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Abstract

Despite their success, large language models
(LLMs) suffer from notorious hallucination is-
sue. By introducing external knowledge stored
in knowledge graphs (KGs), existing methods
use paths as the medium to represent the graph
information sent into LLMs. However, paths
only contain limited graph structure informa-
tion and are unorganized with redundant se-
quentially appearing keywords, which are dif-
ficult for LLMs to digest. We aim to find
a suitable medium that captures the essence
of structural knowledge in KGs. Inspired by
Neural Message Passing in Graph Neural Net-
works, we propose Language Message Pass-
ing (LMP), which first learns a concise facts
graph by iteratively aggregating neighbor enti-
ties and transforming them into semantic facts,
and then performs Topological Readout that
encodes the graph structure information into
multi-level lists of texts to augment LLMs.
Our method serves as a brand-new innovative
framework that brings a new perspective into
KG-enhanced LLMs, and also offers human-
level semantic explainability with significant
performance improvements over existing meth-
ods on all five knowledge graph question an-
swering datasets. Our code is available at
https://github.com/wanjunhong0/LMP.

1 Introduction

In recent years, large language models (LLMs)
have achieved vigorous development and received
extensive research attention (Achiam et al., 2023;
Touvron et al., 2023). Despite their success, LLMs
inevitably suffer from a notorious hallucination is-
sue (Zhang et al., 2023b; Huang et al., 2023), where
LLMs inadvertently generate responses that seem
plausible but are factually incorrect.

To address this issue, Retrieval-Augmented Gen-
eration (RAG) is proposed to enhance LLMs with
external knowledge, where augmenting LLMs with

*Corresponding author.

Figure 1: The workflow of vanilla LLM (a) and LLM
augmented by paths (b) and facts graph (c).

more reliable structural knowledge in knowledge
graphs (KGs) is a promising solution. Recent
works follow a two-phase paradigm that first ex-
tracts paths composed of triples from KGs using
entity pairs (Wang et al., 2024; Jiang et al., 2023),
deep reinforcement learning (Zhang et al., 2023a),
and LLMs (Sun et al., 2024; Sui et al., 2024); and
directly augments LLMs with the retrieved raw
keyword-based triples or paths. Overall, existing
methods use paths as the medium to represent the
graph knowledge sent into LLMs.

But are paths a suitable medium to represent
the rich graph knowledge for LLMs to digest?
Consider the question which team won the NBA
Finals 4-3 in the shortest time since its founda-
tion that ChatGPT encountered a typical halluci-
nation issue by making up a false score in Figure
1a, which is a superlative question and requires the
scores and champion information of all 78 NBA
finals to answer. First, path only explores the
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depth information and lacks an overview of the
graph structure (Chen et al., 2018). Path-based
methods are unable to associate the scores and
champions together because there are no direct
connections between them and fail to cover the in-
formation of all NBA finals needed in Figure 1b.
Second, the raw keyword-based paths are unor-
ganized and semantically awkward for LLMs
to digest. Even with all the necessary information
in KGs, LLM still fails at this question in Figure
1 (red dash line box) since the information is un-
organized and scattered across separate paths at
different depths. Clearly, it is much easier to digest
organized information from shallow to deep step
by step. Start with there are 78 NBA Finals to con-
sider. Then, find champions with 4-3 score. Finally,
provide their foundation time. Additionally, raw
paths only contain redundant sequentially appear-
ing keywords, which are semantically awkward for
LLMs (Wu et al., 2023).

Since the original KGs are obviously too com-
plex and noisy for LLMs and paths are limited in
their ability to serve as the medium, we want to
find a suitable medium that captures the essence
of structural knowledge in KGs. We draw inspira-
tion from Graph Neural Networks (GNNs), which
learn a concise graph that captures high-level fea-
tures and patterns using Neural Message Passing
mechanism (Gilmer et al., 2017) and Readout func-
tion (Xu et al., 2019). But directly converting the
knowledge stored in neural message passing em-
bedding space for LLMs to understand is difficult.
To overcome this, we propose a novel framework
called Language Message Passing (LMP), where
message passing and final question answering are
both performed by LLMs in text space to ensure
seamless knowledge transfer. Specifically, as in
Figure 1c, we first perform multi-layer language
message passing on KG that iteratively filters out ir-
relevant relations with sampling, aggregates neigh-
bor entities, transforms raw keyword-based entities
information into summarized facts and pools the
original complex graph into a concise facts graph
where each node is a summarized fact. Next, we
conduct Topological Readout that performs Depth-
First Search (DFS) on the facts graph while assign-
ing the multi-level lists numbering for each node,
which encodes both depth and width information
of the graph. We augment LLM with the multi-
level lists of summarized facts, which are one of
the most widely-used structural ways in texts to or-
ganize information hierarchically, making it more

informative and easier for LLM to digest. The
advantages of LMP can be summarized as follows:
• Brand-new innovative perspective: To the best

of our knowledge, LMP is the first work based
on message passing instead of path exploration
in existing methods. We incorporate the spirit
of GNNs and their benefits into KG-enhanced
LLMs, which brings new insight into collaborat-
ing LLMs with other well-established methods
from different domains for future works.

• Human-level semantic explainability: Unlike
existing methods that only offer keyword-based
paths to interpret the reasoning process, the facts
graph in LMP provides semantic facts that con-
tain the entire process of LLM digesting graph
information from shallow to deep progressively,
offering step-wise human-level explainability.

• Effective and robust framework: We validate
the effectiveness of LMP on five knowledge
graph question answering (KGQA) benchmarks,
where LMP achieves SOTA results over exist-
ing methods. Additionally, LMP demonstrates
significant robustness to noisy KGs, which are
frequently encountered in real-world scenarios.

2 Related Works

2.1 Graph Neural Networks

Graph Neural Networks have become the crite-
rion in graph representation learning. The mes-
sage passing of GNNs includes retrieval, sampling,
aggregation, transformation, pooling, and classifi-
cation. Initially, k-hop ego-net of the target node is
retrieved and node sampling is subsequently con-
ducted to reduce computational costs (Hamilton
et al., 2017). After that, each node aggregates
neighborhood information and updates node rep-
resentation using neural transformation (Kipf and
Welling, 2017; Veličković et al., 2018). Then, pool-
ing combines highly relevant nodes into a hyper-
node (Ying et al., 2018). After several iterations,
the final representation is used for classification.

2.2 KG-enhanced LLMs

Early studies of KG-enhanced LLMs encode the
structural knowledge in KGs as embeddings and in-
corporate it with the underlying neural networks of
LLMs during pre-training (Yu et al., 2022) and fine-
tuning(Zhang et al., 2022; Sun et al., 2022). How-
ever, KG embedded in LLM requires high compu-
tational costs for training, is limited with smaller
and less capable LLMs, and also sacrifices the nat-
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Figure 2: LMP first condenses the original noisy and complex KG (left part) into the facts graph (right part), which
iteratively samples the relevant relations of the topic entity (highlighted in orange) in the question, aggregates
neighbor entities connecting with those relations, and transforms the aggregated neighborhood information into
semantic facts using LLM while pooling the aggregated entities into hyper-entities to form the facts graph. At last,
we conduct Topological Readout that performs DFS on the facts graph from the topic entity as the root node while
assigning the multi-level lists numbering for each node (bottom part) and then augment LLM to answer the question.

ural explainability in KGs (Sun et al., 2024). To
address those limitations, recent works retrieve and
translate structural knowledge from KGs to textual
prompts for augmenting LLMs. To retrieve knowl-
edge from KG, most methods extract paths com-
posed of triples from KG. RoK (Wang et al., 2024)
construct paths based on entity pairs, KnowGPT
(Zhang et al., 2023a) uses deep reinforcement learn-
ing, ToG (Sun et al., 2024) and RoG (Luo et al.,
2024) employ LLMs to extract paths. Although
some works conduct BFS-like approaches on KG
(Wen et al., 2024), the knowledge retrieved still is
presented in collection of paths. As for feeding
knowledge into LLMs, all these methods augment
LLMs with raw triples or paths. In our work, we
incorporate the message passing mechanism and
learn a facts graph to better represent the structural
knowledge in KGs.

3 Methods

Our task is knowledge graph question answering
(KGQA) based on a natural language question q
and knowledge graph G. We define the knowl-
edge graph as G = (E ,R,X ) where E , R, and X
represent the entity set, relation set, and text set,
respectively. The text set X is the text descriptions
(e.g. entity names) of entity set E . The topic entity

eq
1 of question q can be obtained by entity linking

techniques (Baek et al., 2023; Sun et al., 2024).

3.1 Language Message Passing

Neural Message Passing iteratively aggregates
neighbor nodes and transforms their representa-
tions by projecting them into new representation
spaces through neural networks(Xu et al., 2019),
which allows GNNs to learn increasingly abstract
and informative representations of the graph struc-
ture and node features. To ensure seamless knowl-
edge transfer from graph to text for final question
answering, we propose Language Message Passing
that leverages the knowledge generalization and
processing abilities of LLMs to empower Message
Passing instead of neural networks. However, di-
rectly performing message passing in GNN’s fash-
ion that all nodes are updated in each layer is very
computationally expensive for LLMs. We imple-
ment a simplified scheme that in l-layer language
message passing is only performed on the l-hop re-
lations and neighborhoods of the topic entity, where
each node/entity is only updated once during multi-
layer language message passing. Unlike the nodes

1We only showcase the question with one topic entity for
simplicity. For question with multiple topic entities, we simply
perform multi-layer language message passing and Topologi-
cal Readout for each one of them.
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in each layer of GNN are in different representation
spaces projected by different neural networks, the
nodes in our approach are in a common shared text
space across layers, where LMP does not need to
align the representation space in each layer.

As in Figure 2, LMP performs multi-layer lan-
guage message passing on KG that iteratively: 1).
samples top-K question-related l-th hop relations
of the topic entity; 2). aggregates the neighborhood
information for each selected relation; 3). trans-
forms aggregated graph information into semantic
summarized facts and pools the aggregated enti-
ties into hyper-entities. After multi-layer language
message passing, we get a facts graph where each
node is a summarized fact. The detailed algorithm
of LMP is shown in Appendix A.1.

3.1.1 Sampling
Since the scale of KGs like Freebase is enormous
and the neighborhoods grow exponentially with the
depths increased, performing multi-layer language
message passing directly on the question-related
subgraph could be extremely time-consuming.
Moreover, not every relation is relevant to the ques-
tion, so augmenting LLM with irrelevant informa-
tion could bring noise and thus hinder its perfor-
mance. To address these issues, for l-th layer of
language message passing we first perform sam-
pling on the l-hop relations R(l) ∈ R of the topic
entity to select top K most relevant relations based
on the question q and summarized facts from the
previous layer H(l−1) as:

R̂(l) = TopK(R(l) | H(l−1), q), (1)

where H(0) is initialized as an empty set. We
use LLM to perform the TopK operation for bet-
ter performance and the prompt is in Appendix
A.3. This operation can also be implemented using
lightweight models (Sun et al., 2024) that measure
text similarity such as BM25 or SentenceBERT.

3.1.2 Aggregation
After sampling, we obtain K l-hop relations R̂(l)

of topic entity for l-th layer of language message
passing. To gain an overview of the l-hop neigh-
borhood information, we aggregate the connecting
entities of each selected relation r̂

(l)
k ∈ R̂(l):

a
(l)
k = Aggregate(X(l−1), r̂

(l)
k , X

(l)
k ), (2)

where X(l−1) and X
(l)
k denote the texts of l − 1

and l-hop neighbor entities of topic entity with r̂
(l)
k

connecting between them. X(0) is the text descrip-
tion of the topic entity. The Aggregate operation
is a predefined prompt without LLM involvement
detailed in Appendix A.4.

Our aggregation offers two advantages over path-
based methods. First, our aggregation prompt is
token-efficient in describing neighborhood infor-
mation and use up to 2/3 fewer tokens than triples
with redundant head entities and relations. Sec-
ond, and most importantly, the aggregation opera-
tion serves as the cornerstone of the robustness of
LMP in addressing the challenges posed by incom-
plete and noisy KGs in real-world scenarios such
as missing relations and entities. By aggregating
neighborhood information, LMP gains an overview
of the local structure of graph, thereby minimizing
the impact of missing entities and relations.

3.1.3 Transformation
Since the raw aggregated information is still too
lengthy and noisy containing only keywords of
relation and entity names, we want to make it con-
cise and further translate it into a format that LLM
can better digest. Therefore, we transform the ag-
gregated neighborhood information a

(l)
k for each

selected relation to summarize while retaining only
question-related information:

h
(l)
k = Transform(a

(l)
k | H(l−1), q), (3)

where H(l−1) is summarized facts from the pre-
vious layer. We use LLM to conduct Transform
operation and the prompt is in Appendix A.5.

Unlike existing methods that augment LLM with
the raw paths, we rarely see deep learning methods
that send the raw features directly into downstream
tasks without multiple transformation operations
to learn the hierarchical and complex relationships
within them. With our multiple Transform opera-
tions, LLM gains the understanding of 1-hop graph
information before moving to the next-hop, which
progressively digests the graph information, from
shallow to deep and from easy to hard.

3.1.4 Pooling
Along with transformation that summarizes aggre-
gated neighborhood information a

(l)
k for each se-

lected relation, we pool those neighbor entities in-
volved in aggregation into one hyper-entity and
assign the summarized fact h(l)k as its text descrip-
tion:

ê
(l)
k = Pool(E

(l)
k ), (4)
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where E
(l)
k is the l-hop neighbor entities of the

topic entity. The relations connected to pooled
entities above are linked to the hyper-entity ê

(l)
k .

Since the question-related subgraph may still be
too complex with hundreds or even thousands of
nodes, we can safely reduce the size of the graph
by pooling the l-hop neighbor entities of the topic
entity for each selected relation into a hyper-entity
where the information from their text descriptions
is transformed into summarized fact.

3.2 Topological Readout
After L layers language message passing, we get a
facts graph Ĝ = (Ê , R̂,H) where Ê , R̂, andH are
the pooled hyper-entity set, question-related rela-
tion set, and summarized facts serving as the text
description set of Ê . To preserve the graph struc-
ture information, we perform Topological Readout
from the facts graph and augment LLM for the
question answering:

answerq = LLM(Readout(Ĝ), q). (5)

The Readout operation performs DFS on the facts
graph from the topic entity as the root node and as-
signs the multi-level lists numbering for each node
in Figure 2. So the facts graph is translated into
a multi-level lists of summarized facts, where the
list numbers like 1. and 1.1 represent the depth
and 1.1 and 1.2 represent the width information of
the graph. The multi-level list is one of the most
widely used structural ways in texts to organize
information hierarchically, which is more informa-
tive and easier for LLM to digest. The detailed
algorithm is presented in Appendix A.2. At last,
we augment LLM with multi-level lists of summa-
rized facts to answer the question. The question
answering prompt is in Appendix A.6.

Unlike only augmenting LLM with the raw paths
to answer the question, our approach not only pre-
serves the graph structure information but also the
step-wise process of LLM searching and digesting
information in KG from shallow to deep progres-
sively. This helps LLM to break down a complex
question and solve it step by step. Moreover, our
facts graph offers explainability with human-level
semantic facts to track the reasoning process of
LLM, whereas existing methods only provide paths
composed of keywords to interpret their results.

4 Experiments

In this section, we aim to answer questions as fol-
lows. Q1: How does LMP perform against existing

methods? Q2: How does LMP perform with differ-
ent LLMs? Q3: How does the noise in KG affect
LMP? Q4: How efficient is LMP compared with
others? Q5: How do components and hyperparam-
eters impact LMP? Q6: How does LMP perform
in different types and depths of the question? Q7:
What explainability does LMP provide?

4.1 Experiment Setups

4.1.1 Datasets & Knowledge Graph
We evaluate LMP on five KGQA datasets: We-
bQSP (Yih et al., 2016), CWQ (Talmor and Berant,
2018), and GrailQA (Gu et al., 2021) for multi-hop
QA; Simple Questions (Bordes et al., 2015) for
single-hop QA; WebQuestions (Berant et al., 2013)
for open-domain QA. For all datasets, we follow
the settings from previous work (Sun et al., 2024).
We use Freebase as KG on all datasets (Bollacker
et al., 2008), which contains over 120 million enti-
ties and 20 thousand relations.

4.1.2 Baselines
We compare our method with three types of base-
lines, namely LLMs only, fine-tuning, and prompt-
ing. The descriptions of baselines are in Appendix
B. For all baselines, we report the best results with
the most powerful LLM in their original papers.

4.1.3 Implementation Details
LMP is a plug-and-play framework compatible
with any open-source or closed API LLMs. We use
Llama-2-70B, Llama-3-70B, ChatGPT, and GPT-4
as backbone LLMs, where version of LLMs are
detailed in Appendix D.1. The temperature for all
LLMs is set to 0. LMP has two main hyperparame-
ters: width K controlling the number of relations
kept in each layer, and depth L determining the
number of layers of language message passing. De-
tailed experiment settings in Appendix D.2. The
constraint enforcement mechanism with retry is
implemented for our sampling and transformation
operations to ensure that LLMs produce the de-
sired outputs, as detailed in Appendix A.7. For all
datasets, exact match accuracy (Hits@1) is used
as the evaluation metric following previous works
(Sun et al., 2024; Xu et al., 2024) with F1 score in
Appendix E.1.

4.2 Effectiveness Analysis (Q1 & Q2)

For Q1, the main results are shown in Table 1.
Clearly, LMP with GPT-4 achieves the best results
on all datasets with a significant margin over all
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Models
Multi-hop Single-hop Open-domain

WebQSP CWQ GrailQA Simple Questions WebQuestions

without knowledge graph

LLMs only
IO + ChatGPT (Brown et al., 2020) 63.3 37.6 29.4 20.0 48.7
CoT + ChatGPT (Wei et al., 2022) 62.2 38.8 28.1 20.3 48.5
SC + ChatGPT (Wang et al., 2023) 61.1 45.4 29.6 18.9 50.3

with knowledge graph

Fine-tuning

DECAF (Yu et al., 2023) 82.1 70.4 - - -
RoG (Luo et al., 2024) 85.7 62.6 - - -
KG-Agent (Jiang et al., 2024) 83.3 72.2 - - -
RRA (Wu et al., 2023) 79.4 - - - 73.7

Prompting

ToG-R + GPT-4 (Sun et al., 2024) 81.9 72.5 80.3 58.6 57.1
ToG + GPT-4 (Sun et al., 2024) 82.6 67.6 81.4 66.7 57.9
EffiQA + GPT-4 (Dong et al., 2025) 82.9 69.5 78.4 76.5 -
FiDeLis + GPT-4 (Sui et al., 2024) 84.4 71.5 - - -
KG-CoT + GPT-4 (Zhao et al., 2024) 84.9 62.3 - 86.1 68.0

LMP + Llama-2-70B 84.3 59.6 79.5 74.4 76.5
LMP + Llama-3-70B 89.6 72.5 80.6 80.0 76.6
LMP + ChatGPT 87.2 72.6 82.5 79.2 77.9
LMP + GPT-4 90.0 82.2 89.3 86.7 80.4

Table 1: The exact match accuracy (%) of different models in 5 benchmark datasets over 3 distinct domains. The
boldface indicates the best performance in the overall results and the underline indicates the second best.

Models Llama-2-70B Llama-3-8B Llama-3-70B ChatGPT GPT-4 o1-mini
WebQSP CWQ WebQSP CWQ WebQSP CWQ WebQSP CWQ WebQSP CWQ WebQSP CWQ

without knowledge graph

CoT 57.4 39.1 67.7 36.8 71.4 43.0 62.2 38.8 67.3 46.0 75.2 54.6
LMP Gain +46.9% +52.4% +31.6% +77.4% +25.5% +68.6% +40.2% +87.1% +33.7% +78.7% +21.8% +53.5%

with knowledge graph

ToG 63.7 53.6 64.4 53.2 - - 76.2 58.9 82.6 72.5 - -
EffiQA - - 58.3 37.4 - - 65.2 52.1 82.9 69.5 - -
LMP Gain +32.3% +11.2% +38.4% +22.7% - - +14.4% +23.3% +8.6% +13.4% - -

LMP 84.3 59.6 89.1 65.3 89.6 72.5 87.2 72.6 90.0 82.2 91.6 83.8

Table 2: The exact match accuracy (%) of different models under different LLM backbones. The gain percentage
with external knowledge is calculated with the best (boldface) and the second best (underlined).

other baselines. Moreover, the second best results
are mostly achieved by LMP with less capable
LLMs, showcasing the superiority of our meth-
ods. Without KG, LLMs only methods obtain the
worst results due to the lack of domain-specific
knowledge. Compared with fine-tuning methods
that have natural advantages from training over
prompting methods, LMP still has significant per-
formance improvement. Specifically, LMP is 4.9%
better than RoG on WebQSP and is 13.9% better
than KG-Agent on CWQ. It is worth mentioning
that LMP does not need parameter learning and is
completely zero-shot (i.e., don’t need any example
designed by human). Compared with other prompt-
ing counterparts, LMP also leads by a significant
margin. Even with Llama-2-70B or Llama-3-70B,

LMP still has comparable or better performance
than other methods with GPT-4.

For Q2, we examine how different backbone
LLMs affect LMP in Table 2 and add Llama-3-8B
and o1-mini as backbone LLMs to further inves-
tigate the impact of smaller and more capable re-
cent LLMs. We discover that LMP also performs
relatively well with smaller LLMs, where it out-
performing any baselines with more capable larger
LLMs in WebQSP dataset and is only behind KG-
enhanced methods with GPT-4 in CWQ dataset.
LMP harnesses the inherent strengths of LLMs in
text summarization and comprehension, tasks that
even smaller LLMs are well capable of, rather than
more demanding tasks such as numerical scoring of
triples for path exploration in ToG, which less capa-
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with ChatGPT LMP CoT

Noise Level 0% 20% 40% 60% 80% -

WebQSP 87.2 84.5 82.8 80.3 79.2 62.2
CWQ 75.2 69.0 64.1 61.5 57.1 38.8

Table 3: The exact match accuracy (%) of LMP under
different levels of noise in KG.

ble smaller LLMs often struggle with. Furthermore,
LMP’s performance rises alongside more capable
LLMs with increasing question answering abilities,
where LMP still achieves a 21.8% and 53.5% im-
provement with more recent o1-mini compared to
CoT with it. Interestingly, we discover that LMP
with the least capable Llama-2-70B among back-
bone LLMs still beat CoT with the most capable
o1-mini. Overall, LMP gains average 51.5% and
20.5% performance improvements over baselines
without and with external knowledge respectively.

4.3 Robustness Analysis (Q3)

To simulate the real-world scenario where KGs are
often incomplete and noisy, we randomly remove a
certain percentage of relations and entities names in
KG. For unnamed entities, we perform additional
aggregation operation to gather their neighborhood
information as surrogates for their names, This
process does not rely on LLMs and thus does not
introduce additional complexity to our method. As
shown in Table 3, the increasing noise and incom-
pleteness of KG have relatively small impact on
LMP, showing its great robustness empowered by
aggregation. Moreover, even with 80% of noise,
LMP still gains an average 37.5% improvement
over vanilla LLM. The reason behind this is quite
intriguing that our aggregation and transformation
combination only need a small amount of related
information to make an accurate prediction on the
missing pieces since it gain an overall understand-
ing of the graph. Take the example of missing 48
entity names out of 50 about states in USA, in raw
triples format (unknown, contains, California), (un-
known, contains, unknown), (unknown, contains,
Florida), ..., it is unclear what "unknown" repre-
sents and whether the "unknown" head entities refer
to the same thing. But when we aggregate triples in
neighborhoods fashion (unknown, contains, [Cali-
fornia, unknown, Florida, ...]), it becomes evident
that the "unknown" head entity is the USA and any
"unknown" in tail entities are the states of USA.
Transformation leverages the inherent knowledge

Models WebQSP CWQ

# calls # tokens # calls # tokens

ToG 16.7 6351 25.6 7935
FiDeLiS 10.7 2452 15.2 2741
LMP 5.3 1564 9.5 2474

Table 4: The average number of calls and token usage
for LLM (ChatGPT) per question.

CWQ GrailQA

LMP without aggregation 72.6 78.8
LMP without transformation 73.8 80.4
LMP without readout 67.0 64.0

LMP-path 64.0 75.0
LMP 75.2 82.6

Table 5: The EM accuracy (%) of the variants of LMP.

of LLM and fills out these missing pieces with ease,
which offers our method great robustness in real-
world scenario where KGs are often incomplete.

4.4 Efficiency Analysis (Q4)
LMP inherently has efficiency advantages over fine-
tuning methods since it is a train-free plug-and-play
framework, and also excels in prompting methods,
where LMP has the least call number and token
usage as shown in Table 4. Let search width and
depth as K and L respectively. LMP calls LLM
(2L+1) times per question for sampling and trans-
formation in each layer and plus the final question
answering, which is much more efficient than ToG
(2LK +K + 1) and FiDeLis (LK +K + 1). No-
tably, the complexity of these path-based methods
is width K dependent since they need to explore
each path separately, whereas LMP whose com-
plexity is width K irrelevant since LLM can sum-
marize multiple facts at once. As for tokens usage,
LMP is also tokens efficient thanks to aggregation
operation that saves up to 2/3 tokens than path-
based methods using raw paths which contain the
redundant head entities and relations names. More-
over, methods like ToG and FiDeLis use in-context
exemplars to guide the path exploration, whereas
LMP is zero-shot leveraging the natural strength of
LLM in text summarization.

4.5 Ablation and Hyperparameters (Q5)
We conduct ablation studies with ChatGPT as back-
bone LLM in Table 5 and we (1) remove aggrega-
tion and send raw triples into LLM; (2) remove
transformation and augment LLM with raw ag-
gregated neighborhood information; (3) remove
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Figure 3: Hyperparameters analysis of LMP.

Figure 4: The performance of methods on various types
(a) and depths (b) of questions on CWQ dataset.

readout and use the last layer of language message
passing to augment LLM. Each component shows
a unique contribution to the overall performance.
In addition, to validate our semantic summarized
facts vs. keyword-based paths inputs, we augment
LLM with the triples mentioned in facts graph as
LMP-path to ensure both approaches have the same
extracted knowledge from KG. The performance
of keyword-based LMP-path downgrades 11% on
CWQ and 8% on GrailQA, which indicates that
the raw keyword-based paths are unorganized and
semantically awkward for LLMs. We conduct ad-
ditional experiments on the error propagation and
the impact of the previous stage on its subsequent
stage in Appendix D.3.

We also analyze the hyperparameters influence
of LMP in Figure 3, where the performance in-
creases at first with depth because more useful in-
formation is explored. Increasing the depth too
much leads to a decline in performance, as the
information that is too distant from the topic en-
tity becomes irrelevant and introduces noise. As
for width, the performance improvements become
more and more slim with width increasing.

4.6 Types and depths of the question (Q6)

We present the performance of vanilla LLM, ToG,
and LMP with ChatGPT on composition, conjunc-
tion, superlative, and comparative types of ques-
tions in CWQ dataset. In Figure 4a, LMP has huge
performance improvement over vanilla LLM and
ToG on all types of questions, especially on su-
perlative and comparative questions that require
information from all possible candidates to answer.

Figure 5: The thinking process of LMP with facts graph.

This demonstrates that the facts graph of LMP is
more informative in representing the knowledge
from KG than the paths used by ToG.

We further investigate how LMP performs on
different depths of questions in Figure 4b, where
the complexity and difficulty of the question in-
crease along with the depth. On the shallow depth
questions of 1-hop and 2-hop that emphasize the
ability of knowledge extraction, LMP outperforms
vanilla LLM by about 40% and path-based ToG by
20%, indicating LMP is able to accurately locate
and extract needed knowledge from KG. On the
deep questions of 3-hop and 4-hop that emphasize
the step-wise reasoning ability, LMP still outper-
forms vanilla LLM by about 30% and path-based
ToG by 20%, which proves the workflow of LMP
that digesting information from shallow to deep
progressively to be crucial in solving real-world
complex problems.

4.7 Human-level Explainability (Q7)

In Figure 5, we showcase the explainability of our
facts graph with a question from CWQ dataset,
which asks about Which of JFK’s brothers held his
governmental position before November 6, 1962.
For humans the above complex question can be
naturally decomposed into sub-questions that are
easier to solve: finding JFK’s brothers, who holds
governmental position, and the duration of that po-
sition. The facts graph also exhibits such ability in
Figure 5 from top to bottom, showcasing the pro-
cess of LLM breaking down a complex question
and accordingly searching and digesting informa-
tion on KG from shallow to deep progressively. At
depth 1 and 2 on KG (blue and yellow boxes), LMP
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is trying to find the JFK’s siblings and locate 8 of
them. Notably, LMP identifies the irrelevant in-
formation (boldface text) while summarizing facts
and stops further exploration. And then at depth
3 (purple boxes), LMP finds 3 of 8 siblings are
male who are brothers of JFK and 2 of them held
governmental positions. Lastly at depth 4 (green
boxes), LMP learns the start time of those positions
and concludes the correct answer for the question
(highlighted text). Compared with our facts graph
that contains the complete thinking process of LLM
solving the question, the path in the bottom part of
Figure 5, even though it is correct, only provides us
the keywords of reaching the correct answer on KG
and thus offers limited explainability. We provide
additional case studies in Appendix E.3.

5 Conclusion

In this paper, we propose Language Message Pass-
ing that iteratively aggregates and transforms neigh-
borhood information into summarized facts and
then augments LLM with topological readout from
the facts graph where nodes are summarized facts.
LMP achieves the SOTA performance on all 5
knowledge graphs question answering datasets and
offers human-level semantic explainability.

6 Limitations

We consider that our limitations are mainly in two
aspects. Firstly, due to budget constraints, we only
used the Llama from Meta and GPT series from
OpenAI in our experiments for open source and
close API LLMs. However, proposed LMP is a
universal framework which can be equipped with
various LLMs. Secondly, the topic of this paper
focuses on KG-enhanced RAG, and our setting con-
centrates on the scenarios where a KG is provided.
Although we demonstrates the practical applica-
bility of LMP in real-world scenarios, there are
still various types of knowledge sources such as
documents and websites that need to also be consid-
ered in real-world scenarios. We leave exploration
with other LLMs and incorporating LMP with other
types of knowledge source as future work.
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Appendices

A Implementation Details of LMP

For reproducibility, here we present the implemen-
tation details of LMP, including the algorithms,
prompts, and constraint enforcement mechanism
with retry we used.

A.1 Algorithm for Language Message Passing

We show the detailed algorithm of Language Mes-
sage Passing in Algorithm 1. Note since LLM can
summarize multiple facts at the same time, the ag-
gregation and transformation for each layer as in
lines 8 and 9 are processed only once and we write
in a such way for better clarification purpose.

Algorithm 1: Language Message Passing
Input: question q, KG G = (E ,R,X ),

topic entity Eq

Parameter: width K, depth L
Output: answer of question q

1 Initialize Ê , R̂,H ;
2 for l ∈ L do
3 Get (E(l), X(l), R(l)) of Eq in G;
4 Initialize Ê(l), R̂(l), H(l);
5 R̂(l) ← R(l) using Eq. (1);
6 R̂ ← R̂ ∪ R̂(l) ;
7 for k ∈ K do
8 a

(l)
k ← (X(l−1), r̂

(l)
k , X

(l)
k ) using Eq.

(2) ;

9 h
(l)
k ← a

(l)
k using Eq. (3) ;

10 ê
(l)
k ← E

(l)
k using Eq. (4) ;

11 Ê(l) ← Ê(l) ∪ ê
(l)
k ;

12 H(l) ← H(l) ∪ h
(l)
k ;

13 end
14 Ê ← Ê ∪ Ê(l) ;
15 Ĥ ← Ĥ ∪H(l) ;
16 end
17 z ← Ĝ = (Ê , R̂,H) using Eq. (5) ;
18 return answer = LLM(Z, q)

A.2 Algorithm for Topological Readout

We show the detailed algorithm of Topological
Readout in Algorithm 2. Note the "+" signs in
line 10 and 18 mean text concatenation.

Algorithm 2: Topological Readout

Input: facts graph Ĝ = (Ê , R̂,H), topic
entity eq

Output: Summary Outlines Z
1 Initialize stack S, index dict D;
2 S.put(eq) ;
3 D[eq] = ’ ’ ;
4 while S is not null do
5 top = S.pop() ;
6 if top.neighbors() is not null then
7 idx = 1 ;
8 for en in top.neighbors() do
9 if en is not visited then

10 D[en] = D[top]+ idx.str()
+’.’ ;

11 S.put(en) ;
12 idx+ = 1 ;
13 end
14 end
15 end
16 end
17 for ei in D.keys() do
18 zi = D[ei] + hi
19 end
20 return Z

A.3 Sampling Prompt

The sampling prompt for the first layer of language
message passing is slightly different from deeper
layers, since there is no summarized fact from pre-
vious layer at the first layer. The sampling prompts
are listed as follows:

Sampling prompt at layer 1 of LMP

Given the question, we have the topic of
the question and its relations.
question: ⟨Question⟩
topic: ⟨Topic⟩

Please select top-K relations from the op-
tions below to explore about the topic to
answer the question and just return se-
lected relations in a numbered list with-
out explanation.
options: ⟨Relations⟩

where ⟨Question⟩ is the question to answer and
⟨Topic⟩ is the topic entity name. The ⟨Relations⟩
is the relations we want to reduce and only keep
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top-K most relevant ones.

Sampling prompt at layer 2+ of LMP

Given the question and its topic, we have
some summarized facts and their rela-
tions.
question: ⟨Question⟩
topic: ⟨Topic⟩

Please select top-K relations from the op-
tions below to explore about the topic to
answer the question and just return se-
lected relations in a numbered list with-
out explanation.
1. fact: ⟨Fact1⟩ options: ⟨Relations1⟩
2. fact: ⟨Fact2⟩ options: ⟨Relations2⟩
. . .
K. fact: ⟨FactK⟩ options: ⟨RelationsK⟩

Since we select top-K relations from previous
layer, we also have K summarized facts from each
one of them. Here we present ⟨Fact⟩ as each
summarized fact with its corresponding relations
⟨Relations⟩.

A.4 Aggregation Prompt

For each head entity and its connected relation,
we aggregate the neighbor entities all at once as
follows:

Aggregation prompt of LMP

The entity ⟨HeadEntity⟩ has relation
⟨Relation⟩ with following entities:
⟨TailEntity1⟩,
⟨TailEntity2⟩, . . . , ⟨TailEntityn⟩.

where ⟨HeadEntity⟩ is the head entity with its con-
nected relation ⟨Relation⟩, and one head entity can
be connected to multiple tail entities ⟨TailEntity1⟩,
⟨TailEntity2⟩, . . . , ⟨TailEntityn⟩ through one re-
lation.

A.5 Transformation Prompt

Similar to the sampling prompt, our transforma-
tion prompt for the first layer of language message
passing is also slightly different from deeper layers,
since there is no summarized fact from previous
layer at the first layer. The transformation prompts
are listed as follows:

Transformation prompt at layer 1 of LMP

Given the question, we have K facts
about its topic and related relations that
may helpful to answer the question.
question: ⟨Question⟩
topic: ⟨Topic⟩

Please summarize each following fact
while only keeping every relevant infor-
mation about the question and just re-
turn all summarized facts as following
order in the same numbered list without
explanation.
facts:
1. ⟨AgregatedInformation1⟩
2. ⟨AgregatedInformation2⟩
. . .
K. ⟨AgregatedInformationK⟩

where ⟨Question⟩ is the question to answer for
our task and ⟨Topic⟩ is its topic entity name. We
transform the aggregated neighborhood informa-
tion AgregatedInformation for each relation in
top-K selected relations.

Transformation prompt at layer 2+ of LMP

Given the question, we have K facts with
some background information related to
them and the topic.
question: ⟨Question⟩
topic: ⟨Topic⟩
background: ⟨Facts⟩

Please summarize each following fact
while only keeping every relevant infor-
mation about the question and just re-
turn all summarized facts as following
order in the same numbered list without
explanation.
facts:
1. ⟨AgregatedInformation1⟩
2. ⟨AgregatedInformation2⟩
. . .
K. ⟨AgregatedInformationK⟩

where ⟨Facts⟩ are the summarized facts from previ-
ous layer of language message passing. Note only
the facts that associated with the selected top-K
relations will be mentioned here.

15437



A.6 Question Answering Prompt

Question Answering of LMP

Based on the given the facts and your own
knowledge, please the answer the ques-
tion as simple as possible and only return
all the possible answers in a numbered
list.
facts: ⟨SummaryOutlines⟩
question: ⟨Question⟩

where ⟨SummaryOutlines⟩ are the summary out-
lines that readout from the all the facts graph for
each topic entity after multi-layer of language mes-
sage passing.

A.7 Constraint Enforcement Mechanism with
Retry

In case of LLM fails to accomplish the operations
in LMP, we implement a retry strategy for sam-
pling and transformation operations, where the
maximum retry limits are set to 5 and temperature
of LLMs increases 0.2 per retry. If the output of
LLM still fails to meet our requirement after three
times of retries, we directly ask LLM to answer the
question without knowledge augmentation.

We also implement constraint enforcement
mechanism to ensure that LLM works as we in-
tended. For sampling, we ask LLM to select top K
question-related R̂(l) relations and return in a num-
bered list. If LLM returns less than K relations, we
combine the selected relations in this attempt with
previous attempts until K relations are met or max-
imum retry limits are reached. For transformation,
we ask LLM to summarize given K aggregated
neighbor information and return K summarized
facts in a numbered list. If the number of summa-
rized facts returned is not equal to K, we proceed
with a retry. Note for the final question answer-
ing, we directly match the ground truth answers
from the output of LLM without any constraint
enforcement.

Since we leverage the strengths of LLM in con-
text understanding and summarization, our method
is completely zero-shot with minimal instructed
constraint and enforcement mechanism. In practice,
the retry mechanism is rarely triggered. We show
the overall retry numbers of LMP with weaker
LLM and stronger LLM (Llama-3-8B & 70B) in Ta-
ble 6 and discover no significant difference, which
validates the effectiveness of our methods that even

# of retry per question WebQSP CWQ

LMP + Llama-3-8B 0.214 0.453
LMP + Llama-3-70B 0.199 0.419

Table 6: The number of retry triggered per question.

small and weaker LLMs are well capable of.

B Details of Baselines

We compare our method with three types of base-
lines, namely LLMs only, fine-tuning and prompt-
ing.

B.1 LLMs Only Methods
LLMs only methods use LLMs’ own knowledge
to answer questions, without using any external
knowledge. Specifically, we compare with the fol-
lowing methods:

• Standard prompting (IO prompt). It gives
LLMs some specific input-output pairs as exam-
ples to help them understand instruction.

• Chain of thought prompting (CoT). CoT uses
prompt to make LLMs generate intermediate
steps or explanations of questions to arrive at
more accurate answers.

• Self-consistency (SC). It leverages the intuition
that a complex reasoning problem typically ad-
mits multiple different ways of thinking leading
to its unique correct answer. Specifically, It first
samples a diverse set of reasoning paths, and then
selects the most consistent answer by marginaliz-
ing out the sampled reasoning paths.

B.2 Fine-tuning Methods
Fine-tuning methods modify parameters of LMs
or LLMs, which are less efficient. Specifically, we
compare with the following methods:

• DECAF. It jointly generates both logical forms
and direct answers, and then combines the merits
of them to get the final answers.

• RoG. It synergizes LLMs with KGs to conduct
faithful and interpretable reasoning. Specifically,
it presents a planning-retrieval-reasoning frame-
work, which allows LLMs to access the latest
knowledge while reasoning based on faithful
plans on graphs.

• KG-Agent. It proposes an autonomous agent
framework to synergize LLMs and KGs to per-
form complex reasoning over KG.
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• Retrieve-Rewrite-Answer. It proposes an
answer-sensitive KG-to-Text approach that can
transform KG knowledge into well-textualized
statements, which are more suitable for KGQA.

B.3 Prompting Methods

Prompting methods don’t need to conduct any pa-
rameters learning for LLMs, which is much more
efficient. LMP proposed by us also belongs to this
type, and we compare it with the following meth-
ods:

• ToG. It uses LLMs as agent to iteratively execute
beam search on KG. Specifically, it selects rela-
tion and entity alternately to discover reasoning
paths, which are then used as external knowledge
for LLMs answering.

• ToG-R. It is a variant of ToG, which only uses
LLMs to select relations. For entities, it uses
random prune to mitigate the risk of misguided
reasoning and reduce the overall cost.

• EffiQA. It proposes a new integration paradigm
of LLMs and KGs for multi-step reasoning.
Through an iterative paradigm of global LLM
planning, efficient KG exploration, and self-
reflection, it balances leveraging LLM capabili-
ties with maintaining computational efficiency.

• FiDeLis. It proposes a retrieval-exploration in-
teractive method to enhance intermediate steps
of LLM reasoning grounded by KGs. The Path-
RAG module and the use of deductive reasoning
as a calibration tool effectively guide the reason-
ing process, leading to more accurate knowledge
retrieval and prevention of misleading reasoning
chains.

• KG-CoT. It leverages a small-scale step-by-step
graph reasoning model to reason over KGs and
utilizes a reasoning path generation method to
generate chains of knowledge with high confi-
dence for large-scale LLMs.

C Details of Experiment Settings

C.1 Detailed Version of Backbone LLMs

We use Llama-2-70B (Llama-2-70b-chat), Llama-
3-70B (Meta-Llama-3-70B-Instruct), ChatGPT
(gpt-3.5-turbo-0125), GPT-4 (gpt-4-0613), Llama-
3-8B (Meta-Llama-3-8B-Instruct), and o1-mini
(o1-mini-2024-09-12) as backbone LLMs.

C.2 Detailed Hyperparameters Settings

In Table 7, we listed the hyperparameters settings
of width K and depth L for each dataset to repro-
duce our experiment results in Section 4.2 (Q2). To
avoid confusion and align with baselines, the depth
L here means the depth of information searched
from the topic entities. Since LMP implements an
additional aggregation operations for unnamed en-
tities, our method only need to implement (L− 1)
round of language message passing to explore L-
hop information of the topic entity.

C.3 Detailed SPARQL for Unnamed Entity

In real-world scenarios, KGs are often incomplete
and noisy. There are many entities have no text de-
scriptions in Freebase. To address this, we perform
addition aggregation and use the text descriptions
of its 1-hop neighbor entities as its text description
for unnamed entities instead of using unknown tag
or special tokens like UnName_Entity in ToG to in-
dicate the missing entity name. This trick does not
increase the calls for LLMs. The SPARQL query
for entity name search in our method is detailed as
below:
PREFIX ns : < h t t p : / / r d f . f reebase . com/ ns / >
SELECT DISTINCT ?name ? ex t ra
WHERE {
VALUES ? s t a r t {%s }
? s t a r t ns:%s ?e .
FILTER (?e != ns:%s )
OPTIONAL {?e ns : type . ob jec t . name ?name . } .
OPTIONAL
{ FILTER ( !BOUND(?name ) )
{?e ? r ? ex t ra . FILTER ( i s L i t e r a l (? ex t ra ) ) }
UNION
{?e ? r ?e1 . ?e1 ns : type . ob jec t . name ? ex t ra . } } .
}

where ?name searches for the original entity name,
?extra searches for the neighboring entity names
of the unnamed entity.

D Additional Experiments

D.1 Additional F1 Score Performance

We show the additional F1 performance in Table
8. Note for the F1 evaluation, we change the phras-
ing in the final question answering prompt and
remove the part of "return all the possible answers"
to avoid LLM generating multiple aliases for one
answer, which hurts the precision score. We put
the F1 evaluation in the Appendix since there are
only few related works reporting F1 scores and the
reasons behind this are as followed. First, RAG
methods use LLM to output a paragraph of texts
and without a specific instructed prompt it is dif-
ficult to determined how many answers are in the

15439



Backbone LLMs WebQSP CWQ GrailQA Simple Questions WebQuestions

Width Depth Width Depth Width Depth Width Depth Width Depth

Llama-2-70B 5 2 3 4 3 3 5 1 5 2
Llama-3-70B 5 2 3 4 3 3 5 1 5 2
ChatGPT 5 2 5 4 5 3 5 1 5 2
GPT-4 5 2 5 4 5 3 5 1 5 2

Table 7: The hyperparameters settings of width K and depth L of our experiments results in Section 4.2 (Q1) for
each dataset.

Model WebQSP CWQ

LLMs only CoT + ChatGPT 54.7 35.8

Fine-tuning DECAF 78.8 -
RoG 70.8 56.2

Prompting
ToG + ChatGPT 72.3 56.9
FiDeLiS + ChatGPT 76.7 61.7

LMP + ChatGPT 79.3 64.5

Table 8: The F1 score (%) of different models.

response. Second, unlike the traditional semantic
parsing methods that execute generated SPARQL
queries as the final QA stage and the space of pos-
sible answers is within the ground truth answers,
RAG methods use LLM to output answers that are
far beyond the range of ground truth answers. The
comparison between them may seem unfair (Fang
et al., 2024). And last, the ground truth answers
in datasets could be overly restrictive, making it
difficult to determine the true precision of an an-
swer. These datasets define ground truth answers
at a fixed depth of the topic entity in the KG. For
example, the question is "where was XXX born?"
and the answer in KG is "Los Angeles". How-
ever, "USA" and "California" are connected to the
ground truth answer entity "Los Angeles" with re-
lation "location.location.containedby" in KG and
are also valid answers for the question.

D.2 Different sampling methods

Our sampling operation uses LLM to select most
relevant relations of based on the topic and ques-
tion. This operation can also be implemented us-
ing lightweight models that measure text similarity
such as BM25 or SentenceBERT. As mentioned in
(Sun et al., 2024), the answer does not necessar-
ily show text similarity with the question, so we
use LLM to perform relation sampling to achieve
the best performance. We show the performance
with different relation sampling methods in Table
9, where LLM has clear edge over other methods.

Models WebQSP CWQ

ToG with BM25 58.7 51.4
LMP 75.1 60.4

ToG with SentenceBERT 66.3 51.7
LMP 80.3 62.1

ToG with ChatGPT 76.2 58.8
LMP 87.2 72.6

Table 9: The exact match accuracy (%) with different
relation sampling methods.

D.3 Error Propagation

The overall framework of LMP consists multiple
stages, where sampling, transformation, and final
QA stages involve using LLM. We conduct a de-
tailed experiment to examine if errors occur in each
LLM-involved stage and their impact on subse-
quent stages with Llama-3-8B (smaller & weaker)
and Llama-3-70B (larger & stronger). Given the
recursive nature of our method, we investigate each
stage in the last-hop of its exploration.

We first examine errors in sampling stage by
comparing relations sampled with the ground truth
SPARQL queries in Table 10. Round 50% of the
questions in simple WebQSP (1- & 2-hop ) and 20%
of the questions in complex CWQ (3- & 4-hop)
dataset retrieve all the correct relations. If all cor-
rect relations are retrieved, the answer entity is al-
ready reached. The overall exact match accuracy of
our method (about 89% and 70% for WebQSP and
CWQ) is consistently higher than the percentage
of all correct relations sampled. This demonstrates
the importance of following stages and their abili-
ties to correct the errors in relation sampling. But
overall, relation sampling retrieves certain answer-
related information from KG in about 90% of the
questions across both datasets.

We further investigate the following transforma-
tion by examining whether summarized facts con-
tain the answers in Table 11, given all/partial/no
correct relation sampled. We discover that given
all correct relations the transformation rarely in-
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% of question all correct relations sampled partial correct relations sampled no correct relations sampled

WebQSP CWQ WebQSP CWQ WebQSP CWQ

LMP + Llama-3-8B 50.6 19.6 36.5 66.6 12.8 13.8
LMP + Llama-3-70B 53.9 26.9 40.9 65.5 5.1 7.6

Table 10: The percentage of question with all/partial/no correct relations sampled.

EM (%) of facts all correct relations sampled partial correct relations sampled no correct relations sampled

WebQSP CWQ WebQSP CWQ WebQSP CWQ

LMP + Llama-3-8B 96.5 95.3 86.6 77.7 34.7 28.8
LMP + Llama-3-70B 97.3 95.5 88.5 83.8 44.0 33.7

Table 11: The exact match accuracy (%) of facts with all/partial/no correct relations sampled.

EM (%) of final QA
w. correct facts w/o. correct facts

WebQSP CWQ WebQSP CWQ

LMP + Llama-3-8B 95.5 91.7 56.6 22.4
LMP + Llama-3-70B 96.1 94.3 58.0 24.5

Table 12: The exact match accuracy (%) of final QA
with and without correct facts.

troduces error (96%+ EM), with minor deviations
due to phrasing variations of the LLM’s inherent
preference (e.g., "US president" vs. "president of
united states"). With partial correct relations, trans-
formation still produces answer-containing facts
in about 80% of cases thanks to the knowledge in
KG and in LLM complement each other. Take the
example question "which of JFK’s brother held gov-
ernment position". Given the sibling of JFK from
KG, LLM can identify their gender based on their
names (name robert tends to be male) despite of
relation gender is not retrieved after sampling. The
example in our case study Section 4.7 shows trans-
formation can identify irrelevant facts by stopping
summarizing with "not relevant" tag on it, which
stops the error in previous stage propagates into
next stage. Lastly, with no correct relation 30% of
facts still contain the answer since LLM leverages
its own knowledge to reach the answer.

We investigate how final QA performs with the
correct facts (answer inside) and without correct
facts in Table 12. Given the correct facts, about
95% in WebQSP and 93% in CWQ of question are
correctly answered by final QA. In most cases, it
is due to the question can be answered in multiple
ways but the ground truth answers only validate
for one of them. And with no correct facts, LLM
leverages its own inherent knowledge and correctly
answers 57% and 23% of questions in WebQSP

and CWQ without the external KG knowledge.
To summarize all: 1).With the correct previous

stages, the following stages are also mostly correct
(about 95%), which ensures the entire pipeline of
our work operates seamlessly. 2).The subsequent
stages can correct the error in previous stages and
the failure in one stage does not necessarily affect
the final results. 80% of the transformation are
correct (output facts with answer inside) without
all correct relation sampling from previous stage.
3).The weaker LLM (Llama-3-8B) is well capable
of the operations in our proposed methods. The
performance drop-off from Llama-3-70B to 8B is
acceptable given the difference in inherent abilities
of the LLMs.

D.4 Additional Case Studies
We show additional case studies in Table 13, 14,
15 to emphasize the strength of LMP in terms of
explainability. We can clearly see that our sum-
mary outlines are much more informative than the
reasoning paths, which contain the whole thinking
process of LMP. As in Table 13, the reasoning path
only shows us the correct answer while our facts
graph is able to discover Arthur Miller is influenced
by three people and only William Shakespeare influ-
enced by Lucian, which matches the question. As
in Table 15, the reasoning path is unable to find the
answer while our facts graph showcases the com-
plete logical chain of solving the problem, which
identifies the college of Sampson Salter Blowers
and its state. Additionally, KG like Freebase has
some unnamed entity as shown in reasoning paths,
which diminishes their explainability. As for our
summary outlines in LMP, those unnamed entities
can be inferred from context information by LLM
itself, which provides a better explainability.
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Question Who influenced Arthur Miller that was influenced by Lucian?

Reasoning Paths
in ToG

(Path 1, Score: 0.75) Arthur Miller→ influence.influence_node.influenced_by→William Shakespeare→
influence.influence_node.influenced_by→ Lucian
(Path 2, Score: 0.2) Lucian→ influence.influence_node.influenced_by→ Socrates→
influence.influence_node.influenced_by→ Parmenides
(Path 3, Score: 0.05) Arthur Miller→ people.person.education→ UnName_Entity→
education.education.student→ Arthur Miller

Summarized Facts
in LMP

1. Arthur Miller was influenced by Henrik Ibsen, Sophocles, and William Shakespeare.
1.1. William Shakespeare was influenced by Lucian, who influenced someone who influenced Arthur Miller.
1.2. Henrik Ibsen influenced many people, but none of them influenced Arthur Miller.

1.2.1. William Shakespeare was influenced by Lucian, who influenced someone who influenced Arthur Miller.
1.2.2. August Strindberg was influenced by William Shakespeare.
1.2.3. Henrik Ibsen did not influence anyone who influenced Arthur Miller.

1.3. The education of William Shakespeare is not relevant to the question.
2. Arthur Miller’s professions include Actor, Essayist, Playwright, Screenwriter, and Voice Actor.
3. Arthur Miller attended Abraham Lincoln High School and University of Michigan, earning a High School Diploma
and Bachelor’s degree, respectively.

Ground Truth William Shakespeare

Table 13: Additional Case Study for explainability in Section 4.6 (Q5)

Question What is the state where the team whose fight song is "Renegade" is from?

Reasoning Paths
in ToG

(Path 1, Score: 0.67) Renegade→ sports.fight_song.sports_team→ Pittsburgh Steelers
(Path 2, Score: 0.33) Renegade→ sports.sports_team.fight_song→ UnName_Entity

Summarized Facts
in LMP

1. The Renegade is the fight song of the Pittsburgh Steelers.
1.1. The Pittsburgh Steelers is located in Pittsburgh.

1.1.1. Pittsburgh is located in Pennsylvania.
1.1.2. Pittsburgh is home to the Pittsburgh Steelers.

1.2. The division of Pittsburgh Steelers is not relevant to the question.
1.3. The fight songs of Pittsburgh Steelers also include "Black and Yellow", "Here We Go", and "Steelers Polka".

1.3.1. The composers of these song are not relevant to the question.
2. The Renegade has multiple recordings.
3. The Renegade is an album.

Ground Truth Pennsylvania

Table 14: Additional Case Study for explainability in Section 4.6 (Q5)

Question What state is the college that Sampson Salter Blowers is a grad student of located?

Reasoning Paths
in ToG

(Path 1, Score: 0.75) Sampson Salter Blowers → education.education.student → UnName_Entity →
education.education.institution → Harvard College
(Path 2, Score: 0.2) Sampson Salter Blowers → education.education.student → UnName_Entity →
education.educational_institution.students_graduates → {}
(Path 3, Score: 0.05) Sampson Salter Blowers → education.education.student → UnName_Entity →
people.person.education → {}

Summarized Facts
in LMP

1. Sampson Salter Blowers attended Harvard College.
1.1. Harvard College is the institution Sampson Salter Blowers attended.

1.1.1. Harvard College is located in Cambridge, Massachusetts, United States of America.
1.1.2. Harvard College has a campus in Harvard College.
1.1.3. Harvard College is a part of Harvard University.

2. Sampson Salter Blowers is Canadian.
2.1. The locations Canada contained are not relevant to the question.

3. Sampson Salter Blowers was born in Boston.
3.1. The locations Boston contained are not relevant to the question.

Ground Truth Massachusetts

Table 15: Additional Case Study for explainability in Section 4.6 (Q5)
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