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Abstract

Modern recommender systems aim to deeply
understand users’ complex preferences through
their past interactions. While deep collabo-
rative filtering approaches using Graph Neu-
ral Networks (GNNs) excel at capturing user-
item relationships, their effectiveness is lim-
ited when handling sparse data or zero-shot
scenarios, primarily due to constraints in ID-
based embedding functions. To address these
challenges, we propose a model-agnostic rec-
ommendation instruction-tuning paradigm that
seamlessly integrates large language models
with collaborative filtering. Our proposed
Recommendation Language Model (RecLM)
enhances the capture of user preference diver-
sity through a carefully designed reinforcement
learning reward function that facilitates self-
augmentation of language models. Compre-
hensive evaluations demonstrate significant ad-
vantages of our approach across various set-
tings, and its plug-and-play compatibility with
state-of-the-art recommender systems results in
notable performance enhancements. We have
made our RecLM available anonymously at:
https://github.com/HKUDS/RecLM.

1 Introduction

Recommendation systems serve as essential com-
ponents of modern web applications, helping users
navigate through the vast digital information land-
scape. These systems provide personalized sugges-
tions across diverse platforms, including product
recommendations on e-commerce platforms (Wang
et al., 2020; Wu et al., 2018), content discovery on
social networking sites (Jamali and Ester, 2010;
Zhang et al., 2021), and viewer-tailored sugges-
tions on video sharing platforms (Zhan et al., 2022;
Jiang et al., 2024). At the core of these systems
lies Collaborative Filtering (CF), a widely adopted
approach that harnesses collective user preferences
to generate personalized recommendations.
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Current recommender systems predominantly
operate within the user/item ID paradigm, where
training data consists primarily of mapped user and
item indices. While this approach has driven signif-
icant advancements in recommendation technology,
particularly in data-rich scenarios (Yao et al., 2021;
Yuan et al., 2023), it faces several fundamental limi-
tations. Most notably, these systems encounter sub-
stantial challenges in cold-start scenarios and strug-
gle to generalize effectively in zero-shot learning
situations. The inherent dependency on ID-based
representations becomes particularly problematic
in completely cold-start settings, where systems
fail to generate meaningful representations for new
items, ultimately compromising their ability to de-
liver accurate recommendations.

Addressing the fundamental cold-start challenge
in ID-based recommendation systems requires
moving beyond traditional ID-based embeddings
to leverage external features (e.g., textual or visual
information) for generating user and item represen-
tations. However, this promising approach encoun-
ters significant practical challenges in real-world
applications, primarily stemming from two critical
issues: data incompleteness and quality concerns.
On the incompleteness front, users frequently with-
hold personal information due to privacy concerns,
leading to substantial gaps in external features.
Simultaneously, existing data often suffers from
quality issues, manifesting as misleading tags, ir-
relevant product specifications, or unreliable item
descriptions. These challenges collectively under-
score the critical need for robust methods to ex-
tract accurate, relevant, and high-quality features
from inherently noisy and incomplete side informa-
tion—a prerequisite for achieving effective recom-
mendation generalization in data-scarce scenarios.

The exceptional generalization and reasoning
capabilities of Large Language Models (LLMs)
motivate a novel solution to cold-start recommen-
dation challenges through specialized profiling sys-
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tems based on external side information. This ap-
proach centers on developing effective language
models customized for recommendation tasks, ad-
dressing two critical challenges: (i) designing ro-
bust mechanisms for LLMs to generate accurate
profile representations that capture essential recom-
mendation characteristics, especially for users or
items lacking historical interactions, and (ii) devel-
oping techniques for LLMs to distill high-quality
profiles from noisy feature sets while preserving
the integrity of user-item interaction patterns and
behavioral context. While recent LLLM-based rec-
ommenders leverage LLMs to enhance the per-
formance of recommenders (Chen et al., 2024,
Zhang et al., 2024; Lyu et al., 2023), they do not
specifically address the challenges associated with
cold-start scenarios and often concentrate solely
on learning the preferences of individual users or
improving the features of individual items, thereby
neglecting the collaborative relationships inherent
in traditional CF recommenders.

Contribution. To address these challenges, we pro-
pose RecLLM, a novel recommendation instruction
tuning paradigm that revolutionizes how LLMs un-
derstand behavioral contexts in recommender sys-
tems. While LLMs demonstrate superior natural
language processing capabilities, they fundamen-
tally lack the ability to model complex user-item
interactions and behavioral preferences. Our ap-
proach tackles this limitation through two key tech-
nical innovations: (1) a seamless integration mech-
anism that fuses external user-item features with
collaborative interaction patterns through special-
ized instruction tuning, enabling effective cold-start
profiling without direct supervision signals, and (2)
a reinforcement learning-based personalized fea-
ture enhancement framework that systematically
reduces noise and mitigates over-smoothing effects
inherent in collaborative filtering. This model-
agnostic framework can be plugged into existing
recommenders to significantly enhance their gener-
alization capacity, particularly in data-scarce sce-
narios. Our main contributions are as follows:

* Model-Agnostic Framework. We introduce a
model-agnostic instruction tuning framework Re-
cLM. It can be seamlessly integrated into existing
recommender systems as a plug-and-play compo-
nent, significantly enhancing their generalization
capacity in scenarios with data scarcity.

* Enhancing Profiling System. We integrate large
language models with collaborative filtering to

enhance user profiling and representation, par-
ticularly in cold-start scenarios, where current
methods often struggle. Additionally, our ap-
proach employs reinforcement learning to refine
profile quality, effectively addressing challenges
associated with data noise and over-smoothing.

* Comprehensive Evaluation. We integrate Re-
cLM with several cutting-edge recommenders to
assess the effectiveness of our method in various
settings. This involves performing ablation stud-
ies and efficiency evaluations. Moreover, we con-
duct comprehensive experiments in real-world
industrial recommendation scenarios, showcas-
ing the practicality and scalability of RecLM.

2 Related Work

2.1 ID-based Recommender Systems

In recommender systems, numerous collaborative
filtering (CF) models have been proposed to map
users and items into latent representations based on
user/item IDs (Koren et al., 2021; Su and Khosh-
goftaar, 2009). These methods have evolved signif-
icantly, from early matrix factorization techniques,
such as BiasMF (Koren et al., 2009), to the intro-
duction of Neural Collaborative Filtering with the
advent of neural networks (He et al., 2017). Re-
cently, advances in graph neural networks (GNN5)
have opened promising avenues for constructing
bipartite graphs based on user-item interaction his-
tory, allowing for the capture of high-order col-
laborative relationships. GNN-based methods, in-
cluding NGCF (Wang et al., 2019), GCCF (Chen
et al., 2020), and LightGCN (He et al., 2020), have
demonstrated the performance of SOTA, increasing
the effectiveness of the recommendation.

In addition, researchers have incorporated self-
supervised learning (SSL) techniques as supple-
mentary learning objectives to improve the robust-
ness of recommenders and address challenges re-
lated to data sparsity and noise (Yu et al., 2023).
Contrastive learning (CL), a widely adopted SSL
technique, has been effectively applied in CF re-
search through approaches such as SGL (Wu et al.,
2021), SimGCL (Yu et al., 2022), NCL (Lin et al.,
2022), and AdaGCL (Jiang et al., 2023). Despite
these advancements, ID-based recommenders still
face significant limitations, particularly in com-
pletely cold-start scenarios and in terms of model
transferability (Yuan et al., 2023).
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2.2 LLMs for Recommendation

The integration of large language models (LLMs)
into recommender systems has attracted consid-
erable interest (Fan et al., 2023; Lin et al., 2023;
Liu et al., 2023). Existing approaches fall into two
primary categories. The first category, including
methods like P5 (Geng et al., 2022), LLM-Rec (Lyu
et al., 2023), Chat-REC (Gao et al., 2023), and Re-
cRanker (Luo et al., 2024), focuses on designing
task-aligned prompts or leveraging LLMs’ reason-
ing capabilities, using LLMs directly as inference
models. The second category enhances traditional
collaborative filtering (CF) methods by integrating
LLMs. For example, LEARN (Jia et al., 2024)
aligns LLM semantic spaces with recommendation
objectives via contrastive learning, HLLM (Chen
et al., 2024) employs hierarchical LLM architec-
tures for multi-granularity recommendations, LLM-
Rec (Wei et al., 2024) augments user-item interac-
tion graphs using LLMs, and RLMRec (Ren et al.,
2023) combines LLM-enhanced text embeddings
with GNN-based representations. However, these
methods often lack task-specific fine-tuning and
primarily target full-shot scenarios.

In contrast, our work proposes a novel
instruction-tuning technique for open-source
LLMs, enabling adaptation to specific recommen-
dation tasks and effective collaborative information
capture for profile generation. While approaches
like InstructRec (Zhang et al., 2023) and TALL-
Rec (Bao et al., 2023) align LLMs with recom-
mendation tasks, they face scalability issues due
to instruction-question-answering prompts and ex-
hibit limited generalization on sparse data. Our
method improves generalization in data-scarce and
noisy environments while maintaining efficiency
for large-scale practical applications.

3 Preliminaries

ID-based Collaborative Filtering. In the ID-
based collaborative filtering (CF) paradigm, the
primary goal is to optimize the ID embeddings of
users and items. This optimization aims to accu-
rately capture and represent user preferences for
items, while considering the interaction patterns
of users and items that are similar. Formally, we
have a set of users denoted as U = {uq,--- ,ur},
and a set of items denoted as V = {vy,--- ,vs}.
Each user and item is assigned initial ID embed-
dings, represented as x, and x, € R? respec-
tively. The objective is to obtain optimized user

and item representations, denoted as e, e, € RY,
through a recommender model R(xy,X,). This
model aims to maximize the posterior distribution
p(e|X) o« p(X|e)p(e). The predicted likelihood
of user-item interaction, denoted as ¥, , is derived
by performing a dot product between the user and
item representations, as follows: 7, , = eI - ey.
While state-of-the-art (SOTA) recommenders op-
erating within the ID-based collaborative filtering
paradigm have exhibited remarkable performance,
they face significant challenges when tasked with
handling cold-start recommendation scenarios, es-
pecially in situations where data scarcity is preva-
lent. The primary obstacle that ID-based recom-
menders encounter in these situations stems from
the lack of past interaction history for newly intro-
duced items. This absence of accumulated user en-
gagement data disrupts the optimization paradigm
that these systems typically rely upon, thereby mak-
ing it considerably more difficult to generate ac-
curate and meaningful representations for these
items. Consequently, ID-based recommenders may
encounter difficulties in effectively modeling and
understanding the inherent characteristics and pref-
erences associated with these cold-start items, lead-
ing to a notable decline in the overall performance,
particularly in zero-shot scenarios where no prior
interaction data is available for certain items.

4 Methodology

4.1 Text-Enhanced Representations

To address the challenge of cold-start items in
zero-shot recommendation scenarios, we propose a
novel approach that leverages textual side features
for generalized and adaptable user and item repre-
sentation learning. Specifically, we seek to replace
the traditional ID-based embeddings with the side
information associated with the items, namely their
text descriptions, represented as F € RIVI*%_ To
accomplish this, we utilize a project layer with a
multi-layer perceptron 1.4, to map the raw textual
features f € R% into a lower-dimensional latent
space R?. The resulting representation feRis
then used as the initial item representation:

f‘v = raw(f)- (1)

This text-driven method seamlessly combines col-
laborative signals with textual semantics, allowing
our recommender to accurately capture user pref-
erences. By using rich textual features as item
representations, we optimize user ID embeddings
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Figure 1: Overall framework of the proposed RecLM.

based on interactions, infusing valuable collabora-
tive cues into user and item representations to adapt
to changing preferences. This enables our model
to understand users’ affinities for text-based items
and provides zero-shot prediction capabilities for
cold-start items with no prior interaction data.
LLM-enhanced User/Item Profiling. To further
empower user representations with the rich tex-
tual semantics provided by large language models
(LLMs), we propose generating user profile infor-
mation that can reflect their interaction preferences.
Specifically, item profiles can be derived from the
profiles of users who frequently interact with them.
This approach proves valuable in capturing user
preferences and facilitating accurate recommenda-
tions for cold-start items. On the user side, the
ID embedding x,, € R? integrates with the user
profile p, € R%, allowing the system to leverage
the user’s ID-based embedding and their generated
profile, which can capture more nuanced prefer-
ences. On the item side, the raw text x,, combines
with the item profile p,, € R%, enabling the system
to better understand the item’s characteristics and
how they align with user preferences.

fgug = \IJ(Xu | Tpro(pu))a

R . 2

£ = V(£ | Tpro(Po))-
Our framework employs a dual-MLP architec-
ture for effective multi-modal fusion: an initial
MLP encoder ¥ (-) consolidates heterogeneous fea-
tures, followed by a profile transformation network
T}ro that projects the unified embeddings into the
model’s latent space. This hierarchical process
generates enriched user and item representations
£ € R? and 29 € RY, capturing comprehen-
sive behavioral patterns. To further enhance repre-
sentation quality, we leverage SOTA LLMs as pro-
file augmentation engines, generating supplemen-

tary semantic information that significantly boosts
our recommender system’s modeling capacity.

4.2 Enhancing Collaborative Features via
Recommendation Instruction Tuning

Our RecLM framework aims to align collaborative
relationships with textual semantic representations
through an innovative recommendation instruction
tuning paradigm that integrates user collaborations
into the LLM-based profiling process. It employs
a two-phase approach: first, it uses knowledge dis-
tillation and dialogue-based instruction tuning to
maintain high-order collaborative similarities, cre-
ating informative user profiles. Then, it utilizes
these refined user profiles to generate semantically
aligned item profiles, resulting in a cohesive repre-
sentation space that effectively captures both indi-
vidual characteristics and collaborative patterns.

4.2.1 LLM Tuning with Collaborative Signals

Our approach utilizes open-source LLMs, such
as llama2-7b-chat and llama3.1-8b-instruct, as the
foundation, enhanced by a novel collaborative in-
struction tuning framework that captures both user-
item interactions and profile generation capabil-
ities. We specifically design specialized prompt
templates that incorporate collaborative signals
and create input-output pairs using ChatGPT to
identify various user-item relationship patterns. In
this context, ChatGPT serves as a powerful LLM
with strong text summarization abilities, generating
text profiles that characterize interaction patterns
among users and items, as well as their collabo-
rative relationships, ultimately resulting in textual
instructions for collaborative instruction tuning.

4.2.2 Collaborative Instruction Tuning

In our recommendation instruction tuning
paradigm, we introduce a two-turn collaborative
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instruction tuning approach to inject higher-order
collaborative relational context. By incorporat-
ing collaborative signals that capture complex
user-user and user-item relationships, this method
overcomes the limitations of those relying only
on direct interactions. Our framework empowers
LLMs to create richer user profiles by leveraging
collaborative network dynamics, while also
tackling the fundamental challenge of insufficient
direct supervision in profile generation tasks.
Profile Generation with Two-turn Dialogue. A
fundamental challenge in LLM-based profile gen-
eration lies in the absence of ground truth data for
direct evaluation, forcing practitioners to rely on in-
direct assessment through downstream recommen-
dation performance. To address this limitation, we
propose a novel two-turn collaborative instruction
tuning paradigm that provides explicit supervision
signals. Unlike conventional approaches that strug-
gle with profile quality assessment, our framework
leverages collaborative user relationships to guide
LLMs in generating high-quality profiles through
structured dialogue interactions.

e First Turn - Collaborative Profile Generation:
The initial turn takes input query Q containing both
the target user’s historical item interactions and
those of similar users identified from their collab-
orative neighborhood. Here, user similarities are
measured by the encoded user embeddings from
LightGCN model (He et al., 2020). The LLM gen-
erates output response R consisting of user profiles
that capture collaborative patterns.

inr. = Prompt(ut, {un}a Vi, {Vn})7
R pir. = Prompt(ug, {un}, Pe, {Pn}).

e Second Turn - Supervised Interaction Predic-
tion: The second turn reformulates the instruction-
tuning task as an interaction prediction problem,
aiming to enhance profile generation by incorpo-
rating explicit user-item preference signals. Specif-
ically, the input query O prompts whether target
user u; will interact with candidate item vy, while
the output response R corresponds to the ground
truth interaction status (i.e., yes or no) from the
training dataset. To ensure balanced and informa-
tive training signals, we employ a systematic sam-
pling strategy: For positive samples (50%), we
select v from the user’s interaction history V; un-
der the constraint that v also appears in similar
users’ history V,, while removing it from ), in
first-turn instructions to prevent information leak-
age. For negative samples (50%), we select v~

3)

from similar users’ history V,, while ensuring no
historical interaction exists between u; and v~ in
the training data. This balanced sampling approach
maintains unbiased training objectives while pre-
serving crucial collaborative signals for effective
profile generation.

Prompt(ug,v"), pos. samp.
Qsec. = _
Prompt(ui,v™), mneg. samp. @
Yes, pos. samp.
7?fsec. =
No, neg. samp.

Tuning Strategy. For multi-turn dialogue
instruction-tuning, our objective is to utilize LLM-
generated responses R for weight updates while ex-
cluding queries Q. Traditional single-turn dialogue
tuning, when applied to our paradigm, considers
Qfir., Ryir., and Qsec. as inputs, with only Rge.
being predicted. This approach limits weight up-
dates to losses from R ;.. alone, failing to leverage
the training data in multi-turn dialogues. Notably,
R fir. contains rich textual information as multi-
ple user profiles, which guides the generation of
R sec. in subsequent turns. In contrast, R.. con-
sists of simpler binary responses (e.g., yes or no).
Disregarding the valuable information in R f;,., and
relying on R .. for fine-tuning would significantly
limit the model’s learning capacity.

To address these limitations, we introduce a two-

turn dialogue tuning approach. Specifically, we
concatenate dialogues from both turns and apply
masking techniques to differentiate between Q and
‘R components. During training, the model com-
putes losses exclusively from R-marked segments,
enabling both R f;.. and R... to contribute to pa-
rameter optimization. This unified training strategy
maximizes information utilization while effectively
capturing collaborative relationships.
Inference Prompt. Following instruction-tuning,
we design an inference prompt that integrates tar-
get user interactions V; with neighbor histories
V. This unified prompt guides LLMs to gener-
ate collaborative-aware user profiles by leveraging
inter-user preference patterns.

Qinf. = Prompt(ut,{un},Vt,{Vn}). )
4.3 Refining Profile Generation through

Reinforcement Learning

We introduce a reinforcement learning framework
aimed at improving the accuracy and personal-
ization of user profiles generated by LLMs. Our
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approach tackles two key challenges: i) Prompt-
Training Discrepancy—the inherent mismatch be-
tween the inference phase (single-profile genera-
tion) and the fine-tuning phase (multi-profile gener-
ation), which can lead to inconsistencies in profile
generation, and ii) Personalization-Collaboration
Trade-off—while leveraging collaborative infor-
mation enhances overall performance, it risks di-
Iuting individual user characteristics, analogous to
the over-smoothing phenomenon observed in our
collaborative instruction-tuning paradigm.

To address these challenges, we develop a re-

inforcement learning-based fine-tuning paradigm
inspired by Reinforcement Learning from Human
Feedback (RLHF) (Stiennon et al., 2020). Our ap-
proach includes two main components: a reward
model that assesses the quality of LLM-generated
profiles, and an optimization procedure utilizing
Proximal Policy Optimization (PPO) (Schulman
et al., 2017) to refine the LLM based on these
reward signals. This iterative process gradually
improves the LLM’s capacity to generate more ac-
curate and personalized user profiles.
Reward model. We design a reward model to eval-
uate the quality of LLM-generated outputs from
a human perspective. Specifically, given an input
pair [Q, R], the model produces a scalar value in-
dicating the response quality. The reward model is
optimized using the loss function L,

7
Lym =— E.. + R~
ZZ:; (Qi,R; Ry )~D (©6)
llog(a(re(Qi, RY") — 10(Qi, R;))),

where ry(-) denotes the reward model, o (-) repre-
sents the sigmoid function, and Rj/Ri_ indicate
true/false responses respectively. For our profiling
task, we maintain a consistent query Q;, s while
carefully constructing both positive responses R
and negative responses R ~. We obtain R through
ChatGPT and create R~ through two strategies:

* Diverse Negative Sampling: Multiple prompt
templates generate diverse low-quality responses,
allowing the reward model to identify suboptimal
outputs after instruction-tuning.

* Profile Substitution: Strategic replacement of
profiles with those of similar users allows the
model to identify subtle differences and prioritize
personalized characteristics effectively.

Proximal Policy Optimization. In our reinforce-
ment learning framework, we treat the LLM M as

the policy to be optimized, with the reward model
approximating the true reward function. The core
optimization objective is formulated as:

argj\lzllax Eu;mp g MR (yi| )] 7

To optimize M iteratively, we sample queries Qi
from the dataset D and generate corresponding re-
sponses Ri using M. We employ the Proximal
Policy Optimization (PPO) algorithm and its as-
sociated loss function for optimization. Follow-
ing (Schulman et al., 2017), we enhance the reward
function with a KLL divergence penalty term be-
tween the original LLM M and the optimized
LLM My. This constraint effectively mitigates
reward hacking—a phenomenon where models
achieve high reward scores but poor human evalu-
ation results. The final reward function R(-) for a
given query-response pair (Q;, R;) is defined as:

R(R;|Q;) = #(Ri|Q:)—
BDrr(Mo(Q:)||Mo(Qs))

The comprehensive details of our instruction de-
sign across all fine-tuning stages, together with our
methodology for constructing positive and negative
training samples for the reinforcement learning-
based reward model, are reported in Appendix A.9.

®)

5 [Evaluation

5.1 Experimental Setup

(i) Datasets. To evaluate the effectiveness of the
proposed RecLLM, we conduct extensive experi-
ments using two public datasets: MIND' (Wu et al.,
2020) and Netflix?, along with a large-scale dataset
derived from the real-world industrial data (referred
to as Industrial for anonymity). (ii) Evaluation
Settings. We follow previous recommendation
works (Jiang et al., 2024) to set evaluation settings.
We assess the accuracy of the top-K recommen-
dation results using two widely adopted metrics:
Recall@K (R@K) and NDCG@K (N@K), with K
set to 20 by default. To reduce bias, we employ an
all-rank evaluation strategy, where positive items
in the test dataset are ranked alongside all non-
interacted items for each user. The final metric is
reported as the average result across all users in the
test dataset. (iii) Baseline Methods. We evaluate
the effectiveness of RecLM by integrating it with
! https://msnews.github.io

Zhttps://www.kaggle.com/datasets/netflix-inc/netflix-
prize-data
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Table 1: Performance comparison on MIND, Netflix and Industrial data in terms of Recall and NDCG. The
superscript * indicates the improvement is statistically significant where the p-value < 0.05.

Dataset [ MIND [ Netflix [ Industrial
Backbone\ Variants ‘R@QO R@40 N@20 N@40 ‘R@ZO R@40 N@20 N@40 ‘R@ZO R@40 N@20 N@40
Full-Shot Setting

Base |0.0683 0.1039 0.0311 0.0399 0.0449 0.0790 0.1451 0.1375 0.0078 0.0143 0.0046 0.0066

BiasMF |Augment.[0.0719*  0.1353*  0.0272 0.0411*  |0.0531*  0.0868  0.1761*  0.1630° [0.0121*  0.0198*  0.0074*  0.0097*
Improve.5.27% T 30.22% 4 12.54% | 3.01% 1 [18.26% 1 9.87% 1 21.36% 1 18.55% 1 |55.13% 1 38.46% 1 60.87% 1 46.97% 1

Base [0.0713 0.0985 0.0325 0.0445 0.0581 0.0936 0.1848 0.1721 0.0102 0.0076 0.0188 0.0091

NCF  |Augment.|0.0760°  0.1233*  0.0288 0.0414 0.0591°  0.0968"  0.1903*  0.1785" |0.0133*  0.0087*  0.0206*  0.0108"
Improve.|6.59% © 25.18% 1 11.38% | 6.97% | [1.72% 1t 3.42% 1t 2.98% 1 3.72% 1 |30.39% 1 14.47% 1 9.57% + 18.68% 1

Base [0.0389 0.0702 0.0150 0.0219 0.0467 0.0815 0.1488 0.1424 0.0096 0.0162 0.0059 0.0076

LightGCN|Augment.[0.0788*  0.0983  0.0337°  0.0384" (0.0652*  0.1026 0.1703* 0.1606" |0.0143*  0.0225*  0.0087*  0.0107"
Improve.|102.57% 140.03% 1 124.67% 1 75.34% 1 [39.61% 1 25.89% 1 14.45% 1 12.78% 1 |48.96% 1 38.89% 1 47.46% 1 40.79% 1

Base (0.0345 0.0708 0.0127 0.0210 0.0277 0.0416 0.0855 0.0762 0.0078 0.0138 0.0050 0.0068

SGL  |Augment.[0.0732"  0.0967*  0.0367°  0.0421* |0.0788"  0.1204"  0.1958"  0.1831 |0.0133*  0.0221"  0.0080°  0.0106"
Tmprove.[112.17% 1 36.58% 1 188.98% 1 100.48% /184.48% 1 189.42% 1 129.01% 1 140.29% 1{70.51% 1 60.14% 1 60% 1  55.88% 1

Base [0.0421 0.0636 0.0155 0.0212 0.0231 0.0441 0.0810 0.0825 0.0042 0.0078 0.0026 0.0037

SimGCL |Augment.|0.0576  0.0908"  0.0232*  0.0329" |0.0567*  0.0908"  0.1782  0.1673" |0.0128"  0.0205"  0.0080"  0.0099"

Improve.|36.82% 1 42.77% 1 49.68% 1 55.19% 1 [145.45% 1 105.90% 1 120.00% 1 102.79% 1]204.76% 1 162.82% 1 207.69% 1 167.57% 1

Zero-Shot Setting

Base [0.0096 0.0165 0.0031 0.0041 0.0311 0.0769 0.0167 0.0292 0.0038 0.0068 0.0020 0.0029

BiasMF |Augment.|0.0246"  0.0373"  0.0107°  0.0135" |0.1381"  0.1490"  0.0828"  0.0584" |0.0056"  0.0103*  0.0026*  0.0040"
Improve.|156.25% 1 126.06% 1 245.16% 1 229.27% 1|344.05% 1 93.76% 1 395.81% 1 100.00% 1)47.37% 1 51.47% 1 30.00% 1t 37.93% 1

Base [0.0301 0.0383 0.0080 0.0097 0.0480 0.1158 0.0196 0.0384 0.0044 0.0022 0.0056 0.0026

NCF |Augment.[0.0424  0.0469  0.0112°  0.0122* |0.1700"  0.1774  0.0984  0.0974" |0.0051"  0.0031"  0.0088"  0.0041"
Improve.[40.86% 1 22.45% 1 40.00% 1 25.77% 1 |254.17% 1 53.20% 1 402.04% 1 153.65% 1/15.91% 1 40.91% 1 57.14% 1 57.69% 1

Base [0.0138 0.0292 0.0046 0.0078 0.0974 0.1256 0.0446 0.0415 0.0092 0.0160 0.0051 0.0070

LightGCN|Augment.|0.0196"  0.0389  0.0064°  0.0086™ |0.1371*  0.1453"  0.0697  0.0459* |0.0133*  0.0188™  0.0090*  0.0106"
Improve.[42.03% 1 33.22% 1 39.13% 1 10.26% 1 |40.76% 1 15.68% 1T 56.28% T 10.60% 1 |44.57% 1 17.50% 1 76.47% 1 51.43% 1

Base [0.0162 0.0264 0.0062 0.0074 0.0385 0.1441 0.0274 0.0579 0.0065 0.0114 0.0036 0.0050

SGL |Augment.[0.0254*  0.0450  0.0089*  0.0107* [0.1126" 0.1756  0.0384"  0.1066" |0.0111*  0.0176"  0.0066"  0.0084"
Improve.|56.79% 1 70.45% 1 43.55% 1T 44.59% 1 92.47% 1 21.86% 1 40.15% 1 84.11% 1 [70.77% 1 54.39% 1 83.33% 1 68.00% 1

Base [0.0164 0.0300 0.0055 0.0084 0.0793 0.1259 0.0336 0.0460 0.0078 0.0140 0.0042 0.0059

SimGCL |Augment.[0.0312*  0.0388  0.0098"  0.0115* |0.1508"  0.1895  0.1550* 0.1647* |0.0084" 0.0137  0.0044  0.0059

Improve.[90.24% 1 29.33% 1 78.18% 1 36.90% 1 |90.16% T 50.52% 1 361.31% 1258.04% 1|7.69% 1+ 2.14% | 4.76% 1

SOTA recommender systems, allowing us to assess
performance improvements in a model-agnostic
manner compared to baseline models. The selected
CF recommenders include non-graph methods such
as BiasMF (Koren et al., 2009) and NCF (He et al.,
2017), the GNN-enhanced method LightGCN (He
et al., 2020), and graph contrastive learning ap-
proaches SGL (Wu et al., 2021) and SimGCL (Yu
et al., 2022). Details regarding the baselines and
datasets are provided in Appendices A.1 and A.2.
The experimental results for RecLM presented in
the main text are based on llama2-7b-chat as the
base LLM. Key results using llama3.1-8b-instruct
as the base LLM are provided in Appendix A.7.

5.2 Performance Comparison

To demonstrate the effectiveness of our RecLM
in enhancing performance, particularly in cold-
start scenarios, we apply it to five common col-
laborative filtering methods. The "full-shot" set-
ting corresponds to the complete dataset, while
the "zero-shot" setting refers to the pure cold-start
condition. The Base variant applies the cold-start
recommendation paradigm to the baseline recom-
menders without any profiling enhancement via
LLMs, whereas the Augment variant integrates
RecLM into the base recommenders. Detailed set-
tings and implementation information are provided

in Appendices A.3 and A.5. The evaluation results
in Tab. 1 reveal several interesting observations.

(i) Performance Improvement in Integrated Rec-
ommenders. We consistently find that integrat-
ing RecLM with backbone recommenders leads
to enhanced performance compared to the base
variant, which relies on raw external item fea-
tures and ID-based user embeddings in both su-
pervised and zero-shot settings. This provides
strong evidence for the effectiveness of RecLM.
We attribute these improvements to two key fac-
tors: First, for supervised recommendation scenar-
ios, RecLLM leverages instruction-tuned LLMs to
generate accurate user/item profiles as auxiliary in-
formation, effectively enhancing the semantic rep-
resentation of user preferences. Second, our tuning
paradigm guides the LLMs in capturing user collab-
orative relationships, allowing for the generation of
high-quality, personalized profiles that demonstrate
strong generalization in zero-shot scenarios.

(ii) Outstanding Performance in Cold-Start Sce-
narios. This improvement arises from our innova-
tive modifications to the ID-embedding paradigm
employed in current recommenders. By incorpo-
rating external features specifically designed to ad-
dress the challenges of interaction data scarcity,
we have significantly enhanced the effectiveness of
these systems. Remarkably, we observe substantial
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Figure 2: Ablation study on the LLM tuning techniques.

performance improvements even in the relatively
sparser MIND and Industrial datasets, where data
limitations traditionally pose significant hurdles.
By leveraging our RecLLM for user and item pro-
filing, we significantly enhance the generalization
capabilities of existing recommenders.

(iii) Practicality and Scalability for Real-World
Deployment. The results from Industrial dataset
demonstrate that RecLM consistently enhances
the performance of recommenders in large-scale,
highly sparse real-world scenarios. Furthermore,
our profile generation methods can be efficiently
executed as an offline profiling system to support
online applications, making them highly practical
for real-world recommendations. To facilitate on-
line recommendation systems, user/item profiles
can be updated at regular intervals, such as daily or
weekly. The performance improvements observed
across various backbone models indicate that Re-
cLM can easily adapt to a range of business models,
significantly enhancing their overall effectiveness.

5.3 Ablation Study

We conducted extensive experiments to validate
the effectiveness of our proposed instruction tun-
ing techniques by customizing three variants of
RecLM: GPT_KD, Naive, and Mask. Detailed de-
scriptions of these variants can be found in Ap-
pendix A.4. The results of our experiments are
illustrated in Fig. 2 with following conclusions:

(i) Advantage of Collaborative Instruction Tun-
ing. The results in Fig. 2 show that using instruc-
tion tuning to capture collaborative relationships
among users and items, along with the masking tun-
ing strategy (i.e., the Mask variant), significantly
enhances performance compared to the GPT_KD
variant. This improvement suggests that our tun-
ing solution generates more precise, high-quality
profiles by leveraging collaborative information

Table 2: Performance w.rt. various aug. variants.

Dataset MIND Netflix
Backbone Variants R@20 N@20 | R@20 N@20
Base 0.0389 0.0150 | 0.0467 0.1488
. w/o User Aug. | 0.0302 0.0123 | 0.0384 0.1213
LightGEN w/o Item Aug. | 0.0719 0.0287 | 0.0505 0.1621
RecLM 0.0788 0.0337 | 0.0652 0.1703
Base 0.0345 0.0127 | 0.0277 0.0855
SGL w/o User Aug. | 0.0253 0.0093 | 0.0173 0.0578
w/o Item Aug. | 0.0719 0.0289 | 0.0502 0.1546
RecLM 0.0732 0.0367 | 0.0788 0.1958

effectively. In contrast, profiling based solely on
user interaction history has limitations, as it lacks
the guidance from collaborative insights. Conse-
quently, this approach often results in less accurate
profiles that may include noisy interaction records.
(ii) Effectiveness of the Masking-Based Tuning
Strategy. Although the Naive variant also employs
a two-round dialogue-based instruction tuning tech-
nique similar to the Mask variant, its improvement
over the GPT_KD variant is limited. This under-
scores the advantages of the masking-based tuning
strategy, which effectively utilizes responses from
the two-round dialogue to update the weights of
the LLM and guide its learning of collaborative
relationships between users.

(iii) Benefits of Reinforcement Learning-Based
Profile Generation Refinement. The results indi-
cate that the Mask variant performs significantly
worse than RecLM. This finding suggests that the
proposed reinforcement learning (RL)-based pro-
file generation refinement technique effectively ad-
dresses the noise issues and over-smoothing prob-
lems associated with the collaborative instruction-
tuning paradigm. As a result, it enables the LLM to
generate more accurate and personalized profiles.
To intuitively explore the contribution of reinforce-
ment learning to the personalization of generated
profiles, we further conducted a case study on the
MIND dataset. Details are shown in Appendix A.6.

5.4 Effectiveness of LLM-enhanced Profiling

To evaluate the impact of our LLM-powered profil-
ing system on user and item feature enhancements,
we created two RecLLM variants: one without user
feature enhancement (i.e., w/o User Aug.) and an-
other without item feature enhancement (i.e., w/o
Item Aug.). Experiment results on the MIND and
Netflix datasets using LightGCN and SGL as back-
bone models in the full-shot setting are summarized
in Table 2, leading to two major insights:

(i) User-Side Feature Enhancement. Removing
user-side enhancements significantly reduces per-
formance across datasets and models, highlighting
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Figure 3: Comparison with LLM-based Recommenders.

the importance of user profiling. Using only ID
embeddings cannot effectively model user prefer-
ences, while our method excels by extracting text
features and integrating graph-text information.
(ii) Item-Side Feature Enhancement. Exclud-
ing item-side enhancements also degrades perfor-
mance. Notably, retaining item enhancements with-
out user enhancements can perform worse than
the Base variant, due to the complex interaction
between raw and enhanced item features. Sole re-
liance on ID embeddings for users fails to capture
their preferences effectively.

5.5 Comparison with LLM-based Methods

We perform a comprehensive benchmarking of our
RecLM against existing SOTA LLM-based rec-
ommendation systems using the MIND dataset
to demonstrate the superiority of our proposed
instruction-tuning technique. This comparison in-
cludes LLM-Rec (Lyu et al., 2023), LLMRec (Wei
et al., 2024), NoteLLM (Zhang et al., 2024),
and LEARN (Jia et al., 2024). Specifically, for
NoteLLM and LEARN, our evaluation focused on
integrating their generated item embeddings with
conventional CF recommenders.

The experimental results are presented in Fig. 3.
Notably, both LLM-Rec and LLMRec yield subop-
timal outcomes, primarily due to their methodology
of generating user and item profiles through direct
API calls to the LLM, without incorporating task-
specific fine-tuning for profile generation. In con-
trast, NoteLLM and LEARN demonstrate the ca-
pability to produce high-quality item embeddings,
effectively addressing the cold-start challenge in
recommendation systems. However, they have a
significant limitation in their ability to adequately
capture and leverage the collaborative relationships
among users. Therefore, RecLM exhibits substan-

Table 3: Training efficiency of RecLM.

Dataset | Recommender | Base [ RecLM [ Cost
BiasMF 0.72s 0.85s +18.06%
NCF 0.76s 0.85s +11.84%
MIND LightGCN 0.79s 0.86s +8.86%
SGL 1.93s 2.01s +4.15%
SimGCL 2.63s 2.69s +2.28%
BiasMF 14.38s 16.42s | +14.19%
NCF 15.02s 17.17s | +14.31%
Netflix LightGCN 20.47s | 20.95s +2.34%
SGL 64.98s | 65.08s +0.15%
SimGCL 44.02s | 44.61s +1.34%
BiasMF 7.07s 8.85s +25.18%
NCF 7.58s 8.45s +11.48%
Industrial LightGCN 9.33s | 10.25s | +9.86%
SGL 32.34s | 32.87s +1.64%
SimGCL 85.41s | 86.52s +1.30%

tial performance advantages, leading to significant
improvements in the performance of base models.

5.6 Training Efficiency Analysis of RecLM

To assess the efficiency of our RecLM approach,
we perform both a theoretical complexity analy-
sis and an empirical running time test. Theoret-
ical Analysis: The time complexity of the MLP
for transferring textual features f € R% into the
model’s latent space R% is O(N x (dy x d+d x d)),
where N is the number of nodes, d; and d are the
dimensions of the text features and latent space, re-
spectively. Empirical Evaluation: The per-epoch
training time is shown in Tab. 3, conducted on a
server with NVIDIA A100 GPUs. Results show
that for larger models (e.g., GNN-based methods),
RecLM costs less than 10% extra time, and in dense
datasets like Netflix, this can be reduced to under
5%. For smaller recommenders, the maximum ad-
ditional time is about 25%. Given the significant
improvements in recommendation performance,
the incurred costs are considered acceptable.

6 Conclusion

This work introduces a novel instruction-tuning
paradigm that integrates large language models
with collaborative filtering, enhancing their abil-
ity to capture complex user-item interactions and
preferences. This model-agnostic approach easily
fits into existing recommender systems, improving
generalization in data-scarce scenarios where tra-
ditional methods falter. Key innovations include
combining external features with collaborative pat-
terns and a reinforcement learning-based frame-
work for personalized feature enhancement, tack-
ling cold-start profiling and data noise challenges.
Evaluations demonstrate the significant benefits
and compatibility of our approach with state-of-
the-art recommender systems.
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7 Limitations

In real-world scenarios, items commonly have
abundant modal information, including text, im-
ages, audio, and more. However, this work primar-
ily focuses on exploring the collaborative feature
enhancement paradigm based on textual features,
and does not fully exploit the potential of multi-
modal information. While the proposed method
can be extended to other modalities using distinct
modal encoders, it is important to note that other
modalities may introduce novel challenges and op-
portunities for feature enhancement. Thus, the ex-
ploration of these modalities represents a promising
future direction for further investigation.
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A Appendix / supplemental material

A.1 Details of Dataset

Table 4 provides a summary of the statistical in-
formation for the three datasets. The following
sections outline the specific details for each dataset:

e MIND: This large-scale dataset is designed for
news recommendation research. We selected
data from two consecutive days, assigning one
day as the training set and the other as the test
set. The raw text includes the news category, title,
and abstract.

* Netflix: It is selected from a renowned video
streaming platform, and we get the implicit feed-
back data from the Netflix Prize Data on Kaggle.
We curated two consecutive years” worth of data
based on time, utilizing one year as the training
set and the other as the test set. The raw text
information for the items was derived from the
movie titles themselves.

Industrial: It is a large-scale real dataset, which
is collected from a prominent online content plat-
form (name omitted for anonymity), serving mil-
lions of users. It comprises news articles. We
sampled data from two consecutive dates, assign-
ing them as the training set and test set, respec-
tively. The raw text information for each item is
represented by its title.

Table 4: Statistics of the experimental datasets.

Statistics MIND Netflix | Industrial
# User 57128 16835 117433
# Overlap. Item 1020 6232 72417
# Snapshot daily yearly daily
Training Set
# Item 2386 6532 152069
# Interactions 89734 1655395 858087
# Sparsity 99.934% | 98.495% | 99.995%
Test Set
# Item 2461 8413 158155
# Interactions 87974 1307051 876415
# Sparsity 99.937% | 99.077% | 99.995%

A.2 Details of Selected Base Models
This section gives a brief introduction of the se-

lected base models in this work.

* BiasMF (Koren et al., 2009): It is a matrix factor-
ization method that aims to enhance user-specific

preferences for recommendation by incorporat-
ing bias vectors for users and items.

* NCF (He et al., 2017): It is a neural network-
based method that replaces the dot-product op-
eration in conventional matrix factorization with
multi-layer neural networks. This allows the
model to capture complex user-item interactions
and provide recommendations. For our compari-
son, we utilize the NeuMF variant of NCF.

¢ LightGCN (He et al., 2020): This model lever-
ages the power of neighborhood information in
the user-item interaction graph by using a layer-
wise propagation scheme that involves only linear
transformations and element-wise additions.

e SGL (Wu et al., 2021): The model enhances
LightGCN by integrating contrastive learning
with self-supervision. It employs data augmen-
tation strategies, including random walks and
node/edge dropout, to corrupt graph structures.

¢ SimGCL (Yu et al., 2022): This work intro-
duces a straightforward contrastive learning (CL)
method that eliminates graph augmentations. In-
stead, it adds uniform noise to the embedding
space to generate contrastive views.

A.3 Performance Comparison: Setting

In the performance comparison experiments out-
lined in Sec. 5.2, we considered two distinct testing
data settings: the full-shot setting and the zero-shot
setting. The full-shot setting entailed using the orig-
inal test set as the testing data, where certain items
in the test set had appeared in the training set pre-
viously. Conversely, the zero-shot setting involved
exclusively testing items that had not been encoun-
tered in the training set. This setting was specif-
ically designed to assess the effectiveness of our
proposed RecLLM in addressing the item cold-start
scenario, where limited or no prior information is
available for certain items.

In the conducted experiments, we explored two
variants: Base and Augment. The Base variant
demonstrates the application of our proposed cold-
start recommendation paradigm by utilizing only
user-side ID embeddings and item-side raw text
embeddings, without incorporating the profiles gen-
erated by LLMs. On the other hand, the Augment
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variant involves fully integrating our proposed Re-
cLM into traditional recommenders. The compari-
son between two variants enables us to assess the
effectiveness of our approach in enhancing the per-
formance of recommenders by leveraging LLMs to
generate informative profiles.

A.4 Ablation Study: Setting

In the case of GPT_KD variant, the approach
involves exclusively fine-tuning the open-source
LLM by utilizing user profile data generated
solely through ChatGPT3.5, as discussed in
Sec. 4.2.1. Conversely, for Naive variant, the two-
turn dialogue-based instruction tuning technique
(i.e., Sec. 4.2.2) is applied based on the variant
GPT_KD, but with the tuning strategy limited to
the conventional single-turn dialogue tuning ap-
proach. As for the variant Mask, a similar two-turn
dialogue-based instruction tuning technique is em-
ployed based on the variant GPT_KD, with the
additional application of a masking-based tuning
strategy. As for Ours, it refers to RecLM, which
employs RL-based personalized feature enhance-
ment based on the variant Mask.

A.5 Implementation Details
A.5.1 Parameter-Efficient Fine-Tuning

To achieve efficient fine-tuning of LLMs while pre-
serving their inherent knowledge reasoning capa-
bilities, we employed the Parameter-Efficient Fine-
Tuning (PEFT) method. Specifically, in this study,
we chose Low-Rank Adaptation (LoRA) (Hu et al.,
2021) as the fine-tuning technique for the open-
source LL.Ms, specifically Llama2-7b-chat (Tou-
vron et al., 2023) and Llama3-8b-instruct (Dubey
et al., 2024). This approach allows us to strike a
balance between retaining the valuable knowledge
of the pre-trained models and adapting them to
specific tasks effectively.

A.5.2 Integration of RecLM into Various Base
Recommenders

Following the integration of our method into var-
ious base recommenders, we meticulously con-
ducted an extensive hyperparameter search, and
also explored the optimal approach for incorpo-
rating profile features for each recommendation
methods, ensuring a fair comparison. Specifically,
each base model is implemented with PyTorch, us-
ing Adam optimizer and Xavier initializer with
default parameters. Training batch size is set as
4096. The dimensionality of embedding vectors is

Interacted Items Similar Users with Collaborative Information

TextInfo:  Cate: Sports 000 Profile

Title: Men’s Soccer Bows Out Of The < '.' Foodie, Food and
Big East Tournament... / drink, ... NO

/' User 11451

/
D !/" [ X 13 Profile
em 472 R .., Horoscope, ... SN
X '.' NO ‘G‘)
' e

User 20522

Reward Model

\
M 00 Profile
'.' .., Popculture, ...
Yes

User 341

tem 1572

Text Info:  Cate: Movies
Title: Katie Holmes’ best fashion of

@85  user identity: Foodie, Movie buff, Sports fan; User interests: Food and drink, Horoscope,
ﬁh Movies, Soccer.
W/ORL

User identity: Sports fan, fashion enthusiast, moviegoer; User interests: Fashion, celebrity
news, pop culture.

W/RL

Figure 4: Generated profiles w/ and w/o RL.

set as 32. The learning rate is set as 1le — 3. The
coefficient for controling £ regularization term is
searchedin {le—3,1le—4,1le—5,1e—6,1le—T}.
For GNN-based models (e.g., LightGCN, SGL,
and SimGCL), the number of GCN layers is set
as 2. For SSL-based models (e.g., SGL and
SimGCL), the temperature coefficient is searched
in {0.1,0.5,1.0}.

A.6 Case Study

To intuitively explore the contribution of reinforce-
ment learning to the personalization of generated
profiles, we conducted a case study using the
MIND dataset. In this study, as shown in Fig. 4, the
target user for whom the profile is being generated
is User 49. This user has interacted with two items:
Item 472 and Item 1572. Additionally, we identi-
fied three similar users who provide collaborative
information: User 11451, User 20522, and User
341.

The user profile generated for User 49 after in-
struction tuning, but without RL tuning, contains
several irrelevant keywords related to the interacted
items, such as "Foodie," "Food and drink," and
"Horoscope." Notably, these terms also appear in
the profiles of User 11451 and User 20522, sug-
gesting that the generated profile is overly influ-
enced by too many collaborative users. In contrast,
the profile generated for User 49 after RL tuning
effectively preserves the preferences indicated in
the interaction history while incorporating relevant
implicit keywords from collaborative users. For ex-
ample, the term "pop culture" is derived from User
341’s profile. This approach provides precise and
valuable additional information for modeling User
49’s preferences. We attribute this improvement
to our proposed RL-based personalized feature en-
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Figure 5: Ablation study on the LLM tuning techniques.

hancement techniques, which effectively address
the noise and over-smoothing issues that can arise
during the instruction-tuning process.

A.7 key Experimental Results Obtained Using
Llama3.1-8b-instruct as the Base LLM.

A.7.1 Performance Comparison

To validate that our RecLLM can achieve outstand-
ing results on different open-source LLMs, we con-
duct relevant experiments on the latest open-source
LLM, llama3.1-8b-instruct. The settings are con-
sistent with the experimental settings in the main
text. The relevant experimental results are shown
in Table 5.

The experimental results indicate that our Re-
cLM can effectively enhance the performance of
traditional collaborative filtering recommendation
system models in cold-start scenarios, demonstrat-
ing the generalizability of the instruction fine-
tuning approach we proposed, which can be applied
to various open-source LLMs. Furthermore, when
comparing the results based on llama2-7b-chat with
those from 1llama3.1-8b-instruct, we observe im-
provements across most metrics. This suggests that
as the performance of the base LLMs increases, our
method can deliver even greater enhancements for
recommendation systems.

A.7.2 Ablation Study

We also conduct ablation experiments on the
proposed instruction tuning technique based on
Ilama3.1-8b-instruct, and the specific results are
shown in Figure 5. The experimental results
clearly demonstrate that the key tuning techniques
we proposed are effective across various open-
source LL.Ms, reinforcing the generalizability of
our method.

A.8 Algorithmic Description

Algorithm 1: Text-enhanced representa-
tions for ID-based recommendation frame-
work.

Input: User set U/, item set V), item text
features F,, user interaction
histories F},, user id embeddings F,,
and item id embeddings E,,.

Output: Augmented representations ég, 7,
~aug
éy 7.

1 for each item v € V do
‘ fo= MLPtext(Fv[U])
end
Generate user profiles
Py, = LLMprofile (Fu)
s Generate item profiles
P, = LLMprofile (Fv)
6 for each user u € U do
e

MLPfusion (Eu [u] ‘ |MLPP7“0j (Pu [u] ))

AW

s end

9 for each item v € V do

~aU
10 éytd =

MLPfusion (fv [’U] ’ |MLPPT0j (P” [’U] ))

11 end
12 Initialize recommender R with parameters 6
13 for epoch = 1to T do

14 for (u, v) in interaction graph G do
~ Aaug  saug

15 J==&y " &

16 L = BPR_Loss(y, D)

17 Update 6 via Adam

18 end

19 end
~QUG  AQUYJ

20 Return é;, 7, é,

A.9 Instruction Designs

In this section, we provide a comprehensive
overview of the instructions utilized for fine-tuning
at each stage of our process. We will also dis-
cuss the methodologies employed to construct both
positive and negative training samples for the rein-
forcement learning reward model.

Instruction designs for ChatGPT knowledge dis-
tillation. As shown in Figure 6(a), to facilitate
the knowledge distillation process of ChatGPT, we
leverage the textual information associated with
each user and the items they interact with as inputs
for the LLMs. The LLMs then generate user pro-
files, encompassing the user’s identity along with
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Table 5: Performance comparison on MIND and Netflix data in terms of Recall and NDCG. The superscript *

indicates the improvement is statistically significant where the p-value < 0.05.

Netflix

R@20 R@40 N@20 N@40

0.0449 0.0790 0.1451 0.1375
0.0559" 0.0871" 0.1802 0.1689"

0.0581 0.0936 0.1848 0.1721
0.0656" 0.1031* 0.1987" 0.1823"

0.0467 0.0815 0.1488 0.1424
0.0613" 0.0978 0.1622" 0.1496"

0.0277 0.0416 0.0855 0.0762
0.0792" 0.1287 0.1999" 0.1871"

0.0231 0.0441 0.0810 0.0825
0.0613* 0.1013" 0.1872" 0.1730"

0.0311 0.0769 0.0167 0.0292
0.1211* 0.1370" 0.0797" 0.0554"

0.0480 0.1158 0.0196 0.0384
0.1813* 0.1897 0.1037" 0.0994"

0.0974 0.1256 0.0446 0.0415
0.1425" 0.1601" 0.0749" 0.0481"

0.0385 0.1441 0.0274 0.0579
0.1210" 0.1880 0.0515" 0.0950"

Dataset MIND
Backbone | Variants R@20 R@40 N@20 N@40
Full-Shot Setting
BiasMF Base (0.0683 0.1039 0.0311 0.0399
Augment.|0.0839" 0.1402* 0.0331" 0.0479~
NCF Base |0.0713 0.0985 0.0325 0.0445
Augment.|0.0789" 0.1291* 0.0312 0.0442
. Base ]0.0389 0.0702 0.0150 0.0219
LightGCN| 5 o ment [0.0823* 0.1021% 0.0371 0.0424"
SGL Base ]0.0345 0.0708 0.0127 0.0210
Augment.|0.0877" 0.1123* 0.0433* 0.0539"
SimGCL Base ]0.0421 0.0636 0.0155 0.0212
Augment.|0.0617 0.0994" 0.0281 0.0343"
Zero-Shot Setting
BiasMF Base |0.0096 0.0165 0.0031 0.0041
Augment.|0.0310" 0.0446" 0.0169* 0.0192"
NCF Base |0.0301 0.0383 0.0080 0.0097
Augment.|0.0437 0.0489" 0.0136* 0.0141"
. Base |0.0138 0.0292 0.0046 0.0078
LightGCN| 4 10 ment 0.0211° 0.0417* 0.0071° 0.0100°
SGL Base |0.0162 0.0264 0.0062 0.0074
Augment.|0.0278" 0.0481* 0.0103* 0.0119~
SimGCL Base [0.0164 0.0300 0.0055 0.0084
Augment.|0.0297* 0.0354" 0.0088* 0.0103*

0.0793 0.1259 0.0336 0.0460

0.1654" 0.2003" 0.1668" 0.1694"

their respective interests.

Instruction designs for two-turn dialogue in-
struction tuning. For the instruction-tuning based
on two-round dialogues, meticulous attention has
been given to designing corresponding instructions.
As illustrated in Figure 6(b), we commence by
providing specific system instructions to stimulate
the LLMs’ comprehension of collaborative filter-
ing methods. Subsequently, in the first round of
dialogue, the input instructions encompass the in-
teraction history of several similar users, along with
the relevant details of the items involved. To ob-
tain those similar users, we employ a conventional
ID-based collaborative filtering recommendation
system, followed by similarity calculation based
on these embeddings. The expected output from
the LLMs should include user profiles for each
mentioned user in the input. Moving on to the sec-
ond round of dialogue, we explicitly prompt the
LLMs to determine, based on the acquired user
profiles and item information, whether a previously
mentioned item is likely to be interacted with by a
specific user using collaborative filtering methods.
The expected response from the LLMs should be a
binary "Yes" or "No" answer.

Instruction designs for user profile generation.
Once the instruction-tuning stage is complete, the
LLMs are equipped with the capability to generate
profiles while considering collaborative relation-

ships. In line with Figure 6(c), we have meticu-
lously designed instructions specifically for user
profile generation. Consistent with the instruction-
tuning stage, we provide explicit system instruc-
tions to stimulate the LLMs’ comprehension of
collaborative filtering methods. The input instruc-
tions encompass the interaction records of multiple
similar users (including a target user for whom the
LLMs are required to generate a profile) as well
as detailed textual information pertaining to the in-
volved items. The expected output from the LLMs
is the target user profile.

Instruction designs for item profile generation.
To ensure semantic alignment between user-side
and item-side features, our next objective, after
obtaining high-quality user profiles, is to generate
item profiles based on the user’s profile. Here, the
item profile refers to the profile of the target user
for that particular item. To accomplish this, we
adopt a two-step approach. Firstly, for items that
have user interactions, we generate item profiles by
leveraging the profiles of the interacting users. This
helps establish a connection between the users and
the items they engage with. Secondly, using the
raw embeddings of the items, we search for similar
cold-start items and employ the LLM to infer their
profiles based on semantic similarity. As depicted
in Figure 6(d), the input instructions consist of a tar-
get item and several similar items. We provide the
specific textual information of these items, along
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Algorithm 2: LLM Instruction Tuning with
Collaborative Signals.

N~

Input: Pretrained language model LLM,
user-item interaction graph G, and
user collaborative neighborhoods
Ny

Output: Fine-tuned LLM model.

# Two-phase Instruction Construction

for each user u € G.nodes do

# Phase 1: Collaborative Profile

Generation
QW =
Format Prompt(u, Nry, Vu, V.,

R(l) = LLMgenerate(Q(l))

# Phase 2: Interaction Prediction

v* = SampleBalanced(Vy, Vi)

QB = FormatPredPrompt(u,v*)

R® = I[(u,v*) € G.edges]

# Masked Sequence Training

X =[QW;RM; Q)]

Compute Log =

CE(LLM(X), Mask(R(12)))

end
# RL-based Refinement
Initialize Ry, via contrastive learning
for k =11t K do
Generate responses 7 = LLM (Q™fer)
Compute
r= R¢(Qinfer’ m) — BK L(n| ‘T‘-T‘ef)
Update LLM via PPO with L1 (r)
end
Return LLM ¢ine—tuned

with the profiles of the similar items (selected from
items that already have profiles). The expected out-
put from the LLMs is the profile of the target item,
further enhancing semantic alignment across the
recommendation system.

Positive/Negative responses construction for re-
ward model training. In Sec 4.3, we propose
personalized feature enhancement based on rein-
forcement learning as a means to address the noise
introduced by instruction-tuning and the potential
over-smoothing issue stemming from collaborative
feature enhancement. The crux of reinforcement
learning lies in training the reward model, and con-
structing high-quality positive and negative sam-
ples plays a pivotal role in this process. As shown
in Figure 6(e), for positive samples, we leverage
SOTA LLMs (e.g., ChatGPT) with a manual selec-
tion approach. For negative samples, they can be
categorized into two distinct groups. The first cate-
gory consists of profiles of similar users, which aim
to train the reward model in distinguishing more nu-
anced profiles and mitigating the over-smoothing is-
sue. The second category encompasses low-quality
responses of various types, such as missing or re-
peated profiles, thereby providing negative exam-
ples for training the reward model effectively.
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Now you are a user profile generator. | will provide you with a list of news articles that a user has clicked on in the past. Each news article contains four pieces of information: category,
subcategory, title, and abstract. Based on this information, please generate the user's profile. Here is the list of previously clicked news articles:: [Item Text Info.l], [Item Text Info.2], ...,
[Item Text Info.N]. Please provide the profile strictly in the following format: User identity: [Identity I], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].
Emphasize that only the most likely three identities and interests should be provided, and strictly adhere to the above format.

User identity: [Identity I], [Identity 2], [Identity 3]; User interests: [Interest |], [Interest 2], [Interest 3].

Instruction Designs for GPT_KD

(a) Instruction designs for ChatGPT knowledge distillation.

You are a recommendation system capable of predicting user-item interactions based on the principles of collaborative filtering. Specifically, it can be divided into two stages. In the first stage,
you will generate a user preference profile based on the user’s historical behavior. In the second stage, using the preference profile generated in the first stage, you will find users with similar
preferences and apply their historical interaction records to the target user. This allows you to determine whether the target user is likely to interact with a particular item in the future.

First Round

Each user's historical item interaction list is as follows: [User ID, item interaction list:[Item ID, Item ID, Item ID, ...]]; [User ID, item interaction list:[Item ID, Item ID, Item ID, ..]] ... [User

ID, item interaction list:[Item ID, Item ID, Item ID, ...]]. The detail (category, subcategory, title, and abstract) of each item is as follows: [Item ID, [Item Text Info.]]; [Item ID, [Item Text

iy, 'nfo]]... [tem ID, [Item Text Info.]]. Please provide the profile strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest I, [Interest 2],
[Interest 3].

User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest |], [Interest 2], [Interest 3].
User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest |], [Interest 2], [Interest 3].

User ID, profile: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest |], [Interest 2], [Interest 3].
Second Round

= Based on the user preferences and item information mentioned above, using collaborative filtering method, please determine whether User ID will interact with Item ID. Just answer Yes

il o No.

Yes / N
)] == Instruction Designs for Two-Turn Dialogue Instruction Tuning

(b) Instruction designs for two-turn dialogue instruction tuning.

You are a recommendation system capable of predicting user-item interactions based on the principles of collaborative filtering. Specifically, it can be divided into two stages. In the first stage,
you will generate a user preference profile based on the user's historical behavior. In the second stage, using the preference profile generated in the first stage, you will find users with similar
preferences and apply their historical interaction records to the target user. This allows you to determine whether the target user is likely to interact with a particular item in the future.

H Each user's historical item interaction list is as follows: [Target User ID, item interaction list:[Item ID, Item ID, Item ID, ...]]; [User ID, item interaction list:[Item ID, Item ID, Item ID, ...]] ...
g [User ID, item interaction list:[Item ID, Item ID, Item ID, ...]]. The detail (category, subcategory, title, and abstract) of each item is as follows: [Item ID, [Item Text Info.]]; [Item ID, [Item
P Text Info.]]... [ltem ID, [Item Text Info.]]. Please provide the profile of the target User ID strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3]; User interests:
[Interest 1], [Interest 2], [Interest 3]. Emphasize that only the most likely three identities and interests of the target user should be provided, and strictly adhere to the above format.

User identity: [Identity 1], [Identity 2], [Identity 3]; User interests: [Interest |], [Interest 2], [Interest 3].

Instruction Designs for User Profile Generation

(c) Instruction designs for user profile generation.

Now you are a profile generator. | will provide you with textual information about one target item as well as a list of other items with their textual information and their targeting users'
H profiles. Based on this information, please generate the user profile of this target item. The target item text information: [Item Text Info.]. Here is the list of item (text information and the
L profile of the users that the item is targeting): [Item ID: [Item Text Info], the profile of the users that the item is targeting: [Targeting Profile]]; [Item ID: [Item Text Info], the profile of the
users that the item is targeting: [Targeting Profile]] ... [Item ID: [Item Text Info], the profile of the users that the item is targeting: [Targeting Profile]]. Please provide the profile with 5
identities and 5 interests strictly in the following format: User identity: [Identity 1], [Identity 2], [Identity 3], [Identity 4], [Identity 5]; User interests: [Interest 1], [Interest 2], [Interest 3],
[Interest 4], [Interest 5].

User identity: [Identity I], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3].

Instruction Designs for Item Profile Generation

(d) Instruction designs for item profile generation.

Each user's historical item interaction list is as follows: [Target User ID, item interaction list:[Item ID, Item ID, Item ID, ...J]; [User ID, item interaction list:[Item ID, Item ID, Item ID, ...]] ...
[User ID, item interaction list:[Item ID, Item ID, Item ID, ...]]. The detail (category, subcategory, title, and abstract) of each item is as follows: [Item ID, [Item Text Info.]]; [Item ID, [Item
Text Info.]]... [Item ID, [Item Text Info.]]. Please provide the profile of the target User ID strictly in the following format: User identity: [Identity |], [Identity 2], [Identity 3]; User interests:
[Interest 1], [Interest 2], [Interest 3]. Emphasize that only the most likely three identities and interests of the target user should be provided, and strictly adhere to the above format.

Similar User identity: [/dentity /], [/dentity 2], [/dentity 3];

User identity: [Identity I], [Identity 2], [Identity 3]; User interests: [Interest 1], [Interest 2], [Interest 3]. User interests: [/nterest /], [Incerest 2, [Incerest 3)

Pos.

User identity: [/dentity 1], [/dentity 2, [/dentity 3]; User interests: [/nterest /], [Interest 2), [Interest 3].

@ Neg. Over-Smoothing Issue

Reward  Neg. User identity: [Identity |], [Identity 2]; User interests: [Interest 1], [Interest 2]. Profile Missing lssue

Model

User identity: [Identity I], [Identity |], [Identity 1]; User interests: [Interest 1], [Interest 1], [Interest I].

Neg. Profile Duplication Issue

- More Positive / Negative Responses Construction for Reward Model Training

(e) Positive/Negative responses construction for reward model training.

Figure 6: Instruction designs for RecLM
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