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Abstract

Recent LLMs exhibit limited effectiveness on
molecular property prediction task due to the se-
mantic gap between molecular representations
and natural language, as well as the lack of
domain-specific knowledge. To address these
challenges, we propose MolRAG, a Retrieval-
Augmented Generation framework integrat-
ing Chain-of-Thought reasoning for molecu-
lar property prediction. MoIRAG operates by
retrieving structurally analogous molecules as
contextual references to guide stepwise knowl-
edge reasoning through chemical structure-
property relationships. This dual mechanism
synergizes molecular similarity analysis with
structured inference, while generating human-
interpretable rationales grounded in domain
knowledge. Experimental results show Mol-
RAG outperforms pre-trained LLMs on four
datasets, and even matches supervised methods,
achieving performance gains of 1.1%-45.7%
over direct prediction approaches, demonstrat-
ing versatile effectiveness. Our code is avail-
able at https://github.com/AcaciaSin/MolRAG.

1 Introduction

Molecular property prediction (Wu et al., 2018)
is a fundamental task in computational chemistry
and drug discovery, aiming to predict the quanti-
tative characteristics of chemical compounds. Ac-
curate prediction of molecular properties enables
researchers to screen potential drug candidates at
early stages, substantially reducing experimental
costs and enhancing drug discovery efficiency. Cur-
rent deep learning-based molecular property predic-
tion models face two fundamental challenges (Kipf
and Welling, 2022; Velickovi¢ et al., 2018; Xu
etal., 2018): (1) strong dependency on scarce an-
notated data constrains their applicability in low-
resource scenarios; (2) insufficient explicit mod-
eling of physicochemical principles compromises
the interpretability of prediction outcomes.

*Shangsong Liang is the corresponding author.
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Figure 1: Performance comparison of MolRAG and General
LLMs. The blue and purple lines in the line chart show the
results of the MolRAG 1-shot and 4-shot, and the red line
shows the results of the General LLM.

To overcome the challenges, recent researchers
have begun exploring the potential of large lan-
guage models (LLMs) (Touvron et al., 2023;
Achiam et al., 2023; Yang et al., 2024; Gu and
Liang, 2025) for molecular property prediction.
LLMs address the molecular property predic-
tion task by encoding structural information (e.g.,
SMILES strings, molecular graphs) into training
data (Zeng et al., 2022; Su et al., 2022; Taylor et al.,
2022; Zhao et al., 2023). However, existing LLMs
exhibit notable limitations: First, the semantic gap
between hierarchical molecular representations and
natural language hinders the effective capture of
critical chemical features such as functional groups.
Second, inadequate implicit encoding of domain-
specific knowledge (e.g., physicochemical laws) re-
stricts the reasoning reliability of the general LLMs.
As illustrated in Figure 1, the general LLMs per-
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form the molecular property prediction task poorly
due to the two limitations.

To overcome these limitations, we propose Mol-
RAG, a Retrieval-Augmented Generation (RAG)
LLM framework combined with Chain-of-Thought
(CoT) reasoning to enhance molecular property pre-
diction. This approach starts with dynamically re-
trieving analogous molecules from specified knowl-
edge bases, and then integrates them into the con-
text for step-by-step reasoning. Instead of rely-
ing solely on internal knowledge, this retrieval
mechanism strengthens domain knowledge inte-
gration, improves predictive accuracy, and thereby
enhances adaptability across different molecular
property tasks and datasets. Unlike conventional
pre-training or fine-tuning methods, MolRAG re-
quires no additional training, which significantly
reduces computational costs. Experimental results
show that MoIRAG outperforms pre-trained LLMs
on 4 general datasets, and on 2 of them even sur-
passes existing GNNs-based methods with higher
prediction accuracy.

In summary, our contributions can be summa-
rized as follows: (1) Training-Free Molecular
Property Prediction. MolRAG enables LLMs
to perform molecular property prediction without
the need for large-scale pre-training or fine-tuning,
significantly reducing computational costs. (2) In-
terpretable and Adaptive Reasoning. By incor-
porating CoT reasoning and retrieved molecular
knowledge, MolRAG enhances predictive accu-
racy while providing interpretable and insightful
explanations. (3) Robust Retrieval-Augmented
Framework. Through systematic evaluation, we
demonstrate the effectiveness of different molec-
ular retrieval strategies and in-context learning in
improving LLM reasoning for chemical tasks.

2 Related Work

LLMs for molecular property prediction. De-
spite the strong capabilities of LLMs, directly
applying LLMs to molecular property prediction
task still face challenges (White et al., 2023; Cas-
tro Nascimento and Pimentel, 2023; Guo et al.,
2023). To overcome these challenges, earlier stud-
ies often employed specialist language models pre-
trained from scratch (Zeng et al., 2022; Su et al.,
2022; Taylor et al., 2022; Zhao et al., 2023), or
through instruction tuning on specific tasks (Fang
et al., 2023; Cao et al., 2023). Our work focuses
on how to use a training-free approach, leveraging

existing LLMs to complete molecular property pre-
diction tasks. By exploring training-free methods,
we aim to fully harness the generality of LLMs
while reducing the dependency on specialized data
and computational resources.

Retrieval augmented generation in chemistry.
LLMs face challenges when dealing with special-
ized or knowledge-intensive tasks. In these tasks,
LLMs are often prone to producing ‘“hallucina-
tions (Huang et al., 2023)”. Retrieval-augmented
generation enhances LLMs by retrieving relevant
content from external knowledge databases (Lewis
et al., 2020). Recently, retrieval-augmented genera-
tion methods have also been applied to chemistry
tasks. Li et al. (2024a) utilized retrieval to com-
plete molecular captioning and molecular genera-
tion tasks. ChatDrug (Liu et al., 2024b) applied
LLMs for drug editing tasks. ChemCrow (M. Bran
et al., 2024) integrated various retrieval tools to
finish general chemical tasks. Despite these, no
approach has been developed to target the perfor-
mance of LLMs in molecular property prediction
tasks by leveraging the RAG framework.

CoT reasoning for chemistry. Chain-of-thought
(CoT) aims to guide the model through a series
of intermediate reasoning steps to obtain the final
answer (Wei et al., 2022; Kojima et al., 2022). A
few works have also applied CoT reasoning in the
chemistry domain for protein interactions (Jin et al.,
2024) and chemistry question-answering (Ouyang
et al., 2024). However, none of these works use
chain-of-thought reasoning in molecular property
prediction tasks. MolRAG focuses on molecu-
lar property prediction tasks, not only applying
retrieval-augmented methods to molecular property
prediction but also innovating on how to integrate
retrieval information to formulate a CoT reason-
ing strategy. This approach enhances the reason-
ing ability and performance of LLMs in molecular
property prediction tasks.

3 Our MolRAG Model

To fully leverage the capabilities of LLMs and
incorporate the principle of molecular structure-
property relationship, we propose MOolRAG,
a training-free, retrieval-augmented generation
framework. The overall framework is depicted in
Figure 2.
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Figure 2: Overall Framework of MolRAG. MolRAG begins with Morgan Fingerprint-based Molecule Retrieval to obtain
example molecules, followed by CoT-based In-context Learning for CoT strategy selection, and ends with Prompt Construction

to formulate the prompt.

3.1 Problem and Overview of MolRAG

Molecular property prediction aims at giving an
input molecule I, predicting the properties of the
molecule. In MolRAG, the retriever R first re-
trieves relevant contents from the database D based
on the input molecule / by computing the similar-
ity between I and molecules in the database. The
retrieved molecules are ranked by similarity scores
in descending order, and the top £ most similar
molecules K = R(I|D) are identified, where k
ranges from 0 to n. The corresponding similarity
scores are recorded as Score i, and the labels are
recorded as Label 1.

Next, MolRAG uses the CoT-based in-context
learning strategy S to further complete the prompts.
There are two strategies in MolRAG, which
are Structure-Aware Chain-of-Thoughts, denoted
as Struct-CoT, and Similarity-Aware Chain-of-
Thoughts, denoted as Sim-CoT.

Finally, MoIRAG constructs the few-shot
prompt using a structured template Prompt =
(Instruction, I, K, S). This prompt is sent to the
LLM to output the property of .

3.2 Morgan Fingerprint-based Retrieval

The Molecular Fingerprint (Butina, 1999) is widely
used for molecular similarity searches because it
explicitly encodes key chemical features, allow-
ing for fast comparison and similarity calculations
across large databases.

The Morgan Fingerprint is a specific type of

molecular fingerprint that is commonly used (Zhou
and Skolnick, 2024). It is generated through molec-
ular graph traversal and is particularly effective in
capturing local substructure features of molecules.
Specifically, the Morgan Fingerprint creates a fea-
ture vector by recursively recording the connectiv-
ity information of each atom and its neighboring
atoms within the molecule. The resulting finger-
print is represented as a fixed-length binary or in-
teger vector, which efficiently encodes both the
global and local structural features of the molecule

The molecular similarity is quantified using the
Dice coefficient, which measures feature overlap
between fingerprint vectors:

2|AN B|

Dice Similarity(A, B) = A+ B’

ey
where A and B represent a molecule from the
database and the current input molecule, respec-
tively. A N B is their intersection, and | A| and | B|
are their sizes (i.e., the number of elements). The
Dice Similarity range from O to 1, when the value is
closer to 1 indicating a higher structural similarity
between the two molecules.

In summary, the molecular retrieval in MolRAG
is as follows: (1) Fingerprint Generation: For
each molecule, the Morgan algorithm generates
the corresponding molecular fingerprint. (2) Simi-
larity Calculation: The Dice Similarity is used to
calculate the similarity between the target molecule
and each molecule in the database. (3) Ranking
and Selection: Based on the calculated similarity
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scores, the molecules are ranked, and the top K
most similar molecules are selected as candidate
molecules.

3.3 CoT-based In-context Learning

Chain-of-Thought (CoT) improves the reasoning
ability of LLMs in molecular property prediction
by decomposing complex SMILES data processing
into stepwise sub-tasks, overcoming the limitations
of direct question-answering approaches. Further-
more, MolRAG introduces a CoT-based prompt
construction method, marking the first time the
CoT is applied to molecular property prediction
tasks. This method guides the LLM to answer
questions step by step, gradually reasoning through
the solution, especially when combined with the re-
trieved molecular data. This step-by-step reasoning
strategy enables the LLM to better understand the
complex task requirements, ultimately resulting in
more accurate prediction.

Moreover, the CoT-based prompt construction
method improves reasoning accuracy and enhances
the interpretability of the generated content. By ex-
plicitly stating the rationale for each reasoning step,
researchers can gain a clearer understanding of the
model’s decision-making process. Interpretabil-
ity is especially important in molecular property
prediction tasks, as it helps reveal the underlying
mechanisms driving the predictions and provides
valuable insights for further optimization and in-
formed decision-making.

To further explore how to perform CoT-based in-
context learning using the retrieved content, Mol-
RAG has adopted two different strategies for con-
structing in-context learning.

3.3.1 Structure-Aware Chain-of-Thoughts

Structure-Aware Chain-of-Thought (Struct-CoT)
establishes a reasoning framework that connects
molecular structural patterns to their macroscopic
properties. By explicitly incorporating chemical
structure-property relationships into the reasoning
pathway, this approach allows for a systematic
interpretation of how specific structural features
(e.g., functional groups, stereochemistry) influence
molecular properties. This significantly enhances
prediction interpretability, providing a clearer un-
derstanding of molecular behavior compared to
black-box deep learning methods.

In MoIRAG, we implement Struct-CoT through
hierarchical feature-guided reasoning:

* Guided Structural Decomposition: The
LLM systematically extracts critical structural
features (e.g., functional groups, aromatic ring
and chirality) from both target and retrieved
molecules.

* Property Correlation Mapping: These fea-
tures are explicitly linked to target properties
through physicochemical principles. For in-
stance, aromatic rings enhance hydrophobic-
ity and thermal stability, while strained cyclic
structures (e.g., norbornene) exhibit elevated
chemical reactivity.

* Comparative Reasoning: Structural similar-
ities and differences between molecules are
leveraged to deduce variations in properties.

Struct-CoT ensures that the model’s predictions are
grounded in verifiable chemical knowledge rather
than statistical correlations.

3.3.2 Similarity-Aware Chain-of-Thoughts
Similarity-Aware Chain-of-Thought (Sim-CoT) es-
tablishes a retrieval-enhanced reasoning paradigm
by explicitly linking molecular structural similarity
with property correlations. This framework op-
erationalizes the fundamental chemical principle
that "structurally similar molecules exhibit prop-
erty continuity"(Johnson et al., 1990), guiding the
model to systematically leverage retrieved refer-
ence molecular information.

In MoIRAG, Sim-CoT is implemented through
two key mechanisms: (1) Cross-molecule Corre-
lation: The LLLM is constrained to compare criti-
cal structural features between target and retrieved
molecules of high similarity scores, analyzing how
these features collectively influence target proper-
ties. (2) Property Continuity Constraints: In-
terpretable reasoning chains are constructed based
on established chemical rules, such as “increasing
methyl substitutions on benzene rings progressively
enhance hydrophobicity,” to map structural varia-
tions to property changes. Sim-CoT facilitates the
integration of retrieved molecules into the decision-
making process, reducing reliance on mere statis-
tical correlations while ensuring that predictions
remain chemically plausible.

3.4 Prompt Construction

Finally, building upon the original instructions, the
retrieved information is combined with the selected
CoT strategy to generate the final prompt for the
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Table 1: Experimental Results on Test Dataset (Classification Tasks). The teal color indicates the best performance of pre-training

methods.

BACE HIV MUV Tox2l ToxCast BBBP CYP450
Model Shot  Method | 5)"  4113) (25342) (7069) (137215) (204) (5669
ochot / 05186 05801 04502 05378 04992 05226 05107
Struct-CoT  0.5044 0.5136  0.5387 05341 05016 05462 05179
o SIuctCoT 03939 05432 04962 0549 05338 05457 05488
Llamas8h Sim-CoT 07188 05749 05540 05880 05683 05460 0.6244
+ho StuctCoT 06151 05684 04963 05495 05557 05642 05533
Sim-CoT 07541 05830 05559 0.6279 06012 05116 0.6903
iaho SUUCECOT 06257 05948 05527 05662 05913 05723 05838
Sim-CoT 07225 0.6436 0.5616 0.6393 0.6408 05411  0.7229
e (heio 05409 04897 05274 04989 04969 05017 04964
Gimlet 06957 0.6624 06439 06119 05904 05939 07125
. KVPLM 05126 06120 06172 04917 0509 0.6020 05922

Pre-training
e MoMu 0.6656 05026 0.6051 05757 05238 04981 0.5798
Galactica-125M 04451 03671 04986 04964 05106 06052  0.5369
Galactica-13B  0.5648 03385 05715 04946 05123 05394  0.4686
GCN 07360 07570 07320 07490 0.6330 0.6490  0.8041
Graph-based GAT 0.6970 07290 0.6660 07540 0.6460 0.6650 0.8281
Taph-Dee GIN 07010 07530 07180 07400 0.6340 06580  0.8205
Graphormer 07760 0.7452 07061 07589 0.6470 07015  0.8436
Graphormer-p  0.8575 07788 0.7480 0.7729 0.6649 07163  0.8877

LLM, and then extract the final answer from the
LLM output to get the final answer. Although these
two CoT strategies differ in the construction of
the steps, their core goal is the same: optimizing
the model’s in-context learning mechanism to en-
hance its ability to integrate information during
reasoning. Within the MolRAG framework, LLM
can accurately utilize external knowledge within
the given context to gradually deduce molecular
properties, thereby improving the reliability and
precision of the predictions and providing a more
efficient, transparent, and interpretable solution for
molecular property prediction tasks.

4 Experiment

In this section, we aim to answer the following
research questions: (RQ1) What are the advan-
tages of MolRAG compared with the General
LLM? (RQ2) What’s core information contributes
to molecular property prediction tasks?

4.1 Experimental Setting

Datasets and Database Construction. We val-
idated our MolRAG on ten datasets, which are
from MoleculeNet (Wu et al., 2018), a widely used
benchmark for molecular property prediction tasks.
These datasets provide a comprehensive evaluation
of different aspects of molecular property predic-
tion. The tasks in these datasets are categorized into
four types: Physico-chemical tasks, Bio-activity
tasks, Toxicity tasks and Pharmacokinetic tasks.

For instructions construction process, we adopted
instructions from Gimlet (Zhao et al., 2023) and
followed the same experimental settings used in
the evaluation process. Details of dataset and in-
structions are in Appendix A. We constructed the
database using the Gimlet (Zhao et al., 2023)’s
training split of downstream tasks, and using the
test split for evaluation. Additionally, considering
that some datasets contain an excessive number of
instructions, we constructed a test-mini dataset to
reduce inference costs. For datasets with more than
4,000 instructions, we randomly sampled 4,000
instructions to form the Test-Mini dataset.

Baselines. We verify the performance enhance-
ment of MolRAG in the setting of generalist mod-
els. However, considering experimental duration
and computational cost, we selected Llama3-8B-
Instruct (Touvron et al., 2023) as our primary
model to conduct experiments on the Test dataset.
Meanwhile, GPT-40 (Achiam et al., 2023) and
Qwen2.5-7B-Instruct (Yang et al., 2024) are eval-
uated on the Test-Mini dataset. Additionally, we
include the pre-training baselines including Gim-
let (Zhao et al., 2023), KVPLM (Zeng et al., 2022),
MoMu (Su et al., 2022), Galactica-125M (Tay-
lor et al., 2022) and Galactica-1.3B , and surper-
vised baselines including: GCN (Kipf and Welling,
2022), GAT (Velickovi¢ et al., 2018), GIN (Xu
et al., 2018), Graphormer (Ying et al., 2021) and
Graphormer-p for comparisons.
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Table 2: Experimental Results on Test-Mini Dataset.

BACE HIV MUV Tox21 ToxCast BBBP CYP450
Model Shot Method (152)  (4000) (4000) (4000)  (4000)  (204)  (4000)
Llama3.8b Struct&Sim-CoT  0.6688 0.6393 0.6154 0.6046 0.6440 0.5064  0.6293

- 07225 0.6449 0.5541 0.6600 06654 05411 0.7176

Qwen2.5-7b Sim-CoT 07560 0.6476 0.6237 0.6642 0.7087 0.5608 0.7279

GPT-do 0.7673 0.6209 05486 0.6580 0.6882 0.6291  0.7471

Metric. We employ ROC-AUC(Area Under the
Receiver Operating Characteristic curve) as the
evaluation metric for classification tasks, and
RMSE (Root Mean Squared Error) for regression
tasks evaluation.

4.2 The Outperformance of MolIRAG(RQ1)

4.2.1 Performance on Classification Tasks

To address this question, we design two experimen-
tal settings Direct Answering Setting and Struct-
CoT Setting for the General LLM. We choose
Llama3-8b-Instruct (Touvron et al., 2023) as the
General LLM. In Direct Answering, the model di-
rectly answers the question and extracts the final
prediction without additional reasoning, while in
Struct-CoT setting, the model follows a structured
CoT prompting strategy, reasoning step by step
before providing an answer. Additionally, we intro-
duce a Random Choice Setting, where the model
randomly selects either "Yes" or "No" as the an-
swer. Table 1 shows the performance of these three
settings. The result values of Random Choice are
very close to the General Model experimental re-
sults, indicates that the performance of both the
Direct Answering and Strcut-CoT settings, without
retrieval, is proximate to random choice. This is
because the model lacks domain knowledge and
this suggests that current LLMs struggle to per-
form molecular property prediction without retriev-
ing relevant knowledge. In summary, MolRAG
demonstrates performance improvements across all
datasets comparing with the General LLM, ranging
from 1.1% to 45.7%, highlighting its efficacy and
versatility.

To compare with the general LLM performance,
we conduct experiments within the MoIRAG frame-
work. We evaluate three different retrieval settings:
1-shot, 2-shot, and 4-shot retrieval on Llama3-
8b-Instruct (Touvron et al., 2023). The results
for MolRAG as shown in Table 1 indicates that
regardless of the number of shots retrieved, the
performance consistently outperforms the gener-
alist LLM. Specially, under the 4-shot setting of
MOoIRAG, our approach achieves superior results

compared to pretrained methods across multiple
benchmark datasets, including BACE, CYP450,
Tox21, and ToxCast. In particular, on the BACE
and ToxCast datasets, our method approaches the
performance of supervised methods, highlighting
the effectiveness of MolRAG in molecular prop-
erty prediction tasks. Additionally, Table 1 pro-
vides experimental data from both pretrained and
supervised methods for reference. A comparison
reveals that MolRAG outperforms the pretrained
methods across four datasets, and matches the per-
formance of supervised methods on two of these
datasets. This demonstrates the versatile effective-
ness of MolRAG.

4.2.2 Performance on Regression Tasks

To address this question, we choose Llama3-8b-
Instruct as the backbone model and use the Sim-
CoT template to conduct experiments. We compare
MOoIRAG with pretrained LLMs and GNN-based
methods, predicting solubility (ESOL), free energy
of hydration (FreeSolv), and lipophilicity (Lipo).
Specifically, considering the higher difficulty of
regression tasks, we introduce two additional ex-
perimental settings: (1) We include descriptions
of the units in the instructions, and (2) We adopt
the idea of CoT-SC (Wang et al., 2023), generating
multiple answers and selecting the median of these
results as our final answer.

Experimental results are listed in Table 3. Re-
sults show that MolRAG outperforms Gimlet on
Lipo through the proposed framework, but perfor-
mance on ESOL and FreeSolv remains an area
for improvement. We analyze the results and find
out the challenges for LLMs to complete regres-
sion tasks are: (1) Limited numerical reasoning
abilities: Current LLMs have difficulty performing
complex arithmetic operations, especially when
handling multi-step calculations, floating-point pre-
cision, and scientific notation; (2) Weak chemical
formula and unit conversion handling: LLMs strug-
gle with chemical equations and unit conversions,
often misinterpreting expressions and inaccurately
transforming units (e.g., kcal/mol to kJ/mol), lead-
ing to significant errors in regression tasks.
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1. Molecular Retrieval 2. Few-Shot Instruction in MolRAG :

[Instruction]: BACE1 is an aspartic-acid protease important in the pathogenesis of Alzheimer's disease, and in the formation of myelin sheaths. It

Input Molecule:

cleaves amyloid precursor protein (APP) to reveal the N-terminus of the beta-amyloid peptides. The beta-amyloid peptides are the major components
of the amyloid plaques formed in the brain of patients with Alzheimer's disease (AD). Since BACE mediates one of the cleavages responsible for
generation of AD, it is regarded as a potential target for pharmacological intervention in AD. BACE1 is a member of family of aspartic proteases. Same as
other aspartic proteases, BACE1 is a bilobal enzyme, each lobe contributing a catalytic Asp residue, with an extended active site cleft localized between
the two lobes of the molecule. Is this molecule effective to the assay?

[Input]: 01C[C@]2(N=C1N)clcc(ccc10clc2ec(OCC(C)C)ecl)-clencncl

Retriever Top 1 Molecule:
[Molecule 1]: 01CC2(N=C1N)clcc(ccc10clc2ec(OC)ccl)-clenencl
‘ [Score 1]: 0.8600

Top 1 Molecule: [Label 1]: No
Top 2 Molecule:

[Score 2]: 0.8600
[Label 2]: No

N
Top 2 Molecule:

3. MolRAG’s Output:

Step 1: Analyze the input molecule's structure.

X The input molecule has the following characteristics:
+Contains a central carbon atom (C) with a nitrogen-nitrogen double bond (N=N)

*Has a ring system with oxygen atoms attached

[Molecule 2]: 01C[C@@]2(N=C1N)clcc(ccc10clc2cc(OC)ccl)-clenencl

Top 3 Molecule:

[Molecule 3]: 01CC2(N=C1N)clcc(ccc10clc2cec(ccl)CCC)-clenencl
[Score 3]: 0.7843

[Label 3]: Yes

Top 4 Molecule:

[Molecule 4]: 01CC2(N=C1N)clec(ccc10clc2ec(OC)ccl)-cleencel
[Score 4]: 0.7475

[Label 4]: No

Using Sim-CoT Template

+Contains a chain of carbon and nitrogen atoms forming a heterocyclic ring

Step 2: Compare the input le to the provided
*Example 1: Score 0.8600, Label: No
*Example 2: Score 0.8600, Label: No
*Example 3: Score 0.7843, Label: Yes
*Example 4: Score 0.7475, Label: No

activity.

based on structural similarity scores.

Step 3: Identify patterns in the structural differences that affect the outcome.
*Example 1 and Example 2 differ from the input by the stereochemistry at the second carbon (C2) and have a lower score but still no effect on

*Example 3 has a different substituent on the ring system, which seems to have a positive effect on activity.

«Example 4 has a different substituent on the nitrogen-containing ring, which has a negative effect on activity.

Top 4 Molecule:

C\ O similar to Example 3.
R IR
0

A Conclusion:

Step 4: Determine the likely effect of the input molecule based on its structural similarity to the examples.
The input molecule closely resembles Example 3 in terms of structural features, particularly the presence of a substituent on the ring system

Step 5: Make a prediction based on the similarity scores and labels of the examples.
Given the high structural similarity score of 0.8600 to Examples 1 and 2, and the label "No," and the slightly lower score of 0.7843 to Example
3, which has a positive label, the input molecule is likely to be similar to Example 3.

Based on the structural similarity and the pattern observed in the examples, the input molecule is predicted to be effective in the BACE1 assay.

Figure 3: Case Study of MoIRAG. The left side of the figure illustrates the visualization of the input molecule and top k
molecules. The right side is divided into two sections: the upper part shows the few-shot instruction, while the lower part displays

the MoIRAG’s output result.

4.3 The Ablation Study of MolRAG(RQ2)
4.3.1 The Effect on Retrieved Numbers

To investigate this problem, we compare the results
of three different retrieval numbers:1, 2, 4. The
experimental results are summarized in Table 1.
Our experimental results indicate that the 2-shot
setting outperforms the 1-shot setting, while the
4-shot setting further improves upon the 2-shot
results. Notably, it suggests that the more retrieved
information retrieved, the more beneficial it is for
molecular property prediction tasks. All retrieval-
enhanced configurations surpass the performance
of models without retrieval.

Table 3: Experimental Results on Test Dataset (Regression

Tasks).
ESOL Lipo FreeSolv
Model Shot  Method (113) (420) 65)
1-shot Sim-CoT 4.1424 12712 18.1224
Llama3-8b  2-shot Sim-CoT 3.4994 1.1676  6.0827
4-shot Sim-CoT 3.2806 1.1251  6.1923
Gimlet 1.132 1.345 5.103
Pre-training KVPLM - - -
Methods MoMu - - -
Galactica - - -
GCN 1.331 0.760 2.119
Gﬁ‘:ﬁ‘v'obr‘f:d GAT 1253 0770  2.493
GIN 1.243  0.781 2.871

4.4 The Effect on Retrieval Mechanism

To determine whether performance gains stem from
the LLM’s molecular understanding or sample-
based retrieval, we conduct KNN-based majority
voting experiments. We apply KNN clustering
to group structurally similar molecules. For each
query molecule, we retrieve its k-nearest neighbors
and assign a property label based on majority vot-
ing. Experimental results are listed in Table 4. The
results show that while the KNN-based method per-
forms well on certain datasets, its effectiveness is
constrained. In contrast, MolRAG with Llama3-8B
and Qwen2.5-7B consistently outperforms KNN,
highlighting the critical role of LLM’s molecular
understanding and reasoning ability over simple
retrieval-based methods.

Therefore, we can conclude that: (1) KNN-based
methods show limited effectiveness, performing
well only on datasets with lower molecular feature
diversity. (2) LLM’s molecular understanding is the
primary factor driving performance improvements
in molecular property prediction.

4.4.1 The Effect on CoT-based Strategy.

To investigate the impact of different in-context
learning on molecular property prediction, we con-
ducted experiments on Llama3-8B-Instruct (Tou-
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Table 4: Experimental Results on Retrieval Mechanism.

BACE HIV MUV Tox2l ToxCast BBBP CYP450

Model  Shot  Method )" 4113 (25342) (7069) (137215) (204)  (5669)

Llama3-8b Gimcop 07225 06436 05616 06393 06408 05411 07229
Qwen2.5-7b 4-shot 07560 0.6680 05441  0.6602 0.6624 0.6042 07229
KNN-Based - 07628 05786 05099 0.6095 05894 05972  0.7503

vron et al., 2023) with Struct-CoT and Sim-CoT
strategies respectively. These experiments are all
performed using 1-shot, 2-shot, and 4-shot re-
trieval settings. The results are summarized in
Table 1, demonstrating that Sim-CoT consistently
outperforms Struct-CoT across all datasets except
for BBBP dataset. Our results suggest that guid-
ing the model to leverage the dual mechanism of
cross-molecule correlation and property continu-
ity constraints enhances its reasoning capabilities.
By focusing on structurally similar molecules and
their corresponding properties, the model can make
more accurate predictions.

To further compare the influence of Struct-CoT
and Sim-CoT, we combine the Struct-CoT and Sim-
CoT strategies into a Struct&Sim-CoT strategy.
In this setting, both Struct-CoT and Sim-CoT strate-
gies are provided to the model and evaluated on the
Test-Mini dataset. The experimental results are pre-
sented in Table 2. The results show that, except for
the MUYV dataset, the overall performance of Sim-
CoT outperforms Struct&Sim-CoT. This indicates
that, on most of the test datasets, generating struc-
tural information can impact the decision-making
process. As the structure information generated by
the model may be inaccurate, which can affect the
final judgment.

Error Analysis. Error analysis of Sim-CoT and
Struct-CoT are provided in Figure 4 (a) and (b).
When using Sim-CoT, the model tends to encounter
more errors related to the retrieval process, while
with Struct-CoT, the errors are more often related to
a lack of domain knowledge. Experimental settings
of error analysis are shown in Appendix C.

4.4.2 Different Model Platform

To compare the impact of different generalist
LLMs, we evaluated Llama3-8B-Instruct (Touvron
et al., 2023), Qwen2.5-7B-Instruct (Yang et al.,
2024) and GPT-40 (Achiam et al., 2023) on the
Test-Mini dataset. The results, shown in Table
2, indicate that Qwen2.5-7B-Instruct outperforms
other LLLMs on the HIV, MUYV, Tox21, ToxCast,
and BBBP datasets, while GPT-40 surpasses other
LLMs on the BACE, BBBP, and CYP450 datasets.

Overall, Qwen2.5-7B-Instruct outperforms GPT-
40, which in turn achieves better performance than
Llama-3-8B-Instruct.

Furthermore, we analyze the reasoning pro-
cesses of different models and observe that model
platforms exhibit varying responses to the Sim-
CoT strategy. Llama3-8B-Instruct tends to focus
primarily on the retrieved content and similarity
scores, comparing the input molecule with similar
molecules and using their labels to determine the
label for the input molecule. However, the final
result is often influenced by the model’s reasoning
process, which can introduce inconsistencies.

This tendency is even more pronounced in GPT-
40, which almost exclusively relies on the retrieved
content to make predictions. When the retrieved
content fails to support reasoning toward the cor-
rect ground truth, GPT-40 tends to make errors,
reflecting the model’s strong dependence on the
retrieval phase.

In contrast, Qwen2.5-7B-Instruct exhibits a dif-
ferent behavior from the other two models. Even
though we only applied the Sim-CoT strategy,
Qwen2.5-7B-Instruct still considers the molecu-
lar structure and combines it with the similarity
scores, enabling more sophisticated reasoning. As
a result, Qwen2.5-7B-Instruct’s responses are more
interpretable and provide more complex insights
compared to the other models, offering a deeper
understanding of the decision-making process.

Error Analysis. Error analysis of different models
are provided in Figure 4 (b), (c) and (d). GPT-40
almost never encounters reasoning errors or per-
ceptual errors. Instead, it tends to have more errors
related to the retrieval knowledge which is 95.40%.
Qwen2.5-7B-Instruct’s errors are primarily concen-
trated around retrieval and a lack of knowledge,
while Llama3-8B-Instruct experiences errors re-
lated to both retrieval and perceptual errors in the
model. Experimental settings of error analysis are
shown in Appendix C.

4.4.3 Different Molecular Retrieval Methods

To evaluate the effect of different molecular re-
trieval representations, we compared retrieval us-
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Figure 4: Error Analysis of different experimental settings of MolRAG. The figures illustrate the types of errors and their

corresponding proportions.

ing the Substructure Fingerprint(Daylight Finger-
print) (Stahl and Mauser, 2005) with retrieval using
Morgan Fingerprint. The results, summarized in Ta-
ble 5, indicate that Morgan Fingerprint yield supe-
rior performance. However, the use of different fin-
gerprints still produces competitive results, demon-
strating that despite variations in molecular repre-
sentations, MolRAG remains effective. This find-
ing highlights the robustness of the MolIRAG frame-
work across different molecular retrieval strategies.
Detailed results are shown in Appendix B.1.

4.5 Case Study

Further exploration of one specific test case from
the BACE test set provides valuable insights, as
shown in Figure 3. This case provides a result
based on the 4-shot Sim-CoT template within
the MolRAG framework. Given four retrieved
molecules, the LLM primarily focuses on the simi-
larity between the input molecule and the retrieved
molecules during the reasoning process. In this
particular case, three of the retrieved molecules are
labeled as “No”, while one is labeled as “Yes”. In
most cases, following the provided guidelines, the
model predicts the property of the input molecule
based on the majority of labels of the retrieved
molecules. However, in this case, when the model
encounters the top 3 similar molecule, which is
labeled as “Yes”, it shifts its decision-making strat-
egy. Instead of relying solely on the majority label,
the model begins to analyze and reason about the
structural differences between the input molecule
and the retrieved examples. This step is reflected in
the third part of the reasoning process—“identifies
patterns in the structural differences that affect the
outcome.” This case study highlights the signifi-
cance of retrieval-based augmentation and chain-
of-thought (CoT) reasoning within the MolRAG
framework. By focusing on the structural patterns
in molecular property predictions, the model can
make more nuanced decisions. More case studies
can be found in Appendix D.

5 Conclusion

MOoIRAG is a retrieval-augmented framework de-
signed for molecular property prediction. To the
best of our knowledge, this is the first approach
that integrates retrieval-based augmentation with
CoT reasoning for this task. Moreover, MoIRAG is
a training-free method, eliminating the need for ad-
ditional model fine-tuning. By incorporating rele-
vant information into in-context learning, MolRAG
enables LLMs to surpass the performance of pre-
trained models and even achieve results comparable
to supervised approaches. Additionally, MolRAG
enhances interpretability in molecular property pre-
diction, providing researchers with transparent and
insightful rationales for model predictions. Our
experiments further investigate the impact of differ-
ent in-context learning strategies, retrieval methods,
and generalist LLMs within the MolRAG frame-
work. Experimental results show MolRAG out-
performs pre-trained LLLMs on four datasets, and
even matches supervised methods, achieving per-
formance gains of 1.1%—45.7% over direct predic-
tion approaches, demonstrating versatile effective-
ness and robustness.

MoIRAG demonstrates strong utility in both in-
dustrial and academic settings. It can be directly
integrated into workflows, e.g., drug discovery. By
supporting local molecular database integration and
eliminating the need for task-specific model train-
ing, it offers a cost-effective solution that meets
the demands of modern pharmaceutical pipelines.
MOoIRAG also shows promise for broader societal
and educational impact. With its ability to generate
interpretable responses, it supports the dissemina-
tion of molecular knowledge to non-experts, and
its multi-turn dialogue functionality fosters inter-
active and personalized engagement with scientific
content. As to future work, we intend to integrate
embeddings of molecules produced by graph neu-
ral networks (Li et al., 2025; Arslan Manzoor et al.,
2024; Liu et al., 2024a; Li et al., 2024b) into our
model for molecular property prediction.
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Limitations

While MolRAG has demonstrated performance im-
provements in molecular property tasks, it still has
some limitations as follows:

* Static knowledge representation: The lack
of model training limits the continuous evo-
lution of knowledge, as errors in reasoning
cannot be used to refine the model’s underly-
ing chemical knowledge base.

* Bounded knowledge scope: Dependency on
predefined molecular databases restricts ac-
cess to emerging chemical knowledge, lacking
dynamic knowledge exploration capabilities
akin to literature mining systems.

* Unverified reasoning pathways: Logical in-
consistencies in structure-property deductions
persist without expert-in-the-loop validation,
particularly in edge cases requiring nuanced
chemical intuition.

Future efforts should focus on developing self-
improving frameworks that integrate dynamic
knowledge acquisition and expert-guided valida-
tion, ultimately advancing LLMs toward chemi-
cally rigorous reasoning.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Muhammad Arslan Manzoor, Ruihong Zeng, Dilshod
Azizov, Preslav Nakov, and Shangsong Liang. 2024.
Mgm: Global understanding of audience overlap
graphs for predicting the factuality and the bias of
news media. arXiv e-prints, pages arXiv—2412.

Darko Butina. 1999. Unsupervised data base clustering
based on daylight’s fingerprint and tanimoto similar-
ity: A fast and automated way to cluster small and
large data sets. Journal of Chemical Information and
Computer Sciences, 39(4):747-750.

He Cao, Zijing Liu, Xingyu Lu, Yuan Yao, and Yu Li.
2023. Instructmol: Multi-modal integration for build-
ing a versatile and reliable molecular assistant in drug
discovery. arXiv preprint arXiv:2311.16208.

Cayque Monteiro Castro Nascimento and André Silva
Pimentel. 2023. Do large language models un-
derstand chemistry? a conversation with chatgpt.
Journal of Chemical Information and Modeling,
63(6):1649-1655.

Yin Fang, Xiaozhuan Liang, Ningyu Zhang, Kangwei
Liu, Rui Huang, Zhuo Chen, Xiaohui Fan, and Hua-
jun Chen. 2023. Mol-instructions: A large-scale
biomolecular instruction dataset for large language
models. In The Twelfth International Conference on
Learning Representations.

Jiawei Gu and Shangsong Liang. 2025. Speculative
reward model boosts decision making ability of llms
cost-effectively. In Proceedings of the 63rd Annual
Meeting of the Association for Computational Lin-
guistics.

Taicheng Guo, Bozhao Nan, Zhenwen Liang, Zhichun
Guo, Nitesh Chawla, Olaf Wiest, Xiangliang Zhang,
et al. 2023. What can large language models do in
chemistry? a comprehensive benchmark on eight
tasks. Advances in Neural Information Processing
Systems, 36:59662-59688.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
ACM Transactions on Information Systems.

Mingyu Jin, Haochen Xue, Zhenting Wang, Boming
Kang, Ruosong Ye, Kaixiong Zhou, Mengnan Du,
and Yongfeng Zhang. 2024. ProLLM: Protein chain-
of-thoughts enhanced LLM for protein-protein inter-
action prediction. In First Conference on Language
Modeling.

Mark A Johnson, Gerald M Maggiora, et al. 1990. Con-
cepts and applications of molecular similarity. (No
Title).

Thomas N Kipf and Max Welling. 2022. Semi-
supervised classification with graph convolutional
networks. In International Conference on Learning
Representations.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in

neural information processing systems, 35:22199—
22213.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rock-
taschel, et al. 2020. Retrieval-augmented generation
for knowledge-intensive nlp tasks. Advances in Neu-
ral Information Processing Systems, 33:9459-9474.

Guoming Li, Jian Yang, and Shangsong Liang. 2025.
Ergnn: Spectral graph neural network with explicitly-
optimized rational graph filters. In ICASSP 2025-
2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1-5.
IEEE.

Jiatong Li, Yunqing Liu, Wenqi Fan, Xiao-Yong Wei,
Hui Liu, Jiliang Tang, and Qing Li. 2024a. Em-
powering molecule discovery for molecule-caption

15522


https://openreview.net/forum?id=2nTzomzjjb
https://openreview.net/forum?id=2nTzomzjjb
https://openreview.net/forum?id=2nTzomzjjb
https://doi.org/10.1109/TKDE.2024.3393356
https://doi.org/10.1109/TKDE.2024.3393356

translation with large language models: A chatgpt
perspective. IEEE Transactions on Knowledge and
Data Engineering, 36(11):6071-6083.

Liang Li, Qisheng Liao, Meiting Lai, Di Liang, and
Shangsong Liang. 2024b. Local and global: Text
matching via syntax graph calibration. In ICASSP
2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
11571-11575. IEEE.

Ang Liu, Yafang Huang, Yuehong Wu, Siwei Liu, and
Shangsong Liang. 2024a. Active learning for multi-
class drug-drug interactions prediction. In 2024
IEEE International Conference on Bioinformatics
and Biomedicine (BIBM), pages 1611-1615. IEEE.

Shengchao Liu, Jiongxiao Wang, Yijin Yang, Cheng-
peng Wang, Ling Liu, Hongyu Guo, and Chaowei
Xiao. 2024b. Conversational drug editing using re-
trieval and domain feedback. In The Twelfth Interna-
tional Conference on Learning Representations.

Andres M. Bran, Sam Cox, Oliver Schilter, Carlo Bal-
dassari, Andrew D White, and Philippe Schwaller.
2024. Augmenting large language models with chem-
istry tools. Nature Machine Intelligence, pages 1-11.

Siru Ouyang, Zhuosheng Zhang, Bing Yan, Xuan Liu,
Yejin Choi, Jiawei Han, and Lianhui Qin. 2024.
Structured chemistry reasoning with large language
models. In ICML.

Martin Stahl and Harald Mauser. 2005. Database clus-
tering with a combination of fingerprint and max-
imum common substructure methods. Journal of
chemical information and modeling, 45(3):542-548.

Bing Su, Dazhao Du, Zhao Yang, Yujie Zhou, Jiang-
meng Li, Anyi Rao, Hao Sun, Zhiwu Lu, and Ji-
Rong Wen. 2022. A molecular multimodal founda-
tion model associating molecule graphs with natural
language. arXiv preprint arXiv:2209.05481.

Ross Taylor, Marcin Kardas, Guillem Cucurull, Thomas
Scialom, Anthony Hartshorn, Elvis Saravia, Andrew
Poulton, Viktor Kerkez, and Robert Stojnic. 2022.
Galactica: A large language model for science. arXiv
preprint arXiv:2211.09085.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro,
Faisal Azhar, et al. 2023. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Petar Velickovié, Guillem Cucurull, Arantxa Casanova,
Adriana Romero, Pietro Lio, and Yoshua Bengio.
2018. Graph attention networks. In International
Conference on Learning Representations.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023. Self-consistency improves
chain of thought reasoning in language models. In

The Eleventh International Conference on Learning
Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Andrew D White, Glen M Hocky, Heta A Gandhi,
Mehrad Ansari, Sam Cox, Geemi P Wellawatte, Sub-
arna Sasmal, Ziyue Yang, Kangxin Liu, Yuvraj Singh,
et al. 2023. Assessment of chemistry knowledge in

large language models that generate code. Digital
Discovery, 2(2):368-376.

Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg,
Joseph Gomes, Caleb Geniesse, Aneesh S Pappu,
Karl Leswing, and Vijay Pande. 2018. Moleculenet:
a benchmark for molecular machine learning. Chem-
ical science, 9(2):513-530.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie
Jegelka. 2018. How powerful are graph neural net-
works? arXiv preprint arXiv:1810.00826.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin
Zheng, Guolin Ke, Di He, Yanming Shen, and Tie-
Yan Liu. 2021. Do transformers really perform badly
for graph representation? Advances in neural infor-
mation processing systems, 34:28877-28888.

Zheni Zeng, Yuan Yao, Zhiyuan Liu, and Maosong Sun.
2022. A deep-learning system bridging molecule
structure and biomedical text with comprehension
comparable to human professionals. Nature commu-
nications, 13(1):862.

Haiteng Zhao, Shengchao Liu, Ma Chang, Hannan
Xu, Jie Fu, Zhihong Deng, Lingpeng Kong, and
Qi Liu. 2023. Gimlet: A unified graph-text model for
instruction-based molecule zero-shot learning. Ad-
vances in Neural Information Processing Systems,

36:5850-5887.

Hongyi Zhou and Jeffrey Skolnick. 2024. Utility of the
morgan fingerprint in structure-based virtual ligand
screening. The Journal of Physical Chemistry B.

A Details of Datasets and Instructions

BACE. The BACE dataset contains molecular
structures and their corresponding binding affinities
to the Beta-secretase 1 (BACE1) enzyme, which
is involved in Alzheimer’s disease. It is com-
monly used to evaluate molecular property pre-
diction models in drug discovery, specifically for
compounds that could potentially inhibit BACE].
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HIV. The HIV dataset consists of molecular struc-
tures and their activity against the Human Immun-
odeficiency Virus (HIV). It is used for training ma-
chine learning models to predict anti-HIV activity,
aiding in the discovery of potential HIV inhibitors
for therapeutic applications.

MUYV. The MUYV dataset is a collection of molec-
ular structures designed for multi-task learning in
the context of drug discovery. It includes molecular
activity data across multiple targets, which enables
the development of models that can predict the
activity of a compound against a range of targets
simultaneously.

Tox21. The Tox21 dataset contains molecular
structures along with data on their toxicity across
various biological assays. It is used to develop
predictive models for toxicity screening, aiming
to identify potentially harmful compounds early in
the drug development process.

ToxCast. The ToxCast dataset provides molecular
structures and their toxicity data, but it includes a
larger set of assays and focuses on environmental
chemicals and their potential effects. Itis a valuable
resource for predicting the toxicological properties
of chemicals in a wide range of contexts.

BBBP. The BBBP (Blood-Brain Barrier Perme-
ability) dataset includes molecular structures and
their ability to cross the blood-brain barrier. It is
used to develop models for predicting the perme-
ability of compounds, which is critical for iden-
tifying drug candidates with potential efficacy in
treating central nervous system diseases.

CYP450. The CYP450 dataset comprises molecu-
lar structures and their inhibitory activities against
various human cytochrome P450 enzymes, which
are crucial in drug metabolism. This dataset is
utilized to develop predictive models for identify-
ing potential drug-drug interactions and assessing
metabolic pathways.

ESOL. The ESOL dataset contains compounds
with measured water solubility data. The target
property is the log solubility in mols per litre, a
critical parameter for drug development and for-
mulation. ESOL is known for its relatively small
size and low experimental noise, making it a stan-
dard benchmark for evaluating molecular regres-
sion models.

Lipo. The Lipo dataset contains molecules with
recorded experimental values of lipophilicity
(logD), which refers to the partition coefficient
between octanol and water at a specific pH.
Lipophilicity is essential in drug absorption and
permeability studies. The dataset is more complex
due to its larger size and greater structural diversity,
making it suitable for testing model scalability and
robustness.

FreeSolv. FreeSolv includes small molecules with
experimental and calculated hydration free energies
in water. The dataset targets the hydration free
energy (kcal/mol), a key property for understanding
molecular behavior in aqueous environments. Due
to the limited data points and the quantum chemical
nature of the property, this dataset presents unique
modeling challenges.

Instructions. We adopted the instructions as Gim-
let (Zhao et al., 2023). !

B Details of Ablation Study

B.1 Ablation on Retrieval Method

Here, we show the setting and results analysis of
different molecular retrieval methods.

We use the Substructure Fingerprint as the
molecular retrieval representation. The Substruc-
ture Fingerprint (Stahl and Mauser, 2005) encodes
the presence or absence of specific substructural
features, such as functional groups or aromatic
rings, within a molecule. It is a binary bit vec-
tor, where each bit represents the occurrence of a
particular substructure. Substructure fingerprints
rely on predefined structural patterns and are lim-
ited by the substructure library. In contrast, Morgan
fingerprints encode local atomic environments and
are more flexible.

The results of Substructure Fingerprint-based ex-
periments are shown in Table 5. Experiment results
reveal that similar to the Morgan Fingerprint, the
1-shot approach consistently underperforms com-
pared to the 2-shot method, and the 2-shot approach
lags behind the 4-shot method. Notably, while the
Substructure Fingerprint-based experiment’s per-
formance is not as good as the Morgan Fingerprint,
they still yield competitive results.

'The datasets and instructions are available at
https://huggingface.co/datasets/haitengzhao/molecule_property
_instruction
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Table 5: Experimental Result on the Substructure Fingerprint.

BACE HIV MUV  Tox21 ToxCast BBBP CYP450
Model  Shot  Method " o)" 4113 (25342) (25342) (137215) (204)  (5669)
l-shot SimCoT 0.6221 0.5759 0.4893 05736 05630 05469 0.6278
Llama3-8b 2-shot SimCoT 0.6449 05969 05194 06185 06198 05324  0.6862
4shot SimCoT 0.7164 0.6433 05499 0.6375  0.6562 0.5405 0.7045

C Details of Error Analysis

Error Analysis is provided on the results of four
experimental settings: Struct-CoT on Llama3-8b-
Instruct, Sim-CoT on Llama3-8b-Instruct, Sim-
CoT on Qwen2.5-7b-Instruct, and Sim-CoT on
GPT-4o.

For each experimental setting, we sampled a
subset of results for error analysis. Errors in each
answer have been manually reviewed and classified,
and the final statistics are shown in Figure 4.

We categorize reasoning failures into four pri-
mary types:

Retrieval Relevance Error: When the retrieved
molecules are structurally or functionally dissimilar
to the target compound, it can impair the model’s
ability to make accurate property predictions. This
mismatch often disrupts the reasoning process,
leading to incorrect conclusions. For example, if
the retrieved molecules have low structural similar-
ity to the input molecule, the predictions are more
likely to be erroneous.

Lack of Knowledge: The model may fail to recall
or apply fundamental chemical principles, such as
trends in electronegativity. For example, the LLM
may fail to recognize certain functional groups,
leading to incorrect reasoning.

Reasoning Error and Perceptual Errpr: These
errors come from limitations in the LLM’s reason-
ing and comprehension abilities. For example, we
observed that Llama sometimes fail to follow spe-
cific instructions, such as: "Here are the examples’
structure similarity scores with the input molecule."
Instead of utilizing the provided similarity scores,
Llama attempts to compute similarity on its own,
resulting in hallucinations.

D More Cases
D.1 Case Study on Different Generalist LLMs

Here, we provide the case study of different gener-
alist LLMs. The generalist LLMs are all tested us-
ing the Sim-CoT Strategy on the Test-Mini dataset.

Case Study of Llama3-8b-Instruct. As shown
in Figure 5, in this case, under the influence of
the Sim-CoT strategy, the model first evaluates the
similarity of each molecule and makes an initial
judgment, as shown by the “similar” and “less sim-
ilar” evaluations in the case study. Then, it uses the
similarity scores to make property predictions for
the input molecule.

Case Study of Qwen2.5-7b-Instruct. As shown
in Figure 6, in this case, the model influenced by the
Sim-CoT strategy, first analyzes the input molecule.
It then performs a secondary evaluation based on
the structure and scores of the retrieved molecules,
ultimately leading to a comprehensive decision by
the model.

Case Study of GPT-40. As shown in Figure 7,
in this case, under the influence of the Sim-CoT
strategy, the model first analyzes the Molecular
Weight, Log P, and Hydrogen Bond Donors and
Acceptors from the instruction. It then combines
these insights with the similarity scores provided
to make a final decision.

D.2 Case Study on Different Strategy

Here, we show the case study of different CoT-
based strategies. Different are all tested using the
Llama3-8b-Instruct.

Figure 5 shows the case of Sim-CoT. Since this
case was mentioned earlier, it will not repeated
here.

Case Study of Struct-CoT. As shown in Figure 8,
in this case, using the Struct-CoT strategy, Llama3-
8b-Instruct first summarizes the structural infor-
mation of each molecule. It then compares the
structure of the input molecule with those of the re-
trieved molecules and performs an analytical com-
parison. Finally, it makes a decision regarding the
molecular property based on this comparison.

Case Study of Struct&Sim-CoT. As shown in
Figure 9, in this case, using the Struct&Sim-CoT
strategy, Llama3-8b-Instruct not only summarizes
the structural information of each molecule but also
evaluates and incorporates the similarity scores.

15525



Figure 5: Case Study: Using Llama3-8b-Instruct and Sim-CoT Template

Case : Using Llama3-8b-Instruct and Sim-CoT Template

Few-shot Instruction:

[Instruction]: Protein kinase A (PKA) is an ubiquitous serine/threonine protein kinase and belongs to the AGC kinase family. It has several functions in the cell, including regulation
of immune response, transcription, cell cycle and apoptosis. PKA is a cAMP dependent enzyme that exists in its native inactive form as a 4 subunit enzyme with two regulatory and
two catalytic subunits. Binding of cCAMP to the regulatory subunit leads to the disassembly of the complex and release of now active catalytic subunits. Is this molecule inhibitor of

PKA?
[Input]:COclcccec1C1=NOC(Cn2c(=0)c3c(ncn3C)n(C)c2=0)C1

Here are some examples and the structural similarity scores to the input molecule.
Example 1:

[Molecule 1]: COclccc(-c2nc3c(c(=0)n(C)c(=0)n3C)n2CC2CC(c3cccecc3)=N02)cc10C
[Score 1]: 0.6609

[Label 1]: No

Example 2:

[Molecule 2]: CC(=0)CCCCn1c(=0)c2¢(ncn2C)n(C)cl=0

[Score 2]: 0.5591

[Label 2]: No

Model Output:
First, let's analyze the input molecule: COclccccc1C1=NOC(Cn2c(=0)c3c(ncn3C)n(C)c2=0)C1l

Next, I'll compare it to the given examples and their scores:

1. [Molecule 1]: COclccc(-c2nc3c(c(=0)n(C)c(=0)n3C)n2CC2CC(c3cccee3)=N02)cc10C
* Score: 0.6609 (similar)

2. [Molecule 2]: CC(=0)CCCCn1c(=0)c2¢(nen2C)n(C)c1=0

* Score: 0.5591 (less similar)

3. [Molecule 3]: COclccc(C2=NOC(Cn3c(=0)cc(C)cdcccccd3)C2)ccl

* Score: 0.5524 (less similar)

4. [Molecule 4]: Cnlc(=0)n(CCc2ccccc2)c(=0)c2clnen2Celeccecl

* Score: 0.5263 (less similar)

Example 3:

[Molecule 3]: COcleec(C2=NOC(Cn3c(=0)cc(C)cdccccca3)C2)ecl
[Score 3]: 0.5524

[Label 3]: No

Example 4:

[Molecule 4]: Cnlc(=0)n(CCc2cccec2)c(=0)c2clnen2Celececcl
[Score 4]: 0.5263

[Label 4]: No

Based on the scores, the input molecule is most similar to Molecule 1 (0.6609), which is labeled as "No" (not an inhibitor of PKA). Since similar structures tend to have similar properties,

I'll assume that the input molecule is also likely to be "No" (not an inhibitor of PKA).

Figure 6: Case Study: Using Qwen2.5-7b and Sim-CoT Template.

Case: Using Qwen2.5-7b-Instruct and Sim-CoT Template

Few-shot Instruction:

[Instruction]: Estrogen receptor alpha (ER aplha) is Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene
expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic
estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent

signaling. Is this molecule agonists of the estrogen receptor alpha (ER-alpha) signaling pathway?

[Input]:NC(=0)c1cccln+]([C@ @H]20[C@H](COP(=0)([0-])OP(=0)(0)OC[C@HI30[C@ @H](ndcnc5c(N)ncnc54)[C@H](O) [C@ @H]30) [C@ @H](0)[C@H]20)c 1

Here are some examples and the structural similarity scores to the input molecule.
Example 1:

[Molecule 1]: Nclnenc2clnen2[C@ @H]10[C@H](COP(=0)(0)OP(=0)(0)OP(=0)(0)0)
[C@@H](0)[C@H]10

[Score 1]: 0.7559

[Label 1]: No

Example 2:

[Molecule 2]: Nc1ncnc2clnen2[C@ @H]10[C@H](COP(=0)(0)0)[C@ @H](O)[C@H]10
[Score 2]:0.7213

[Label 2]: No

Model Output:

Step 1: Analyze the input molecule's structure.

Example 3:

[Molecule 3]: Nc1ncnc2cinen2[C@@H]10[C@H](CO)[C@ @H](O)[C@H]10
[Score 3]: 0.6140

[Label 3]: No

Example 4:

[Molecule 4]: CC(C)(COP(=0)([0-])OP(=0)([O-
])OC[C@H]10[C@@H](n2cnc3c(N)ncnc32) [C@H](0)[C@ @H]10P(=0)([0-])0)
C(0)C(=0)NCCC(=0)NCCS

[Score 4]: 0.6076

[Label 4]: No

The input molecule has a complex structure with a nitrogen-containing heterocycle, a carbonyl group, and a phosphate group. It also contains a cyclohexane ring and a phenyl ring.

Step 2: Compare the input molecule with the provided examples.
- Example 1 has a score of 0.7559 and is labeled as "No".
- Example 2 has a score of 0.7213 and is labeled as "No".

- Example 3 has a score of 0.6140 and is labeled as "No".
- Example 4 has a score of 0.6076 and is labeled as "No".

Step 3: Assess structural similarity.

The input molecule shares some common features with the examples, such as the presence of a nitrogen-containing heterocycle and a phosphate group, but it also has unique structural
elements that are not present in the examples, such as the specific arrangement of rings and functional groups.

Step 4: Consider the context of estrogen receptor alpha (ER-alpha) agonists.

ER-alpha agonists typically have a specific binding affinity for the receptor and can activate the nuclear transactivation pathway. The examples provided are all labeled as "No", indicating they

do not act as ER-alpha agonists.

Step 5: Make a prediction based on structural similarity and known examples.

Given the low structural similarity scores and the consistent labeling of the examples as "No", it is unlikely that the input molecule acts as an ER-alpha agonist.

The model then combines both the structural in-
formation and similarity scores to make the final
decision regarding the molecular property.

E Details of Prompts

In this section, we provide the details of the main
experiment prompts.

To evaluate the performance of the General LLM
and MolRAG, we prompt the LLM to infer the

property from the given molecular SMILES string.

Prompts for Direct Answering. We asked the
General LLM to answer the question directly, with
the prompt described in Table 6.

Prompts for n-shot Struct-CoT. We asked Mol-
RAG to answer the question, with the prompt de-
scribed in Table 7.

Prompts for n-shot Sim-CoT. We asked Mol-
RAG to answer the question, with the prompt de-
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Figure 7: Case Study: Using GPT-40 and Sim-CoT Template.

. Case: Using GPT-40 and Sim-CoT Template
Few-shot Instruction:

[Instruction]: In general, molecules that passively diffuse across the brain blood barrier have the molecular weight less than 500, with a LogP of 2-4, and no more than five
hydrogen bond donors or acceptors. Can this molecule pass brain blood barrier?

[Input]:CC(C)[C@ @H]INC(=0)[C@H](C)OC(=0)C(NC(=0)[C@H](OC(=0)[C@ @H](NC(=0)[C@H](C)OC(=0) [C@H](NC(=0)[C@H](OC(=0)[C@@H](NC(=0)[ C@H](C)OC(=0) [C@H](NC(=
0)[C@H](0C1=0)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C)C(C)C

Here are some examples and the structural similarity scores between the example molecules and the input molecule.

Example 1: Example 3:

[Molecule 1]: C(N1C(C(C)0C1=0)=0)C=C [Molecule 3]: C2=C(C(C1C(=CC(01)=0)OC)0)C(=CC=C2)Cl
[Score 1]: 0.3273 [Score 3]: 0.3030

[Label 1]: Yes [Label 3]: Yes

Example 2: Example 4:

[Molecule 2]: C1=CC=CC=C1C2C(NC(=0)C0O2)C [Molecule 4]: C(N1C(C(CC(C)C)NC1=S5)=0)C=C

[Score 2]: 0.3214 [Score 4]: 0.2903

[Label 2]: Yes [Label 4]: Yes

Model Output:
To determine whether the input molecule can passively diffuse across the brain blood barrier, we need to analyze the structural properties of the molecule and compare it with the
examples provided.

1. **Molecular Weight**:
- The input molecule is a complex structure with multiple repeating units. It likely has a high molecular weight due to its size and the number of atoms present.
2. **LogP (Partition Coefficient)**:
- LogP values between 2 and 4 are ideal for brain blood barrier diffusion. However, estimating LogP directly from SMILES without computational tools or empirical data is challenging.
The input molecule's large and complex structure may suggest a higher LogP, but this needs more precise calculation.
3. **Hydrogen Bond Donors and Acceptors**:
- The input molecule contains multiple amide linkages (NC(=0)), which contribute to hydrogen bond donor and acceptor counts. Given the number of these functional groups, the
molecule likely exceeds the limit of five hydrogen bond donors or acceptors.
4. **Structural Similarity Analysis**:
- The structural similarity scores with example molecules are:
- Score 1: 0.3273
- Score 2: 0.3214
- Score 3:0.3030
- Score 4: 0.2903
- All these example molecules have been labeled "Yes" for brain blood barrier permeability. The input molecule has a similarity score higher than the lowest example score (0.2903) and
comparable to others.
5. **Conclusion**:
- While the structural similarity suggests potential for brain blood barrier permeability, the molecular weight and the number of hydrogen bond donors/acceptors likely exceed the ideal
criteria, which can negatively impact permeability.

Given these considerations, despite the structural similarity scores, the input molecule's properties, particularly its size and potential hydrogen bonding, point towards it not being able
to passively diffuse across the brain blood barrier.

Figure 8: Case Study: Using Llama3-8b-Instruct and Struct-CoT Template.

) Case : Using Llama3-8b-Instruct and Struct-CoT Template
Few-shot Instruction:

[Instruction]: The human immunodeficiency viruses (HIV) are a type of retrovirus, which induce acquired immune deficiency syndrome (AIDs). Now there are six main classes of
antiretroviral drugs to treating AlDs patients approved by FDA, which are the nucleoside reverse transcriptase inhibitors (NRTIs), the non-nucleoside reverse transcriptase inhibitors
(NNRTIs), the protease inhibitors, the integrase inhibitor, the fusion inhibitor, and the chemokine receptor CCR5 antagonist. Due to the missing 3’hydroxyl group, NRTIs prevent the
formation of a 3’-5"-phosphodiester bond in growing DNA chains. The hydroxyl group of the inhibitor interacts with the carboxyl group of the protease active site residues, Asp 25
and Asp 25', by hydrogen bonds. The inhibitor-contacting residues of HIV protease are relatively conserved, including Gly 27, Asp 29, Asp 30, and Gly 48. Is this molecule effective
to this assay?

[Input]: 0=5(=0)(0)clcc2nc3cdeccc(S(=0)(=0)0)cdc(Ncdccceed)ce3[n+](-c3cccee3)c2ccINeleceecl

Here are some examples.

Example 1: Example 3:

[Molecule 1]: Cclcc(Nc2ccec(S(=0)(=0)0)cc2)c2cccec2nl [Molecule 3]: 0=5(=0)(0)clec(Nc2eenc3eccec23)c2c(S(=0)(=0)0)cc(S(=0)(=0)0)cc2cl. [NaH]
[Label 1]: No [Label 3]: No

Example 2: Example 4:

[Molecule 2]: Cclcc(Ne2cec(S(=0)(=0)0)c3cc(S(=0)(=0)0)cc(S(=0)(=0)0)c23)c2ccccc2n.[NaH]  [Molecule 4]: 0=5(=0)(0)clcce(Ne2cene3ceecce23)ecl

[Label 2]: No [Label 4]: No

Model Output:

After analyzing the instruction and the examples, I've identified the key to solving this problem: the structure of the molecule and its functional groups.
Here's a summary of the properties of each molecule in the examples:

* Molecule 1: No 3D structure, no sulfone group, no aromatic ring

* Molecule 2: Sulfone group, aromatic ring, but no 3D structure

* Molecule 3: Sulfone group, aromatic ring, 3D structure, but no nitrogen-containing ring

* Molecule 4: No sulfone group, aromatic ring, no 3D structure

Now, let's analyze the question input molecule:
0=5(=0)(0)clcc2nc3caccee(S(=0)(=0)0)cac(Neacceced)ce3[n+](-c3cccee3)c2ccINeecceel

This molecule has:

* A sulfone group (S(=0)(=0)0)

* An aromatic ring (clcc2...)

* A 3D structure (with a nitrogen-containing ring)

* A sulfone group interacting with the nitrogen-containing ring

Comparing the question input molecule to the examples, | notice that it has a sulfone group, an aromatic ring, and a 3D structure, which are similar to Molecule 3. However, the question
input molecule has a nitrogen-containing ring, which is not present in Molecule 3.

Based on these similarities and differences, | conclude that the question input molecule is likely to be effective in this assay.

scribed in Table 8. RAG to answer the question, with the prompt de-

Prompts for n-shot Struct&Sim-CoT. We scribed in Table 10, Table 11 and Table 12.

asked MolRAG to answer the question, with the
prompt described in Table 9.

Prompts for regression tasks. We asked Mol-
15527



Figure 9: Case Study: Using Llama3-8b-Instruct and Struct&Sim-CoT Template.

. Case : Using Llama3-8b-Instruct and Struct&Sim-CoT Template
Few-shot Instruction:

Instruction]: The human immunodeficiency viruses (HIV) are a type of retrovirus, which induce acquired immune deficiency synd rome (AIDs). Now there are six main classes of
antiretroviral drugs to treating AIDs patients approved by FDA, which are the nucleoside reverse transcriptase inhibitors (NRTIs), the non-nucleoside reverse transcriptase inhibitors
(NNRTIs), the protease inhibitors, the integrase inhibitor, the fusion inhibitor, and the chemokine receptor CCR5 antagonist. Due to the missing 3’hydroxyl group, NRTIs prevent the
formation of a 3’-5’-phosphodiester bond in growing DNA chains. The hydroxyl group of the inhibitor interacts with the carboxyl group of the protease active site residues, Asp 25
and Asp 25’, by hydrogen bonds. The inhibitor-contacting residues of HIV protease are relatively conserved, including Gly 27, Asp 29, Asp 30, and Gly 48. Is this molecule effective
to this assay?

[Input]: CC(=0)N1c2cccec2Sc2clcccleccec2l

Here are some examples and the structural similarity scores between the example molecules and the input molecule.

Example 1: Example 3:

[Molecule 1]: CC(=0)N1c2ccece2Sc2ec(C(O)(C(F)(F)F)C(F)(F)F)ccc21 [Molecule 3]: CC(=0)N1C(=0)c2cc3cccee3cc2l
[Score 1]: 0.6575 [Score 3]:0.5397

[ [Label 1]: No [Label 3]: No

Example 2: Example 4:

[Molecule 2]: CC(=0)N1C(=0)CC(c2cccec2)Sc2ccccc2l [Molecule 4]: CC(=0)Oclccc2ccccc2c1Br
[Score 2]: 0.5634 [Score 4]: 0.5312

[Label 2]: No [Label 4]: No

Model Output:

To solve this problem, I'll analyze the input molecule and the examples provided, focusing on the structural similarities and differences. I'll also consider the properties of each molecule,
such as functional groups, ring compounds, and chirality.

The input molecule is: CC(=0)N1c2cccec2Sc2clcecleccec2l

First, I'll summarize the properties of each example molecule:

Example 1:

* Has a similar structure to the input molecule, with a sulfonamide group (SC2c2ccccc21) and a carbonyl group (CC(=0)N1c2ccccc2).
* Has fluorine atoms (C(F)(F)F) which may affect its properties.

* Score: 0.6575, Label: No

Example 2:
* Has a different structure, with a carbonyl group (C(=0)CC(c2ccccc2)) and a sulfonamide group (Sc2cccec21).
* Score: 0.5634, Label: No

Example 3:
* Has a different structure, with a carbonyl group (C(=0)c2cc3cccec3cc21) and no sulfonamide group.
* Score: 0.5397, Label: No

Example 4:
* Has a different structure, with a hydroxyl group (O) and a bromine atom (Br), but no sulfonamide group.
* Score: 0.5312, Label: No

Now, let's analyze the input molecule:

* It has a sulfonamide group (Sc2clcccleccec21) and a carbonyl group (CC(=0)N1c2cccec2).
* It has no fluorine atoms, unlike Example 1.

* It has a relatively simple structure with a single aromatic ring and a sulfonamide group.

Based on the analysis, | conclude that the input molecule is less similar to the examples that were labeled as "No" (Examples 1-4). However, it's still important to consider the properties
of the molecule itself.

The sulfonamide group in the input molecule is a common motif in many antiretroviral drugs, including NRTIs. The carbonyl group is also a common feature in many drugs. However, the
presence of a sulfonamide group without a 3'hydroxyl group (which is essential for NRTIs) and the absence of other functional groups typical of NRTIs (e.g., hydroxymethyl groups)

suggest that the input molecule may not be an effective NRTI.

Therefore, based on the analysis, | predict that the input molecule is: “No”

Table 6: Prompts for Direct-Answering Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Given the input molecule, please answer the question.

Your output must end with a sentence in the format of:

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.
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Table 7: Prompts for Struct-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

(0-SHOT SHOULD NOT INCLUDE) Here are some examples. Examples: <Examples>.

Given the input molecule, please answer the question STEP BY STEP. Note:

1. Please use your experience knowledge to analyze the instruction, and find out the key to solve the problem.

2. Please summarize the properties of each molecule in the examples and our question input, The answer to the question may
be related to the properties of each molecule, such as: functional group, longest carbon, chain length, aromatic ring, ring
compounds, and chirality.

3. Please analyze the similarities and differences between the example molecules and the question input molecule.

Finally, summarize the answer.

Your output must end with a sentence in the format of:

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.

Table 8: Prompts for Sim-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Examples: <Examples>.

Based on the above examples and their structure similarity scores with the input molecule, given the input molecule, please
answer the question STEP BY STEP. Note:

1. The more similar the molecule, the more similar the properties are, and can be considered as a positive example.

Finally, summarize the answer.

Your output should give an explanation and must end with a sentence in the format of:

Question Answer:

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.

Table 9: Prompts for Struct&Sim-CoT Setting.

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Given the input molecule, please answer the question STEP BY STEP. Note:

1. Please use your experience knowledge to analyze the instruction, and find out the key to solve the problem.

2. The more similar the molecule, the more similar the properties are, and can be considered as a positive example.

3. Please summarize the properties of each molecule in the examples and our question input, the answer to the question may
be related to the properties of each molecule, such as: functional group, longest carbon, chain length, aromatic ring, ring
compounds, and chirality.

Your output should give an explanation and must end with a sentence in the format of:

non

Question Answer:" ".

The value in Question Answer must be EXACTLY one single word <YES> or <NO>.
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Table 10: Prompts for Regression Tasks(ESOL).

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Examples: <Examples>.

Based on the above examples and their structure similarity scores with the input molecule, given the input molecule, please
answer the question STEP BY STEP. Note:
1. The more similar the molecules, the more similar the properties are, and can be considered as a positive example.

2. In the calculation formula, S is the intrinsic solubility, P is the octanol/water partition coefficient and MPt is the melting
point.

Finally, summarize the answer.

Your output must end with a sentence in the format of:

non

Question Answer:
The value in Question Answer must be EXACTLY one FLOATING-POINT NUMBER.

Table 11: Prompts for Regression Tasks(FreeSolv).

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Examples: <Examples>.

Based on the above examples and their structure similarity scores with the input molecule, given the input molecule, please
answer the question STEP BY STEP. Note:
1. The more similar the molecules, the more similar the properties are, and can be considered as a positive example.

2. In the calculation formula, Gso14,s01n Tepresents the solvation free energy of the molecule in solution, Gsoiv,gas is the
solvation free energy of the molecule in the gas phase, R is the ideal gas constant, 7" is the absolute temperature (in Kelvin),
pKa is the acid dissociation constant (a measure of the tendency of the molecule to lose a proton).

Finally, summarize the answer.

Your output must end with a sentence in the format of:

Question Answer:
The value in Question Answer must be EXACTLY one FLOATING-POINT NUMBER.
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Table 12: Prompts for Regression Tasks(Lipo).

Head prompt: You are now working as an excellent expert in chemistry and drug discovery. Given the SMILES
representation of a molecule, your job is to predict the property of the molecule. Molecules vary in size, mass, structure, and
properties like solubility, toxicity, state, boiling point, hardness, ductility. Their properties depend on structures.

Input prompt: Instruction: <Instruction>

Input: <SMILES>

Here are some examples and the structural similarity scores between the example molecules and the input molecule.
Examples: <Examples>.

Based on the above examples and their structure similarity scores with the input molecule, given the input molecule, please
answer the question STEP BY STEP. Note:
1. The more similar the molecules, the more similar the properties are, and can be considered as a positive example.

2. logD = logP — log(1 + 10PH—PK “)). In the calculation formula, P is the octanol/water partition coefficient, pH is
a measure of the acidity or basicity of a solution, pK a is the acid dissociation constant (a measure of the tendency of the
molecule to lose a proton).

Finally, summarize the answer.

Your output must end with a sentence in the format of:

Question Answer:" ".
The value in Question Answer must be EXACTLY one FLOATING-POINT NUMBER.

15531



