
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 15591–15615
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

Beyond One-Size-Fits-All: Tailored Benchmarks for Efficient Evaluation

Peiwen Yuan1*, Yueqi Zhang1*, Shaoxiong Feng2, Yiwei Li1, Xinglin Wang1, Jiayi Shi1
Chuyi Tan1, Boyuan Pan2, Yao Hu2, Kan Li1†

1School of Computer Science and Technology, Beijing Institute of Technology
2Xiaohongshu Inc

{peiwenyuan,zhangyq,liyiwei,wangxinglin,shijiayi,tanchuyi,likan}@bit.edu.cn
{shaoxiongfeng2023,whd.thu}@gmail.com {panboyuan,xiahou}@xiaohongshu.com

Abstract

Evaluating models on large benchmarks is very
resource-intensive, especially during the pe-
riod of rapid model evolution. Existing effi-
cient evaluation methods estimate the perfor-
mance of target models by testing them only
on a small and static coreset of the benchmark,
which is derived from the publicly available
evaluation results of source models. These
methods rely on the assumption that target
models have high prediction consistency with
source models. However, we demonstrate
that it doesn’t generalize well in practice. To
alleviate the inconsistency issue, we present
TAILOREDBENCH, a method that conducts
customized evaluation tailored to each target
model. Specifically, a Global-coreset is first
constructed as a probe to identify the most con-
sistent source models for each target model
with an adaptive source model selection strat-
egy. Afterwards, a scalable K-Medoids cluster-
ing algorithm is proposed to extend the Global-
coreset to a tailored Native-coreset for each
target model. According to the predictions on
Native-coresets, we obtain the performance of
target models on the whole benchmark with a
calibrated estimation strategy. Comprehensive
experiments on 5 benchmarks across over 300
models demonstrate that compared to best per-
forming baselines, TAILOREDBENCH achieves
an average reduction of 31.4% in MAE of ac-
curacy estimates under the same inference bud-
gets, showcasing strong effectiveness and gen-
eralizability1.

1 Introduction

Scaling up models in multiple dimensions has led
to remarkable advancements in their capabilities
(Touvron et al., 2023; Ouyang et al., 2022), which
also presents significant challenges for efficiently

*Equal contribution.
†Corresponding author.
1Our code is available at https://github.com/

marvelcell/TailoredBench

assessing them. For instance, Liang et al. (2022)
reports that evaluating a model with approximately
10 billion parameters on the HELM leaderboard
costs over $1,700 via APIs or more than 1,200
GPU hours. Moreover, these costs scale by a factor
of X when exploring and comparing X different
training or inference configurations during the de-
velopment or deployment phase.

To achieve efficient evaluation, some studies
(Vivek et al., 2024; Polo et al., 2024) have explored
the following paradigm: step 1. constructing exam-
ple embeddings according to the predictions from a
set of source models (which are freely available for
popular leaderboards†,‡,§); step 2. clustering the
benchmark and selecting the cluster centroids to
form a coreset (typically less than 100 examples);
step 3. approximating the performance of target
models under evaluation based on their predictions
on the coreset. Underlying this approach is the as-
sumption that performance patterns generalize: if
source models respond similarly to two examples
a and b, then a target model’s performance on a
can be used to estimate its performance on b.

Nevertheless, we find that such generalizability
between source and target models does not nec-
essarily hold. Following ANCHORPOINT (Vivek
et al., 2024), we construct an embedding based
on the correctness (e.g., the probability of the cor-
rect option) of all source models for each example
and visualize them using t-SNE algorithm (Van der
Maaten and Hinton, 2008). In these embeddings
(Figure 1a), nearby examples elicit similar predic-
tions from the source models, allowing cluster cen-
troids (marked by stars) to serve as representative
points. Yet, when we adopt embeddings derived
from the correctness of target models instead (Fig-
ure 1b), the average distance between the example
and its centroid increases from 10.09 to 12.48, in-

†https://huggingface.co/open-llm-leaderboard
‡https://rank.opencompass.org.cn
§https://crfm.stanford.edu/helm

15591

https://github.com/marvelcell/TailoredBench
https://github.com/marvelcell/TailoredBench
https://huggingface.co/open-llm-leaderboard
https://rank.opencompass.org.cn
https://crfm.stanford.edu/helm

𝑥! 𝑥" 𝑥|𝒟|…

0.72 0.85 0.50

0.62 0.90 0.78

0.89 0.95 0.67

…

…

…

… … …

…

Benchmark 𝒟

Source Models 𝒮

�̇�!𝒮 �̇�"𝒮 �̇�|𝒟|𝒮𝒟𝒮[]…|𝒟&s Embedding by 𝒮

Avg Intra-Cluster
Distance = 10.09

(a) Hellaswag benchmark represented by source-model embeddings DS .

0.78 0.62 0.47

0.87 0.86 0.60

0.93 0.76 0.77

…

…

…

… … …

…

ሶ𝑥1
𝒯 ሶ𝑥2

𝒯 ሶ𝑥|𝒟|
𝒯𝒟𝒯[]…|

Target Models 𝒯

𝒟′s Embedding by 𝒯

Avg Intra-Cluster
Distance = 12.48

(b) Hellaswag benchmark represented by target-model embeddings DT .

Figure 1: The t-SNE visualization of the Hellaswag benchmark using embeddings derived from source (above) and
target (below) models’ predictions. The increased average distance between examples and their cluster centroids in
the target-based embedding indicates that the coreset (centroids) obtained from source-based embeddings no longer
effectively represents the entire benchmark for target models.

dicating that the previously chosen centroids fail to
represent their respective clusters effectively. This
reveals a discrepancy in prediction behaviors be-
tween source and target models, which we term
prediction consistency—the extent to which their
predictions align on the same examples. When pre-
diction consistency is low, source-model-derived
coresets fail to generalize, resulting in inaccurate
performance estimates for target models.

To address the aforementioned issue, we pro-
pose the TAILOREDBENCH method, which adap-
tively constructs model-specific evaluation coreset
in a global to native manner for accurate and effi-
cient evaluation. Specifically, we first construct a
static G-set (Global-coreset) based on the predic-
tion results of all the source models. By applying
an adaptive source model selection strategy, the
predictions of target models on the G-set are used
as a probe to select a native source model set for
each target model that has stronger prediction con-
sistency with them. Based on this posterior, we
design a scalable K-Medoids clustering technique
to expand the G-set into an N-set (Native-coreset)
for each target model, according to the benchmark
embeddings under the metric of corresponding na-
tive source models. Finally, we approximate the

overall performance of target models by employ-
ing a calibrated estimation strategy based on their
predictions on the N-set.

We conduct extensive experiments on five bench-
marks across more than 300 models, involving
tasks in the fields of natural language and multi-
modality. Compared to non-customized efficient
evaluation baselines, TAILOREDBENCH can more
accurately estimate the performance of models (at-
taining an average of 31.4% MAE degradation
improvement on accuracy) under the same small-
size inference budgets (generally 20~40 examples).
Our contributions are summarized as follows:

• We analyze that the existing efficient evalua-
tion methods overestimate the prediction con-
sistency across models, thus the source-model-
based static coreset may fail to assess the tar-
get models accurately.

• We propose the TAILOREDBENCH method to
conduct tailored evaluation on adaptively con-
structed N-set for each target model to attain
more accurate evaluation results.

• We conduct comprehensive experiments and
analyses on multiple settings to validate the
excellent effectiveness and strong generaliz-
ability of TAILOREDBENCH.

15592

2 Related Works

As LLMs proliferate and version updates acceler-
ate, the cost of thoroughly evaluating each model
across all benchmarks has become prohibitive,
leading to methods that subsample the most repre-
sentative subsets from each benchmark for more
efficient evaluation. (Vivek et al., 2024) clusters
examples directly using the confidence scores pro-
vided by source models, leveraging these scores
to select an optimal subset. Similarly, (Polo et al.,
2024) employs an Item Response Theory (IRT)
model, trained on the success matrix of each source
model across various examples, to derive the latent
representations of examples for clustering. (Pac-
chiardi et al., 2024) introduces a generic assessor
framework that predicts the performance of a new
LLM on unseen instances using its results on a
small reference set, achieving comparable accu-
racy to full-scale evaluations. (Perlitz et al., 2023)
proposes Flash-HELM, which dynamically adjusts
the sizes of randomly selected subsets based on
model ranking, where higher-ranked models are
evaluated with greater precision. (Prabhu et al.,
2024) proposes the Sort & Search (S&S) strategy,
which leverages the difficulties of examples and
dynamic programming to select the coreset. (See
more related works in Appendix A.)

3 TailoredBench Approach

The TAILOREDBENCH approach centers on dy-
namically selecting prediction-consistent source
models and crafting an N-set that faithfully repre-
sents the entire benchmark for each target model.
Its formulation proceeds through four tightly in-
tegrated steps: constructing a globally representa-
tive G-set (§3.2), identifying native source models
(§3.3) and developing N-set for each target model
(§3.4), and finally estimating the target models’
overall performance (§3.5).

3.1 Task Set-Up

Let D = {(xk, yk)}|D|
k=1 denotes a benchmark,

where xk is the input and yk is the correspond-
ing ground truth output. We define the set of tar-
get models under evaluation as T = {tm}|T |

m=1.
Additionally, we denote the source model set as
S = {sn}|S|n=1, for which we have access to their
predictions across all examples in D. Following
previous works, we ensure that T ∩ S = ∅. Our
objective is to accurately estimate the performance
Ptm of each target model tm ∈ T and determine

the ranking relationships within T , while minimiz-
ing the model inference cost.

3.2 Constructing G-set
We first construct the G-set G, which is designed
as a probe for each target model to identify a set of
source models with the highest prediction consis-
tency. Consequently, it is intended to be a small yet
relatively representative subset of the benchmark,
ensuring its generalizability across target models.

Following prior works (Vivek et al., 2024), we
employ clustering based on the correctness of
source models to construct the G-set. Here, correct-
ness can be either the predictive probability of the
correct option (continuous value [0, 1]) or whether
the model answers the example correctly (discrete
binary value {0, 1}).

For each example xk in the benchmark D,
we compute an embedding using the correctness
scores csn,xk

from each source model sn:

ẋSk =




cs1,xk

cs2,xk

...
cs|S|,xk


 (1)

The superscript S indicates that the embedding
is derived from source models’ correctness, and
each embedding is |S|-dimensional. The collection
of these embeddings constitutes the benchmark’s
representation DS = {ẋSk }

|D|
k=1.

Based on DS , we apply K-Medoids clustering
(Kaufman and Rousseeuw, 2009) to select the G-
set with the objective function below:

min
{G,Cg}

∑

xg∈G

∑

xk∈Cg\{xg}
Dis(ẋSg , ẋ

S
k) (2)

where xg is an example in the G-set G = {xg}|G|g=1,
and Cg is the cluster for which xg is the centroid.
Dis denotes the distance metric in clustering.

To maximize the generalization capability of our
method, the choice of distance metric is critical.
Previous approaches (Vivek et al., 2024; Miller
et al., 2021; Baek et al., 2022; Mehra et al., 2024)
using correlation distance (Rodgers and Nicewan-
der, 1988) to measure example consistency of-
ten assume linear relationships in scoring patterns
among models or examples. However, this assump-
tion may not hold for discrete numerical embed-
dings, leading to significant performance degra-
dation. In contrast, element-wise distance (e.g.,

15593

(a). Constructing G-set

Element-Wise Clustering

𝑥! 𝑥" 𝑥|𝒟|…

0.72 0.85 0.50

0.62 0.90 0.78

0.89 0.95 0.67

…

…

…

… … …

…

�̇�!𝒮 �̇�"𝒮 �̇�|𝒟|𝒮

𝒮

𝒟𝒮[]…

𝒢]𝑥! 𝑥" 𝑥|𝒢|…

Benchmark 𝒟

|

[|G-set :

(c). Developing N-set (d). Estimating True Performance

N-set for 𝑡"

…

�̇�!
𝒮!" �̇�"

𝒮!" �̇�|𝒟|
𝒮!"𝒟𝒮!"[]…|

0.72 0.85 0.50

0.89 0.95 0.67

…

…

… … …… Scalable
K-Medoids

𝒮'" 𝒩'"

𝒢]𝑥! 𝑥" 𝑥|𝒢|…[|G-set :

Estimated
Performance
of (𝑡!)

Calibrated
Estimation

Strategy

(b). Selecting Native Source Models

0.62 0.39 0.23

0.86 0.42 0.31

0.76 0.64 0.29

…

…

…

…

0.85 0.36 0.37

0.90 0.47 0.25

0.95 0.67 0.36

… …

…

…

…

Native Source
Models

�̇�!
𝒢

�̇�"
𝒢

�̇�|𝒯|
𝒢

�̇�!
𝒢

�̇�"
𝒢

�̇�|𝒮|
𝒢

𝒯

…

…

…

…

𝒯

…

(𝒮#!):

(𝒮#"):

(𝒮##):

… … …

𝒢]𝑥! 𝑥" 𝑥|𝒢|…[|

Adaptive
Native
Source
Model

Selection

𝑐!), 𝒟

𝒮

̅𝑐𝒮!" , 𝒟
̅𝑐𝒮!" , 𝒩!"

𝑐'", 𝒟
𝑐'", 𝒩!"

=?
𝑐", $ is the correctness

of model 𝑚 on 𝑥

Figure 2: Overview of TAILOREDBENCH.

Manhattan distance) can effectively capture indi-
vidual discrepancies in correctness vectors, thereby
accommodating various correctness formats. By
default, we adopt manhattan distance as Dis for
our TAILOREDBENCH method.

3.3 Adaptive Native Source Model Selection

After constructing G-set G, we attain the prediction
results of target models T on it, which we use as a
probe to construct a Native Source Model Set Stm

that exhibits the highest prediction consistency for
each tm ∈ T .

Specifically, we first embed all the source mod-
els sn ∈ S and target models tm ∈ T based on
their prediction correctness on G as follows:

ṡGn =




csn,x1

csn,x2

...
csn,x|G|


 , ṫGm =




ctm,x1

ctm,x2

...
ctm,x|G|


 (3)

Here, the superscript G denotes that each embed-
ding dimension is derived from the model’s pre-
diction correctness on the G-set. Leveraging these
embeddings, we compute the average prediction
consistency d̄ among all the models (both source

and target) on the G-set as follows:

d̄ =
2

(|S|+ |T |)(|S|+ |T | − 1)

∑

i<j

dij ,

where dij = Dis
(
ϕ̇G
i , ϕ̇

G
j

) (4)

In this context, i, j ∈ [1, |S|+|T |] and ϕ represents
any model from S ∪ T . By computing d̄ across all
models, we establish a robust threshold that reflects
the model set’s similarity landscape, enabling a
consistent and effective selection of native source
models for each target model.

On this basis, we determine n̄, the size of the
native source model set for target models, by calcu-
lating the average number of source models whose
prediction consistency with each target model ex-
ceeds the threshold d̄ as follows:

n̄ =

 1

|T |

|T |∑

m=1

|Stm |

 ,

where Stm =

{
sn ∈ S

∣∣∣∣ Dis
(
ṡGn, ṫ

G
m

)
< d̄

} (5)

For a target model tm, the top n̄ source models
exhibiting the highest prediction consistency are
selected to form its dynamic source model set Stm .
By standardizing the number of native source mod-
els across all target models, we ensure that each tar-
get model’s feature representation maintains con-

15594

sistent dimensionality and informational richness
during subsequent clustering.

3.4 Developing N-set
Leveraging the selected native source models Stm ,
we construct the most representative N-set Ntm for
each target model tm. To maximize the utilization
of the observed prediction results of target mod-
els on G, we propose a SCALABLE K-MEDOIDS

CLUSTERING algorithm to extend G into the N-set.
Initially, each example xk ∈ D is represented by

a feature vector ẋStm
k , which is based on the cor-

rectness of its native source models Stm . Then, our
SCALABLE K-MEDOIDS CLUSTERING algorithm
operates as follows:

Anchored Medoid Initialization: We fix the ex-
amples in G-set |G| as initial medoids. To reach an
N-set size of |Ntm |, we randomly add |Ntm | − |G|
additional examples from D \ G to form the initial
medoid set.

Cluster Assignment: Assign each example xk ∈
D to the nearest medoid xµ to form the cluster Cµ:

xk ∈ Cµ,
where µ = argmin

µ
Dis

(
xStm
µ , x

Stm
k

) (6)

Dynamic Medoid Refinement: For each cluster
Cµ with a non-G-set medoid, update the medoid xµ
by selecting the example within Cµ that minimizes
the total distance to all other examples in Cµ:

xµ = arg min
xi∈Cµ

∑

xj∈Cµ\{xi}
Dis

(
x
Stm
i , x

Stm
j

)

(7)
Medoids corresponding to G-set remain fixed dur-
ing this process.

Convergence Verification: Repeat the Cluster
Assignment and Dynamic Medoid Refinement
steps until convergence is achieved, i.e., when
medoids no longer change or a maximum num-
ber of iterations is reached.

By incorporating the G-set examples as fixed
medoids, the clustering process ensures that these
pivotal examples guide the formation of clusters
and the selection of additional N-set examples.

3.5 Calibrated Performance Estimation
After establishing the N-set Ntm for a target model
tm, for previous methods (Vivek et al., 2024; Polo
et al., 2024), they may estimate the model’s overall

performance by first evaluating it on these centroid
examples and then weighting the results accord-
ing to each centroid’s coverage of the benchmark.
However, simply relying on medoids overlooks
subtle variations in how individual examples within
each cluster are predicted, potentially leading to
less accurate global estimates.

To address this, we leverage the prediction con-
sistency between the target model tm and its native
source models Stm to obtain the calibrated correct-
ness estimates for the target model. For a given
cluster with medoid x, consider any non-medoid
example x′ in the same cluster. We compute a
scaling factor based on the native source models’
average correctness, which reflects how the predic-
tion patterns at x′ relate to those at x:

Scale(x′) =
c̄Stm ,x′ + 0.5

c̄Stm ,x + 0.5
(8)

Here, c̄Stm ,x and c̄Stm ,x′ denote the average cor-
rectness of Stm on the medoid x and the non-
medoid x′, respectively. The addition of 0.5 en-
sures numerical stability by preventing the denom-
inator from becoming zero. Given that tm and Stm

exhibit similar prediction consistencies, we assume
this scaling factor can be applied to estimate the
target model’s correctness on x′:

ctm,x′ = (ctm,x + 0.5) · Scale(x′)− 0.5 (9)

By integrating these inferred correctness values
across all examples in the benchmark D, we ob-
tain a more faithful global performance estimation
without re-evaluating the entire dataset:

Ptm =
1

|D|
∑

x′∈D
ctm,x′ (10)

4 Experiments

4.1 Experimental Setup

Benchmarks and Models We validate TAI-
LOREDBENCH on five diverse benchmarks span-
ning natural language and multimodal tasks. ARC
Challenge (Clark et al., 2018) consists of 1,172 sci-
entific reasoning questions, with predictions from
153 models. Hellaswag (Zellers et al., 2019) pro-
vides 6,000 commonsense inference examples (a
subset of its validation set) and outputs from 139
models. GSM8K (Cobbe et al., 2021) includes
1,319 math reasoning problems tested on 150 mod-
els. Winogrande (Sakaguchi et al., 2021) has 1,267

15595

Benchmarks Inference counts 20 25 30 35 40
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

ARC Challenge
BEST BASELINE 0.662 0.046 0.663 0.046 0.676 0.036 0.713 0.036 0.714 0.029
TAILOREDBENCH 0.711 0.031 0.737 0.029 0.756 0.028 0.766 0.027 0.773 0.027

Hellaswag
BEST BASELINE 0.860 0.060 0.880 0.053 0.877 0.043 0.897 0.038 0.898 0.032
TAILOREDBENCH 0.900 0.020 0.909 0.018 0.913 0.018 0.914 0.017 0.918 0.017

GSM8K
BEST BASELINE 0.811 0.055 0.828 0.047 0.839 0.041 0.847 0.038 0.858 0.034
TAILOREDBENCH 0.852 0.035 0.858 0.034 0.863 0.033 0.869 0.031 0.878 0.029

Winogrande
BEST BASELINE 0.472 0.041 0.487 0.038 0.514 0.038 0.521 0.036 0.518 0.034
TAILOREDBENCH 0.565 0.028 0.568 0.026 0.604 0.024 0.608 0.023 0.618 0.022

POPE
BEST BASELINE 0.488 0.038 0.510 0.037 0.518 0.034 0.547 0.033 0.556 0.031
TAILOREDBENCH 0.521 0.036 0.547 0.035 0.562 0.031 0.563 0.031 0.574 0.032

Table 1: Results on all benchmarks. For each setting, we take the best result from multiple baselines to compare
with TAILOREDBENCH. The detailed performance of each baseline under each setting is presented in Table 6.
Values in bold represent the best results.

pronoun resolution examples with 150 models eval-
uated. POPE (Li et al., 2023) features 5,127 in-
stances for assessing multimodal hallucination, ac-
companied by results from 99 models. A complete
list of models used for each benchmark is provided
in Appendix C. We randomly split models into
source and target sets for each benchmark, ensur-
ing that their intersection is empty.

For ARC Challenge and Hellaswag, model cor-
rectness is represented by continuous probabili-
ties, while GSM8K, Winogrande, and POPE use
binary correctness {0, 1}. Predictions for ARC
Challenge, Hellaswag, GSM8K, and Winogrande
come from the Open LLM Leaderboard (Beech-
ing et al., 2023), and those for POPE are from the
OpenCompass Leaderboard (Contributors, 2023).

Baseline and Evaluation Metrics We compare
TAILOREDBENCH against three baselines: a Ran-
dom Sampling strategy that randomly selects a
subset of examples from the benchmark to esti-
mate model performance, serving as a basic refer-
ence point; the Anchor Points method (Vivek et al.,
2024), which uses K-Medoids clustering on source-
model predictions to identify a fixed representative
coreset; and gp-IRT (Polo et al., 2024), which em-
ploys an Item Response Theory model trained on
the predictions of the source models to estimate
target models’ performance on the full benchmark.
In all cases, we use the same source models and
target models to ensure a fair comparison.

We employ two metrics to assess these meth-
ods. Kendall’s τ Correlation Coefficient evaluates
the ordinal agreement between estimated and true
model rankings, indicating how well the relative
performance order is preserved. Mean Absolute

Error (MAE) measures the average absolute de-
viation between estimated and true performance
scores, thereby capturing the precision of perfor-
mance estimation for individual target models.

4.2 Main Results

TailoredBench: Effective Ranking and Estima-
tion of Model Performances Table 1 present
a comprehensive comparison between our TAI-
LOREDBENCH method and the best baseline ap-
proaches for each metric across all benchmarks.
Full results are available in Appendix B.1. In our
experiments, we allocated 10 examples to the G-set
and averaged the outcomes over 100 randomized
trials to ensure statistical reliability. The inference
count—defined as the number of examples in the
N-set for our method—varied from 20 to 40.

As demonstrated in the table, our method con-
sistently outperforms baseline approaches in both
Kendall’s τ and MAE metrics across all inference
counts and benchmarks featuring different correct-
ness types. When the inference count increases,
the performance of our method continues to im-
prove, evidenced by a steady increase in Kendall’s
τ and a continuous decrease in MAE. Notably,
compared to best performing baselines, our ap-
proach achieves nearly a 31.4% reduction in MAE.
These results indicate that our method effectively
estimates the relative performance among target
models and provides more accurate estimations of
their performance on the entire benchmark. Fur-
thermore, compared to the static AnchorPoints
method, our approach significantly improves both
Kendall’s τ and MAE metrics, highlighting its ef-
fectiveness in adaptively selecting a more repre-
sentative N-set for each target model and thereby

15596

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

(a) The impact of the quantity of Native Source Models (with
prediction consistency kept the same).

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

(b) The impact of prediction consistency between the Native
Source Model and Target Model (with quantity kept the same).

Figure 3: Investigating the impact of native source model quantity and prediction consistency with target model on
GSM8K using the controlled variable method.

improving estimation accuracy. We also calculate
the accuracy of our method in ranking the perfor-
mance between every pair of target models. The re-
sults show that the accuracy reached 96.0% on the
Hellaswag benchmark and 93.6% on the GSM8K
benchmark. In terms of robustness, Appendix B.8
demonstrates that our method exhibits significantly
lower variance compared to the baselines.

Moreover, across all benchmarks and inference
counts, we conduct a one-sided Z-test over 100
repeated experiments. Whenever our method out-
performed the baselines, the p-values remained
below 0.05, confirming a statistical advantage.

4.3 Ablation Studies
Element-Wise Distance Effectively Facilitates
Handling Various Data Forms Our method
uses element-wise Distance (specifically Manhat-
tan distance) to effectively handle both continu-
ous and discrete values. As shown in Table 2,
with 30 inference counts, element-wise Distances
outperform the correlation distance used by An-
chorPoints. This confirms its effectiveness in im-
proving our method’s performance. Detailed per-
dataset results are provided in Appendix B.2.

Distance τ ↑ MAE ↓

CORRELATION 0.720 0.032
COSINE 0.736 0.028
MANHATTAN 0.740 0.027

Table 2: Average performance with different types of
distance across benchmarks.

Calibrated Estimation Strategy Improves Per-
formance Estimation We compare TAILORED-
BENCH with and without calibration. As shown

in Table 3, with 30 inference counts, the cali-
brated variant achieves higher Kendall’s τ and
lower MAE, confirming that calibration enhances
the accuracy of performance estimation. Detailed
per-dataset results are provided in Appendix B.3.

More Ablation Studies We conduct additional
ablation studies on our method in Appendices B.4
and B.5. The results show that (1) using a fixed
number of native source models for each target
model stabilizes performance; (2) fixing the G-
set as part of the N-set strikes a balance between
effectiveness and the inference budget.

4.4 Analyses

Impact of Native Source Model Selection on
Method Performance Here, we isolate the ef-
fects of both the number of native source models
and their prediction consistency with the target
model by independently varying these factors.

When native source models share a fixed level
of prediction consistency with the target model, in-
creasing their number enhances performance. To
investigate this, we randomly select models desig-
nated as native source models, from 20% to 100%.
As shown in Figure 3a, performance improves as
more native source models are included, since a
larger set of models offers a greater chance of ob-
taining a more robust embedding. See Appendix
B.9 for results on more benchmarks.

When the number of native source models is
fixed, higher prediction consistency with the target
model enhances performance. To examine this,
we select a fixed number of native source models
at various consistency levels relative to the target
model (top 20%, 20~40%, up to 80~100%). As

15597

Method Variants τ ↑ MAE ↓

NON-CALIBRATED 0.724 0.030
CALIBRATED 0.740 0.027

Table 3: Average performance with and without calibra-
tion across benchmarks.

shown in Figure 3b (with the horizontal axis repre-
senting the Consistency Percentile Range for these
intervals), Kendall’s τ decreases sharply as the con-
sistency percentile range expands. See Appendix
B.10 for additional benchmark results.

TailoredBench Method Adaptively Selects Op-
timal Native Source Model Sets Here, we an-
alyze the ability of our method to select the op-
timal native source model sets. Figure 4 shows
the performance of our method on the GSM8K
benchmark, where source models with the top-k
prediction consistency to the target model are se-
lected as Native source models. The results reveal
that Kendall’s τ coefficient initially increases and
then decreases as the number of native source mod-
els grows, while the MAE first decreases and then
increases. This trend aligns with our observations
in Figure 3. Specifically, when only a few native
source models are selected, their high consistency
with the target model is offset by the noise intro-
duced due to the small sample size, which reduces
clustering performance. Increasing the number
of native source models helps mitigate this issue
and improves performance until an optimal point
is reached. However, selecting too many native
source models incorporates models with lower pre-
diction consistency to the target model, which di-
minishes effectiveness. Our method addresses this
by adaptively selecting the near-optimal number of
native source models across all benchmarks. For
example, as shown in Figure 4, our approach se-
lects 40 native source models for each target model
on the GSM8K benchmark, achieving near-optimal
performance. Further experiments pertaining to
this section are detailed in Appendix B.11.

Additionally, we observe that target models pref-
erentially select native source models from their
own family, which can better capture the nuances
and prediction patterns distinctive to their respec-
tive model lineages and contribute to more accurate
performance estimations. This intra-family selec-
tion bias and the performance of our method when
target models significantly differ from source mod-
els is further explored in detail in Appendix B.6.

10 Examples are Sufficient for the Probe We
investigate how G-set size affects our method’s per-
formance by fixing the N-set at 30 examples and
varying the G-set from 5 to 25 examples across
all benchmarks. As shown in Table 4, Kendall’s
τ peaks and MAE reaches a minimum at a G-set
size of 10. Smaller G-set fail to capture the predic-
tion consistency between source and target models,
limiting effective N-set selection. Conversely, a
larger G-set reduces N-set representativeness by
being dominated by G-set points, leading to dimin-
ished performance. Detailed per-dataset results are
provided in Appendix B.7.

|G-set| τ ↑ MAE ↓

5 0.734 0.030
10 0.740 0.027
15 0.736 0.028
20 0.735 0.028
25 0.731 0.029

Table 4: Average performance with different G-set size
across benchmarks.

Performance with Larger Inference Count On
the Hellaswag Benchmark. We further evaluate
our method with larger inference counts on the Hel-
laswag benchmark. Table 5 shows that as inference
counts increase from 50 to 150, TAILOREDBENCH

consistently improves model performance predic-
tion and ranking, maintaining a clear advantage
over baseline methods, demonstrating its effective-
ness with larger inference budgets.

Inference
counts

50 100 150
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

RANDOM 0.887 0.053 0.920 0.038 0.935 0.030
ANCHOR
POINTS

0.915 0.046 0.931 0.040 0.940 0.040

GP-IRT 0.869 0.026 0.915 0.015 0.936 0.012
TAILORED

BENCH
0.923 0.016 0.934 0.014 0.943 0.012

Table 5: Performance of compared methods on the
Hellaswag benchmark with larger inference counts.

5 Conclusions

In this paper, we propose the TAILOREDBENCH

method, which mainly includes an adaptive source
model set selection strategy, a scalable K-Medoids
clustering algorithm and a calibrated performance
estimation strategy. Abandoning the one-size-fits-
all approach, we have customized the evaluation on

15598

K
en

d
al
l’s
𝜏

Number of Native Source Models

M
A

E

Number of Native Source Models

Figure 4: Performance of TAILOREDBENCH with varying numbers of Native Source Models on GSM8K bench-
mark. The shaded area indicates the adaptively selected number of native source models and the corresponding
performance of our method.

the constructed native coreset for each target model.
This approach enables a more accurate reconstruc-
tion and ranking of the model’s performance on the
entire benchmark with a small-size inference bud-
get. Comprehensive experiments show that TAI-
LOREDBENCH can achieve more accurate model
evaluation (an average of 31.4% estimation MAE
loss degradation) with few inference costs.

Limitations

A primary limitation of mainstream approaches in
benchmark compression, including (Vivek et al.,
2024; Polo et al., 2024), and our method, is their
dependence on comprehensive evaluation results
from existing models across all examples within a
benchmark. As described above, these results are
typically readily accessible through public leader-
boards. However, obtaining initial model perfor-
mance results is necessary for new or certain pri-
vate benchmarks, which introduces additional in-
ference overhead. Nonetheless, we maintain that
this initial cost is justified, as it is offset by the
significant resource savings achieved through nu-
merous subsequent rapid evaluations facilitated by
our method.

Ethics Statement

All of the datasets used in this study were publicly
available, and no annotators were employed for our
data collection. We confirm that the datasets we
used did not contain any harmful content and was
consistent with their intended use (research). We
have cited the datasets and relevant works used in
this study.

Acknowledgments
This work is supported by Beijing Natural Science
Foundation (No.4222037, L181010).

References
Anas Awadalla, Mitchell Wortsman, Gabriel Ilharco,

Sewon Min, Ian Magnusson, Hannaneh Hajishirzi,
and Ludwig Schmidt. 2022. Exploring the landscape
of distributional robustness for question answering
models. arXiv preprint arXiv:2210.12517.

Christina Baek, Yiding Jiang, Aditi Raghunathan, and
J Zico Kolter. 2022. Agreement-on-the-line: Pre-
dicting the performance of neural networks under
distribution shift. Advances in Neural Information
Processing Systems, 35:19274–19289.

Edward Beeching, Clémentine Fourrier, Nathan Habib,
Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. 2023.
Open llm leaderboard. https://huggingface.co/
spaces/open-llm-leaderboard-old/open_llm_
leaderboard.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

OpenCompass Contributors. 2023. Opencompass:
A universal evaluation platform for foundation
models. https://github.com/open-compass/
opencompass.

Shengding Hu, Xin Liu, Xu Han, Xinrong Zhang, Chao-
qun He, Weilin Zhao, Yankai Lin, Ning Ding, Zebin
Ou, Guoyang Zeng, et al. 2023. Predicting emer-
gent abilities with infinite resolution evaluation. In

15599

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass

The Twelfth International Conference on Learning
Representations.

Berivan Isik, Natalia Ponomareva, Hussein Hazimeh,
Dimitris Paparas, Sergei Vassilvitskii, and Sanmi
Koyejo. 2024. Scaling laws for downstream task per-
formance of large language models. arXiv preprint
arXiv:2402.04177.

Leonard Kaufman and Peter J Rousseeuw. 2009.
Finding groups in data: an introduction to cluster
analysis. John Wiley & Sons.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Aman Mehra, Rahul Saxena, Taeyoun Kim, Christina
Baek, Zico Kolter, and Aditi Raghunathan. 2024.
Predicting the performance of foundation mod-
els via agreement-on-the-line. arXiv preprint
arXiv:2404.01542.

John P Miller, Rohan Taori, Aditi Raghunathan, Sh-
iori Sagawa, Pang Wei Koh, Vaishaal Shankar, Percy
Liang, Yair Carmon, and Ludwig Schmidt. 2021.
Accuracy on the line: on the strong correlation be-
tween out-of-distribution and in-distribution gener-
alization. In International conference on machine
learning, pages 7721–7735. PMLR.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter
Welinder, Paul F. Christiano, Jan Leike, and Ryan
Lowe. 2022. Training language models to follow
instructions with human feedback. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing
Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Lorenzo Pacchiardi, Lucy G Cheke, and José
Hernández-Orallo. 2024. 100 instances is all you
need: predicting the success of a new llm on unseen
data by testing on a few instances. arXiv preprint
arXiv:2409.03563.

Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv,
Liat Ein-Dor, Eyal Shnarch, Noam Slonim, Michal
Shmueli-Scheuer, and Leshem Choshen. 2023. Ef-
ficient benchmarking (of language models). arXiv
preprint arXiv:2308.11696.

Felipe Maia Polo, Lucas Weber, Leshem Choshen,
Yuekai Sun, Gongjun Xu, and Mikhail Yurochkin.
2024. tinybenchmarks: evaluating llms with fewer

examples. In Forty-first International Conference
on Machine Learning, ICML 2024, Vienna, Austria,
July 21-27, 2024. OpenReview.net.

Ameya Prabhu, Vishaal Udandarao, Philip Torr,
Matthias Bethge, Adel Bibi, and Samuel Albanie.
2024. Lifelong benchmarks: Efficient model eval-
uation in an era of rapid progress. arXiv preprint
arXiv:2402.19472.

Joseph Lee Rodgers and W. Alan Nicewander. 1988.
Thirteen ways to look at the correlation coefficient.
The American Statistician, 42(1):59–66.

Yangjun Ruan, Chris J Maddison, and Tatsunori
Hashimoto. 2024. Observational scaling laws and
the predictability of language model performance.
arXiv preprint arXiv:2405.10938.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-
vatula, and Yejin Choi. 2021. Winogrande: An
adversarial winograd schema challenge at scale.
Communications of the ACM, 64(9):99–106.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas
Carlini, Benjamin Recht, and Ludwig Schmidt.
2020. Measuring robustness to natural distribution
shifts in image classification. Advances in Neural
Information Processing Systems, 33:18583–18599.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Es-
iobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian
Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui
Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez,
Madian Khabsa, Isabel Kloumann, Artem Korenev,
Punit Singh Koura, Marie-Anne Lachaux, Thibaut
Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yun-
ing Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poul-
ton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael
Smith, Ranjan Subramanian, Xiaoqing Ellen Tan,
Binh Tang, Ross Taylor, Adina Williams, Jian Xiang
Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan
Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. 2023. Llama 2:
Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe
Kiela. 2024. Anchor points: Benchmarking mod-
els with much fewer examples. In Proceedings of
the 18th Conference of the European Chapter of the
Association for Computational Linguistics, EACL
2024 - Volume 1: Long Papers, St. Julian’s, Malta,

15600

http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://openreview.net/forum?id=qAml3FpfhG
https://openreview.net/forum?id=qAml3FpfhG
http://www.jstor.org/stable/2685263
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://aclanthology.org/2024.eacl-long.95
https://aclanthology.org/2024.eacl-long.95

March 17-22, 2024, pages 1576–1601. Association
for Computational Linguistics.

Cong Xu, Gayathri Saranathan, Mahammad Parwez
Alam, Arpit Shah, James Lim, Soon Yee Wong,
Foltin Martin, and Suparna Bhattacharya. 2024. Data
efficient evaluation of large language models and
text-to-image models via adaptive sampling. arXiv
preprint arXiv:2406.15527.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Qiyuan Zhang, Fuyuan Lyu, Xue Liu, and Chen Ma.
2024. Collaborative performance prediction for large
language models. arXiv preprint arXiv:2407.01300.

15601

A Related Works

Models Correlation in Predictive Consistency:
Prior works (Taori et al., 2020; Miller et al., 2021;
Awadalla et al., 2022) have demonstrated a cer-
tain level of correlation between in-distribution
(ID) and out-of-distribution (OOD) performances
across diverse models and tasks. Building on this
foundation, (Baek et al., 2022) and (Mehra et al.,
2024) advance this relationship by showing the phe-
nomenon that the agreement between two models
on ID data is linearly correlated with their agree-
ment on OOD data, where the accuracy holds the
similar linear relationship, enabling accurate es-
timation of model’s OOD accuracy based solely
on ID data. Our work extends this phenomenon
to address the challenge of benchmark compres-
sion, enabling the selection of more representative
subsets for benchmarks.

(Xu et al., 2024) synthesizes several methods
and dynamically chooses the optimal subset selec-
tion method for each benchmark but requires many
examples to determine the best approach. Despite
these advancements, these methods often strug-
gle with substantial distribution shifts between the
source and target models, caused by the discrep-
ancy between their predictive consistency, poten-
tially causing significant distortion in estimating
the target model’s performance. Extending the
approach of (Vivek et al., 2024), our work allevi-
ates this issue by dynamically selecting a native
source model set with the highest prediction con-
sistency to the target model, ensuring the selection
of a tailored coreset for each target model that best
represents the benchmark.

Scaling Approaches for Model Performance
Estimations: Scaling law describes the relation-
ship between model properties (e.g., FLOPs used
during training, model parameter size) and model
capabilities. Recent works (Hu et al., 2023; Ruan
et al., 2024; Isik et al., 2024) have leveraged scal-
ing laws to predict model performance on vari-
ous downstream tasks, reducing the computational
cost of evaluating models on complex downstream
tasks. (Zhang et al., 2024) simplifies those ap-
proaches by utilizing the relationships between
model families and their collaborative overall per-
formance across tasks rather than fitting scaling
laws. The aforementioned methods typically rely
on overall model performance across several bench-
marks and specific design factors (e.g., model size
or training data properties) to either fit scaling

curves or investigate correlations between mod-
els on various tasks. In contrast, our approach
addresses a more general case by reducing the
evaluation cost for multiple models on a single
benchmark, offering a more efficient performance
estimation framework.

B More Experimental Results

B.1 Comprehensive Experimental Results
Across All Datasets

In Table 6, we present a comprehensive compari-
son of our approach against all baseline methods
across the full range of benchmark datasets. The
results indicate that our method consistently out-
performs every baseline under all considered in-
ference counts, thereby demonstrating the overall
effectiveness of our proposed approach.

B.2 Comprehensive Distance Measures
Ablation Across Benchmarks

Here, we provide comprehensive results of our ab-
lation study evaluating the impact of different dis-
tance measures on our method’s performance with
30 inference counts across various benchmarks.
Table 7 presents detailed Kendall’s τ and MAE
metrics for cosine similarity, Manhattan distance,
and correlation distance across all datasets. These
results offer deeper insights into the effectiveness
of Element-Wise Distance measures in enhancing
benchmark compression.

B.3 Detailed Calibration Ablation Results

Table 8 presents the results of our ablation study,
comparing our TAILOREDBENCH method with
and without the calibrated performance estimation
process under 30 inference counts. The calibrated
version of our method generally achieves higher
Kendall’s τ scores and lower mean absolute errors
(MAE) across various benchmarks and inference
counts, demonstrating that the calibrated perfor-
mance estimation process effectively enhances the
performance estimation ability of our method.

B.4 Impact of Dynamic Native Source Model
Quantity on Performance

In this ablation study, we investigate the effect of
dynamically selecting varying numbers of native
source models for each target model, as opposed to
using a standardized quantity across all target mod-
els. Specifically, instead of treating n̄ (as computed

15602

Benchmarks Inference counts 20 25 30 35 40
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

ARC Challenge

RANDOM 0.626 0.078 0.659 0.065 0.676 0.067 0.694 0.062 0.712 0.057
ANCHORPOINTS 0.662 0.064 0.663 0.058 0.676 0.053 0.713 0.048 0.714 0.043
GP-IRT 0.589 0.046 0.620 0.046 0.662 0.036 0.681 0.036 0.695 0.029
TAILOREDBENCH 0.711 0.031 0.737 0.029 0.756 0.028 0.766 0.027 0.773 0.027

Hellaswag

RANDOM 0.811 0.083 0.836 0.077 0.850 0.066 0.863 0.060 0.871 0.058
ANCHORPOINTS 0.860 0.060 0.880 0.061 0.877 0.067 0.897 0.059 0.898 0.057
GP-IRT 0.724 0.062 0.776 0.053 0.810 0.043 0.827 0.038 0.849 0.032
TAILOREDBENCH 0.900 0.020 0.909 0.018 0.913 0.018 0.914 0.017 0.918 0.017

GSM8K

RANDOM 0.811 0.062 0.828 0.055 0.839 0.052 0.847 0.049 0.858 0.044
ANCHORPOINTS 0.786 0.087 0.791 0.079 0.796 0.073 0.800 0.071 0.799 0.071
GP-IRT 0.787 0.055 0.807 0.047 0.829 0.041 0.842 0.038 0.858 0.034
TAILOREDBENCH 0.852 0.035 0.858 0.034 0.863 0.033 0.869 0.031 0.878 0.029

Winogrande

RANDOM 0.373 0.078 0.408 0.067 0.446 0.062 0.470 0.055 0.492 0.052
ANCHORPOINTS 0.472 0.086 0.487 0.085 0.514 0.075 0.521 0.087 0.518 0.073
GP-IRT 0.263 0.041 0.313 0.038 0.353 0.038 0.392 0.036 0.419 0.034
TAILOREDBENCH 0.565 0.028 0.568 0.026 0.604 0.024 0.608 0.023 0.618 0.022

POPE

RANDOM 0.488 0.058 0.510 0.054 0.507 0.048 0.515 0.044 0.547 0.040
ANCHORPOINTS 0.474 0.040 0.483 0.038 0.518 0.034 0.547 0.033 0.556 0.031
GP-IRT 0.481 0.038 0.470 0.037 0.462 0.036 0.482 0.034 0.477 0.033
TAILOREDBENCH 0.521 0.036 0.547 0.035 0.562 0.031 0.563 0.031 0.574 0.032

Table 6: Results on all benchmarks. Values in bold represent the best results, while values that are underlined
represent the second-best results.

Distances ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

CORRELATION 0.766 0.033 0.903 0.019 0.828 0.041 0.557 0.029 0.547 0.038
COSINE 0.746 0.031 0.914 0.019 0.827 0.040 0.616 0.024 0.577 0.024
MANHATTAN 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031

Table 7: Detailed ablation results for distance selection across all benchmarks.

in Eq. 5) as the fixed number of native source mod-
els, we now interpret it as a lower bound—thereby
including all source models whose prediction con-
sistency exceeds the threshold.

Table 9 summarizes the results for all bench-
marks under an inference count of 30. Notably, we
observe improvements on the GSM8K and POPE
datasets, while a slight decrease in performance is
seen on other datasets.

These findings underscore that the core strength
of our method lies in maximizing the consistency
between the source and target models. When ex-
actly n̄ native source models are selected for each
target model, performance appears to be near op-
timal. In contrast, adding additional native source
models for certain target models may introduce
performance variability. Consequently, we adopt
a standardized number of native source models to
ensure stability.

B.5 Impact of Fixed Medoids in N-set
Construction on Performance

In the Developing N-set module, our Scalable K-
Medoids Clustering algorithm employs the G-set
examples as fixed (anchored) medoids. To assess
the effectiveness of this design choice, we con-
ducted an ablation study comparing our standard
approach (with fixed G-set medoids) against a vari-
ant where the G-set points are allowed to change
during medoid refinement. The results are summa-
rized in Table 10.

When the N-set size is fixed at 30, our method
with fixed medoids shows slightly inferior per-
formance compared to the variant without fixed
medoids (see rows 1 and 3 in Table 10). When the
inference budget is fixed at 30, our method outper-
forms the variant without fixed medoids (see rows
1 and 2 in Table 10). These findings suggest that

15603

Method Variants ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

NON-CALIBRATED 0.748 0.026 0.910 0.017 0.862 0.036 0.588 0.028 0.531 0.043
CALIBRATED 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031

Table 8: Detailed ablation results for calibrated performance estimation process across all benchmarks.

Method Variants ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

DYNAMIC NATIVE

SOURCE MODELS NUMBER
0.741 0.029 0.909 0.018 0.875 0.031 0.592 0.025 0.604 0.031

STANDARDIZED NATIVE

SOURCE MODELS NUMBER
0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031

Table 9: Ablation Study on Dynamic vs. Standardized Native Source Model Selection.

anchoring the G-set as fixed medoids helps achieve
a balanced trade-off between the size of the N-set
and the available inference budget.

B.6 Intra-Family Affinity and Its Impact on
Performance under Different
Source-Target Model Similarity

We conducted an additional analysis on the
GSM8K dataset to investigate whether models
within the same family (e.g., Llama, Mistral) tend
to select their own family members as native source
models. As shown in Table 11, with a similar
number of models from each family within the
source and target model set, the results indicate
a significant intra-family preference. On average,
each llama-series model selected approximately
5.5 Mistral models and 6.4 Llama models as their
native source models. Similarly, each Mistral-
series model chose about 7.6 Mistral models and
3.0 Llama models on average. These findings sug-
gest that models exhibit a bias toward source mod-
els with similar architectures, potentially due to
shared representation spaces or analogous decision
boundaries. This intra-family affinity may facili-
tate more accurate performance estimation, as the
selected native source models can better capture
the nuances and prediction patterns distinctive to
their respective model lineages.

Furthermore, we conduct experiments on the
GSM8K dataset to evaluate the performance of our
method when the target models differ significantly
from the source models. Specifically, by selecting
only Llama series models as the target and using
an inference count of 30, we compare the perfor-
mance of all methods across two sets of source

models: one that includes Llama series models
and one that does not, with each set comprising
an equal number of models. As shown in Table
12, the performance of all methods is closely cor-
related with the similarity between the target and
source models; when these models differ, perfor-
mance declines across all methods. Nonetheless,
our method consistently outperforms the baselines
regardless of the target–source model similarity,
underscoring the generalizability of our approach.

B.7 Comprehensive G-set Size Evaluation
Across Benchmarks

In this section, we present a comprehensive evalua-
tion of how varying G-set sizes affect our method’s
performance across multiple benchmarks. Table
13 reports Kendall’s τ and MAE metrics for G-set
sizes ranging from 5 to 25 for each benchmark
while fixing the N-set size as 30. These results
provide deeper insights into selecting the optimal
G-set size and support the conclusions drawn in
the main text.

B.8 Demonstration of Method Effectiveness
with Variance

In this section, we present visual comparisons of
our method and other approaches, including their
respective variances, as illustrated in Figures 5 to
9. The results demonstrate that our method out-
performs the baseline methods on all datasets and
exhibits greater robustness (with smaller variance).

15604

Method Variants |G-set| |N-set| Inference counts
Average

τ ↑ MAE ↓

FIXED G-SET 10 30 30 0.740 0.027
NOT-FIXED G-SET 10 20 30 0.719 0.031
NOT-FIXED G-SET 10 30 40 0.745 0.027

Table 10: Performance Comparison of N-set Construction Methods with and without Fixed G-set Medoids.

Model
Family

Avg. Selected
Mistral Models

Avg. Selected
Llama Models

LLAMA 5.5 6.4
MISTRAL 7.6 3.0

Table 11: Statistics of native source model selection
within model families on GSM8K benchmark.

Source Models
Composition

w/o Llama with Llama
τ ↑ MAE ↓ τ ↑ MAE ↓

ANCHORPOINTS 0.388 0.048 0.525 0.050
GP-IRT 0.505 0.064 0.526 0.038
TAILOREDBENCH 0.634 0.031 0.704 0.022

Table 12: Methods’ Performance under Different
Source-Target Model Similarity.

B.9 More Analyses On the Impact of Native
Source Model Quantity on Our Method

In this section, we maintain the overall prediction
consistency between the native source models and
the target models constant, while varying the pro-
portion of the source models designated as native
source models from 20% to 100% for the target
models across various benchmarks. The results are
illustrated in Figures 10 to 14, indicating that, un-
der the condition of maintaining the prediction con-
sistency between the native source models and the
target model, the number of native source models
significantly influences the method’s performance.

B.10 More Analyses On the Impact of Native
Source Models’ Prediction Consistency
on Our Method

We conduct ablation studies by selecting native
source models based on their prediction consis-
tency with the target model across various bench-
marks, ranging from the top 20% to the 80%~100%
range. The results, presented in Figures 15 to 19,
indicate that the performance of the method sig-
nificantly declines as the prediction consistency

between the native source models and the target
model decreases, under the condition of keeping
the number of native source models constant.

B.11 Extended Results on Optimal Native
Source Model Selection

This section presents the results of our method as
the number of native source models is incremen-
tally increased based on their prediction consis-
tency with the target model. The results in Figures
20 to 23 show that, overall, Kendall’s τ initially in-
creases and then decreases as the number of native
source models increases, while the MAE initially
decreases and then increases with the increase in
the number of native source models.

Moreover, Our method adaptively selects 45
native source models for the ARC Challenge
benchmark, 40 for the Hellaswag benchmark, 33
for the Winogrande benchmark, and 35 for the
POPE benchmark. These selections represent
near-optimal numbers of native source models, as
demonstrated in Figures 20 to 23.

C Models Used in Our Experiments

Tables 14, 15, 16, 17 provide comprehensive lists
of models corresponding to each benchmark.

15605

|G-set| ARC Challenge Hellaswag GSM8K Winogrande POPE
τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓ τ ↑ MAE ↓

5 0.719 0.031 0.912 0.019 0.865 0.035 0.624 0.026 0.549 0.037
10 0.756 0.028 0.913 0.018 0.863 0.033 0.604 0.024 0.562 0.031
15 0.751 0.029 0.911 0.018 0.854 0.034 0.608 0.025 0.556 0.033
20 0.740 0.029 0.910 0.018 0.862 0.034 0.621 0.026 0.541 0.034
25 0.725 0.030 0.909 0.019 0.851 0.036 0.638 0.026 0.533 0.036

Table 13: Detailed results for G-set size across all benchmarks.

Benchmark Model Names

ARC Challenge Qwen2-72B-Instruct, Meta-Llama-3-70B-Instruct, Qwen2-72B, zephyr-orpo-141b-A35b-v0.1,
Phi-3-medium-4k-instruct, Yi-1.5-34B-Chat, c4ai-command-r-plus, Qwen1.5-110B, Smaug-
72B-v0.1, Qwen1.5-110B-Chat, Yi-1.5-9B-Chat, Qwen1.5-32B-Chat, Nous-Hermes-2-Mixtral-
8x7B-DPO, deepseek-llm-67b-chat, Qwen1.5-32B, Yi-1.5-34B-32K, Meta-Llama-3-70B, Phi-
3-mini-4k-instruct, mixtral-8x22B-v0.3, Mixtral-8x22B-v0.1, Phi-3-mini-128k-instruct, Yi-
1.5-34B, c4ai-command-r-v01, Qwen2-7B-Instruct, Hermes-2-Theta-Llama-3-8B, aya-23-35B,
Mixtral-8x7B-Instruct-v0.1, notux-8x7b-v1, Meta-Llama-3-8B-Instruct, Yi-34B-Chat, Smaug-
34B-v0.1, Qwen2-7B, Nous-Hermes-2-SOLAR-10.7B, K2-Chat, Yi-1.5-9B-Chat-16K, Llama-
3-Refueled, WizardLM-70B-V1.0, Yi-34B, Yi-1.5-6B-Chat, NeuralDaredevil-8B-abliterated,
Yi-1.5-9B, Nous-Hermes-2-Mixtral-8x7B-SFT, Hermes-2-Pro-Mistral-7B, Hermes-2-Pro-Llama-
3-8B, openchat_3.5, neural-chat-7b-v3-2, OpenHermes-2-Mistral-7B, OpenHermes-2.5-Mistral-
7B, Qwen1.5-14B-Chat, Nous-Hermes-2-Mistral-7B-DPO, neural-chat-7b-v3-1, Starling-LM-
7B-alpha, Qwen1.5-14B, neural-chat-7b-v3-3, Yi-34B-200K, SOLAR-10.7B-Instruct-v1.0, Yi-
1.5-9B-32K, Mixtral-8x7B-v0.1, Mistral-7B-Instruct-v0.3, zephyr-7b-alpha, Mistral-7B-Instruct-
v0.2, dolphin-2.9-llama3-8b, Llama-2-70b-hf, Orca-2-13b, Llama-3-8B-Instruct-Gradient-1048k,
neural-chat-7b-v3, zephyr-7b-beta, Mistral-7B-OpenOrca, Yi-9B, Yi-9B-200K, DeciLM-7B-
instruct, gemma-1.1-7b-it, SOLAR-10.7B-v1.0, merlinite-7b, Qwen1.5-7B-Chat, 14B, Yi-1.5-6B,
stablelm-2-12b-chat, aya-23-8B, zephyr-7b-gemma-v0.1, Yarn-Solar-10b-32k, phi-2, phixtral-
2x2_8, gemma-7b, Qwen1.5-7B, WizardLM-13B-V1.2, LLaMA-Pro-8B-Instruct, Yarn-Solar-
10b-64k, DeciLM-7B, OrpoLlama-3-8B, Qwen1.5-MoE-A2.7B-Chat, deepseek-llm-7b-chat,
Mistral-7B-v0.1, CollectiveCognition-v1.1-Mistral-7B, Mistral_Pro_8B_v0.1, Mistral-7B-v0.3,
Orca-2-7b, Mistral-7B-v0.2, Yi-6B-Chat, Qwen2-1.5B-Instruct, stablelm-2-12b, openchat_v3.2,
falcon-11B, Yi-6B, Mistral-7B-Instruct-v0.1, Yarn-Mistral-7b-64k, Meta-Llama-3-8B, Yarn-
Mistral-7b-128k, gemma-7b-it, openchat_v3.2_super, Llama-2-70b-chat-hf, Qwen1.5-MoE-
A2.7B, stablelm-zephyr-3b, Qwen1.5-4B-Chat, starcoder2-15b, OpenHermes-13B, MetaMath-
Mistral-Pro, Yi-6B-200K, falcon-40b, Qwen1.5-4B, Llama-2-13b-chat-hf, Llama-2-13b-hf,
vicuna-7b-v1.5, OLMo-7B-Instruct-hf, internlm2-chat-1_8b, falcon-40b-instruct, Qwen2-
1.5B, deepseek-moe-16b-chat, OpenHermes-7B, Llama-2-7b-chat-hf, Nous-Hermes-llama-2-
7b, stablelm-2-zephyr-1_6b, Qwen1.5-1.8B, Qwen1.5-1.8B-Chat, LLaMA-Pro-8B, Llama-2-
7b-hf, stablelm-2-1_6b-chat, internlm2-1_8b, Yarn-Llama-2-13b-128k, NexusRaven-V2-13B,
starcoder2-7b, Llama-2-7B-32K-Instruct, deepseek-llm-7b-base, recurrentgemma-2b-it, gemma-
1.1-2b-it, granite-7b-base, deepseek-moe-16b-base, gemma-2b, stablelm-3b-4e1t, gemma-2b-it,
Yarn-Llama-2-7b-64k, Qwen2-0.5B, phi-1_5

Table 14: Models used for ARC Challenge benchmark.

15606

Benchmark Model Names

HellaSwag LLaMAntino-3-ANITA-8B-Inst-DPO-ITA, luxia-21.4b-alignment-v1.0, UNA-ThePitbull-21.4-
v1, T3Q-ko-solar-dpo-v6.0, MultiVerse_70B, RoleBeagle-11B, Capricorn-7B-DPO, Tess-
2.0-Llama-3-70B, Truthful_DPO_MOE_19B, multimaster-7b-v5, guanaco-65B-HF, Fusion-
Net_34Bx2_MoE_v0.1, Mixtral-8x7B-v0.1, Evangelion-7B, Lumina-5.5-Instruct, Mistral-
Hermes-2x7b, Bagel-Hermes-2x34B, shqiponja-15b-v1, CollectiveCognition-v1.1-Mistral-7B-
dare-0.85, etri-ones-solar, mpt-30b-instruct, openbuddy-mixtral-7bx8-v18.1-32k, bagel-dpo-
7b-v0.4, OpenHermes-2.5-Mistral-7B, NeuralHermes-2.5-Mistral-7B, dolphin-2.1-mistral-7b-
snr-math-laser, NeuralHermes-2.5-Mistral-7B, openbuddy-qwen1.5-32b-v21.1-32k, internlm2-
20b-llama, Matter-0.2-7B-DPO, airoboros-13b-gpt4-1.2, L3-SnowStorm-v1.15-4x8B-B,
Pallas-0.5-LASER-0.6, BgGPT-7B-Instruct-v0.1, Seagull-llama-3-8B-orpo-v0.5, vigogne-7b-
instruct, Llama-2-7b-chat-hf-activity-fine-tuned-v4, Llama-2-7b-chat-hf-activity-fine-tuned-v3,
vicuna-class-tutor-7b-ep3, Llama-2-7b-chat-hf-afr-200step-flan-v2, llama3-8b-instruct-align-
test1-kto, MFANN3bv0.7, openbuddy-yi1.5-9b-v21.1-32k, openbuddy-mixtral-7bx8-v17.1-
32k, odia_llama2_7B_base, MT7Bi-alpha-dpo-v0.2, llama-shishya-7b-ep3-v2, Instruct_Yi-
6B_Dolly15K, Gaja-v2.00-dpo, phi-2-OpenHermes-2.5, lion-gemma-7b-cn-v2, ToRoLaMa-7b-
v1.0, gogpt-7b, Amber, open_llama_3b_v2, openllama_3b_EvolInstruct_lora_merged, gemma-
7B-it-firefly, Qwen1.5-4B, google-gemma-7b-it-dpo-v1, openhermes-2b-gemma-sft-qlora,
RedPajama-INCITE-Chat-3B-v1, mistral_v1, gpt-j-6b, GPT-J-Pyg_PPO-6B, ScarletPajama-
3B-HF, LLama2-7B-Structural-Prune-1.5x, illuni-llama-2-ko-7b-test, RedPajama-INCITE-
Chat-3B-ShareGPT-11K, RedPajama-INCITE-Base-3B-v1, Guanaco-3B-Uncensored-v2-GPTQ,
glaive-coder-7b, xglm-7.5B, gpt-sw3-6.7b, cisco-iNAM-1.1B, pythia-2.7b, qd-phi-1_5,
pythia-2.8b-deduped, LLmRa-2.7B, Tinyllama-1.3B-Cinder-Reason-Test-2, TinyPoliticaLlama-
1.1B, Galpaca-30b-MiniOrca, finetune_test_qwen15-1-8b-sft-lora, TinyLlama-1.1B-Chat-
v0.3, TinyLlama-1.1B-Chat-v0.1, CroissantLLMBase, pygmalion-2.7b, blossom-v2-3b, fal-
con_1b_stage3, MiniMerlin-3b-v0.1, DPO-miniguanaco-1.5T, CodeQwen1.5-7B-Chat, yayi2-
30b-llama, rho-math-1b-v0.1, LLmRa-1.3B_V2, TinyLlama-1.1B-intermediate-step-480k-1T,
gemma-2b-ko-dev-pbmt192, gpt2-chatbot, CodeLlama-7b-Python-hf, Deita-500m, TinyWand-
SFT, tinyllama-coder-py-v13, d-Qwen1.5-1.8B, TinyLlama-1.1B-intermediate-step-240k-503b,
dlite-v1-1_5b, pythia-1b-deduped, gpt2-large, WizardCoder-Guanaco-15B-V1.0, Qwen1.5-0.5B-
vortex-v2, Sailor-0.5B-Chat, WizardCoder-Guanaco-15B-V1.1, Alpaca_refine_gpt2_e1_se0,
deepseek-coder-1.3b-chat, speechless-coder-ds-1.3b, Instruct_GPT, deepseek-coder-1.3b-chat-
and-function-calling, megatron-gpt2-345m, starcoderbase-3b, dlite-v1-355m, gov-qna-ko-
merged, SSH_355M, CodeLlama-34b-Instruct-hf, CodeLlama-34B-Instruct-fp16, mptk-1b,
KoAlpaca-Polyglot-5.8B, Llama-160M-Chat-v1, llama-160m, CodeLlama-34b-hf, KoAlpaca-
KoRWKV-6B, Quokka_590m, pruned-yi-3b-prerelease-ckpt01, gpt2_test, finetuned-gpt2-tiny,
Kaori-34b-v2, kaori-34b-v4, tiny_starcoder_py, GPT-2-Large-51k-steps, DialoGPT-small,
test_mistral2, pythia-31m-KI_v1-2048-scratch

Table 15: Models used for Hellaswag benchmark.

15607

Benchmark Model Names

GSM8K &
Winogrande

ExtremeDolphin-MoE, Mistral-7B-Instruct-v0.2-sparsity-20, PiVoT-SUS-RP, polyglot-math-
4x7b, SOLAR-10B-Nector-DPO-Jawade, Starling-LM-11B-alpha, NeuralPipe-7B-slerp, oswald-
7b, MistralTrixTest, Sensualize-Mixtral-bf16, Sensualize-Solar-10.7B, FusionNet_passthrough,
finance-chat, Kunoichi-7B, dolphin-2.2.1-mistral-7b, CarbonVillain-en-10.7B-v3, xDAN-
SlimOrca, Mistral-11B-v0.1, dm7b_sft_gpt88w_merge, Loyal-Macaroni-Maid-7B, Yi-
34B-200K-DARE-merge-v5, WinterGoddess-1.4x-70B-L2, vicuna-class-shishya-ac-hal-13b-
ep3, Kaori-34B-v1, mistral-megamerge-dare-7b, Chupacabra-8x7B-MoE, bagel-7b-v0.1,
Mixtral-8x7B-v0.1, openbuddy-deepseek-67b-v15-base, Falkor-7b, synapsellm-7b-mistral-
v0.4-preview3, llama2-13b-ft-openllm-leaderboard-v1, synapsellm-7b-mistral-v0.3-preview,
Tess-M-v1.3, monika-ddlc-7b-v1, speechless-mistral-7b-dare-0.85, mistral-7b-v0.1-layla-v1,
Mistral-v0.1-PeanutButter-v0.0.2-7B, chronos-70b-v2, L2-7b-Beluga-WVG-Test, llama-2-13b-
FINETUNE3_3.3w-r8-gate_up_down, airoboros-c34b-2.2.1, llama-2-13b-FINETUNE4_3.8w-
r8-q_k_v_o, llama-2-13b-FINETUNE3_3.3w-r16-gate_up_down, MLewd-Chat-v2-13B, Mistral-
7B-v0.1-Open-Platypus, llama-2-13b-FINETUNE1_17w-r4, EverythingLM-13b-V3-peft,
Llama2-7B-guanaco-1k, llama-2-13b-FINETUNE4_3.8w-r8-q_k_v_o_gate_up_down, Koss-
7B-chat, ReMM-v2.2-L2-13B, WizardLM-1.0-Uncensored-CodeLlama-34b, airoboros-13b,
airoboros-7b-gpt4-1.4.1-qlora, Wizard-Vicuna-7B-Uncensored-HF, Luban-Platypus2-13B-
QLora-0.80-epoch, CodeLlama-34b-hf, airoboros-33b-gpt4-m2.0, llama2-22b-blocktriangular,
GPT-JT-6B-v0, llama2-70b-oasst-sft-v10, vigogne-7b-instruct, based-30b, mpt-30b-chat,
qCammel-70x, GiftedConvo13bLoraNoEconsE4, llama-2-13b-platypus-vicuna-wizard, GOAT-
7B-Community, genz-13b-v2, chronolima-airo-grad-l2-13B, Vicuna-13B-CoT, Llama-2-7b-
ft-instruct-es, OpenOrca-Preview1-13B, Tulpar-7b-v0, zephyr-7b-sft-full, Mixtral-Orca-v0.1,
Marcoroni-7b-DPO-Merge, Aquila2-34B, SOLAR-10.7B-Instruct-v1.0-128k, dolphin-2.6-
mistral-7b-dpo-orca-v3, flux-7b-v0.1, Turdus, A0110, yayi2-30b-llama, NeuralMarcoro14-
7B, Deacon-34b-Adapter, test0, Pallas-0.5-LASER-0.4, Marcoro14-7B-ties, Antares-11b-v1,
CodegebraGPT-10b, Mistral-Syndicate-7B, Nous-Hermes-2-Yi-34B, Half-NSFW_Noromaid-
7b, neural-chat-7b-v3-3-wizardmath-dare-me, apricot-wildflower-20, SauerkrautLM-UNA-
SOLAR-Instruct, kalomaze-stuff, Walter-Mistral-7B, Starling-LM-alpha-8x7B-MoE, una-
neural-chat-v3-3-P2-OMA, Dans-07YahooAnswers-7b, Chupacabra-7B-v2.03, PlatYi-34B-
200K-Q, chinese-alpaca-2-13b-16k, ALMA-7B-Ja-V2, speechless-code-mistral-7b-v2.0, Mis-
tral7B_adaptor_v1, notus-7b-v1, Chupacabra-7B-v2, SciPhi-Self-RAG-Mistral-7B-32k, Ferret-
7B, llama-2-13B-instructed, glaive-coder-7b, Mistralic-7B-1, kuchiki-l2-7b, llama_7b_lora,
Slerpeno, Llama2-7b-openorca-mc-v2-dpo, CAMEL-13B-Role-Playing-Data, starchat-beta, test-
model2, Huginn-13b-v1.2, Dans-AdventurousWinds-7b, Wizard-Vicuna-13B-Uncensored-HF,
Llama-2-13b-hf-ds_wiki_1024_full_r_64_alpha_16_merged, Emerald-13B, koala-13B-HF, tulu-
7B-fp16, airoboros-c34b-2.1, airoboros-7b-gpt4-1.1, 13B-Chimera, Nous-Hermes-Platypus2-
13B-QLoRA-0.80-epoch, airoboros-l2-7b-gpt4-m2.0, llama-7b, llama-65b-instruct, Flash-Llama-
7B, StableBeluga-13B, huginnv1.2, llama_13b_sharegpt94k_fastchat, CAMEL-13B-Combined-
Data, MelangeC-70b, chronos-13b-v2, stack-llama-2, CodeLlama-34b-Python-hf, UltraLM-65b,
Platypus-30B, bimoGPT-llama2-13b, test-llama2-7b

Table 16: Models used for GSM8K and Winogrande benchmark.

Benchmark Model Names

POPE InternVL2-76B, paligemma-3b-mix-448, InternVL-Chat-V1-5, cambrian_13b, cogvlm-
chat, CloudWalk, Ovis1.5-Gemma2-9B, cambrian_8b, InternVL2-26B, Ovis1.5-Llama3-8B,
llava_next_vicuna_13b, glm-4v-9b, emu2_chat, llava_next_mistral_7b, llava_next_vicuna_7b,
WeMM, cambrian_34b, llava_next_llama3, 360VL-70B, Bunny-llama3-8B, GLM4V, MiniCPM-
V-2, llava_next_qwen_32b, Yi-Vision, InternVL2-2B, GeminiPro1-5, InternVL2-8B,
llava_next_interleave_7b_dpo, XComposer2d5, MiniCPM-V-2_6, Mini-InternVL-Chat-2B-
V1-5, cogvlm2-llama3-chat-19B, llava_next_yi_34b, Step1V, InternVL2-1B, InternVL2-
4B, Phi-3-Vision, llava_next_interleave_7b, monkey-chat, OmniLMM_12B, InternVL2-40B,
idefics2_8b, deepseek_vl_7b, GPT4o_20240806, sharecaptioner, monkey, llava-v1.5-7b-
xtuner, GPT4o_HIGH, RekaEdge, GPT4o, Mantis-8B-Idefics2, MiniCPM-Llama3-V-2_5,
llava-llama-3-8b, sharegpt4v_7b, Mini-InternVL-Chat-4B-V1-5, llava-internlm-7b, llava-v1.5-
13b-xtuner, sharegpt4v_13b, llava_v1.5_7b, GPT4o_MINI, deepseek_vl_1.3b, RekaFlash,
llava_v1.5_13b, Mantis-8B-siglip-llama3, MiniCPM-V, QwenVLPlus, Mantis-8B-clip-llama3,
Yi_VL_6B, llava-internlm2-20b, XComposer2_1.8b, mPLUG-Owl2, GPT4V, Yi_VL_34B,
llava-internlm2-7b, Claude3-5V_Sonnet, MMAlaya, instructblip_7b, XComposer2, XCom-
poser2_POPE_TEST, TransCore_M, Claude3V_Haiku, Claude3V_Sonnet, Claude3V_Opus,
idefics_9b_instruct, chameleon_30b, QwenVLMax, qwen_chat, llava_v1_7b, PandaGPT_13B,
qwen_base, XComposer, MiniGPT-4-v1-7B, VisualGLM_6b, flamingov2, MiniGPT-4-v2, VX-
VERSE, idefics_80b_instruct, chameleon_7b, XComposer2_4KHD

Table 17: Models used for POPE benchmark.

15608

Inference counts

K
en

d
al
l’s
𝜏

Inference counts

M
A
E

Figure 5: Demonstration of method effectiveness with variance on ARC Challenge benchmark.

Inference counts

K
en

d
al
l’s
𝜏

Inference counts

M
A
E

Figure 6: Demonstration of method effectiveness with variance on Hellaswag benchmark.

Inference counts

K
en

d
al
l’s
𝜏

Inference counts

M
A
E

Figure 7: Demonstration of method effectiveness with variance on GSM8K benchmark.

15609

Inference counts

K
en

d
al
l’s
𝜏

Inference counts

M
A
E

Figure 8: Demonstration of method effectiveness with variance on winogrande benchmark.

Inference counts

K
en

d
al
l’s
𝜏

Inference counts

M
A
E

Figure 9: Demonstration of method effectiveness with variance on POPE benchmark.

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

SourceModels’ Proportion

M
A
E

Figure 10: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
ARC Challenge benchmark.

15610

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

SourceModels’ Proportion

M
A
E

Figure 11: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
Hellaswag benchmark.

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

SourceModels’ Proportion

M
A
E

Figure 12: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
GSM8K benchmark.

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

SourceModels’ Proportion

M
A
E

Figure 13: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
Winogrande benchmark.

15611

SourceModels’ Proportion

Ke
n
d
al
l’s
𝜏

SourceModels’ Proportion

M
A
E

Figure 14: The impact of the quantity of Native Source Models (with prediction consistency kept the same) on
POPE benchmark.

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 15: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on ARC Challenge benchmark.

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 16: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on Hellaswag benchmark.

15612

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 17: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on GSM8K benchmark.

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 18: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on Winogrande benchmark.

Consistency Percentile Range

Ke
n
d
al
l’s
𝜏

Consistency Percentile Range

M
A

E

Figure 19: The impact of prediction consistency between the Native Source Model and Target Model (with quantity
kept the same) on POPE benchmark.

15613

Number of Native Source Models

K
en

d
al
l’s
𝜏

M
A

E

Number of Native Source Models

Figure 20: Performance of TAILOREDBENCH with varying numbers of Native Source Models on ARC Challenge
benchmark.

K
en

d
al
l’s
𝜏

Number of Native Source Models

M
A

E

Number of Native Source Models

Figure 21: Performance of TAILOREDBENCH with varying numbers of Native Source Models on Hellaswag
benchmark.

K
en

d
al
l’s
𝜏

Number of Native Source Models

M
A

E

Number of Native Source Models

Figure 22: Performance of TAILOREDBENCH with varying numbers of Native Source Models on Winogrande
benchmark.

15614

K
en

d
al
l’s
𝜏

Number of Native Source Models

M
A

E

Number of Native Source Models

Figure 23: Performance of TAILOREDBENCH with varying numbers of Native Source Models on POPE benchmark.

15615

