Explainability methods have
been extensively explored in the context of DNNs,
particularly in domains of NLP (Arras et al., 2017;
Yuan et al., 2021) and vision (Bach et al., 2015).

The contributions most closely aligned with ours
are those specifically tailored for Transformer ex-
plainability. In (Abnar and Zuidema, 2020), the
authors introduce the Attention-Rollout method,
which aggregates attention matrices across differ-
ent layers by analyzing paths in the inter-layer pair-
wise attention graph. Similar approaches were used
in (Ali et al., 2022; Chefer et al., 2021b) and many
other works that built their methods on top of the
attention matrices of Transformers. Our work con-
ducts a similar attention-based analysis, however,
it leverages implicit attention matrices, which we
demonstrate are embedded within the S6 layer.

3 Method

In this section, we detail our methodology. First,
we reformulate S6 layers as self-attention, enabling
the extraction of attention matrices from S6 layers.
Subsequently, we demonstrate how these hidden at-
tention matrices can be leveraged to develop class-
agnostic and class-specific tools for explainable AI
of Mamba models.

3.1 Hidden Attention Matrices In S6

Given the per-channel time-variant system matrices
Ā1, · · · , ĀL, B̄1, · · · , B̄L, and C1, · · · , CL from
Eq. 6 and 8, each channel within the S6 layers can
be processed independently. Thus, for simplicity,
the formulation presented in this section will pro-
ceed under the assumption that the input sequence
x consists of a single channel.

By considering the initial conditions h0 = 0,
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unrolling Eq. 3 yields:
h1 = B̄1x1 , y1 = C1B̄1x1 , (10)

h2 = Ā2B̄1x1 + B̄2x2 , y2 = C2Ā2B̄1x1 + C2B̄2x2 ,
(11)

and in general:

ht =
t∑

j=1

(
Πt

k=j+1Āk

)
B̄jxj , yt = Ct

t∑

j=1

(
Πt

k=j+1Āk

)
B̄jxj .

(12)

By converting Eq. 12 into a matrix form, we get:

y = α̃x , (13)

where α̃ is defined by the following matrix:



C1B̄1 0 · · · 0
C2Ā2B̄1 C2B̄2 · · · 0

...
...

. . . 0
CLΠ

L
k=2ĀkB̄1 CLΠ

L
k=3ĀkB̄2 · · · CLB̄L




Hence, the S6 layer can be viewed as a data-
controlled linear operator (Poli et al., 2023), where
the matrix α̃ ∈ RL×L is a function of the input and
the parameters A,SB, SC , S∆. The element at row
i and column j captures how xj influences yi, and
is computed by:

α̃i,j = Ci

(
Πi

k=j+1Āk

)
B̄j . (14)

Eq. 13 and 14 link α̃ to the conventional standard
attention matrix (Eq. 1), and highlight that S6 can
be considered a variant of causal linear attention.

Simplifying and Interpreting Since Āt is a di-
agonal matrix, the different N coordinates of the
state ht in Eq. 12 do not interact when computing
ht+1. Thus, Eq. 12 can be computed independently
for each coordinate m ∈ {1, 2, . . . , N}:

yt =
N∑

m=1

Ct[m]
( t∑

j=1

(
Πt

k=j+1Āk[m,m]
)
B̄j [m]xj

)
,

(15)
where Ct[m], Ak[m,m], Bj [m] ∈ R, plugging

it into Eq. 14 yields:

α̃i,j =
N∑

m=1

Ci[m]
(
Πi

k=j+1Āk[m,m]
)
B̄j [m] . (16)

An interesting observation arising from Eq. 16
is that a single channel of S6 produces N inner at-
tention matrices Ci[m]

(
Πi

k=j+1Āk[m,m]
)
B̄j [m],

which are summed up over m to obtain α̃. In con-
trast, in the Transformer, a single attention matrix is
produced by each of the H attention heads. Given
that the number of channels in Mamba models D is
typically a hundred times greater than the number

of heads in a transformer (for example, Vision-
Mamba-Tiny has D = 384 channels, compared to
H = 3 heads in DeiT-Tiny), the Mamba layer gen-
erates approximately DN

H ≈ 100N more attention
matrices than the original self-attention layer.

To further understand the structure and charac-
terization of these hidden attention matrices α̃, we
will express them for each channel d as a direct
function of the input x̂. To do so, we first substitute
Eq.6, 7 and Eq.8 into Eq. 14, and obtain:

α̃i,j = SC(x̂i) exp
( i∑

k=j+1

Sp(S∆(x̂k))A
)

Sp(S∆(x̂j))SB(x̂j).

(17)

For simplicity, we propose a simplification of
Eq. 17 by substituting the Softplus function with
the ReLU function denoted by R, and summing
only over positive elements:

α̃i,j ≈ SC(x̂i)(exp
( i∑

k=j+1
S∆(x̂k)>0

S∆(x̂k)A
)
)R(S∆(x̂j))SB(x̂j).

(18)
Consider the following query/key notation:

Q̃i := SC(x̂i) , K̃j := R(S∆(x̂j))SB(x̂j) ,

H̃i,j := exp
( i∑

k=j+1
S∆(x̂k)>0

S∆(x̂k)A
)
, (19)

Eq. 18 can be further simplified to:

α̃i,j ≈ Q̃iH̃i,jK̃j . (20)

This formulation enhances our understanding
of the Mamba’s attention mechanism. Whereas
traditional self-attention captures the influence of
xj on xi through the dot products between Qi and
Kj , Mamba’s approach correlates this influence
with Q̃i and K̃j , respectively. Additionally, H̃i,j

controls the significance of the recent i− j tokens,
encapsulating the continuous aggregated historical
context spanning from xj to xi.

This distinction between self-attention and
Mamba, captured by H̃i,j , could be a key factor
in enabling Mamba models to understand and uti-
lize continuous historical context within sequences
more efficiently than attention.

Moreover, Eq. 20 offers further insights into the
characterization of the hidden attention matrices by
demonstrating that the only terms modified across
channels are A and ∆i, which influence the values
of H̃i,j and K̃j through the discretization rule in
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Eq. 7. Hence, all the attention maps follow a com-
mon pattern, distinguished by the keys K̃j and the
significance of the history H̃i,j via A and ∆i.

A distinct divergence between Mamba’s atten-
tion mechanism and traditional self-attention lies
in the latter’s utilization of a per-row softmax. It is
essential to recognize that various attention models
have either omitted the softmax (Lu et al., 2021)
or substituted it with elementwise neural activa-
tions (Hua et al., 2022; Wortsman et al., 2023; Ma
et al., 2022), achieving comparable outcomes to
the original framework.

3.2 Application to Attention Rollout
As our class-agnostic explainability technique for
Mamba models, we built our method on top of the
Attention-Rollout (Abnar and Zuidema, 2020). For
simplicity, we assume that we are dealing with a
ViM model which operates on sequences of size
L+1, where L is the sequence length obtained from
the

√
L×

√
L image patches, with a classification

(CLS) token appended to the end of the sequence.
To do so, for each sample, we first extract the

hidden attention matrix α̃λ,d for any channel d ∈
[D] and layer λ ∈ [Λ] according to the formulation
in Eq. 13, such that α̃λ,d ∈ R(L+1)×(L+1)

Attention-Rollout is then applied as follows:

∀λ ∈ [Λ] : α̃λ = IL+1 + E
d∈[D]

(α̃λ,d) , (21)

where IL+1 is an identity matrix utilized to incor-
porate the influence of skip connections.

Now, the per-layer global attention matrices α̃λ

are aggregated into the final map ρ by:

ρ = ΠΛ
λ=1α̃

λ, ρ ∈ R(L+1)×(L+1) . (22)

Note that each row of ρ corresponds to a rele-
vance map for each token, given the other tokens.
In the context of this study, which concentrates on
classification models, our attention analysis directs
attention exclusively to the CLS token. Thus, we
derive the final relevance map from the row asso-
ciated with the CLS token in the output matrix,
denoted by ρCLS ∈ RL, which contains the rele-
vance scores evaluating each token’s influence on
the classification token. Finally, to obtain the fi-
nal explanation heatmap we reshape ρCLS ∈ RL to√
L×

√
L and upsample it back to the size of the

original image using bilinear interpolation.
Although Mamba models are causal by defini-

tion, resulting in causal hidden attention matrices,
our method can be extended to a bidirectional set-
ting in a straightforward manner. This adaptation

involves modifying Eq. 21 so that α̃λ,d becomes
the outcome of summing the (two) per-direction
matrices of the λ-layer and the d-channel.

3.3 Attention-based Attribution
As our class-specific explainability method for
Mamba models, we have tailored the Transformer-
Attribution (Chefer et al., 2021b) explainability
method, which is specifically designed for trans-
formers, to suit Mamba models. This method re-
lies on a combination of LRP scores and attention
gradients to generate the relevance scores. Since
each Mamba block includes several peripheral lay-
ers that are not included in transformers, such as
Conv1D, additional gating mechanisms, and mul-
tiple linear projection layers, a robust mechanism
must be designed carefully. For simplicity, we fo-
cus on ViM, with a grid of

√
L patches in each row

and column, as in the previous subsection.
The Transformer-Attribution method encom-

passes two stages: (i) generating a relevance map
for each attention layer, followed by (ii) the aggre-
gation of these relevance maps across all layers,
using the aggregation rule specified in 22, to pro-
duce the final map ρ.

The difference from the attention rollout method
therefore lies in how step (i) is applied to each
Mamba layer λ ∈ [Λ]. For the ĥ ∈ [t] attention
head at layer λ, the transformer method computes
the following two maps: (1) LRP relevance scores
map Rλ,ĥ, and (2) the gradients ∇α̃λ,ĥ with respect
to a target class of interest. Then, these two are
fused by a Hadamard product:

βλ = IL+ E
ĥ∈[Ĥ]

(∇αλ,ĥ⊙Rλ,ĥ)+, IL+1 ∈ R(L+1)×(L+1) .

(23)

Our method, Mamba-Attribution, depicted in
Figure 6 at Appendix, deviates from this method
by modifying Eq. 23 in the following aspects: (i)
Instead of computing the gradients on the per-head
attention matrices ∇αλ,ĥ, we compute the gradi-
ents of ∇ŷ′λ,d. The motivation for these modifica-
tions is to exploit the gradients of both the S6 mixer
and the gating mechanism in Eq. 9 (left), to obtain
strong class-specific maps. (ii) We simply replace
Rλ,ĥ with the attention matrices α̃λ,d at layer λ and
channel d, since we empirically observe that those
attention matrices produce better relevance maps.
Both of these modifications are manifested by the
following form, which defines our method:

β̃λ = IL +
(

E
d∈D

(∇ŷ′λ,d)⊙ E
d∈D

(α̃λ,d)
)
+ . (24)
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Figure 2: Identifying Bias toward the CLS Token:
Average influence of image patches on the CLS token
in ViM models, with the CLS token placed either in the
middle of the sequence (top row: a, b, c) or as the first
token (bottom row: d, e, f). In each row, the first image
(a, d) corresponds to the first layer, while the remaining
images (b, c, e, f) correspond to the final two layers.

4 Experiments
In this section, we present an in-depth analysis of
the hidden attention mechanism embedded within
Mamba models, focusing on its semantic diversity
and applicability in explainable AI frameworks.
We start by visualizing the hidden attention matri-
ces for both NLP and vision models in Sec. 4.1, fol-
lowed by assessing our explainable AI techniques
empirically, via perturbation and segmentation tests
for vision domains in Sec. 4.2 and for NLP domains
in Sec 4.3. Additionally, in Appendix D, we present
a series of ablation studies to validate the design
choices underlying our XAI techniques. Finally,
we present a complexity analysis of our proposed
method in Appendix F.

4.1 Visualization of Attention Matrices
The ViM comes in two versions: in one, the CLS
token is last and in the other, the CLS token is
placed in the middle. Figure 2 shows how this
positioning influences the impact of the patches on
the CLS, by averaging over the test set. Evidently,
the patches near the CLS token are more influential.
This phenomenon may suggest that a better strategy
is to have a non-spatial/global CLS token (Farooq
et al., 2021; Hatamizadeh et al., 2023).

Figure 3 compares the attention matrices in
Mamba and Transformer on both vision and NLP
tasks. For clearer visualization, we apply the Soft-
max function to each row of the attention matrices
obtained from transformers and perform min-max
normalization on the absolute values of the Mamba
matrices. In all cases, we limit our focus to the
first 64 tokens. In vision, we compare ViM and

Vision NLP

Transformer Mamba Transformer Mamba

Figure 3: Hidden Attention Matrices: Attention maps
in vision and NLP. Each row represents a different layer
within the models, showcasing the evolution of the at-
tention maps at 25% (top), 50%, and 75% (bottom) of
the layer depth.

ViT (DeiT), for models of a tiny size, trained on
ImageNet-1K. The attention maps are extracted
using examples from the test set. Each Mamba
attention matrix is obtained by combining the two
maps of the bidirectional channel. In NLP, we
compare attention matrices extracted from Mamba
(130m) and Transformer (Pythia-160m (Biderman
et al., 2023)), trained on the Pile dataset for next
token prediction. The attention maps are extracted
using examples from the Lambada dataset.

As can be seen, the hidden attention matrices of
Mamba appear to be similar to the attention matri-
ces extracted from transformers. In both models,
the dependencies between distant tokens are cap-
tured in the deeper layers of the model, as depicted
in the lower rows.

Some of the attention maps demonstrate the abil-
ity of S6 and transformers to focus on parts of the
input. In those cases, instead of the diagonal pat-
terns, some columns seem to miss the diagonal
element and the attention is more diffused (recall
that we normalized the maps from Mamba for vi-
sualization purposes. In practice, these columns
have little activity). Evidently, both the S6 and
the transformer attention matrices possess similar
properties and depict the two-dimensional structure
within the data as bands with an offset of

√
L.

4.2 Explainability Metrics

The explainable AI experiments include three types
of explainability methods: (1) Raw-Attention,
which employs raw attention scores as relevancies.
Our findings indicate that averaging the attention
maps across layers yields optimal results. (2) Attn-
Rollou tfor Transformers, and its Mamba counter-
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(a) (b) (c) (d) (e) (f) (g)

Figure 4: Qualitative results for various explanation methods applied to ViT and ViM (small models). (a) the
original image, (b) Raw-Attention of ViT, (c) Attention Rollout for ViT, (d) Transformer-Attribution for ViT, (e) the
Raw-Attention of ViM, (f) Attention-Rollout of ViM and (g) the Mamba-Attribution method for ViM.

part, as depicted in Sec. 3.2. Finally, (3) the pro-
posed Transformer Attribution from (Chefer et al.,
2021a) and its Mamba counterpart (see Sec. 3.3).

Qualitative Results Figure 4 depicts the re-
sults of the six attribution methods on typical sam-
ples from the ImageNet test set. As can be seen,
the Mamba-based heatmaps (e,f,g) are often more
complete than their transformer-based counterparts.
The raw attention of Mamba stands out compared
to the other five heatmaps, since it depicts activity
across the entire image. However, the relevant ob-
ject is highlighted. Qualitative results for the NLP
domain are presented in Figure 4 in the appendix.

Quantitative Results Next, we apply explain-
ability evaluation metrics. These metrics allow one
to compare different explainability methods that
are applied to the same model. Applying them to
compare different models is not meant to say that
model X is more explainable than model Y. The
main purpose is to show that the attention maps of
Mamba are as useful as the maps of Transformers
in terms of providing explainability.

Perturbation Tests In this framework, we em-
ploy an input perturbation scheme to assess the
efficacy of various explanation methods. These
experiments are conducted under two distinct set-
tings: (i) In the positive perturbation scenario, a
quality explanation involves an ordered list of pix-
els, arranged most-to-least relevant. Consequently,
when gradually masking out the pixels of the input
image, starting from the highest relevance to the
lowest, and measuring the mean top-1 accuracy of
the model, one anticipates a notable decrease in

performance. Conversely, (ii) in the negative per-
turbation setup, a robust explanation is expected
to uphold the accuracy of the model while system-
atically removing pixels, starting from the lowest
relevance to the highest. In both cases, the evalu-
ation metrics consider the AUC, focusing on the
erasure of 10% to 90% of the pixels.

The results of the perturbations are presented
in Table 1, depicting the performance of different
explanation methods under both positive and neg-
ative perturbation scenarios across the two mod-
els. In the positive perturbation scenario, where
lower AUC values are indicative of better perfor-
mance, we notice that for Raw-Attention, Mamba
shows a better AUC compared to the ViT. For the
Attn-Rollout method, Mamba outperforms the ViT,
while the latter shows a better AUC under the At-
tribution method. In the negative perturbation sce-
nario, where higher AUC values are better, the
Transformer-based methods consistently outper-
form Mamba across all three methods. The ten-
dency for lower AUC in both positive (where it is
desirable) and negative perturbation (where it is
undesirable) may indicate that the Mamba model
is more sensitive to blacking out patches, and it
would be interesting to add experiments in which
the patches are blurred instead (Fong and Vedaldi,
2017). For additional NLP tasks, please refer Ap-
pendix A and Appendix G.
Segmentation Tests It is expected that an ef-
fective explainability method would produce rea-
sonable foreground segmentation maps. This is
assessed for ImageNet classifiers by comparing
the obtained heatmap against the ground truth
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Positive Perturbation Negative Perturbation

Mamba T Mamba T

Raw-Attn 17.27 20.69 34.03 40.77
Attn-Rollout 18.81 20.60 41.87 43.53
Attribution 16.62 15.35 39.63 48.09

Table 1: Positive and Negative perturbation AUC score
(percentages) for the predicted class on ImageNet vali-
dation set. For positive perturbation lower is better, and
for negative higher is better. ’T’ for Transformer.

Model Method Pix-acc mAP mIoU

T Raw-Attention 59.69 77.25 36.94
Mamba Raw-Attention 67.64 74.88 45.09

T Attn-Rollout 66.84 80.34 47.85
Mamba Attn-Rollout 71.01 80.78 51.51

T Attribution 79.26 84.85 60.63
Mamba Attribution (LRP) 71.19 77.04 49.98
Mamba Attribution (Ours) 74.72 81.70 54.24

Table 2: Performance on the ImageNet-Segmentation
dataset (percent). Higher is better. ’T’ for Transformer.

segmentation maps available in the ImageNet-
Segmentation dataset (Guillaumin et al., 2014).

Evaluation is conducted based on pixel accuracy,
mean-intersection-over-union (mIoU) and mean
average precision (mAP) metrics, aligning with es-
tablished benchmarks in the literature for explain-
ability (Chefer et al., 2021a,b),

The results are outlined in Table 2. For
Raw-Attention, Mamba demonstrates significantly
higher pixel accuracy and mIoU compared to ViT,
while the latter performs better in mAP. Under
the Attn-Rollout and attributes methods, Mamba
outperforms ViT in mAP, pixel accuracy and
mIoU. Finally, among the attribution methods,
the Transformer-Attribution achieves the highest
scores across all evaluated metrics, and our method
consistently surpasses the LRP-based method in-
troduced by (Jafari et al., 2024).

These results underscore the potential of
Mamba’s attention mechanism as approaching and
sometimes surpassing the interoperability level of
Transformer models, especially when the atten-
tion maps are taken as is. It also highlights the
applicability of Mamba models for downstream
tasks such as weakly supervised segmentation. It
seems, however, that the Mamba-based attribution
model, which is modeled closely after the trans-
former method in (Chefer et al., 2021b) may benefit
from further adjustments.

Method Positive Negative
(AUAC) (AU-MSE)

Mamba 1.3B (Ours) 0.915 1.765
Pythia 1.4B Trans-Attr 0.909 1.832

Mamba 2.7B (Ours) 0.918 1.239
Pythia 2.8B Trans-Attr 0.920 1.255

Table 3: XAI results for Large Mamba Models over The
ARC-Easy Dataset. Higher is better for positive values, lower
is better for negative values.

4.3 Zero-Shot NLP Pertubation Tests

We conduct experiments with large models on more
complex tasks, such as zero-shot prediction on the
ARC-Easy benchmark. Since we perform this task
in the zero-shot regime with LLMs rather than fine-
tuned classifiers, and because it measures reasoning
capabilities, we consider it representative of real-
world applications.

We evaluate our method on Mamba models with
1.3B and 2.8B parameters for activation analysis
and pruning tasks. For reference, we also test
Pythia Transformer models of similar size (1.4B
and 2.8B parameters) trained on the same dataset
(The Pile) using established Transformer XAI tech-
niques. We note that these Transformer results are
included only for context, as direct comparisons
between architecture-specific XAI methods are
not meaningful due to fundamental differences be-
tween model types. Table 3 shows that our Mamba
XAI method performs comparably to SoTA Trans-
former XAI techniques. This is notable because
Transformer XAI methods have been developed
and refined over several years, while our approach
is the first XAI technique specifically designed for
Mamba models. The competitive performance indi-
cates that our method effectively captures the inter-
pretability patterns in Mamba architectures despite
their different computational approach compared
to attention-based Transformers.

5 Discussion: Attention in SSMs

A natural question to ask is whether the attention
perspective we exposed is unique to S6 (the core
block of Mamba), separating it from other SSMs.
The answer is that S6, similar to transformers, con-
tains a type of layer we call data-dependent non-
diagonal mixer, which previous layers do not.

In their seminal work, Poli et al. (2023) claim
that a crucial aspect of transformers is the exis-
tence of an expressive, data-controlled linear op-
erator. Here, we focus on a more specific compo-
nent, which is an expressive data-controlled linear
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non-diagonal mixer operator. This distinguishes
between elementwise operators that act on the data
associated with specific tokens (such as MLP and
GLU activations) and mixer operations that pool
information from multiple tokens.

The mixer components can further be divided
into fixed, e.g., using pooling operators with fixed
structure and coefficients, or data-dependent, in
which the interactions between tokens are con-
trolled by their input-dependent representations,
e.g., self-attention. In Theorem 1 at Appendix C,
we prove the following result, which sheds light on
the gradual evolution of attention in SSM models.

Theorem 1. (i) S4, DSS, S5 have fixed mixing el-
ements. (ii) GSS ,and Hyena have fixed mixing
elements with diagonal data-control mechanism.
(iii) S6 have data-controlled non-diagonal mixers.

Transformers are recognized for their superior
in-context learning (ICL) capabilities, where the
model adapts its function according to the input
provided (Brown et al., 2020). Empirical evidence
has demonstrated that S6 layers are the first SSMs
to exhibit ICL capabilities on par with those of
transformers (Grazzi et al., 2024; Park et al., 2024).
Based on the intuition that the ability to focus on
specific inputs is necessary for ICL, we hypothesize
that the presence of data-controlled non-diagonal
mixers in both transformers and S6 is crucial for
achieving a high level of ICL.

A question then arises: which model is more
expressive, attention or S6? While previous work
has shown that Transformers are more expressive
than traditional SSMs (Zimerman and Wolf, 2024),
we show in Theorem 2 at Appendix B that the
situation is reversed for S6, as follows:

Theorem 2. One channel of the S6 layer can ex-
press all functions that a single attention head can
express. Conversely, a single attention cannot ex-
press all functions that a single S6 layer can.

6 Conclusions
In this work, we have established a significant link
between Mamba and self-attention layers, illustrat-
ing that the Mamba layer can be reformulated as
an implicit form of causal self-attention mecha-
nism. This links the highly effective Mamba layers
directly with the transformer layers.

The parallel perspective plays a crucial role in
efficient training and the recurrent perspective is
essential for effective causal generation. The atten-
tion perspective plays a role in understanding the

inner representation of the Mamba model. While
“Attention is not Explanation” (Jain and Wallace,
2019), attention layers have been widely used for
transformer explainability. By leveraging the ob-
tained attention matrices, we introduce the first
explainability techniques for Mamba, for both task-
specific and task-agnostic regimes. This contri-
bution equips the research community with novel
tools for examining the performance, fairness,
robustness, and weaknesses of Mamba, thereby
paving the way for future improvements. Finally,
the connection between Mamba and attention, first
identified in this work, has also been explored in
recent follow-up research, see Appendix H.

7 Limitations
Our work provides a novel and insightful perspec-
tive on the Mamba layer through attention maps,
but it has certain limitations. A key challenge is
the computational cost of generating these maps,
which requires constructing a per-channel matrix
with a quadratic number of elements relative to the
sequence length. Future research could explore
more efficient XAI methods that leverage the inher-
ent linear attention structure of Mamba. Such meth-
ods could extract meaningful insights by designing
mechanisms that utilize the benefits of attention
maps without explicitly computing them.

Another limitation lies in the scale of the models
tested. While our approach demonstrates effective-
ness on a non-negligible scale, its applicability to
significantly larger models, such as LLaMA-405B
or GPT-4, remains unverified. At the time of this
study, such larger Mamba-based models were un-
available, preventing direct evaluation.

8 Reproducibility Statement
All of our experiments are conducted using the Py-
Torch framework on public datasets. Additionally,
our code for some of the experiments is included as
supplementary, along with a user-friendly interface
and notebook demos. Therefore, we consider our
empirical results to be reproducible.
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A NLP Experiments

In this experiment, our aim is to extend the uti-
lization of the proposed methods to the domain
of NLP. To achieve this, we conduct a compara-
tive analysis between the Mamba-160M model and
BERT-large, drawing upon established literature
in the field (Chefer et al., 2021b). Two settings
are considered : (1) activation task, in this task, a
good explanation involves listing tokens in order
of their relevance, from most to least. When these
tokens are added to an initially empty sentence,
they should activate the network output as much
and as quickly as possible. We evaluate the quality
of explanations by observing the output probability
pc(x) for the ground-truth class c. (2) pruning task,
the pruning task involves removing tokens from the
original sentence, starting with those deemed least
relevant and progressing to the most relevant. We
assess the impact of this pruning, by measuring the
difference between the unpruned model’s output
logits y0 and ymt of the pruned output. In the ac-
tivation task, we begin with a sentence containing
"<UNK>" tokens and gradually replace them with
the original tokens in order of highest to lowest
relevance. Conversely, in the pruning task, we re-
move tokens from lowest to highest relevance by
replacing them with "<UNK>" tokens.

The dataset employed in our study is the IMDb
movie review sentiment classification dataset, con-
sisting of 25,000 samples for training and an equal
number for testing, with binary labels indicating
sentiment polarity. We utilize the Mamba-130M2

and BERT3 models fine-tuned on the IMDB dataset
for classification. BERT stands out as our baseline
choice, benefiting from a readily available imple-
mentation of the Transformer-Attr method4. No-
tably, both models exhibit comparable accuracy

2https://huggingface.co/trinhxuankhai/
mamba_text_classification

3https://huggingface.co/textattack/
bert-base-uncased-imdb

4https://github.com/hila-chefer/
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Figure 5: Evaluation of explanations using input pertur-
bations for the IMDb dataset, top row shows the results
for the pruning task in which the words of least absolute
relevance are replaced with <UNK> first and the bottom
row shows the results for the activation task in which
the most relevant words are added first, in both tasks we
show the results for Mamba-Attr and Transformer-Attr
separately.

levels on the downstream task of IMDB movie
review sentiment classification. The results, de-
picted in Figure 5, illustrate that in both the pruning
and activation tasks, Mamba-Attr exhibits compa-
rable or occasionally superior performance to the
Transformer-Attr method. We present the results of
each method in separate graphs, as the two models
are not directly comparable due to differences in
the logit scale and the behavior on random changes
to the prompt.

In Table 4 at the Appendix, we provide qualita-
tive results for the different explanation methods
(Mamba-Attr and Transformer-Attr) on the IMDb
dataset, for both positive (green) and negative (red)
sentiments. Evidently, Mamba-Attr tends to gener-
ate more sparse explanations in comparison to its
Transformer-Attr counterpart. For instance, in the
analysis of the first negative sample, our method
emphasizes the rating of "1" as the most salient fea-
ture along with other negative terms. Conversely,
the transformer attribution method yields a less
sparse explanation, focusing primarily on the rel-
evant word while also encompassing other non-
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Mamba-Attr Transformer-Attr

Table 4: Qualitative Results in NLP

relevant terms. Similarly, in the assessment of
the third negative example, our method exhibits a
comparable behavior, placing emphasis on the rat-
ings alongside other relevant negative terms. Con-
versely, while the salient words identified by the
transformer attribution method remain valid, its ex-
planation is comparatively less sparse. We observe
a similar trend across positive sentiments as well
(depicted in green). For instance, in the final posi-
tive review, Mamba-Attr distinctly highlights the
phrase "Greatest Movie which ever made, " serv-
ing as clear evidence of a positive sentiment. In
contrast, the explanation provided by Trans-Attr
appears more broad and encompassing.

B Expressiveness of Mamba Models

Theorem 2. One channel of the selective state-
space layer can express all functions that a single
transformer head can express. Conversely, a single
Transformer layer cannot express all functions that
a single selective SSM layer can.
Assumptions:

1. For simplicity, we will disregard the discretiza-
tion, as it has been shown to be unnecessary
in previous work (Gupta et al., 2022b).

2. As our regime focuses on real elements (xi ∈
R), the hidden dimension of the transformer
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is 1. Thus, the parameters of both the self-
attention mechanism and the Mamba are
scalars (namely Ai, Bi, Ci,W

Q,W V ,WK ∈
R).

Motivation and Intuition: The motivation for
this proof relies on H̃i,j in Eq. 20, which enables
Mamba to utilize continuous historical context
within sequences more efficiently than traditional
attention mechanisms. To exploit this capability,
we focus on a problem involving input-dependent
control over the entire input, a task that cannot be
captured by relying solely on pairwise interactions
at single layer, which constitute the foundation
of self-attention. At its essence, the count-in-row
problem is selected because the impact of each bit
in the input sequence on the output is potentially
determined by all preceding bits in the sequence (in
cases where all of them are 1). This makes the task
significantly more challenging for models based on
pairwise interactions. In contrast, since the prob-
lem is a simple case of counting with resets, it can
be efficiently performed by a single S6 channel.

Proof. Given the definition of the count in row
function, our proof straightforwardly arises from
the following lemmas:

Definition 1. The count in row problem: Given a
binary sequence x1, x2, . . . , xL, the "count in row"
function f is defined to produce an output sequence
y1, y2, . . . , yL, where each yi is determined based
on the contiguous subsequence of 1s to which xi
belongs. Formally:

yi = f(x1, . . . , xi) = (25)

max
0≤j≤i

{i− j + 1 |
i∏

k=j

[xk > 0] = 1}

where [xk > 0] is the Iverson bracket, equaling
1 if xk > 0 and 0 otherwise.

Lemma 1. One channel of Mamba can express the
count in row function for sequences of any length.

Proof. Assumption 1 defines the following recur-
rence rule:

B̄i = SB(x̂i), Ci = SC(x̂i), Āi = SA(x̂i)+A
(26)

ht = Ātht−1 + B̄txt, yt = Ctht (27)

By substituting SB, SC , SA = 1, A = 0 into
Eq. 27, we obtain the following results:

ht = ht−1 + xt, yt = ht (28)

Now, there are two cases: (i) If xi = 0, it’s clear
that both the state ht and the output yt receive zero
values. (ii) Otherwise (if xi = 1), we see that both
ht and yt increase by one, clearly demonstrating
that the entire mechanism exactly solves the count
in row problem.

Lemma 2. One transformer head cannot express
the count in row function for sequences with more
than two elements.

Proof. The self-attention mechanism computes the
output as follows

O = Softmax
(
(XWQ)(XWK)T√

dk

)
· (XWV ) (29)

Consider the count in row problem for a binary
sequence of length 3, the i-th coordinate in the
output can be computed by:

Oi =
3∑

j=1

(
exp

(
(WQ · xi) · (WK · xj)

)
∑3

k=1 exp ((W
Q · xi) · (WK · xk))

)
·(WV ·xj)

(30)

where we omitted the scale factor
√
dk (which

can be incorporated into the WQ matrix).
For the sake of contradiction, we will assume

that there are weights for the key, query, and value
matrices that solve this problem. Furthermore, re-
call that WQ,WK ,W V ∈ R, according to As-
sumption 2. Hence:

1. For (x1, x2, x3) = (0, 1, 1), the output y3 =
2. Plugging it into Eq. 30 yields:

O3 = W V
( 2 exp(WQWK)

1 + 2 exp(WQWK)

)
= 2

(31)

2. For (x1, x2, x3) = (0, 0, 1), the output y3 =
1. Plugging it into Eq. 30 yields:

O3 = W V
( exp(WQWK)

2 + exp(WQWK)

)
= 1 (32)

Dividing Eq.31 by Eq.32 results in the follow-
ing:

2
2 + exp(WQWK)

1 + 2 exp(WQWK)
= 2 → exp(WQWK) = 1

(33)
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Upon plugging it into the eq. 31, we obtained:

O3 = W V 2

3
= 2 → W V = 3

However, for (x1, x2, x3) = (1, 0, 1), the output
y3 is 1, by plugging it to eq. 30, and substituting
the values of W V and exp(WQWK), we obtain:

O3 = 3
2 exp(WQWK)

1 + 2 exp(WQWK)
= 2 ̸= 1

As requested. Please note that the same technique
also works when omitting the Softmax function.

Lemma 3. One channel of the selective state-space
layer can express all functions that a single trans-
former head can express.

Proof. For simplicity, we consider a causal atten-
tion variant without Softmax, as the Softmax is
designed to normalize values rather than improve
expressiveness. According to Assumption 1, we
omit the discretization. Thus, we can simply set the
value of Ai to I which is the identity, by substitute
A = I and SA = 0. Hence, it is clear that Eq. 13
and Eq. 14 become identical to causal attention,
except for the Softmax function.

C Expressiveness of SSMs and
Long-Convolution Layers

In this section we provide the proof of Theorem 1
from Sec. 5.

Theorem 1. (i) S4 (Gu et al., 2021a), DSS (Gupta
et al., 2022a), S5 (Smith et al., 2022) have fixed
mixing elements. (ii) GSS (Mehta et al., 2022),and
Hyena (Poli et al., 2023) have fixed mixing ele-
ments with diagonal data-control mechanism. (iii)
Selective SSM have data-controlled non-diagonal
mixers.

Proof. We will prove this theorem separately per
each layer:
S4, DSS: Both layers implicitly parametrize a
convolution kernel K̄ via the A, B̄ and C̄ matrices
as follows:

K̄ = (CB̄,CĀB̄, · · · , CĀL−1B̄)

This kernel does not depend on the input, and it
is the only operation that captures interactions be-
tween tokens. Therefore, both layers have fixed
elements.

S5: The S5 layer extend S4 such that it map
multi-input to multi-output rather than mapping
single-input to single-output. It use the following
recurrent rule:

ht = Āht−1 + B̄xt, yt = Cht, Ā ∈ RP×P

B̄ ∈ RP×H , C ∈ RH×P , xt, yt ∈ RH (34)

which can be computed by

yt = C
t∑

i=1

Āt−iB̄xt (35)

However, in contrast to S4 and DSS, now CĀiB̄
in RH×H instead of in R. Hence, we can conclude
that the mechanism mixes tokens in a fixed pattern,
which is captured by C

∑t
i=1 Ā

t−iB̄xt.
GSS: GSS enhances the DSS framework, which
utilizes fixed mixing elements, by incorporating
an elementwise gating mechanism. Hence, the
entire layer can be viewed as a composition of
two operators, a mixer that isn’t data-dependent
(DSS), and an elementwise data-dependent gating,
which is equivalent to a diagonal data-control linear
operator.
Hyena: The Hyena layer is defined by the re-
currence of two components: long implicit con-
volution and elementwise gating. For simplicity,
we consider single recurrence steps to constitute
the entire layer, since any layer can benefit from
such a recurrent-based extension. Additionally, sin-
gle recurrence is the most common application of
the Hyena layer. Hence, similar to GSS, the layer
can be viewed as a composition of a mixer that
isn’t data-dependent (based on CKConv (Romero
et al., 2021)) and a diagonal data-control operator,
which is implemented through elementwise data-
dependent gating.
Selective SSM: As can be seen in Eq. 12 and 19,
the selective SSM can be represented by:

y = α̃x, α̃i,j = Q̃iH̃i,jK̃j (36)

Thus, it’s clear that the linear operator, which relies
on α̃, is a data-controlled, non-diagonal mixer.

D Ablation Studies

We conducted several ablations to justify our design
choices. First, we evaluated various aggregation
methods for maps extracted from different chan-
nels, including aggregations based on max, min,
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Variant Pixel acc. mAP mIoU

Mean Head Aggregation 71.01 80.78 51.51
Max Head Aggregation 69.96 79.41 48.73
Min Head Aggregation 63.02 66.31 34.71

Element-wise Head Prod 74.04 74.16 50.46

Mean Fusion + Discard=0.2 70.23 80.55 50.86
Mean Fusion + Discard=0.4 69.59 80.57 50.45
Mean Fusion + Discard=0.6 70.17 79.22 50.66
Mean Fusion + Discard=0.8 70.23 78.96 48.95

Table 5: Ablations studies of aggregation techniques for
Attention-Rollout on the ImageNet-Segmentation dataset,
Higher is better.

Variant Pixel acc. mAP mIoU

Ours 74.72 81.70 54.24
without clamp 68.15 80.95 48.71
With absolute values 69.82 81.12 48.16

Table 6: Ablation studies for our Mamba attribution (Eq. 24),
results are reported on the ImageNet-Segmentation dataset.
Higher is better.

element-wise head product, and mean operators,
with varying rates of discarding5 minimal attention
scores. As shown in Table 5, the proposed mean
head aggregation method performed on par with
the other methods.

Furthermore,we conducted ablation studies on
the design choice of ignoring negative scores in
the Rollout process (which use in our Attribution
method). The original choice of clamping nega-
tive scores to zero, as suggested by (Chefer et al.,
2021b), was tested against using the original scores
without clamping and applying absolute values. As
shown in Table 6, clamping negative scores yielded
the best results, demonstrating the effectiveness of
this design choice.

E Visualization of Our Attribution
Method

In Sec. 3.3, we describe our proposed attribution
method for Mamba models. To aid clarity, we
provide a schematic visualization of this method,
closely tied to Eq. 24. Figure 6 offers a comparative
illustration: the left panel depicts the attribution
method for transformers by (Chefer et al., 2021b)
that served as our inspiration, while the right panel
showcases our proposed approach, tailored specifi-
cally for Mamba models and built on top of implicit
attention matrices. This visual comparison high-
lights the differences and innovations introduced
by our method.

5As proposed in https://jacobgil.github.io/deeplearning/vision-
transformer-explainability

Figure 6: Comparative Visualization of Transformer-
Attribution and our Mamba-Attribution, both class-
specific methods.

F Complexity

Our method can be divided into two main stages:
computing the attention rows associated with the
CLS token (or the last token for zero-shot experi-
ments) and aggregating them over the D channels
and Λ layers to produce the final explanation map.
The first stage is the most computationally inten-
sive, dominating time complexity.

For the first stage, at each layer and for each of
the D Mamba channels, the naive computation of
the relevant attention row involves iterating over
all positions in the vector, which is of size L. The
computation for each position is dominated by the
term

∏j
k=iAk, requiring L · N operations. Con-

sequently, the total complexity for a single layer
is O(DL2N), and for all Λ layers, it becomes
O(ΛDL2N).

A more sophisticated approach leverages the
linear recurrent form to reuse intermediate val-
ues when computing subsequent elements. Us-
ing this cumulative product optimization, the
term

∏i
k=j+1 Āk can be computed efficiently via

Āj+1
∏i

k=j+2 Āk. This reduces the complexity by
a factor of L, to O(DLN) for a single layer and
O(ΛDLN) for the entire model.

For space-complexity, assuming L ≫ N , the
naive approach requires O(ΛDL) storage to mate-
rialize all attention matrices across Λ layers. How-
ever, in the Rollout and Raw attention methods, this
can be optimized by performing the aggregation
layer-by-layer, without materializing the attention
matrices of all layers in parallel. With this optimiza-
tion, the space complexity is reduced by a factor
of Λ, to O(DL). Similarly, in some cases, one
can further optimize space complexity by iterating
over the channels (avoiding the materialization of
matrices obtained from all channels in parallel).
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However, this is less practical when using paral-
lel accelerations like GPUs. These optimizations
reduce both time and space requirements, making
our XAI method scalable for large models and long
sequences.

G Additional Experiments in NLP

To further assess our method, we conduct experi-
ments built upon our attribution tools to improve
ICL and perform additional ablation studies.

XAI-Based Performance-Enhancement We
adopt the AMPLIFY framework (Krishna et al.,
2023), a method for automatic prompt engineering
in few-shot in-context learning based on post hoc
explanation methods. Here, we use the Mamba-
790m model as a proxy. The explanations provided
by this proxy are used by the AMPLIFY frame-
work to automatically enhance the prompt. We
follow the same evaluation procedure as in (Kr-
ishna et al., 2023) and denote the results obtained
using the AMPLIFY method with our XAI tech-
nique as ‘A-XAI’. As shown in table 7, using our
XAI method within the AMPLIFY framework im-
proves the baseline by around 10% on Snarks, 1%
on CommonsenseQA, and more than 4% on Formal
Fallacies, demonstrating the effectiveness of our
XAI technique. Providing evidence that our XAI
techniques can be used for model improvement
through insightful explanations.

Model Snarks CommonsenseQA Formal
Fallacies

Vanilla Score 44.54% 52.12% 40.13%
A-XAI Score (ours) 53.11% 53.55% 44.28%

Table 7: XAI-based Prompt Engineering for Few-Shot In-
Context learning. Higher is better.

Beyond standard Mamba models, we demon-
strate the versatility of our method by showing that
it also works for Mamba-2. Similar to Table 3, we
conduct experiments on the ARC-Easy dataset with
smaller models. The results are quite lower than
those in Table 3 because the models are smaller,
leading to slightly reduced performance, which
negatively impacts the XAI metrics.

Additional Ablations We conduct additional ab-
lations in NLP (using a Mamba model with 1.3B
parameters), extending Table 5 and Table 6, which
were originally examined in the vision domain.
These experiments in Table 9 show that our choices
in the aggregation method and clamping of non-

Method Positive Negative
(AUAC) (AU-MSE)

Mamba-2-130m (Ours) 0.872 2.456
Mamba-2 790m (Ours) 0.885 2.103

Table 8: XAI Results for Mamba-2 over the ARC-Easy
Dataset. Higher is better for positive values, lower is bet-
ter for negative values.

positive values outperform other approaches, fur-
ther justifying our design decisions.

Method Positive Negative
(AUAC) (AU-MSE)

Ours 0.915 1.765
Mean Head Aggregation 0.8813 2.102
Max Head Aggregation 0.8420 1.899
Min Head Aggregation 0.7611 2.344
Without clamp 0.7564 2.421

Table 9: Additional Ablations. Higher is better for positive
values, lower is better for negative values.

H The Relationship Between Mamba and
Attention

Our work (Eqs. 13,14) was the first to formalize S6
layers as linear causal self-attention layers. This
formulation led to two main contributions. First, it
enabled the development of the first explainability
(XAI) tools for Mamba. Second, it provided a foun-
dation for analyzing the expressive power of S6
layers, including a proof that they are more expres-
sive than causal linear attention and not strictly less
expressive than Softmax attention (see Lemma.2).

The connection between S6 layers and causal
linear attention was later expanded in (Dao and Gu,
2024) using a state-space duality framework that
describes many linear attention variants through
semiseparable matrices. Building on this, (Sieber
et al., 2024) studied the relationship from the per-
spective of dynamical systems theory, and (Cohen-
Karlik et al., 2025) investigated the polynomial
expressivity gap between the models."

These connections have allowed techniques orig-
inally developed for attention mechanisms to be
applied effectively to Mamba. For example, cross-
attention-like variants of S6 have been used for
multimodal learning (Wu et al., 2025; Botti et al.,
2025; Daniel et al., 2024). Theoretical insights
into rank collapse in self-attention have motivated
similar studies in state space models, leading to
new Mamba variants that reduce this issue (Joseph
et al., 2024). Techniques from attention have also
been adapted to explore length generalization in S6
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layers (Ben-Kish et al., 2025), and attention-based
model editing methods have been modified to work
with Mamba (Sharma et al., 2024).

Seeing Mamba through the lens of attention
has also enabled several practical advances. Fine-
tuning methods have shown that transformer mod-
els can be effectively distilled into SSMs by using
attention-based initialization strategies and custom
loss functions, even for large-scale models (Wang
et al., 2024b; Bick et al., 2024). New initialization
techniques have also been proposed to improve re-
call by making Mamba’s implicit attention matrices
resemble standard attention more closely (Trock-
man et al., 2024). Additionally, this perspective has
been used to measure token saliency for domain
generalization (Guo et al., 2024), and to extend
our explainability tools to account for other com-
ponents such as convolutions, normalization layers,
and activation functions (Zimerman et al., 2025).
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