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Abstract
LLMs such as GPT-4 have shown a remarkable
ability to solve complex questions by generat-
ing step-by-step rationales. Prior works have
utilized this capability to improve smaller and
cheaper LMs (say, with 7B parameters). How-
ever, various practical constraints, such as copy-
right and legal issues, owing to lack of trans-
parency in the pre-training data of large (often
closed) models, prevent their use in commercial
settings. Little focus has been given to improv-
ing the innate reasoning ability of smaller mod-
els without distilling information from larger
LLMs. To address this, we propose COLLATE,
a trainable framework that tunes a (small) LLM
to generate those outputs from a pool of diverse
rationales that selectively improves the down-
stream task. COLLATE enforces multiple in-
stances of the same LLM to exhibit distinct be-
havior and employs them to generate rationales
to obtain diverse outputs. The LLM is then
tuned via preference optimization to choose the
candidate rationale which maximizes the likeli-
hood of ground-truth answer. COLLATE out-
performs several trainable and prompting base-
lines on 5 datasets across 3 domains - maths
problem solving, natural language inference,
and commonsense reasoning. We show the ef-
ficacy of COLLATE on LLMs from different
model families across varying parameter scales
(1B to 8B) and demonstrate the benefit of mul-
tiple rationale providers guided by the end task
through ablations. Code is released here.

1 Introduction

Large Language Models (LLMs) are ubiquitously
used to solve various Natural Language Processing
(NLP) tasks (Brown et al., 2020). Due to cost and
latency constraints, small-scale LLMs are more
suitable for deployment in applications. Given
a task-specific dataset consisting of input-output
pairs, the LLM is trained on this data through Su-
pervised Fine-Tuning (SFT) to perform the task.

*Equal contribution.

Additionally, prior methods have shown that solicit-
ing the LLM to first elucidate a rationale describing
the steps required to derive the answer yields bet-
ter performance compared to generating the final
response directly (Wei et al., 2022a; Kojima et al.,
2022). Such a capability is notably exhibited by
massive-scale LLMs such as GPT-4 (Achiam et al.,
2023), PaLM-540B (Chowdhery et al., 2022) etc.
which solve complex questions by generating step-
by-step rationales (Wei et al., 2022b). Hence, sev-
eral works improve smaller LLMs through larger
LLMs by using their generated rationales (Hsieh
et al., 2023; Tunstall et al., 2023).

However, lack of transparency in the pre-training
data of larger (often closed) LMs prevents their
use in commercial settings due to legal constraints.
Models like GPT-4 restrict using their outputs to
train other models for commercial use. Hence,
the responses of such models can only be used
through prompting. Further, long-term use of
such LLMs and their APIs can be costly, compute-
intensive, and unreliable from a maintenance per-
spective. Limited attention has been given to de-
veloping reasoning ability of small-scale efficient
LLMs without relying on any other external LLM.
Although Chain-of-Thought (CoT) dataset (Kim
et al., 2023) (comprising of instruction-rationale-
response triples) was introduced to teach small
LMs to generate rationales via Instruction Fine-
Tuning (IFT), it does not contain specific ratio-
nale annotations needed for each task. Likewise,
prior works such as SPIN (Chen et al., 2024) pro-
poses to tune LLM via Direct Preference Optimisa-
tion (DPO - please refer appendix C) (Rafailov
et al., 2023) by selecting ground-truth (GT) re-
sponse as the chosen output over LLM-generated
answer. However, lack of availability of annotated
rationales for an end-task limits their applicability.
Other methods (Yuan et al., 2024) rely on the scale
of large LMs to generate diverse responses and rate
them via LLM-as-a-judge paradigm (Zheng et al.,
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2023) for preference tuning. Such approaches do
not generalise well to small-scale LLMs as demon-
strated in the experiments section.

Given these constraints, we ask an important
research question - “Can we teach a small-scale
LLM to interact with itself without relying on any
other LLM to refine the ability of generating ra-
tionales which improves a given end-task?" We
hypothesize that LLMs acquire adequate knowl-
edge during pre-training that is required to generate
reasonable rationales. However, the output distri-
bution of the rationales generated by the LLM has
to be aligned in a manner that is guided by the final
task. Driven by this intuition, we generate diverse
rationales for each task sample and optimise the
LLM to selectively choose the rationale which en-
hances the chances of generating correct answer.
To achieve this, we propose COLLATE (TeaChing
to COLLaborate via PreferentiAl RaTionalE Tun-
ing), a framework that leverages multiple Ratio-
nale Provider LLMs to obtain the set of diverse
rationales. The rationale providers are obtained
by creating multiple instances of the same LLM
such that they exhibit distinct behavior. Given a
task instruction, the rationale providers are each
employed to generate rationale to create a pool
of rationales. Each output in the obtained set of
rationales is then assigned a usefulness score – esti-
mated as the likelihood of generating ground-truth
answer for the given task conditioned on rationale
in input. The usefulness score is used to rank and
select the rationales to tune the LLM through DPO.
We pick only those samples for DPO where best
rationale enhances ground-truth answer likelihood
compared to not using any rationale.

We evaluate the effectiveness of COLLATE
based on the utility of the generated rationales
to improve performance of small-scale LLMs on
five datasets across three diverse task domains: 1)
Maths Word Problem Solving - GSM8K (Cobbe
et al., 2021), 2) Natural Language Inference -
PIQA (Bisk et al., 2020) and WinoGrande (Sak-
aguchi et al., 2020), and 3) Commonsense Rea-
soning - CSQA (Talmor et al., 2019) and Hel-
laSwag (Zellers et al., 2019). We observe that
COLLATE outperforms several baselines (§ 4.1)
by gains of up to 7% without dependence on other
larger LLMs (unlike prior methods) for generating
diverse rationales and rating their quality. Further,
we show the efficacy of COLLATE on improving a
variety of LLMs across varying parameter-scales
of 1B to 8B (§ 4.2). We also conduct human stud-

ies which show that the rationales from COLLATE
are reliable, helpful and diverse (§ 4.3). Further,
we conduct extensive ablations to validate - 1) em-
ploying rationale providers for diverse rationales as
opposed to sampling-based decoding; and 2) using
end-task guided likelihood-based rationale selec-
tion and sample filtration for DPO (Appendix 4.4).

2 Related Work

Prompt-based Reasoning Generation: It has
been shown that generating intermediate reason-
ing chains improves the performance of large-scale
LLMs (Wei et al., 2022a; Kojima et al., 2022).
Chain-of-Thought (CoT) prompting (Wei et al.,
2022b) is the first such technique which performs
this by showing exemplar demonstrations of step-
by-step reasoning in the prompt. Consequently,
some other methods have focused on improving
the diversity of the exemplar demonstrations in the
prompt (Zhang et al., 2023; Diao et al., 2024; Li
and Qiu, 2023a,b). Tree-of-Thought (ToT) (Yao
et al., 2023) was introduced as a generalisation
of CoT where different reasoning paths are organ-
ised in the form of a tree such that the LLM can
look-ahead or backtrack in tree to yield the optimal
reasoning chains. Further, many self-correction
methods were proposed where the LLM identifies
and rectifies its own mistakes (Madaan et al., 2023;
Wang et al., 2023a). However, it was shown that
a single LLM struggles to improve its rationales
through just prompting-based mechanisms in the
absence of external feedback (Huang et al., 2024;
Valmeekam et al., 2023; Stechly et al., 2023).
Rationale Enhancement via Preference Train-
ing: Some works optimise reasoning chains by ob-
taining a set of rationales and applying Direct Pref-
erence Optimisation (DPO) (Rafailov et al., 2023).
SPIN (Chen et al., 2024) proposes to choose the
final ground-truth (GT) answer over the LLM gen-
erated final response for DPO training. Likewise,
Lai et al. (2024) shows that DPO can be applied
at each step of the reasoning chain which requires
extensive annotations. Lack of availability of GT
rationales on a new task limit their applicability.
On the other hand, we employ different instances
of the same LLM to generate diverse rationales
for selection during DPO. Zhang et al. (2024) pro-
posed an alternative way to obtain multiple ratio-
nales by extracting reasoning chains sampled at
each step of ToT tree search. Very recently, Wang
et al. (2024) proposed sampling-based decoding to
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Figure 1: Overview of architecture of COLLATE. The task-instruction (IT ) is pre-processed (step 1) and given
as input to distinct rationale providers - RP(i−1)

s (step 2) to obtain set of diverse rationales - {R̂T
s } (step 3). IFT

version of the LLM - MIFT is used to estimate likelihood (ls) of generating ground-truth (GT) answer conditioned
on task-instruction and each rationale (steps 4 and 5) which is used to rank rationales to identify winning (R̂T

w ) and
eliminated (R̂T

e ) rationales (step 6). If the winning-rationale enhances likelihood of obtaining GT answer compared
to using just the instruction (step 7), the sample is used to perform DPO to obtain rationale provider RP(i)

s (step 8).

obtain diverse rationales for math problems such
that rationales which contain GT answer are consid-
ered as preferred outputs. Such an approach cannot
be extended to non-math domains where just the
presence of answer is not indicative of rationale
quality. Yuan et al. (2024) showed that very-large
LMs (Llama-2 70B) can be used to rank outputs
through prompting. Contrastingly, COLLATE rates
rationale quality by leveraging LLM’s likelihood
of GT answer conditioned on the rationale.
Response Synthesis through Multi-LLM Inter-
action: Several works have explored ensembling
multiple LLMs to improve overall response qual-
ity (Jiang et al., 2023b; Yu et al., 2024; Juneja
et al., 2023; Ulmer et al., 2024; Lu et al., 2024b).
Zephyr (Tunstall et al., 2023) distills responses gen-
erated by Falcon (Penedo et al., 2023), Llama (Tou-
vron et al., 2023) etc. into Mistral-7B (Jiang
et al., 2023a) by rating them using GPT-4 (Achiam
et al., 2023) to perform DPO. Likewise, Hsieh
et al. (2023) distills rationales from PaLM-540B
model (Chowdhery et al., 2022) into T5 (Raffel
et al., 2023) through SFT. Few approaches person-
alise the feedback from larger teacher LLM based
on weaknesses of smaller student LLM (Wang
and Li, 2023; Saha et al., 2023; Jiang et al.,
2023c). Kang et al. (2023) aim at improving LLMs
in a task-oriented manner by retrieving knowl-
edge using rationales obtained from a larger LLM.
Orca (Mukherjee et al., 2023) argues that IFT over
GPT-generated outputs makes smaller LLM imitate
just the style (Gudibande et al., 2024) and proposes
to train smaller LLM on explanation traces of GPT-

4. Lack of transparency in training data of larger
LLMs hinders their commercial use due to legal im-
plications. Other methods mimic the way humans
conduct discussions (Mousavi et al., 2023) by facil-
itating prompt-based deliberation (Yin et al., 2023).
We show that such methods work well only with
large LMs but performs poorly with smaller LMs.

3 Methodology

Overview of our Approach: Figure 1 provides an
outline of the proposed COLLATE framework to
generate better rationales for improving end-task
performance without relying on distilling informa-
tion from any external LLM. To achieve this, we
first train the instruction fine-tuned (IFT) version of
the base LLM - MIFT (§ 3.1). We then create mul-
tiple rationale providers by cloning S instances of
MIFT and optimise them on separate data splits to
ensure they exhibit distinct behaviour (§ 3.2). The
rationale providers are tuned through preference
optimisation (DPO) to selectively generate those
outputs from a pool of diverse rationales which
help in improving the end-task (§ 3.3). The set
of diverse rationales is obtained by generating rea-
soning chains from the Rationale-Provider (RP)
LLMs (steps 1-3 in fig.1). Once the candidate set
of rationales is obtained, a usefulness score is as-
signed to each rationale based on end-task perfor-
mance. The score is estimated as the likelihood of
generating the ground-truth (GT) answer by MIFT

conditioned on the rationale in input (steps 4-5 in
fig.1). The score is used to select the winning and
eliminated outputs for DPO (steps 6-8 in fig.1). We
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feed only high-quality samples for DPO based on
whether the winning rationale enhances likelihood
of generating GT compared not using any rationale
(step 7 in fig.1). We now describe the individual
components of COLLATE in detail.

3.1 Multi-Mode Instruction Fine-Tuning
Conventional Instruction Fine-Tuning (IFT) aims
at enabling the LLM M to follow a given instruc-
tion to generate the final response accordingly.
However, we require the instruction-tuned model
MIFT for two additional objectives - 1) generate
rationale required to derive the final answer given
the instruction as input; 2) generate/estimate the
likelihood of producing an answer given the instruc-
tion and rationale as input. To enable MIFT to op-
erate in different modes, we format the samples us-
ing different prompts (please refer appendix B) dur-
ing training to indicate the model about the mode in
which it needs to generate the output. We leverage a
dataset Drationale

IFT which comprises of samples con-
taining rationales in addition to instruction-answer
pairs to enable the two additional modes discussed
above. Formally, given an instruction I, rationale
R and final answer A, we perform IFT in three
modes using cross-entropy loss through teacher
forcing (Vaswani et al., 2017):

LI→A = −log p(At| [PI→A; I;A<t], θIFT ) (1)
LI→R = −log p(Rt| [PI→R; I;R<t], θIFT ) (2)

L[I;R]→A = −log p(At| [P[I;R]→A; I;R;A<t], θIFT )
(3)

where, p represents probability, At and Rt depict
the tth token in ground-truth answer and rationale
respectively, < t indicates tokens before tth index,
Pm and Lm are the prompt format and loss func-
tion respectively for the mth mode; [; ] represents
the formatting operation to prepare LLM input after
arranging the instruction, answer and/or rationale
into mode-specific prompt Pm, and θIFT is the
set of trainable LLM parameters. For samples in
IFT data which do not contain rationales, only loss
LI→A is applied. Once MIFT is trained, it is used
to obtain distinct rationale provider LLMs and rank
rationales generated by them for task-guided pref-
erential rationale tuning in subsections to follow.

3.2 Distinct Rationale Providers
To improve rationale generation ability on a new
task, COLLATE generates diverse rationales to ob-
tain a candidate set of outputs that can be used
to optimise the LLM via DPO. To obtain diverse

rationales, we train multiple Rationale Provider
(RP) LLMs - RP1, RP2, ..., RPS such that they
can be leveraged to obtain a diverse set of outputs.
The rationale providers are obtained by cloning
S instances of MIFT and tuning them for ratio-
nale generation on different data splits so that they
exhibit different behavior. Specifically, we con-
sider a dataset containing rationale annotations -
Drationale and divide it into S equal splits ran-
domly. We denote sth data split as Drationale

s =
{ds1, ..., dsN/S}, where 1 ≤ s ≤ S, N is the number
of samples in Drationale, and dsj denotes jth sam-
ple in split s comprising of instruction-rationale-
response triples - {Is

j ,Rs
j ,As

j}. We assign the sth

data split to rationale-provider RPs and prompt it
to generate the rationale as:

R̂s
j = RPs([PI→R; Is

j ] | θRPs) (4)

The rationale provider RPs is then fine-tuned
through DPO by choosing the ground-truth ratio-
nale Rs

j as the preferred option over the generated
rationale R̂s

j . Formally, RPs is optimised using
the following loss function LRPs :

LRPs = −logσ[β(log
πRPs(Rs

j)

πMIFT (Rs
j)

− log
πRPs(R̂s

j)

πMIFT (R̂s
j)
)]

(5)

where, πZ(y) represents the likelihood of gen-
erating tokens in y ∈ {Rs

j , R̂s
j} by model Z ∈

{RPs,MIFT }, σ is sigmoid activation, β (= 0.1)
is a coefficient to control deviation from reference
model MIFT . This yields a set of S distinct ratio-
nale providers which are used to generate diverse
rationales for a given task-specific instruction. The
generated rationales are used to optimise the ra-
tionale providers further in a task-guided manner
as described in next sub-section. We refer to sth

rationale provider obtained till this stage as RP(0)
s

as a convention for subsequent discussions.

3.3 Task-Based Preferential Rationale Tuning
For a given end-task T , we denote the correspond-
ing dataset as DT comprising of instruction-answer
pairs of the form (IT ,AT ). However, the super-
vised dataset for the given task does not contain
rationale annotations. To mitigate this, we lever-
age distinct rationale providers to construct a set
of diverse rationales. Quality of a rationale is de-
termined based on its usefulness to enhance end-
task performance i.e. likelihood of generating the
ground-truth answer AT . Each rationale provider
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is then optimised iteratively to prefer generating
better rationale candidate as opposed to other op-
tions which result in lower likelihood of generating
the ground-truth answer. The rationale providers
are tuned for numerous iterations by conducting
multiple passes over DT .

In particular, consider the ith iteration (i ∈
{1, 2}) such that the task-instruction IT is given
as input to each rationale provider - RP(i−1)

s (ob-
tained till last (i− 1)th iteration) separately to gen-
erate the corresponding rationale as depicted in the
following equation (steps 1-3 in fig.1):

R̂T
s = RP(i−1)

s ([PI→R; IT ] | θ
RP

(i−1)
s

) (6)

We obtain a set of generated rationales -
{R̂T

1 , R̂T
2 , ..., R̂T

S }. Each rationale in the set
is assigned a usefulness score ls (1 ≤ s ≤
S) by estimating the likelihood of generating
the ground-truth (GT) answer AT by the in-
struction fine-tuned model MIFT conditioned
on rationale and task-instruction as input -
πθIFT

(AT | [P[I;R]→A; IT ; R̂T
s ]) (steps 4 and 5 in

fig.1). The rationales R̂T
s (1 ≤ s ≤ S) are ranked

based on their usefulness score ls such that the first
and last elements in the ranked list are selected
as winner (R̂T

w ) and eliminated (R̂T
e ) rationales

respectively (step 6 in fig. 1):

w = argmax
1≤s≤S

{ls} ; e = argmin
1≤s≤S

{ls} (7)

To maintain the distinctness in the behaviour of
different rationale providers, we tune them on dif-
ferent splits of DT . The task-specific dataset DT

is divided into S equal splits randomly such that
split DT

s (1 ≤ s ≤ S) is assigned to optimise ra-
tionale provider RP(i)

s . Without loss of generality,
consider (IT ,AT ) ∈ DT

s . R̂T
w and R̂T

e are used
to tune sth rationale provider RP(i)

s in current iter-
ation i via preference optimisation (step 8 in fig. 1)
using the loss LT

RP(i)
s

:

LT
RP(i)

s
= −logσ[β(log

πRP(i)
s

(R̂T
w)

πRP(j)
s

(R̂T
w)

− log
πRP(i)

s
(R̂T

e )

πRP(j)
s

(R̂T
e )

)]

(8)

where, β = 0.1 and j = (i−1). It can be noted that
the previous iteration (i−1) version of the rationale
provider - RP(i−1)

s is used as the reference model
for the DPO training to obtain RP(i)

s .

Likelihood-based Sample Filtration: To ensure
that high-quality samples are used to tune ratio-
nale providers, we apply a filtration criteria to re-
move the samples where the winning rationale does
not enhance the likelihood of generating the GT.
Formally, we retain the samples (IT ,AT ) which
qualify the following criteria (step 7 in fig.1):

πθIFT
(AT | [P[I;R]→A; IT ; R̂T

w ]) > πθIFT
(AT | [P[I→A]; IT ])

(9)
Equation 9 compares the likelihood of generating
the ground-truth by MIFT for the task instruction
in the absence and presence of the winning ratio-
nale in the input. The sample is used for DPO
training if the winning rationale enhances the like-
lihood compared to not using any rationale.

4 Experiments and Evaluation

Datasets: We evaluate COLLATE on three diverse
reasoning task domains using five datasets - 1)
Maths Problem Solving on GSM8K (Cobbe et al.,
2021); 2) Natural Language Inference (NLI) us-
ing PIQA (Bisk et al., 2020) and WinoGrande (Sak-
aguchi et al., 2020); and 3) Commonsense Rea-
soning through CSQA (Talmor et al., 2019) and
HellaSwag (Zellers et al., 2019). GSM8K com-
prises of maths word problems requiring under-
standing of problem and sequence of calculations.
PIQA requires understanding of physical relation
between objects and comprises of samples with a
goal text coupled with two candidate texts out of
which only one can lead to the goal. WinoGrande
is a very challenging co-reference resolution task,
comprising of a statement with two parts such that
the latter half refers to some entity in the first part.
CSQA tests model’s ability to answer MCQ ques-
tions by picking correct choice using commonsense
knowledge. HellaSwag evaluates ability to pre-
dict continuation of a context by choosing most
plausible ending. Number of samples in train/test
splits of each dataset is GSM8k - 7.5k/1.3k, PIQA -
16k/3k, WinoGrande - 40k/1.7k, CSQA - 9.7k/1.2k
and HellaSwag - 39.9k/10k. Please refer to the
appendix D for examples from each dataset.
Implementation Details: In all training runs, we
use a batch size (BS) of 16 on 8 80GB A100 GPUs
(BS of 2/GPU), a learning rate of 1e-5, bfloat16
precision with cosine annealing (Loshchilov and
Hutter, 2017) using AdamW optimizer (Loshchilov
and Hutter, 2019). We leverage DeepSpeed Zero
2 with sharding of optimizer states and gradients
across GPUs and enable gradient check-pointing.

15497



Method Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

Prompt-based Rationale Refinement
Chain-of-Thought (Wei et al., 2022b) 13.55 28.19 28.81 55.89 36.27
CoT Self-Consistency (Wang et al., 2023b) 14.56 33.32 31.04 51.23 37.17
Tree-of-Thought (Yao et al., 2023) 17.31 30.10 31.61 63.33 39.49
Exchange-of-Thought (Yin et al., 2023) 26.80 33.29 38.17 72.13 55.31

Task-specific Supervised Fine-Tuning
open-llama-7b-v2 SFT (Geng and Liu, 2023) 30.76 48.81 50.94 94.79 73.82
Distilling Step-by-Step (Hsieh et al., 2023) 38.41 50.69 50.65 96.01 75.02

Training-driven Rationale Enhancement
Self-Rewarding LMs (Yuan et al., 2024) 39.13 41.44 47.41 93.26 71.77
SPIN (Chen et al., 2024) 48.41 50.58 51.94 98.14 78.76

COLLATE (ours) 53.48 53.49 59.57 99.21 80.13

Table 1: Comparison of COLLATE with multiple categories of baselines on five datasets over three task domains -
Maths Problem Solving, Natural Language Inference (NLI) and Commonsense Reasoning. COLLATE performs
better than baselines. We use common LLM backbone i.e. open-llama-v2-7b for all methods in this table.

1) Multi-Mode Instruction Fine-Tuning (IFT)
- We experiment with different LLM backbones
M (open-llama-v2-7b, OLMo-1B, Phi3-3.8B,
Qwen1.5-4B and LLaMA3-8B) to obtain MIFT .
We use a random subset of 140k samples from
CoT-Collection (Kim et al., 2023) as Drationale

IFT to
enable two additional IFT modes - I → R and
[I;R] → A. We use 40k samples of Dolly-
HHRLHF (MosaicML, 2023) and Open Assistant
datasets combined to create samples for I → A
mode. The IFT training is performed for 2 epochs.
2) Distinct Rationale Providers - We tune S =
2 clones of MIFT using subset of 195k samples
in CoT-Collection (Drationale) to obtain rationale
providers. DPO training is performed for 5 epochs.
3) Task-guided Preferential Rationale Tuning -
We carry out 2 iterations of task-guided DPO with
10 epochs in each iteration. The rationale providers
are evaluated on a val-split of CoT comprising of
8k samples to identify the rationale provider to be
used for evaluation as described next.
Evaluation Procedure: We evaluate COLLATE
and baselines by conducting rationale-conditioned
Supervised Fine-Tuning (SFT) of the base LLM
M (for 3 epochs) on task-specific dataset compris-
ing of pairs of input instruction and final answer.
The rationale generated by a method is given as
additional input along with task instruction during
this SFT. The accuracy achieved is indicative of
usefulness of rationales. We use a single rationale
provider while assessing rationales generated by
COLLATE. The best rationale provider is selected

based on likelihood estimation on CoT val-split
samples where we measure probability of generat-
ing ground-truth answer by the IFT model MIFT

conditioned on the rationale. The rationale provider
that yields maximum value (averaged across sam-
ples) is used for evaluation. Figure 2 in Appendix J
shows correlation plot between task test-accuracy
and likelihood indicating that rationale provider
with best likelihood is a suitable choice.

4.1 Comparison of COLLATE with Baselines

We present a detailed comparative analysis of COL-
LATE with three categories of baselines (Table 1) -
(i) Prompting techniques which enable the LLM
to either generate reasoning chains in different
ways such as Chain-of-Thought (Wei et al., 2022b),
Tree-of-Thought (Yao et al., 2023), etc. or fa-
cilitate exchange of feedback between multiple
LLMs - Exchange-of-Thought (Yin et al., 2023);
(ii) Task-specific Supervised Fine-Tuning (SFT)
of LLM without any rationales in the input and
with rationales generated by the IFT version of the
LLM MIFT - Distilling Step-by-Step (Hsieh et al.,
2023); and (iii) Training-driven Rationale En-
hancement where the LLM is tuned to improve
rationales iteratively through DPO - SPIN (Chen
et al., 2024) and Self-rewarding Language Mod-
els (Yuan et al., 2024)). We employ a common
LLM backbone (open-llama-v2-7b) for COLLATE
as well as baselines for a fair comparison.

Table 1 summarises the results where it can be
seen that COLLATE outperforms all the baselines
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Task-Instruction and Rationales Generated by Best Baseline (SPIN) and Rationale Providers - RP1 and RP2 in COLLATE

Instruction: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her parents
decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty
need to buy the wallet?
Baseline: Betty has $50. Her parents give her $15, and her grandparents give her twice that, which is $100. So, she gets an additional
$115. Now she has $50 + $115 = $165. Therefore, she needs $65 more to buy the wallet. ✗

Rationale Provider 1: Betty needs $100 for a new wallet. She currently has half of that amount, i.e. $100/2=$50. Her parents
contribute $15 towards her goal, and her grandparents contribute twice as much as her parents, which is $30. Betty currently has $50
+ $15 + $30 = $95. We need to subtract her current amount from the price of the wallet, which is $100 - $95 = $5. ✓

Rationale Provider 2: Betty needs $100 to buy the wallet. She has $50. Her parents give her $15, and her grandparents give her
twice as much, which is $30. The amount she needs is $55. ✗

Table 2: Qualitative comparison of rationales generated by best baseline (SPIN) and rationale providers in COLLATE
on GSM8K. COLLATE generates better rationales by virtue of employing distinct rationale providers.

uniformly across the three task domains. Specif-
ically, it performs better than the best baseline
(SPIN) by ∼ 5% on GSM8K indicating the help-
fulness of rationales from COLLATE for solving
maths problems. Further, COLLATE achieves sig-
nificantly better results than SPIN for NLI with an
improvement of ∼ 7.5% on PIQA and ∼ 3% on
WinoGrande where most baselines achieve close to
random-selection accuracy. Finally, for common-
sense reasoning, even though the accuracy of SPIN
(98.14%) is already close to 100 on HellaSwag,
COLLATE still performs better by achieving 50%
of remaining possible improvement. In particular,
COLLATE performs better than SPIN by 1.37%
on CSQA and 1.07% on HellaSwag.

Additionally, COLLATE gives a significant per-
formance boost to the base LLM compared to
both, carrying out SFT over task input-output pairs
without rationales, and using the rationales gener-
ated by the IFT model as additional input during
SFT (Distilling Step-by-Step - DSS). Compared to
‘DSS’, there is an increase of ∼ 15% on GSM8K,
3.2% on HellaSwag, ∼ 5% on CSQA, ∼ 3% on
WinoGrande, and ∼ 9% on PIQA . Moreover, the
baseline ‘Self-Rewarding Language Models’ which
leverages larger LLM (Llama-70B) to both gener-
ate and rate diverse rationales does not generalise
with 7B LM. It performs worse than ‘DSS’ on most
tasks. Finally, it is noted that prompting-based
methods give significantly lower performance at
the scale of 7B LLM. We also perform few-shot
prompt-based evaluation (instead of SFT) of ratio-
nales from COLLATE in appendix E where we
observe a similar trend compared to baselines.

Table 2 compares the quality of rationales gen-
erated by rationale providers with best baseline
(SPIN). COLLATE generates better rationales by
virtue of employing distinct rationale providers.
Please refer to appendix A for more examples.

4.2 Does COLLATE Enhance Small LLMs of
Varying Scales and Model Families?

We verify if COLLATE improves performance of
multiple small-scale LLMs of varying scales rang-
ing from 1B to 8B parameters belonging to differ-
ent model families. We compare the accuracy of
task-specific SFT version of M trained using ra-
tionales generated by COLLATE vs. the rationales
from IFT model MIFT . Specifically, we experi-
ment with 1) OLMo-1B (Groeneveld et al., 2024),
2) Phi3-3.8B (Abdin et al., 2024), 3) Qwen1.5-
4B (Bai et al., 2023), 4) open-llama-v2-7B (Geng
and Liu, 2023), and 5) LLaMA3-8B (Dubey et al.,
2024). Table 3 summarises the results where it
can be seen that COLLATE provides significant
performance increase on all the tasks uniformly
over parameter-scales and LLM families. Across
parameters scale, there is a gain of 4 − 8% on
GSM8K, 2.5 − 6% on WinoGrande, 4 − 9% on
PIQA, ∼ 1.5− 5% on HellaSwag and 5− 7% on
CSQA. Likewise across tasks, there is a boost of
4− 7% at 1B scale ; 3− 7% increase at ∼4B scale;
and ∼ 1.5− 9% gain for 7-8B parameters LLMs.

4.3 Human Study of COLLATE’s Rationales

We conducted a human study to evaluate the ratio-
nales generated by the rationale providers (details
in Appendix K). We asked human evaluators to
judge if 1) final rationale obtained from COLLATE
is correct and helpful, and 2) whether the ratio-
nale generated by one of the rationale providers
is better than the other and if yes, select the bet-
ter one. Based on the answer to Question 2, we
also estimate if the better rationale adjudged by
human evaluator aligns with likelihood-based ra-
tionale selection. We found that for 1) 72% cases,
COLLATE’s rationales are meaningful and helpful;
2) for 78.67% cases, one rationale is better than
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Model Parameter Maths NLI Commonsense
Scale GSM8K WinoGrande PIQA HellaSwag CSQA

OLMo (Groeneveld et al., 2024) 1B 11.89 31.31 25.98 68.02 48.19
w/ COLLATE (ours) 1B 16.02 36.01 29.94 73.14 55.17

Phi3 (Abdin et al., 2024) 3.8B 21.08 42.04 37.72 76.09 57.46
w/ COLLATE (ours) 3.8B 28.29 45.28 42.35 81.67 64.14

Qwen1.5 (Bai et al., 2023) 4B 19.17 39.66 34.57 80.03 56.21
w/ COLLATE (ours) 4B 26.03 43.35 39.22 83.31 61.89

Open-LLaMA-v2 (Geng and Liu, 2023) 7B 38.41 50.69 50.65 96.01 75.02
w/ COLLATE (ours) 7B 53.48 53.49 59.57 99.21 80.13

LLaMA3 (Dubey et al., 2024) 8B 60.68 48.21 49.35 90.35 80.39
w/ COLLATE (ours) 8B 69.09 54.41 58.70 92.86 87.42

Table 3: Evaluation of COLLATE on LLMs of varying scale of parameters (1B to 8B) and different LLMs (OLMo,
Phi3, Qwen1.5, Open-llama-v2, Llama3). COLLATE yields significant gains across scales and models on all tasks.

the other indicating that rationales from the two
rationale providers are distinct and diverse; and 3)
in 84% cases, better rationale judged by humans
aligns with likelihood-based rationale selection.

Qualitative Error Analysis: We discuss the errors
made by COLLATE to understand the scope of fur-
ther improvements. Consider the following sample
from GSM8K - “Elsa started the day with 40 mar-
bles. At breakfast, she lost 3 marbles. At lunchtime,
she gave her best friend Susie 5 marbles. In after-
noon, Elsa’s mom bought her a new bag with 12
marbles. Susie came back and gave Elsa twice as
many marbles as she received at lunch. How many
marbles did Elsa end the day with?". The correct
logic would be - “Elsa had 40 (marbles) - 3 - 5
= 32 marbles. Elsa then gained 12 marbles + 32
= 44 marbles. At dinner Elsa received 2 * 5 = 10
marbles from Susie. In total, Elsa had 44 marbles
+ 10 = 54". The rationale generated by the first
rationale provider (RP1) is - “Elsa started the
day with 40 - 3 = 37 marbles. She gave Susie 5 +
12 = 17 marbles. Susie then gave Elsa 17 * 2 =
34 marbles. In total, Elsa ended the day with 37 +
17 + 34 = 88 marbles". The rationale generated by
the second rationale provider (RP2) is - “Elsa
started the day with 40 marbles. At breakfast, she
lost 3 marbles while playing (40 - 3). At lunchtime,
she gave her best friend Susie 5 marbles (40 - 3
+ 5). In the afternoon, Elsa’s mom bought her a
new bag with 12 marbles (40 - 3 + 5 + 12). Susie
came back and gave Elsa twice as many marbles
as she received at lunch (40 - 3 + 5 + 12 + 2*5)".
This example demonstrates that the rationale gen-
erated by RP2 is almost correct except that while
incorporating the fact that Elsa gave 5 marbles, it

uses a ‘+’ sign instead of ‘-’. This indicates that the
rationale from a rationale provider might only be
slightly incorrect and minor refinement can make it
correct. Thus, rationale refinement can be explored
in future work. Further, employing more rationale
providers can increase the chances of generating
the correct rationale which can be used for DPO.
Additional Experiments: We treat number of ra-
tionale providers (RPs) as a hyper-parameter and
show that employing 3 RPs improve accuracy fur-
ther (Appendix G). We observe that rationales from
COLLATE are effective through perplexity estima-
tion (Appendix I). Appendix H discusses that COL-
LATE’s computation load is shifted to train time
and inference requires generating a single rationale.

4.4 Impact of Design Choices for COLLATE

We examine the effectiveness of following com-
ponents (using open-llama-v2-7b backbone) -
1) Distinct Rationale Providers, 2) Task-guided
Likelihood-based Rationale Selection, and 3) Sam-
ple Filtration for DPO. Table 4 shows the results
where it can be seen that obtaining diverse ratio-
nales from distinct rationale providers gives signifi-
cantly better performance than sampling-based de-
coding using a single model (COLLATE vs. row
1). To analyse the importance of using likelihood
of generating the GT answer to rate a rationale,
we leverage LLM-as-a-judge paradigm (using IFT
version of backbone LLM) as an alternative where
the LLM is prompted to rate rationales (row 2).
Notable drop in performance than COLLATE in-
dicates that prompt-based rating does not work at
scale of small LMs. Likewise, filtration of sam-
ples for task-guided DPO conditioned on whether
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Ablation ID Distinct Rationale Likelihood-based DPO Sample Maths NLI Comonsense
Providers Rationale Selection Filtration GSM8K WinoGrande PIQA HellaSwag CSQA

1 No Yes Yes 38.22 40.61 45.17 94.15 72.45
2 Yes No Yes 47.16 44.62 53.17 95.27 76.39
3 Yes Yes No 42.11 42.75 48.25 94.36 73.18
4 Yes No No 40.26 41.73 48.52 92.11 72.13
5 No No No 39.13 41.44 47.41 93.26 71.77

COLLATE Yes Yes Yes 53.48 53.49 59.57 99.21 80.13

Table 4: Ablation study showing importance of COLLATE’s components - A) Distinct Rationale Providers:
Sampling-based decoding is used for diverse outputs as an alternative; B) Likelihood-based rationale selection:
LLM-as-a-judge is used to rate rationales; C) Sample filtration: Entire train set is used for DPO w/o filtration.

Model Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

GPT-4o (3-shot) 77.84 88.47 83.38 95.49 92.97

LLaMA3-8B (Dubey et al., 2024) 60.68 (-17.16) 48.21 (-40.26) 49.35 (-34.03) 90.35 (-5.14) 80.39 (-12.58)
w/ COLLATE (ours) 69.09 (-8.75) 54.41 (-34.06) 58.70 (-24.68) 92.86 (-2.63) 87.42 (-5.55)

Table 5: Comparison of 3-shot evaluation of GPT-4o with LLaMA3-8B with and without COLLATE. We see a
significant reduction in the performance gap between GPT-4o and LLaMa3-8B when used with COLLATE.

best rationale enhances likelihood of generating GT
(than not using any rationale) is critical for gains
achieved by COLLATE (vs. row 3). Omitting both
likelihood-based rationale selection and sample fil-
tration (row 4) as well as all the three components
(row 5) gives significantly lower performance.

4.5 Bridging Accuracy Gap between Smaller
Models and GPT-4o using COLLATE

We evaluate the performance of GPT-4o for differ-
ent tasks (using 3-shot prompting). We then com-
pare the accuracy gap of Llama3-8B from GPT-4o
and report reduction in this gap using rationales
from COLLATE (with Llama3-8B) in Table 5. For
GSM8K, the performance gap of Llama3-8B with
Gpt-4o reduces from 17.16% to 8.75% which is a
significant relative reduction of 49%. Likewise, it
reduces from 40.26% to 34.06% (relative reduction
of 15%) on WinoGrande, 34% to 24% (relative
reduction of 27.48%) on PIQA, 5% to 2.63% on
HellaSwag, and from 12.58% to 5.55% on CSQA.

5 Conclusion

Step-by-step rationales generated by large LMs
have been commonly used to improve smaller LMs.
Such large-scale (often closed) LLMs cannot be
used to train other models in commercial setting
owing to legal constraints. Little focus has been
given to enhancing rationale generation ability of
small LMs. We propose COLLATE which opti-
mises an LLM to selectively generate better ratio-

nales from a pool of diverse candidates produced
by distinct instances of the same LLM. Rationale
candidates are ranked for preference tuning based
on end-task-guided likelihood score. COLLATE
outperforms multiple baselines on diverse tasks
without relying on larger LMs to generate and rate
rationales. It provides significant accuracy gains
for LMs of different parameter-scales and families.

6 Limitations

To obtain the distinct rationale providers, currently
we randomly divide the training set into as many
equal splits as the number of distinct rationale
providers. However, it could be explored if the
samples in the train dataset could be allocated to
each rationale provider in a way such that each ra-
tionale provider gains expertise in certain task do-
main(s) compared to the other rationale providers.
This way, the different rationale providers would
automatically become specialized experts for dif-
ferent types of problems and tasks. This can be
used to obtain insights into which type of experts
are required to improve rationales for different task
domains. Additionally, the number of distinct ratio-
nale providers to be used a hyper-parameter. We ex-
periment with two rationale providers in the main
paper and also show that employing 3 rationale
providers improve the accuracy gains further (in
Appendix G, Table 10). However, it could be ex-
plored if the optimal number of rationale providers
could be determined automatically for a given task.
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A Qualitative Analysis and Comparison
of Rationales

We discussed the qualitative comparison of ratio-
nales generated by COLLATE with the best base-
line in the section - ‘Comparison of COLLATE

with Baselines’ (Table 2) in the main paper for
one dataset from each task domain. Table 6 shows
more examples comparing the quality of rationales
across all the datasets for different task domains.

B Prompt Templates for Multi-Mode
Instruction Fine-Tuning

As discussed in the Methodology section in the
main paper, the base model M is instruction fine-
tuned to enable the LLM to operate in three modes -
(i) generate the final answer given the instruction as
input (I → A); (ii) generate the rationale given the
instruction as input (I → R); and (iii) generate the
answer conditioned on the instruction and rationale
as input ([I;R] → A). The inputs to the LLM are
formatted using corresponding prompts (PI→A;
PI→R; P[I;R]→A) for each of these modes so that
the LLM can generate an appropriate output ac-
cordingly. The textual instruction for each prompt
template is specified as follows:

1. PI→A = “You are an AI assistant ‘M’.
Provide a response to the given instruction
denoted by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be
given an ‘Instruction’. Generate the correct
answer for the given instruction.
‘Instruction’ - 〈instruction〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give
your response. [M RESPONSE BEGINS]: "

2. PI→R = “You are an AI assistant ‘M’.
Provide a response to the given instruction
denoted by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be
given an ‘Instruction’. Generate descriptive
reasoning on how to derive the correct answer
for the instruction such that the descriptive
reasoning will be useful to another AI
assistant to generate the correct answer.
‘Instruction’ - 〈instruction〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give
your response. [M RESPONSE BEGINS]: "
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Dataset Task-Instruction and Rationales Generated by Best Baseline (SPIN) and Rationale Providers - RP1 and RP2 in COLLATE

GSM8K

Instruction: I have 10 liters of orange drink that are two-thirds water and I wish to add it to 15 liters of pineapple drink that is
three-fifths water. But as I pour it, I spill one liter of the orange drink. How much water is in the remaining 24 liters?
Baseline: The orange drink is two-thirds water, so 10 liters would have 6.5 liters of water. The pineapple drink is three-fifths water,
so 15 liters would have 9 liters of water. Since 1 liter of the orange drink is spilled, only 5.5 liters of water from the orange drink
remains. Adding it to the 9 liters from the pineapple drink gives a total of 14.5 liters of water in the remaining 24 liters. ✗

Rationale Provider 1: The orange drink is two-thirds water. When 1 liter is spilled, the remaining 9 liters of orange drink contains
2/3x9=6 liters of water. The pineapple drink is three-fifths water, so 15 liters contains 9 liters of water. The total water content in 24
liters is 6+9=15 liters of water. ✓

Rationale Provider 2: Since the orange drink is two-thirds water, spilling 1 liter reduces the water content by 1 liter, leaving 2/3 x 9
liters of water. The pineapple drink has 9 liters of water. Therefore, the total amount of water should be 9+9=18 liters of water in the
remaining 24 liters. ✗

WinoGrande

Instruction: Terry tried to bake the eggplant in the toaster oven but the ________ was too big. A. eggplant, B. toaster
Baseline: The eggplant didn’t fit properly in the toaster. Therefore, the correct answer seems to be “toaster". ✗

Rationale Provider 1: The issue described is that the eggplant didn’t fit in the toaster. Therefore, the correct answer is “eggplant"
because it was too big for the toaster.✓
Rationale Provider 2: Since the toaster is the appliance being used, it might have been too large to handle for baking the eggplant.
So, the correct answer could be “toaster". ✗

PIQA

Instruction: To make a bedroom temperature colder without a fan or air conditioner, sol1: hang up a thick, and dark blanket over
the windows and then ensure their is proper air flow in the room. sol2: wave a large blanket up and down to generate a gust of wind
to cool the room down when it gets too hot.
Baseline: Waving a large blanket up and down would create a gust of wind, which might help cool the room down quickly. Therefore,
sol 2 is correct. ✗

Rationale Provider 1: Generating wind by waving a blanket can circulate air and help cool the room, especially when it gets too
hot. Therefore, sol 2 is likely the more effective method for cooling the room. ✗

Rationale Provider 2: To cool down a room, blocking out sunlight and reducing heat entry is essential. Hanging a thick, dark
blanket over the windows prevents heat from entering, which helps keep the room cooler. Therefore, sol 1 the correct answer. ✓

HellaSwag

Instruction: Then he takes a small stone from the flowing river and smashes it on another stone. He starts to crush the small stone
to smaller pieces. He ________________. A. cuts the center stone in half and blow it on to make it bigger. B. grind it hard to make
the pieces smaller, C. eventually brings it back into view and adds it to the smaller ones to make a small triangular shaped piece, D.
starts to party with them and throw the pieces by hand while they celebrate.
Baseline: ✗ Once the small stone is crushed, we need to start to party with them and throw the pieces by hand while they celebrate.
This is an unexpected, yet possible action, making option D correct. ✗

Rationale Provider 1: After crushing the stone into smaller pieces, one should grind it hard to make the pieces smaller. So, option
B is the correct answer. ✓

Rationale Provider 2: After crushing the stone into smaller pieces, it makes sense to cut the center stone in half and blow it on to
make it bigger. So option A seems correct. ✗

CSQA

Instruction: If I was getting drunk, and people couldn’t understand me, what might I be having? A. a seizure, B. slurred speech, C.
death, D. forgetfulness, E. pass out
Baseline: Getting drunk could lead to serious consequences like “death" if things get out of hand. If people can’t understand you, it
could be a sign that something is seriously wrong, making option C correct. ✗

Rationale Provider 1: EWhen you’re getting drunk, the most common reason people can’t understand you is “slurred speech."
Alcohol often impairs speech clarity, making option B the correct answer. ✓

Rationale Provider 2: If people can’t understand you while you’re getting drunk, it might be because you’re experiencing
“forgetfulness." Alcohol can affect memory, so you might be forgetting words or how to speak clearly. Therefore, option D seems
correct. ✗

Table 6: Qualitative comparison of rationales generated by best baseline (SPIN) and rationale providers in COLLATE
on all datasets from each task domain. COLLATE generates better rationales by virtue of employing distinct rationale
providers.

3. P[I;R]→A = “You are an AI assistant ‘M’.
Provide a response to the given instruction
denoted by Task Description.

[TASK DESCRIPTION STARTS]
〈Task Description〉: In this task, you will be
given an ‘Instruction’ and a rationale denoted
by ‘Rationale’. Analyse the rationale and
come up with the correct answer for the given
instruction.
‘Instruction’ - 〈instruction〉
‘Rationale’ - 〈rationale〉
[TASK DESCRIPTION ENDS]

For the given 〈Task Description〉, give
your response. [M RESPONSE BEGINS]: "

In the above prompt templates, 〈instruction〉 is a
placeholder for the actual task instruction IT and
〈rationale〉 is a placeholder for the rationale text.

C Direct Preference Optimisation (DPO)

Direct Preference Optimisation (DPO) (Rafailov
et al., 2023) was introduced as an alternative to
Reinforcement Learning using Human Feedback
(RLHF) (Ouyang et al., 2022) technique to allevi-
ate the need of training a reward model. RLHF de-
pends on training a reward model to assign a score
to the outputs generated by an LLM to fine-tune
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Dataset Task-Instruction and Ground-Truth Answers for Each Dataset used to evaluate COLLATE

GSM8K
Instruction: Betty is saving money for a new wallet which costs $100. Betty has only half of the money she needs. Her parents
decided to give her $15 for that purpose, and her grandparents twice as much as her parents. How much more money does Betty
need to buy the wallet?
Ground-Truth Response: 5

WinoGrande
Instruction: Terry tried to bake the eggplant in the toaster oven but the ________ was too big. A. eggplant, B. toaster
Ground-Truth Response: A. eggplant

PIQA
Instruction: How to dry flowers? sol1: Find a dark, moist area with good circulation, such as an attic or unused closet. With
unflavored dental floss, secure the bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for
two to three weeks until completely dry, sol2: Find a dark, dry area with good circulation, such as an attic or unused closet. With
unflavored dental floss, secure the bottom of the flowers’ stems to a hanger so that they hang upside down to dry. Leave flowers for
two to three weeks until completely dry.
Ground-Truth Response: sol2

HellaSwag
Instruction: Then he takes a small stone from the flowing river and smashes it on another stone. He starts to crush the small stone
to smaller pieces. He ________________. A. cuts the center stone in half and blow it on to make it bigger. B. grind it hard to make
the pieces smaller, C. eventually brings it back into view and adds it to the smaller ones to make a small triangular shaped piece, D.
starts to party with them and throw the pieces by hand while they celebrate.
Ground-Truth Response: B

CSQA

Instruction: When learning about the world and different cultures, what is important if you are committed to eliminating
preconceived notions. A. newness, B. loss of innocence, C. enlightenment, D. open mind, E. smartness
Ground-Truth Response: D. open mind

Table 7: Examples of instructions from different datasets belonging to diverse task domains used in the experiments
- (i) Maths Problem Solving (GSM8K), (ii) Natural Language Inference (WinoGrande and PIQA), and (iii) Com-
monsense Reasoning (HellaSwag and CSQA).

the LLM through reinforcement learning to align it
with human preferences. On the other hand, DPO
transforms the loss over the reward-function to a
loss over the LLM policy such that the reward is
optimised implicitly by optimising the loss over the
policy. It does so by leveraging human preference
data which compares two possible outputs gener-
ated by an LLM such that the better output is con-
sidered as the winner candidate - yw while the infe-
rior output is considered as the loser candidate - yl.
Given a static dataset of the form D = {x, yw, yl},
where x is the input, the loss is modeled as -

LR = −log[σ(r(x, yw)− r(x, yl))] (10)

r(x, y) = βlog(
πθ(y|x)
πref (y|x)

) (11)

where, πZ(y|x) is the likelihood of generating y
given x as input to the model Z ∈ {Mref ,Mθ},
Mref is usually taken to be the instruction fine-
tuned model in the case of an LLM to prevent the
LLM policy from deviating too much from the
initial policy, Mθ represents the LLM policy being
optimised through DPO, σ is the sigmoid activation,
and β is a coefficient that controls the amount of
deviation from the reference model. In summary,
the algorithm optimises the LLM to learn to prefer
generating certain outputs over other candidates
without requiring an explicit reward model. Please
refer to the original publication (Rafailov et al.,
2023) for an elaborate discussion of the details.

D Dataset Samples

Details of datasets were discussed in the ‘Experi-
ments and Evaluation’ section in the main paper.
Table 7 in the appendix shows samples of instruc-
tions for each dataset from all task domains - (i)
Maths Problem Solving (GSM8K), (ii) Natural Lan-
guage Inference (WinoGrande and PIQA), and (iii)
Commonsense Reasoning (HellaSwag and CSQA).

E Few-shot evaluation of COLLATE

The few-shot evaluation results in Table 8 demon-
strate that COLLATE significantly improves perfor-
mance across tasks. On GSM8K, the base model
rose from 52.16 to 54.49 (+2.33), and the instruct
model from 76.12 to 81.26 (+5.14). For NLI, COL-
LATE boosted WinoGrande by +1.94 (base) and
+2.71 (instruct), and PIQA by +3.86 (base) and
+3.63 (instruct). In commonsense reasoning, Hel-
laSwag improved by +2.95 (base) and +3.94 (in-
struct), while CSQA saw smaller gains of +3.08
(base) and +1.45 (instruct). These results highlight
COLLATE’s consistent effectiveness in enhancing
few-shot performance across diverse benchmarks.

F Performance of Rationale Providers
across Iterations

Table 9 shows the performance analysis of ratio-
nale provider (selected for task-specific SFT-based
evaluation) across different iterations of DPO train-
ing using open-llama-v2-7b backbone. It can be
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Model Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

Llama-3-8B-Base 52.16 79.43 73.16 69.21 60.07
Llama-3-8B-Base w COLLATE 54.49 81.37 77.02 72.16 63.15

Llama-3-8B-Instruct 76.12 78.51 72.06 76.25 57.69
Llama-3-8B-Instruct w COLLATE 81.26 81.22 75.69 80.19 59.14

Table 8: Few-shot evaluation of LLaMa-3-8B models (Base and Instruct) on Maths (GSM8K), NLI (WinoGrande,
PIQA), and Commonsense reasoning (HellaSwag, CSQA). Results show that COLLATE outperforms corresponding
baseline, with notable gains in both NLI and Commonsense tasks.

DPO Iteration Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

Iteration 0 47.95 50.86 49.84 98.93 78.74
Iteration 1 53.41 51.65 55.33 99.21 80.11
Iteration 2 53.48 53.49 59.57 99.21 80.13

Table 9: Performance analysis of rationale provider (selected for task-specific SFT-based evaluation) across different
iterations of DPO training using open-llama-v2-7b backbone. It can be seen that performance increases with
iterations for all the tasks.

seen that performance increases with iterations for
all the tasks.

G More Rationale Providers (RPs)
improve accuracy further

Table 10 shows that using 3 RPs improves per-
formance over the configuration with 2 RPs across
GSM8K and PIQA. Specifically, on GSM8K, COL-
LATE with 2 RPs achieves an accuracy of 53.58,
while using 3 RPs boosts this to 55.24, a gain of
1.66%. Similarly, for PIQA, the accuracy improves
from 59.57 (with 2 RPs) to 61.73 (with 3 RPs),
reflecting a 2.16% increase. These results demon-
strate that increasing the number of RPs further
enhances the accuracy, showing that COLLATE
benefits from the diversity and richness of addi-
tional rationales. This improvement over baselines
is further amplified when using 3 RPs, highlighting
the efficacy of COLLATE.

H Computational Complexity - Average
number of Rationale tokens

Table 11 highlights the average number of ratio-
nale tokens generated during inference for COL-
LATE and baseline methods. COLLATE maintains
comparable inference-time efficiency, with no sig-
nificant increase in rationale tokens compared to
baselines. For example, COLLATE generates an
average of 33.3 tokens per rationale, similar to

Method GSM8K PIQA

COLLATE w 2 RPs 53.58 59.57
COLLATE w 3 RPs 55.24 61.73

Table 10: Impact of Using Multiple Rationale Providers
(RPs) in COLLATE. This table compares the perfor-
mance of COLLATE with 2 and 3 rationale providers
(RPs) on the GSM8K and PIQA benchmarks, demon-
strating that using 3 RPs leads to further improvements
in accuracy for the open-llama-v2-7B backbone.

baselines like CoT (24.5 tokens) and SPIN (29.8 to-
kens). EoT, being a prompt-based method employs
multiple LLMs during inference, thereby shooting
the average number of rationale tokens to 83.4

The efficiency of COLLATE is due to its de-
sign, which shifts the computational overhead to
the training phase—a one-time process. During
training, multiple rationale providers (RP s) are
used to generate diverse rationales for DPO, ensur-
ing high-quality rationale generation. However, at
inference time, COLLATE employs only a single
RP to generate a single rationale, minimizing ad-
ditional computation. This contrasts with prompt-
based baselines, which require generating multi-
ple rationales during inference, leading to higher
computational costs. By reducing inference-time
overhead, COLLATE is particularly well-suited
for practical applications where computational re-
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Model Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

CoT 35.1 18.5 17.7 28.4 22.9
EoT 121.5 66.1 69.4 75.9 84.1
Distilling Step-by-Step 36.1 19.0 18.4 28.1 23.1
SPIN 43.2 22.7 22.2 33.3 27.5

COLLATE 48.1 25.7 24.9 37.1 30.8

Table 11: Comparison of Average Number of Rationale Tokens Generated During Inference. COLLATE demon-
strates no significant increase in inference-time overhead compared to baselines, as its computational cost is
primarily shifted to the training phase where diverse rationales are generated using multiple rationale providers
(RP s) for DPO. In contrast, prompt-based baselines incur higher inference costs as they require generating multiple
rationales during inference.

Model Maths NLI Comonsense
GSM8K WinoGrande PIQA HellaSwag CSQA

SFT w/o rationales 12.93 3.39 5.86 8.4 9.77
SFT w EoT rationales 12.61 3.28 5.59 7.92 9.04
SFT w Distilling Step-by-Step 11.47 3.15 5.36 7.33 8.48
SFT w SPIN rationales 10.28 3.10 5.27 7.17 8.09

SFT w COLLATE rationales 8.03 2.53 4.79 6.26 7.72

Table 12: Perplexity Comparison of COLLATE and Baseline Methods for generating ground-truth (GT) answers
conditioned on rationales in the input, as evaluated by task-specific SFT models (Llama-3-8B). COLLATE achieves
the lowest perplexity across all tasks, demonstrating its effectiveness in providing rationales that enhance the model’s
certainty in generating correct answers.

sources and latency are critical. This efficiency,
coupled with its robust performance, makes COL-
LATE a better alternative for deploying models in
real-world settings.

I Additional Evaluation of Rationales
from COLLATE

As an additional evaluation metric, we estimate
the perplexity of generating ground-truth (GT) an-
swers conditioned on rationales in the input for
test samples. This assessment was conducted us-
ing task-specific SFT models (open-llama-v2-7B),
and Table 12 compares COLLATE against the best-
performing baseline from each category.

The results indicate that COLLATE achieves the
lowest perplexity across all tasks, highlighting its
ability to produce rationales that better guide the
model towards correct answers. For instance, on
GSM8K, COLLATE achieves a perplexity of 8.03,
compared to 10.28 for the best baseline (SPIN).
Similarly, on CSQA and HellaSwag, COLLATE
records perplexities of 7.72 and 6.26 respectively,
outperforming SPIN with scores of 8.09 and 7.17.

This improvement underscores the effectiveness
of COLLATE rationales in reducing model uncer-
tainty, making it superior to other methods. The
results reaffirm COLLATE’s ability to provide ra-
tionales that not only enhance model performance
but also ensure higher confidence in the answers, as
evidenced by consistently lower perplexity scores.

J Selection of Rationale Provider for
Evaluation

We use a single rationale provider while assess-
ing rationales generated by COLLATE. The best
rationale provider is selected based on likelihood
estimation on CoT val-split samples. We measure
probability of generating ground-truth answer by
the IFT model MIFT conditioned on the rationale.
The rationale provider that yields maximum value
(averaged across samples) is used for evaluation.
Figure 2 shows correlation between test-accuracy
and likelihood indicating that rationale provider
with best likelihood is a suitable choice.
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Figure 2: Normalized plot between task test accuracy
vs. likelihood of generating GT on CoT val-split. Posi-
tive correlation indicates that rationale provider selected
based on better likelihood is suitable choice to generate
rationales for task-specific SFT-based evaluation.

K Human Study for Rationale Evaluation

We conducted a human study to evaluate the effec-
tiveness of rationales obtained using the proposed
COLLATE framework. The following steps de-
scribe creation of data for human evaluation:

Dataset Creation for Human Evaluation

1. We collected a total of 75 samples based on
random selection by taking an equal number
of samples for each task i.e. 15 samples ran-
domly from the test sets of each of the 5 task
datasets.

2. For each sample, we obtain the rationales R1g,
R2g from the two LLM rationale providers.

Once the above rationales are obtained, we em-
ployed three paid human annotators and presented
them with the instruction in each sample along with
different rationales obtained above. The human
evaluators are asked to judge the quality of differ-
ent rationales based on the following questions and
guidelines:

Questions and Guidelines

1. Question 1: Is the final rationale obtained
from COLLATE useful for answering the
question correctly? The rationale is useful
if it is correct and provides the correct expla-
nation on how the answer for the instruction
in the sample should be derived. Provide a
label out of 0 or 1 such that 0 means that the
final rationale is totally wrong; and 1 means
that the final rationale is totally correct.

2. Question 2: Compare the two rationales ob-
tained using the two rationale providers - R1g
and R2g. Provide a label of 0 or 1 where
0 means that none of the rationales is better
than the other and 1 means that one rationale
is better than the other.

3. Question 3: In Question 2, in case one ra-
tionale is better than the other (between the
rationales obtained from the two rationale
providers), select the better rationale.

Definition of Metrics Estimated from Human
Labels

Different rationales were presented to human
evaluators in jumbled order to avoid biases while
comparing rationales. Based on the judgement
labels provided by the human evaluators for 3 ques-
tions above for the 75 samples, we estimate the
following metrics:

1. Final Rationale Alignment – % proportion
of samples which were assigned label 1 i.e.
totally correct.

2. Diversity b/w two Rationales - % proportion
of samples where the two rationales R1g and
R2g obtained from two rationale providers are
different i.e. cases where one of the two ratio-
nales is better than the other (label 1). This
metric is estimated to verify if the variants
truly generate distinct rationales.

3. Better Rationale Alignment with Likelihood
based Selection: We consider samples where
label 1 is provided to Question 2 i.e. one
of the generated rationales is judged better
than the other generated rationale (comparing
R1g and R2g). We estimate the metric as %
proportion cases from these samples where
better rationale determined using likelihood-
based utility score matches the better rationale
from human judgement.

Human Study Results and Discussion
We compute the above metrics using the 75 sam-

ples used for human evaluation. We report the
average of metrics obtained for the three human
evaluators in Table 13. We discuss following obser-
vations from the results in Table 13:

1. From Table 13, we can observe that the final
rationale alignment is 72.0% which means
that final rationale obtained from COLLATE
is reliable and aligns with human preferences.
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Metric Name Value (in %)
Final Rationale Alignment 72.0
Diversity b/w two Rationales 78.67
Better Rationale Alignment with Likelihood-based Selection 84.0

Table 13: Human study results summarizing values of different metrics evaluated using human labels. It is observed
that for good proportion of cases, final rationale obtained from COLLATE aligns with human preferences, the
rationales obtained from two variants are diverse and better rationale judged by humans matches with winner
rationale selected using likelihood based utility score.

2. Rationales from the two rationale providers
are diverse: It is observed that for 78.67%
cases, one rationale obtained was judged to be
better than the other generated rationale. This
means that employing two variants of same
LLM is useful to obtain distinct and diverse
rationales which are useful to improve quality
of preference data for DPO.

3. Likelihood based rationale selection aligns
with human preferences: For 84.0% cases,
better generated rationale determined based
on human preferences matches the better ra-
tionale based on likelihood-based utility score.
This shows that our choice of using likelihood
of final GT answer for selecting winner ra-
tionale aligns with human preferences and is
suitable to obtain the preference data.

Inter-Annotator Agreement: We also report
the inter-annotator agreement by estimating the
fleiss’ kappa coefficient which is commonly used to
measure agreement between three annotators. For
the human study, the fleiss-kappa coefficient for
inter-annotator agreement came out to be: 0.5829.

Following is mapping of fleiss-kappa coefficient
value ranges with interpretation:

0 – 0.2: Slight agreement
0.21 - 0.4: Fair agreement
0.41 - 0.6: Moderate agreement
0.61 - 0.8: Substantial agreement
0.81 - 1.0: Almost Perfect agreement

Based on the coefficient obtained for different
metrics and the above scale, it can be seen that
human labels have moderate to good agreement.

L Additional Related Work

Differently, some works use mixture-of-experts
where the instruction is routed to suitable LLM
expert either at the query-level (Lu et al., 2024a),
in latent space (Jiang et al., 2024) or at the output-
layer (Si et al., 2023).

M Justification for Splitting Data
Randomly to Train Rationale
Providers

We intentionally divided the dataset into random
splits for training and obtaining distinct rationale
providers because of the consideration that if a
rationale provider is trained on samples from a spe-
cific task, then it can become an expert in that task
only and might not be able to generalize and gener-
ate useful rationale candidates for other tasks. How-
ever, obtaining diverse, good-quality and compet-
ing rationale candidates is critical to obtain a good
rationales set for improving the rationale providers
for a given task through preference tuning. Hence,
by design, we divide the dataset randomly so as to
prevent the rationale providers become very spe-
cific to a particular domain or task. However, we do
agree that the effect of using domain-specialized ra-
tionale providers could be explored as future work.

N Comparison of COLLATE with SPIN
on 3 additional datasets

To further demonstrate the robustness and general-
izability of our proposed approach COLLATE, we
conducted evaluations on three additional, challeng-
ing datasets: AIME (a more recent and difficult
benchmark for mathematical reasoning), CROW
(common sense reasoning), and HotpotQA (long
chain multi-hop reasoning). Evaluation on these
datasets provide further empirical evidence for
COLLATE’s performance improvements over the
strongest baseline, SPIN. These datasets comple-
ment the already diverse set of benchmarks used
in the main paper, extending the coverage across:
1) Mathematical Reasoning: AIME focuses on
complex math word problems. 2) Commonsense
Reasoning: CROW requires applying background
knowledge to infer correct outcomes. 3) Multi-hop
QA: HotpotQA evaluates long chain reasoning and
contextual grounding.

The results are summarized in Table 14, where
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Table 14: Performance comparison of COLLATE with
SPIN on additional benchmarks.

Method AIME CROW HotpotQA

SPIN 16.02 68.29 62.39
COLLATE (ours) 19.72 72.18 64.11

we observe that COLLATE consistently outper-
forms SPIN across all three benchmarks, with an
absolute improvement of 3.7% on AIME, 4%
on CROW, and 1.7% on HotpotQA. These re-
sults strengthen our claim that COLLATE is a
general-purpose reasoning enhancement approach
that scales well across diverse and difficult reason-
ing tasks.
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