Circuit Compositions: Exploring Modular
Structures in Transformer-Based Language Models

Philipp Mondorf!*

Sondre Wold?>*

Barbara Plank !+

'MaiNLP, Center for Information and Language Processing, LMU Munich, Germany
2Munich Center for Machine Learning (MCML), Munich, Germany
3Language Technology Group, University of Oslo

{p.mondorf, b.plank}@lmu.de, sondrewo@uio.no

Abstract

A fundamental question in interpretability re-
search is to what extent neural networks, par-
ticularly language models, implement reusable
functions through subnetworks that can be com-
posed to perform more complex tasks. Recent
advances in mechanistic interpretability have
made progress in identifying circuits, which
represent the minimal computational subgraphs
responsible for a model’s behavior on specific
tasks. However, most studies focus on identify-
ing circuits for individual tasks without investi-
gating how functionally similar circuits relate
to each other. To address this gap, we study the
modularity of neural networks by analyzing cir-
cuits for highly compositional subtasks within
a transformer-based language model. Specifi-
cally, given a probabilistic context-free gram-
mar, we identify and compare circuits responsi-
ble for ten modular string-edit operations. Our
results indicate that functionally similar circuits
exhibit both notable node overlap and cross-
task faithfulness. Moreover, we demonstrate
that the circuits identified can be reused and
combined through set operations to represent
more complex functional model capabilities.

1 Introduction

Neural networks can be effectively modeled as
causal graphs that illustrate how inputs are mapped
to the output space (Mueller et al., 2024). For
instance, the feed-forward and attention modules
within the Transformer architecture (Vaswani et al.,
2017) can be viewed as a series of causal nodes
that guide the transformation from input to output
via the residual stream (Ferrando et al., 2024). This
abstraction is commonly used in mechanistic in-
terpretability to identify computational subgraphs,
or circuits, responsible for the network’s behav-
ior on specific tasks (Wang et al., 2023). Circuits
are typically identified through causal mediation
analysis (Pearl, 2001), which quantifies the causal

“Equal Contribution. Author order decided by coin flip.

Reverse
L1, T2y, Tn

\./VO Ty Ty« -T2, T1

O—
A

1 ?

Swa .\
P Ln, T2, .. -Tp-1,T1
X1,T2;...,Tn

Figure 1: Schematic overview of our approach: we iden-
tify and compare circuits for functionally related string
edit operations, such as reversing a string or swapping
its first and last characters.

influence of model components on the network’s
predictions (Mueller et al., 2024). Techniques such
as activation patching (Meng et al., 2022), attribu-
tion patching (Syed et al., 2024), and their vari-
ants (Hanna et al., 2024b) have been applied to
identify circuits in language models for tasks such
as indirect object recognition (Wang et al., 2023;
Merullo et al., 2024), entity tracking (Prakash et al.,
2024), and factual recall (Meng et al., 2022).

However, a notable limitation of existing studies
is their focus on identifying circuits for isolated,
individual tasks. Few studies have compared cir-
cuits responsible for different functional behaviors
of the model, and those that do primarily focus
on tasks with limited cross-functional similarity
(Hanna et al., 2024b). In this study, we explore the
modularity of neural networks by comparing cir-
cuits responsible for highly compositional subtasks
within a transformer-based sequence-to-sequence
model. Specifically, we identify circuits associ-
ated with ten modular string-edit operations (Ta-
ble 1) on a probabilistic context-free grammar, in-
troduced by PCFG SET (Hupkes et al., 2020). We
analyze these circuits in terms of both node overlap

14934

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14934—-14955

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics



Operation Input Output
copy Ti...Tpn X1...Tn
echo T1...Tn T1...TnTn
g“ repeat T1...Tn T1...TpnT1...2Tn
5 reverse T1...Tpn Tp...T1
swap T1...Tnp TnT2 ... Tp-1T1
shift T1...Tn T2...TnL1
. append T,y Ty
5  prepend z,y yT
g remove_first  x,y Yy
remove_second =,y T

Table 1: The different string-edit operations from PCFG
SET (Hupkes et al., 2020). Unary operations modify
a single string, while binary operations involve two

@

different strings separated by “,”.

and cross-task faithfulness, assessing their perfor-
mance on functionally related tasks. To facilitate
the study of circuits related to sequence-prediction
tasks beyond single-token predictions, we propose
an automatic circuit identification method called
activation pruning through continuous sparsifica-
tion, which jointly optimizes for faithfulness and
minimality—two key objectives in circuit discovery
(for further details, see Section 2.2). Finally, we
demonstrate that the circuits identified can be com-
bined through subnetwork set operations to explain
more complex functional capabilities of the model.

In summary, our contributions are as follows:
i) we demonstrate the application of continuous
sparsification to automatically discover both faith-
ful and minimal circuits for sequence-to-sequence
tasks from PCFG SET; ii) we analyze the relation-
ships between functionally related circuits by ex-
amining node overlap and cross-task faithfulness,
providing insights into the model’s modular struc-
ture; and iii) we show that computational subgraphs
from functionally related circuits can be combined
using set operations, resulting in novel subnetworks
that explain model behavior on tasks beyond the
scope of the initial circuits.

2 Background

This section offers an overview of key concepts
in circuit discovery and continuous sparsification
used in this work. For a broader perspective on
interpretability research based on causal mediation
analysis, we refer to Mueller et al. (2024).

2.1 Activation Patching

A widely used approach for identifying circuits
within language models is activation patching (Vig

et al., 2020; Meng et al., 2022; Wang et al., 2023).
Activation patching quantifies the causal influence
of model components on the model’s task output.
More formally, it measures the indirect effect (IE)
(Pearl, 2001) of a node x in the model’s compu-
tation graph on a downstream node y, usually the
final output (Mueller et al., 2024). Given a counter-
factual intervention 2z on a mediator z, the indirect
effect of & on y through z is the difference in a
metric [P that captures y’s state before and after the
intervention:

IE(vaa'Z’z;Bv’%) - ]P)(y(x) ‘ z = Z$>

—P(y(e) | do(z = 2))
)

where @ typically is the model’s task input, while
y denotes the corresponding output. The variable
z, represents the mediator’s natural value for
without intervention, and 2 its counterfactual value.
In its original form, activation patching iteratively
assesses the indirect effect of mediators, assigning
causal significance when the indirect effect exceeds
a predefined threshold (Vig et al., 2020; Meng et al.,
2022; Wang et al., 2023). The choice of mediator
varies between studies, ranging from the full output
activation @ € R? of a module (e.g., the multi-head
attention module) or a submodule (e.g., a linear
layer), to individual neurons a; € a (Mueller et al.,
2024). High-granularity interventions can lead to a
combinatorial explosion of the search space when
exhaustively exploring all mediators (Mueller et al.,
2024). To mitigate this, alternatives like attribution
patching balance accuracy and causal guarantees
with improved search efficiency (Syed et al., 2024;
Nanda, 2023; Hanna et al., 2024b). In this study,
we overcome this combinatorial problem by op-
timizing over a continuous approximation of the
discrete search space (see Section 3 for details).

2.2 Circuit Properties

Let z; € Z represent a single node' in the model’s
causal graph, denoted as G = (Z,&), where
£ C Zx Zand |Z] = N. Once a circuit has
been successfully identified for a given model M
and task 7', it can be represented as a binary mask
m € {0,1}" over the model’s node space. This
mask signifies whether a specific model component

'"Depending on the granularity of the identification method,
this can range from entire modules to individual neurons
within the model.

14935



is causally relevant to the model’s task behavior
(m; = 1) or not (m; = 0) (Bhaskar et al., 2024).
Circuits are generally evaluated based on three key
criteria (Wang et al., 2023):

1. Faithfulness: A circuit is considered faithful
to the task 7' if it accurately captures the full
model’s task output while ablating all nodes
not identified as causally relevant (m; = 0)
by replacing them with some ablation value
z (Hanna et al., 2024b; Miller et al., 2024).
Given a metric P that compares the outputs of
two models for task 7T, task faithfulness F7 is
typically quantified as:

Fr = P(M(-), M(-|do(z=m O 2,
+(1—m)®£))) )

2. Minimality: A circuit is deemed minimal if
it excludes nodes that are not causally rele-
vant (Mueller et al., 2024). Formally, given
a candidate set of circuits C', minimality is
encouraged by selecting the circuit with the
smallest norm: min,,cc ||m||;.

3. Completeness: A circuit is said to be complete
if it captures all nodes necessary to explain
the model’s behavior for task 7T'.

2.3 Continuous Sparsification

Continuous sparsification originates from model
pruning and has been introduced to sparsify net-
works, specifically their weight space (Savarese
et al., 2020). Unlike other pruning approaches
(Srinivas et al., 2017; Louizos et al., 2018), contin-
uous sparsification approximates /o regularization
by learning a deterministic mask m € {0,1}"
over the network’s parameters w € RY that in-
dicates which weights to prune. The search for
such a sparse subnetwork can be represented by the
following minimization problem:

min LM(-;mow))
weRN, me{0,1}N
+ A||m|j 3)
which uses the fact that |m||o = ||m||; for bi-

nary masks, and where £ denotes the loss of the
network M, while A controls the trade-off between
loss and number of parameters ||w||g. To circum-
vent the combinatorial constraint imposed by the

discrete space of m € {0, 1}%V, the mask is deter-
ministically re-parameterized as a sigmoid function
o (+) of the new variable s € RV:

min
weRN, seRN

LM(50(8-s)0w))
+Ao(B- )l )

where 5 € [1, oo] represents a temperature pa-
rameter for which the sigmoid function converges
to the Heaviside function with limg_,o o (5 - 8) =
H(s). By minimizing the above loss while anneal-
ing 3, and recovering the binary mask from re-
parameterization viam = H(s), a sparse represen-
tation of the network’s parameters can be learned.

3 Activation Pruning Through
Continuous Sparsification

To automatically identify circuits for sequence-to-
sequence prediction tasks, we adopt an approach
similar to Bhaskar et al. (2024) and Conmy et al.
(2023), and formulate the identification process
as a minimization problem. For this, we leverage
techniques from model pruning, specifically con-
tinuous sparsification (see Section 2.3). Unlike
traditional pruning, which aims to reduce model
complexity by creating a sparse representation of
the model’s weight space, we focus on interven-
ing on the model’s activations, thereby linking our
method to causal mediation analysis.

As outlined in Section 2.2, we represent a cir-
cuit as a binary mask m € {0,1}" over the
model’s mediator space—here the activation space
of the model components is considered—indicating
which activations z of a frozen model M are re-
sponsible for its behavior on a task 7. To find
a circuit m that is both faithful and minimal (we
exclude completeness for now; see Section 7 for
a respective discussion), we aim to minimize the
following loss:

mg{léﬁ}NﬁT(M(-), M(-|do(z=m O z,
+(1=m)© 2))) + A Lyeg(m)
)

where L1 captures the circuit’s task faithfulness,
with lower values indicating greater faithfulness,
while L,., assesses the size of the circuit. The
hyperparameter A controls the influence of L.
Given the combinatorial complexity of optimizing

14936



a binary mask over a potentially large activation
space, we follow the approach of continuous spar-
sification (Section 2.3) and deterministically re-
parameterize m using a sigmoid function o (-) over
the new variable s € RY. Additionally, we assess
faithfulness by measuring the Kullback-Leibler di-
vergence Dy, (y™ || y™) between the circuit’s
predicted output distribution and that of the full
model. Since the full model’s predicted output
distribution y™ is independent of the variable s,
minimizing the KL divergence between y™ and
y™M simplifies to minimizing their cross-entropy
loss Log. For regularization, we apply [ regular-
ization in line with Equation 4. This yields:

min Log(M(), M(- |do(z =o(B-8) © 2,

sERN
+(1—-0(8-5)©2)))
+A-flo(B-8)[h (6)

where the sigmoid function ¢ is applied element-
wise, and [ serves as a temperature parameter that
increases progressively after each training epoch,
following an exponential schedule until it reaches
a maximum value, 5,4z, as proposed by Lepori
et al. (2023). By minimizing the expression in
Equation 6, we obtain an approximation of m that
strikes a balance between faithfulness and mini-
mality, with A governing the emphasis on the latter.
Once training converges, the binary mask is derived
through re-parameterization via m = H(s). In
comparison to edge pruning (Bhaskar et al., 2024)
and the subnetwork probing method proposed by
Conmy et al. (2023), our approach identifies cir-
cuits through deterministic re-parameterization.
While our method supports different levels of node
granularity, we focus on neuron-level interventions.

4 Experiments

This work studies the modularity of a transformer-
based sequence-to-sequence model by analyzing
circuits responsible for its behavior on highly com-
positional subtasks. We identify and compare cir-
cuits for ten compositional string-edit operations
introduced by PCFG SET (Hupkes et al., 2020).”
Section 4.1 outlines the experimental setup, includ-
ing dataset, training, and evaluation details, while
Section 4.3 presents the results.

2Qur code is available at https://github.com/mainlp/circuit-
compositions.

4.1 Setup

4.1.1 PCFG SET

As shown in Table 1, PCFG SET (Hupkes et al.,
2020) comprises ten string-edit operations applied
to sequences generated by a probabilistic context-
free grammar. All tasks resemble translation prob-
lems, where an input sequence is transformed into
a corresponding output sequence through the re-
cursive application of the operations specified in
the input sequence. The dataset includes unary
operations (applied to a single string) and binary
operations (requiring two arguments). For instance,
the binary function prepend places the second ar-
gument before the first (e.g., prepend A1, B1 —
B1 A1). The input alphabet in PCFG SET consists
of three components: i) words representing string-
edit operations (e.g., copy or echo), ii) symbols
forming the input sequence (e.g., A1, B1, etc.), and
iii) a separator “, ” that distinguishes for binary ar-
guments. For additional information and examples,
please refer to Appendix B.1.

Hupkes et al. (2020) construct PCFG SET such
that compositionality is a salient feature. Notably,
all operators in PCFG SET are functionally related.
For example, the repeat operator can be replicated
by applying the copy operation two times in suc-
cession (see Table 1). To identify circuits for each
operation, we generate ten distinct data subsets,
each containing 20,000 examples from a specific
string-edit operation (16,000 for training, 4,000 for
testing). Further details on data generation and indi-
vidual sub-datasets are provided in Appendix B.2.

4.1.2 Training

Base Model Training. As a first step, we train a
base model M to perform all operations in PCFG
SET. Similar to Hupkes et al. (2020), we use an
encoder-decoder model, comprising six encoder
and decoder layers with a hidden state dimension
of 512, resulting in approximately 58 million pa-
rameters. The model is trained on the official data
splits of PCFG SET, which include around 83,000
training samples covering all string-edit operations
and their compositions. Additional details on the
training procedure can be found in Appendix C.3.

Mask Training. Next, we employ activation
pruning through continuous sparsification (Sec-
tion 3) to identify circuits corresponding to each
operation. For this, we minimize the loss as de-
scribed in Equation 6 by training a mask m on
the respective subtask dataset (see Section 4.1.1).

14937


https://github.com/mainlp/circuit-compositions
https://github.com/mainlp/circuit-compositions

0.39 BEYA 0.34

0.8

0.45 0.38

0.6

0.43 0.45

0.48 029 0.13 0.16

-0.4

0.44 059 073 QK0

-0.2

0.32

shift swap reverse repeat copy echo

shift swap reverse repeat copy echo

039 043 [EyaN 0.31

-0.0

echo

copy repeat reverse swap  shift

(a) Fr across all token positions.

0.41

0.07

0.40

0.35

0.22

echo copy repeat reverse swap  shift

(b) Fr for selected token positions.

1.00 100 094 099 100 0.99

base

0.44 0.33

0.8

0.01 0.19 (XXM 000 0.01 0.08 0.00

-0.8

06 000 010 016 001

048 044

(UCTRX: I 0.12  0.21 -0.6

0.00  0.00 m 0.01  0.00
E 0.00 0.27 [KZI 0.07

0.16 0.00 0.00 0.00 L)

-0.0 . ' . . -0.0
copy repeat reverse swap  shift

0.01

0.21 | 043

-0.4
-0.4

-0.2

0.29

shift swap reverse repeat copy echo

(c) Accuracy

Figure 2: Task faithfulness Fr and accuracy for unary tasks. The y-axis represents the circuit, while the x-axis
denotes the evaluation task. The diagonal is omitted for selected positions due to a lack of applicable tokens.

We consider individual output activations from the
feed-forward and multi-head attention modules as
mediators z = a; € a. For the ablation value z, we
conduct experiments with both zero and mean abla-
tions. We use the same ablation value across all to-
ken positions and adopt an approach similar to node
patching, where interventions target the model’s
residual stream. When employing mean ablations,
we follow the approach proposed by Wang et al.
(2023) and use the mediator’s mean value across
a reference distribution, specifically the subtask
dataset. We optimize for hyperparameters using
random search, as detailed in Appendix C.5.1. A
sensitivity analysis of the parameter A is provided
in Appendix D.1.3. Further details on the mask
training procedure can be found in Appendix C.4.

4.1.3 Evaluation

We evaluate circuits based on two main crite-
ria: performance—measured in terms of faithful-
ness and accuracy—and node overlap. Since the
KL-divergence Dgp, (y™ || ™) is unbounded
and unsuitable for cross-task comparisons, we
also compute a normalized version of the
Jensen—Shannon divergence, 0 < JSDjorm <
1, to measure faithfulness (see Equation 7, Ap-
pendix C.6). We define a circuit’s task faithfulness
performance as Fr = 1 — JSDporm, Where values
closer to 1 indicate higher task faithfulness. Ac-
curacy is determined by the exact match between
the circuit’s prediction and the ground truth. When
evaluating a circuit from task 7" on a different task
T, we retain the mean values from task 71" as ab-
lation values for nodes with m; = 0 when using
mean ablations. For node overlap, we compare cir-
cuits using the Intersection over Union (IoU) and
Intersection over Minimum (IoM), as defined in
Equation 8 in Appendix C.6.

4.2 TRACR Experiments

To validate our method’s capacity to identify both
minimal and faithful circuits, we implement four
unary PCFG SET functions (copy, echo, reverse,
swap) in RASP (Weiss et al., 2021). Each func-
tion is compiled into transformer model weights
using TRACR (Lindner et al., 2024), serving as
ground truth for evaluation—a common valida-
tion approach in prior studies (Conmy et al., 2023;
Bhaskar et al., 2024). Our results show that acti-
vation pruning through continuous sparsification
perfectly recovers all individual neurons in the com-
piled circuits while maintaining 100% faithfulness.
For further details, please refer to Appendix C.5.

4.3 Results

We begin by presenting the performance results of
the base model on PCFG SET. After training, the
encoder-decoder model demonstrates strong per-
formance across all ten string-edit operations, with
accuracy exceeding 95% on unary tasks and rang-
ing from 83% to 99% on binary tasks. The lowest
accuracies of 83% and 84% are for prepend and
append, which turn out as the most challenging
operations (a detailed task-specific breakdown is
available in Appendix C.3). In the subsequent sec-
tions, we focus on circuits identified through mean
ablation. For additional results on circuits discov-
ered via zero ablation, see Appendix D.2.

4.3.1 Circuit Performance

We first analyze the circuits’ performance across
different string-edit operations. Figure 2 illustrates
both the task faithfulness performance, F7r, as de-
fined in Section 4.1.3, as well as the accuracy of
each circuit. Due to functional similarities between
the string-edit operations, multiple operators may
produce the same output tokens at various positions.

14938



2 Y 0.83 0.98 1.00
b

append
append

o

N

©

o

=

o

0.8

0.6 g

prepend
prepend

-0.4

o
w
&
o
w
&
o
(X

-0.2

=]
w
=

0.10 0.15 0.10

rm_second rm_first
rm_second rm_first

-0.0

append prepend

rm_first rm_second

append prepend

(a) Frr across all token positions.

0.13

rm_first rm_second append

(b) Fr for selected token positions.

prepend  append

-04

0.00 0.00

-0.2
-0.2
0.00 0.00

rm_second rm_first

-0.0 -0.0

pre[;end rm;ﬁrst rm_second

(c) Accuracy.

Figure 3: Task faithfulness F and accuracy for binary tasks. The y-axis represents the circuit, while the x-axis
denotes the evaluation task. The diagonal is omitted for selected positions due to a lack of applicable tokens.

Therefore, we assess faithfulness in two ways: i)
averaged across all output tokens (Figure 2a), and
ii) at positions where the ground truth output se-
quences of the circuit-task and evaluation-task dif-
fer (Figure 2b). For example, when evaluating the
copy circuit on the echo task, we assess task faith-
fulness at the final token of the target output, fo-
cusing on the additional x,, present in echo, which
replaces the end-of-sequence token in copy.

Unary Circuits. The diagonal in Figure 2a shows
that all unary circuits exhibit strong faithfulness on
their respective tasks, with rates exceeding 0.94.
Several circuits, such as echo, repeat, and swap,
also demonstrate high cross-task faithfulness and
accuracy on the copy task. This aligns with our
intuition as the copy operation is either a signifi-
cant component of these functions or can be effec-
tively performed by them. In contrast, operators
like reverse and shift, which substantially alter
the input sequence, show lower functional similar-
ity to copy. This is reflected in both the reduced
cross-task faithfulness (Figures 2a; 2b) and lower
accuracy (Figure 2c) on the copy task. Interest-
ingly, while the repeat and swap circuits perform
well on the copy task, the reverse is not true. This
occurs despite the theoretical possibility of com-
pleting the repeat operation by applying the copy
operator twice. Overall, circuits tend to show high
cross-task faithfulness performance when evalu-
ated on all tokens (Figure 2a), but scores drop for
tokens that differ between the circuit’s task and
the evaluation task (Figure 2b). For instance, the

copy circuit largely adheres to its original function,
even when the input demands a swap operation.

Binary Circuits. Figure 3 highlights the perfor-
mance of circuits associated with the binary opera-
tions. Similar to the unary circuits, these circuits
demonstrate high faithfulness for their respective
tasks, with performance values ranging from 0.90
to 0.99 (Figure 3a). Notably, the remove_first
circuit shows strong cross-task faithfulness and ac-
curacy on the remove_second task, although the
reverse is not true. Additionally, the prepend cir-
cuit shows consistently strong performance across
all binary tasks. When analyzing the size of each
circuit—the fraction of nodes with causal relevance
to the model’s task behavior, expressed as a fraction
of remaining activations (Figure 4)—we observe
that the prepend circuit is the largest among all cir-
cuits, retaining 39% of its neuron activations. Simi-
larly, the remove_first circuit is notably larger
than the remove_second circuit. This pattern
suggests that more complex operations (prepend,
append, remove_first) engage a greater portion
of the model’s activation space compared to sim-

80

60 1

401

201

Remaining act. (%)

3 O R & 2 & & O
. . . . L & N\ g o SN
copy circuit achieves a cross-task faithfulness score S & %@é’ & @4‘?} & ¥ @5\ & &
<
of 0.64 on the swap task across the full sequence, &7

but this drops to 0.01 when evaluated only on to-
kens that differ between the ground truth output
sequences of copy and swap. This suggests that the

Figure 4: Sparsity of the mean ablated circuits as frac-
tion of a circuit’s remaining activations (in %).

14939



MHSA

& rz
& | g
S | &=
S
)
-‘@
i
=]
[e]
>

Decoder

11% 22% 0% 2% 1.0%

9.0% 23% 2.0% 21% 1.0%

6.0% 25%

1.0% 25% 1.0%

FEE)) B

13% 21% 2.0% 17%

19% 25% 2.0% 19% 12%

4.0% 36% 0.0% 20% 18%

(M= R W & 0 &)

LJEEEEEE
BB

HEEEEG)
HEEHEEE

&)

Figure 5: The local sparsity of the copy circuit. For each
layer, the fraction of remaining activations in the multi-
head self-attention (MHSA), multi-head cross-attention
(MHCA), and feed-forward (FF) modules are shown.

pler tasks. For instance, remove_second may rely
on a straightforward copy operation with an end-
of-sequence token at the position of the separator

,’, whereas remove_first likely requires more
intricate processing.

Local sparsity. To zoom in more, Figure 5 illus-
trates the local sparsity of the copy circuit, which is
the smallest among all circuits (Figure 4). It shows
the percentage of remaining neuron activations in
the multi-head self-attention (MHSA), multi-head
cross-attention (MHCA), and feed-forward (FF)
modules at each layer. Notably, in the decoder,
MHCA modules remain mostly active, whereas FF
and MHSA activations are almost entirely pruned.
This aligns with our expectations, as the copy task
primarily involves transferring encoder-processed
input to the output. Additional visualizations for
other circuits can be found in Appendix D.1.2,
specifically Figures 20 and 21.

Zero vs. mean ablations. The results so far re-
late to circuits identified via mean ablation. Consis-
tent with prior work (Miller et al., 2024), we find
zero ablations to be less faithful. For an overview
of respective results, see Appendix D.2.

4.3.2 Circuit Overlap

So far, we evaluated the performance of circuits
and their cross-task generalizability. Next, we show
their respective node overlap in Figure 6. Specifi-
cally, we assess the IoU and IoM between all cir-
cuit pairs, as described in Section 4.1.3. The IoU
captures the overlap of circuits relative to their com-
bined size, whereas the IoM measures how much
of the smaller circuit is contained within the larger

one. Most pairs exhibit IoU values between 0.20
and 0.30, though some clusters show higher over-
lap. For instance, the circuits for reverse, swap,
and shift have IoU values between 0.36 and 0.42,
and IoM values around 0.60, indicating significant
shared activations across these tasks. Given the
functional similarities of these operations, this find-
ing aligns with our intuition. However, it is worth
noting that the cross-task performance of reverse,
swap, and shift is lower than that of other circuits
(see Figure 2). A similarly high node overlap is ob-
served for the append and prepend circuits—both
associated with tasks that the base model M strug-
gles with, as shown by the model’s comparatively
lower accuracy (see Table 3 in Appendix C.3).

-1.0
echo 0.31 0.20 0.20 0.22 0.23

copy 0.36 0.18 0.18 0.23 0.27

repeat 0.30 0.27 NN 0.28 0.27 0.27 0.26 0.23 -0.8

reverse 0.30 0.34 0. 0.36 0.21 0.21 0.26 0.27

swap 0.32 0.37 0.28 0.42 0.38 0.20 0.20 0.24 0.26

-0.6
shift 0.31 0.36 0.28 0.36 0. 0.25 0.25

-0.5

append 0.20 0.18 0.27 0.21 0.29 0.20

-0.4

prepend 0.20 0.18 0.27 0.21 0.20 0.20 0.46 R} 0.32 0.20
rm_first 0.22 0.23 0.26 0.26 0.24 0.25 0.29 0.320.27 -0.3

rm_second 0.23 0.27 0.23 0.27 0.26 0.25 0.20 0.20 027 02

o > S >
& & & &

&
& g <
& & & F

> 2 L
P L RS
& N
K 2 & 9

S

echo [N 0.56 0.50 0.46 0.49 0.48 0.45 0.54 0.45 0.35
copy 0.54 0.55 0.48 0.52 0.54 0.45 0.9

repeat 0.42 0.40 0.48 0.55 0.41 0.34

-0.8

reverse 0.46 0.57 0.39 0.58 0.45 0.51 0.54 0.44

swap 0.49 0.54 0.42 0.62 gl 0.59 0.48 0.53 0.52 0.40 0.7

shift 0.48 0.55 0.40 0.58 0.

-0.6
append 0.45 0.48 0.48 0.45 0.

prepend 0.54 0.52 0.55 0.51 -05

rm_first 0.45 0.54 0.41 0.54 0.
-0.4
rm_second 0.35 0.45 0.34 0.44 0.

o OOQA

%

> 2 R
P RS
@Pe &S
«

(b) Intersection over Minimum (IoM).

Figure 6: Node overlap for circuits identified via activa-
tion pruning with mean ablation.

14940



repeat NI 090

reverse 0.00 0.00 0.00
repeat U reverse 0.80 0.78 0.69

copy echo

swap [N 0.00 0.00

reverse 0.00 0.00 0.00
swap U reverse 0.02 0.00

copy echo

repeat

repeat

0.12 0.21 0.01
0.01 0.00 -05

0.10 0.04 0.00
-0.0

reverse swap shift
0.27 0.94 0.07 0
0.96 0.01 0.00 -05

0.45 .~ 060 | 0.33
-0.0

reverse swap shift

Figure 7: The results of combining circuits through a union operation on their respective binary masks.

4.3.3 Circuit Compositions: Subnetwork Set
Operations

Given that we can define a circuit as binary mask
m € {0,1}" over the model’s mediator space,
we extend our analysis to study cross-circuit rela-
tionships by creating compositions through basic
set operations, as we want to gauge to what de-
gree composite circuits emerge. Specifically, for a
circuit-pair (m’*, m”2), we define their compos-
ite as the union "2 = mT Um”2. Importantly,
this union is not symmetric: we use the ablation
values 27 of the first circuit for nodes outside the
union (mZTI’T2 = 0). For additional details on how
this union is applied, please refer to Appendix C.7.

Figure 7 shows the cross-task accuracy of var-
ious circuits and their composites, derived from
the union operation previously described. The re-
sults demonstrate the existence of composite cir-
cuits which acquire functional capacities for sub-
tasks that the original base circuits could not han-
dle individually. For example, while neither the
repeat nor the reverse circuit can solve the echo
task alone, their union achieves a notable accu-
racy of 78%. Similarly, the composite of swap
and reverse shows a performance improvement
on the shift task, reaching an accuracy of 33%.
For tasks that can be solved by at least one of the
original circuits, the performance of their com-
posite generally reflects a blend of their individ-
ual accuracies. For instance, the repeat circuit
achieves 90% accuracy on the copy task, while the
reverse circuit yields 0.0% accuracy. Their union
achieves an intermediate accuracy of 80% on the
task. Similarly, the swap circuit achieves 27% ac-
curacy on the reverse task, whereas the reverse
circuit reaches up to 96%. Their composite circuit
achieves a balanced performance of 45%. This im-
plies that improvements in accuracy for novel tasks
may be accompanied by a decline in performance
on previously mastered skills.

A possible explanation for these observations is

that the union operation m’172 = m™t U m™
shifts the activation space of m”! towards m72,
effectively transforming the input into a feature
space that aligns with one of the subtasks the
model M can solve. For instance, the union
m"ePeat Umreverse might shift the activation space
of m"Peat towards m"eve e, essentially allow-
ing the new circuit to perform the echo opera-
tion, while sacrificing some performance on the
repeat task. Further experiments and results on
subnetwork set operations can be found in Ap-
pendix D.1.5.

Our results show that circuits responsible for
tasks like echo, repeat, and swap can perform the
copy task, whereas the copy circuit struggles to
perform other tasks. This raises the question of
whether the echo, repeat, and swap circuits lever-
age the copy operation in their respective functions.
Our analysis on node overlap indicates that the
copy circuit —which is notably the smallest among
those identified—is largely embedded within the
other circuits. Moreover, circuits with similar func-
tions exhibit greater node overlap than functionally
distinct ones. Additionally, we show that circuits
combined through the union operator can repre-
sent novel functional capabilities, suggesting some
degree of modularity within the network.

5 Related Work

Techniques that discover circuits through causal
mediation analysis have been successfully applied
across various domains and tasks, including the
study of gender bias in language models (Jeoung
and Diesner, 2022; Chintam et al., 2023), different
forms of factual recall (Meng et al., 2022; Geva
et al., 2023), subject-verb agreement (Chintam
et al., 2023), and arithmetic operations (Nanda
et al., 2023; Hanna et al., 2024a). Finding sub-
networks has also been of interest outside of the
mechanistic interpretability literature. Previous
work has studied task-specific subnetworks through

14941



clustering approaches (Casper et al., 2022; Watan-
abe, 2019), pruning (Csordas et al., 2020; Cao
et al., 2021; Lepori et al., 2023), sparse fine-tuning
(Ansell et al., 2022), and adapters (Pfeiffer et al.,
2021; Riicklé et al., 2021). However, few studies
have used the circuits paradigm to examine rela-
tionships between circuits in functionally related
tasks (Hanna et al., 2024b).

6 Conclusion

This study explores modularity in neural networks
by analyzing circuits in a transformer-based lan-
guage model for highly compositional subtasks.
Specifically, we train an encoder-decoder model
using the PCFG SET dataset and identify circuits
responsible for ten modular string-edit operations.
To achieve this, we introduce activation pruning
through continuous sparsification, a method that
allows us to formulate circuit identification as min-
imization problem. Our results demonstrate that
this approach successfully identifies both faithful
and sparse circuits for each subtask within PCFG
SET. Additionally, we assess all circuits by examin-
ing their cross-task performance and node overlap.
Finally, we show promising first steps of circuit
compositions, where new functional circuits can
be composed through set operations, such as the
union of two circuits.

7 Limitations

In the following section, we mention limitations of
our work that could be addressed by future studies.

Completeness. We introduce activation pruning
through continuous sparsification, a method that
formulates the circuit discovery process as an opti-
mization problem balancing task faithfulness and
minimality. However, as discussed in Section 2.2,
circuits are further expected to be complete, mean-
ing they should include all nodes involved in the
model’s computations for a given task. We empha-
size that our current approach does not guarantee
completeness. While some methods attempt to
evaluate completeness by analyzing circuit behav-
ior under ablations (Wang et al., 2023), these ap-
proaches are computationally expensive, especially
when dealing with large circuit sizes. Inspired by
recent studies (Yu et al., 2024; Chen et al., 2025),
future research could explore more efficient ways
to quantify completeness and incorporate this ob-
jective into the optimization framework described
in Equation 6.

Impact of ablation paradigm. We observe that
the circuits identified are influenced by the ablation
value z used during the identification process. For
example, when comparing circuits based on mean
versus zero ablation, we find notable differences
in the nodes identified, even for zero-ablated cir-
cuits that demonstrate high task faithfulness (see
results in Appendix D.2, specifically Figure 9). Es-
sentially, the behavior of a circuit is determined
not merely by what it includes but also by what it
excludes, as similarly noted by Miller et al. (2024).
We believe this is a general characteristic of meth-
ods that rely on constant perturbations, such as
zero and mean ablations (Olsson et al., 2022; Wang
et al., 2023).

Generalization of findings. It is important to
note that our study focuses on a small encoder-
decoder model trained on a single dataset like
PCFG SET. Naturally, the question arises as to
whether these findings will generalize to larger
models and more diverse tasks. This touches on a
broader concern within the field of mechanistic in-
terpretability, where many studies are conducted on
smaller models and datasets (Elhage et al., 2022).
We argue that, for our purposes, a controlled dataset
like PCFG SET is well-suited to study modular-
ity in language models. Nonetheless, the method
we propose in Section 3 is easily extendable to
other models and tasks. We believe that scaling our
findings to larger models and more complex tasks
represents a compelling area for future research.

Acknowledgments

We would like to thank the members of the
MaiNLP lab for their valuable feedback, with spe-
cial recognition to Robert Litschko, Michael Hed-
derich, Florian Echin, and Shijia Zhou. Further-
more, we would like to express our gratitude to
Lucas Georges Gabriel Charpentier at LTG for
valuable feedback. Our appreciation extends to
the anonymous reviewers for their comments and
suggestions. We further acknowledge Sigma2,
Norway, for providing access to the LUMI super-
computer, part of the EuroHPC Joint Undertaking,
hosted by CSC (Finland) and the LUMI consortium.
Lastly, we acknowledge the support provided to BP
through the ERC Consolidator Grant DIALECT
101043235. For parts of the project, SW acknowl-
edges funding for a research stay at MaiNLP at
LMU, funded by Integreat, the Norwegian Centre
for Knowledge-driven Machine Learning.

14942



References

Alan Ansell, Edoardo Ponti, Anna Korhonen, and Ivan
Vuli¢. 2022. Composable sparse fine-tuning for cross-
lingual transfer. In Proceedings of the 60th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1778—1796,
Dublin, Ireland. Association for Computational Lin-
guistics.

Adithya Bhaskar, Alexander Wettig, Dan Friedman, and
Dangi Chen. 2024. Finding transformer circuits with
edge pruning. In The Thirty-eighth Annual Confer-
ence on Neural Information Processing Systems.

Steven Cao, Victor Sanh, and Alexander Rush. 2021.
Low-complexity probing via finding subnetworks. In
Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 960-966, Online. Association for Computa-
tional Linguistics.

Stephen Casper, Shlomi Hod, Daniel Filan, Cody Wild,
Andrew Critch, and Stuart Russell. 2022. Graphical
clusterability and local specialization in deep neural
networks. In ICLR 2022 Workshop on PAIR2Struct:
Privacy, Accountability, Interpretability, Robustness,
Reasoning on Structured Data.

Hang Chen, Jiaying Zhu, Xinyu Yang, and Wenya Wang.
2025. Rethinking circuit completeness in language
models: And, or, and adder gates. arXiv preprint
arXiv:2505.10039.

Abhijith Chintam, Rahel Beloch, Willem Zuidema,
Michael Hanna, and Oskar van der Wal. 2023. Iden-
tifying and adapting transformer-components respon-
sible for gender bias in an English language model.
In Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP,
pages 379-394, Singapore. Association for Compu-
tational Linguistics.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch,
Stefan Heimersheim, and Adria Garriga-Alonso.
2023. Towards automated circuit discovery for mech-
anistic interpretability. Advances in Neural Informa-
tion Processing Systems, 36:16318—16352.

Rébert Csordds, Sjoerd van Steenkiste, and Jiirgen
Schmidhuber. 2020. Are neural nets modular? in-
specting functional modularity through differentiable
weight masks. In International Conference on Learn-
ing Representations.

Nelson Elhage, Tristan Hume, Catherine Olsson,
Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain,
Carol Chen, et al. 2022. Toy models of superposition.
arXiv preprint arXiv:2209.10652.

Javier Ferrando, Gabriele Sarti, Arianna Bisazza, and
Marta R Costa-jussa. 2024. A primer on the in-
ner workings of transformer-based language models.
arXiv preprint arXiv:2405.00208.

Mor Geva, Jasmijn Bastings, Katja Filippova, and Amir
Globerson. 2023. Dissecting recall of factual associa-
tions in auto-regressive language models. In Proceed-
ings of the 2023 Conference on Empirical Methods in
Natural Language Processing, pages 1221612235,
Singapore. Association for Computational Linguis-
tics.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2024a. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Advances in Neural Information Pro-
cessing Systems, 36.

Michael Hanna, Sandro Pezzelle, and Yonatan Belinkov.
2024b. Have faith in faithfulness: Going beyond
circuit overlap when finding model mechanisms. In
ICML 2024 Workshop on Mechanistic Interpretabil-

ity.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial
Intelligence Research, 67:757-795.

Sullam Jeoung and Jana Diesner. 2022. What changed?
investigating debiasing methods using causal medi-
ation analysis. In Proceedings of the 4th Workshop
on Gender Bias in Natural Language Processing
(GeBNLP), pages 255-265, Seattle, Washington. As-
sociation for Computational Linguistics.

Michael Lepori, Thomas Serre, and Ellie Pavlick. 2023.
Break it down: Evidence for structural composition-
ality in neural networks. Advances in Neural Infor-
mation Processing Systems, 36:42623-42660.

David Lindner, Janos Kramar, Sebastian Farquhar,
Matthew Rahtz, Tom McGrath, and Vladimir Miku-
lik. 2024. Tracr: Compiled transformers as a labora-
tory for interpretability. Advances in Neural Informa-
tion Processing Systems, 36.

Christos Louizos, Max Welling, and Diederik P. Kingma.
2018. Learning sparse neural networks through 1_0
regularization. In International Conference on Learn-
ing Representations.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in gpt. Advances in Neural Information Pro-
cessing Systems, 35:17359-17372.

Jack Merullo, Carsten Eickhoff, and Ellie Pavlick. 2024.
Circuit component reuse across tasks in transformer
language models. In The Tiwelfth International Con-
ference on Learning Representations.

Joseph Miller, Bilal Chughtai, and William Saunders.
2024. Transformer circuit evaluation metrics are not
robust. In First Conference on Language Modeling.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel
Marks, Koyena Pal, Nikhil Prakash, Can Rager,
Aruna Sankaranarayanan, Arnab Sen Sharma, Jiud-
ing Sun, Eric Todd, David Bau, and Yonatan Be-
linkov. 2024. The quest for the right mediator: A

14943


https://doi.org/10.18653/v1/2022.acl-long.125
https://doi.org/10.18653/v1/2022.acl-long.125
https://openreview.net/forum?id=8oSY3rA9jY
https://openreview.net/forum?id=8oSY3rA9jY
https://doi.org/10.18653/v1/2021.naacl-main.74
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.18653/v1/2023.blackboxnlp-1.29
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://doi.org/10.18653/v1/2023.emnlp-main.751
https://openreview.net/forum?id=grXgesr5dT
https://openreview.net/forum?id=grXgesr5dT
https://doi.org/10.18653/v1/2022.gebnlp-1.26
https://doi.org/10.18653/v1/2022.gebnlp-1.26
https://doi.org/10.18653/v1/2022.gebnlp-1.26
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=fpoAYV6Wsk
https://openreview.net/forum?id=zSf8PJyQb2
https://openreview.net/forum?id=zSf8PJyQb2
https://arxiv.org/abs/2408.01416

history, survey, and theoretical grounding of causal
interpretability. Preprint, arXiv:2408.01416.

Neel Nanda. 2023. Attribution patching: Activation
patching at industrial scale. Accessed: 2024-09-19.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability. In
The Eleventh International Conference on Learning
Representations.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas
Joseph, Nova DasSarma, Tom Henighan, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, et al. 2022.
In-context learning and induction heads. arXiv
preprint arXiv:2209.11895.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, et al. 2019. Pytorch: An imperative style,
high-performance deep learning library. Advances in
neural information processing systems, 32.

Judea Pearl. 2001. Direct and indirect effects. In Pro-
ceedings of the Seventeenth Conference on Uncer-
tainty and Artificial Intelligence, 2001, pages 411—
420. Morgan Kaufman.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
487-503.

Nikhil Prakash, Tamar Rott Shaham, Tal Haklay,
Yonatan Belinkov, and David Bau. 2024. Fine-tuning
enhances existing mechanisms: A case study on en-
tity tracking. In The Twelfth International Confer-
ence on Learning Representations.

Andreas Riicklé, Gregor Geigle, Max Glockner, Tilman
Beck, Jonas Pfeiffer, Nils Reimers, and Iryna
Gurevych. 2021. Adapterdrop: On the efficiency
of adapters in transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7930-7946.

Pedro Savarese, Hugo Silva, and Michael Maire. 2020.
Winning the lottery with continuous sparsification.
Advances in neural information processing systems,
33:11380-11390.

Noam Shazeer. 2020. Glu variants improve transformer.
arXiv preprint arXiv:2002.05202.

Suraj Srinivas, Akshayvarun Subramanya, and
R. Venkatesh Babu. 2017. Training sparse neural
networks. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 455-462.

Aaquib Syed, Can Rager, and Arthur Conmy. 2024.
Attribution patching outperforms automated circuit
discovery. In Proceedings of the 7th BlackboxNLP
Workshop: Analyzing and Interpreting Neural Net-
works for NLP, pages 407—416, Miami, Florida, US.
Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, L. ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov,
Sharon Qian, Daniel Nevo, Yaron Singer, and Stu-
art Shieber. 2020. Investigating gender bias in lan-
guage models using causal mediation analysis. In
Advances in Neural Information Processing Systems,
volume 33, pages 12388-12401. Curran Associates,
Inc.

Kevin Ro Wang, Alexandre Variengien, Arthur Conmy,
Buck Shlegeris, and Jacob Steinhardt. 2023. Inter-
pretability in the wild: a circuit for indirect object
identification in GPT-2 small. In The Eleventh Inter-
national Conference on Learning Representations.

Chihiro Watanabe. 2019. Interpreting layered neural
networks via hierarchical modular representation. In
Neural Information Processing: 26th International
Conference, ICONIP 2019, Sydney, NSW, Australia,
December 12—15, 2019, Proceedings, Part V 26,
pages 376-388. Springer.

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021.
Thinking like transformers. In International Con-
ference on Machine Learning, pages 11080—11090.
PMLR.

Lei Yu, Jingcheng Niu, Zining Zhu, and Gerald Penn.
2024. Functional faithfulness in the wild: Circuit dis-
covery with differentiable computation graph prun-
ing. arXiv preprint arXiv:2407.03779.

A Reproducibility Statement

To ensure the reproducibility of our experi-
ments, we make all code publicly available
at: https://github.com/mainlp/circuit-compositions.
Details of the training process, including the com-
putational setup, model implementation, and hyper-
parameter selection, are thoroughly documented in
Section 4.1.2 and Appendix C. Similarly, a detailed
account of the evaluation procedure can be found in
Section 4.1.3 and Appendix C.6. Furthermore, all
data used in this work is either publicly available or
accompanied by a detailed description of the data
generation process in Appendix B.

14944


https://arxiv.org/abs/2408.01416
https://arxiv.org/abs/2408.01416
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://openreview.net/forum?id=8sKcAWOf2D
https://doi.org/10.1109/CVPRW.2017.61
https://doi.org/10.1109/CVPRW.2017.61
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://doi.org/10.18653/v1/2024.blackboxnlp-1.25
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/92650b2e92217715fe312e6fa7b90d82-Paper.pdf
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://github.com/mainlp/circuit-compositions

Unary operation  Input Output Example

copy X1...Lpn X1...Tn copy KT YT W1 K1 — KT YT W1 K1

echo T1...Tn T1...TpnTn echo ET K1 A1 X1 J—E1 K1 A1 X1 J1 J1
repeat ri...Typ T1...TpT1...Tn, repeat J1 F1 S1—J1 F1 S1 J1 F1 S1
reverse T1...Tn Tn...T1 reverse G1 T1 X1 J1 —J1 X1 T1 G1

swap T1...Tn Tnpl2...Tp_1T1 swap B1 Z1 V1 I1 W1 — W1 Z1 V1 I1 B1
shift Ti...Tpn X2...TnT1 shift Y1 I1 D1 H1 K1 — I1 D1 H1 K1 Y1
Binary operation  Input Output Example

append T,y Ty append F1 B1, Ul AT G1 — F1 B1 U1 A1 Gl
prepend T,y yx prepend F1 B1, Ul A1 G1 — U1 A1 G1 F1 B1
remove_first T,y Y remove_first Z1 P1 N1, A1 D1 — A1 D1
remove_second x,y T remove_second F1 B1, Ul Al G1 — F1 B1

Table 2: The string-edit operations in PCFG SET from Hupkes et al. (2020).

B Dataset

B.1 PCFG SET

Hupkes et al. (2020) construct PCFG SET in such
a way that compositionality is a salient feature of
the dataset, while aligning its statistical properties
with those of natural language corpora, specifically
English. We present examples for each string-edit
operation in Table 2 to help the reader get more
familiar with the functions employed in PCFG SET
Hupkes et al. (2020).

The PCFG SET dataset is released under a MIT
license and used in accordance to the licensing
agreements.

B.2 Generating Isolated Function Data

We use the probabilistic context-free grammar
proposed by Hupkes et al. (2020) to generate

datasets for each of the string-edit operations

originally used to construct PCFG SET. Using the

same vocabulary, consisting of letters [A — Z]

combined with numbers in (0,00] € Z%, we

restrict the grammar to produce samples that

use only specific string-edit operation for each

subtask dataset, e.g, copy W1 01 Z5 G1. For
each SET operation, we generate 16 000 samples

for training and 4000 for validation. Each

subtask dataset includes samples of both single-use

and composed applications of that function, such as

remove_first remove_first A1 ,B1, B1 Al —
B1 Al

C Experimental Details

In this section, we outline key details regarding our
experiments, such as our computational setup and
the hyperparameters selected.

C.1 Software and Computing

All experiments are implemented using PyTorch
(Paszke et al., 2019) as the primary framework. De-
tailed information about supporting software and
specific versions can be found in our code reposi-
tory in the supplementary materials. Experiments
were run on AMD Instinct MI250X and NVIDIA
A100 GPUs.

C.1.1 Computational Budget

For training base models, we consumed approx-
imately 12 GPU hours in total. For the mask
training, including hyperparameter selection, failed
runs, and debugging, we consumed approximately
4700 GPU hours.

C.2 Base Model Architecture

The base model M is a transformer-based encoder-
decoder, as proposed by Vaswani et al. (2017), but
with the Gated Linear Unit (GLU) variant from
Shazeer (2020). We use sinusoidal positional en-
coding, delimit tokens on whitespace, and disjoint
embedding matrices for the input and output se-
quences. The base model M consists of six en-
coder and six decoder layers, with a hidden size of
dimension 512, and eight attention heads per layer.

C.3 Base Model Training

We train the base model M using a learning rate
of 5- 1077, a batch size of 64 without gradient
accumulation, a gradient clipping value of 15, and
a dropout rate of 0.2. Furthermore, the model is
trained using the original datasets from Hupkes
et al. (2020). In Table 3, we report the accuracy
of the base model on each of the isolated subtask
datasets. The base model M achieves final accu-
racy of 87.8% on the official PCFG test set, which

14945



Operation Accuracy
copy 1.00
echo 0.999
g‘ repeat 0.943
5 reverse 0.989
swap 0.996
shift 0.992
. append 0.848
5 prepend 0.832
L‘E remove_first  0.975
remove_second 0.999

Table 3: The generation accuracy of the base model on
the different PCFG SET subtasks (Hupkes et al., 2020).

is slightly lower than the performance of 92.0%
reported by Hupkes et al. (2020).

C.4 Mask Training

In this study, we conduct experiments for both
mean and zero ablation. Following the approach
of Wang et al. (2023), the mean ablation value z is
derived from a reference distribution. Specifically,
when training a mask for task 7; on dataset D,
we assign the ablated value z; for each potential
mediator z; in M as the average activation of z;
across samples in D;, which only includes sam-
ples corresponding to task 7;. For instance, when
training a mask for the copy task, the ablated value
z; for each mediator z; is set to the average acti-
vation of z; over samples exclusively containing
the copy function, i.e., Dggg;;, averaged across all
token positions.

The final optimization problem, described in
Equation 6, requires the predicted output proba-
bilities y™*! of the base model M for each dataset
sample across all of the subtask datasets. In prac-
tice, this is achieved through caching: a forward
pass is performed on all datasets using M, and y”™
is stored for later use during mask training.

C.5 Method Validation with TRACR

The TRACR models employ a decoder-only archi-
tecture with bidirectional attention. Table 4 sum-
marizes the model configurations for each task. All
models execute their respective RASP functions on
sequences of length four. For mask training, we
use a learning rate of 0.001, maximum temperature
Bmaz = 200, A = 1-107%, and an initial mask
value of sjnitia = 1.0. We train 50 epochs for copy,
reverse, and swap, and 200 epochs for echo.

In Figures 18 and 19, we report the sparsity
of the pruned circuits along with their respective

Circuit Hidden size QKV size Layers Heads
copy 15 6 1 1
reverse 37 10 4 1
echo 46 9 4 2
swap 74 13 6 1

Table 4: The model configurations of the TRACR pro-
grams.

ground truth circuit in the compiled model. We
note that in our experiments, we do not consider
the beginning-of-sequence (BOS) token position.
Thus, for layers that contain an active neuron only
for the BOS token, we prune the whole component.
For copy, reverse, and swap, our method recovers
all individual neurons in the compiled model. For
these tasks, the compiled model achieves a 100%
accuracy on the target task. For echo, our RASP
implementation achieves 42% accuracy when com-
piled, which our method also recovers with full
faithfulness. This shows that our method finds
faithful circuits even when the base model’s perfor-
mance is not perfect.

C.5.1 Hyperparameters

In Table 5, we report the final hyperparameters for
the mask training for each subtask, using the same
notation as in Section 3. These were selected based
on a random search over the following hyperparam-
eters: learning rate: {1 - 1073,1-107%,1- 10_5},
A {1-1073,1-107%1-107°}, Sinitiar: {0.2,
0.05, 0}, Bmaz: {100,200, 300}.

C.6 Evaluation

We evaluate circuits according to two primary crite-
ria, performance and node overlap, as described in
Section 4.1.3. Specifically, we quantify the perfor-
mance of a circuit by its faithfulness score, which
is calculated via the KL divergence, D g1, between
the output distribution of the circuit y"™ and the

Circuit Ir A Sinitial  Omaxz  Epochs
echo 107*  107*  0.05 200 500
copy 107% 107* 0.05 200 500
repeat 107*  107*  0.05 200 500
reverse 107*  107*  0.05 200 500
swap 107% 107* 0.05 200 500
shift 107*  107*  0.05 200 500
append 107® 107° 0 200 500
prepend 10~ 107° 0 100 500
rm_first  107* 107° 0.05 300 500
rm_second 107% 107°  0.05 100 300

Table 5: Final hyperparameters used for mask training.

14946



A Faithfulness Sparsity
Fr Dk,

1x1072 0228 4.180  0.022

1x107% 0833 0687 0.105

1x107% 0943 0120 0.133

1x107° 0992 0015 0.162

1x107% 0999 0.001 0.298

A Faithfulness Sparsity
Fr Dkr

1x1072 0.106 4.478  0.017

1x107% 0734 0737  0.135

1x107% 0951 0121  0.199

1x107° 0982 0.026 0.324

1x107% 0994 0013 0.648

Table 6: Effect of the sparsity regularization for different values of \ on the copy (left) and repeat (right) tasks.

base model y™. However, to get a bounded met-
ric, we instead use the normalized version of the
Jensen-Shannon divergence between the two output
distributions:

1

JSDhorm (:ym H yM) = m( @)

Drr(y™ | y™™) + Dgp(y™ || y™M)

) , where vy 5

where y™M is a mixture distribution of y™ and
yM. Note that the Jensen-Shannon divergence is
symmetric. Furthermore, it is bounded, i.e., 0 <
J SI)norm <1

To measure the circuits’ node overlap we com-
pute their Intersection over Union (IoU) and Inter-
section over Minimum (IoM). Given two circuits
m™t € {0,1}" and m”2 € {0,1}" defined over
the same node space, the IoU and IoM are com-
puted as follows:

lm™ nm™,
[m™ Um™ |,
Im™ N m ™,

min ([lm™ 1, [|m™]1)

IoU = ®)

IoM =

where m”" N m' represents the intersection of
the two binary masks, while m”* U m”2 denotes
their union. Specifically, the intersection between
two circuits m” "2 = m™ U m™2 is defined as:

T
mil 2

Ty _

= m?l nm; m?l A ml-T2

1, if m*=1andm!> =

= )

0, otherwise.

Similarly, the union between two circuits
mTT2 = mTr UmT™2 can be computed as:

T, Ty _ mZT1 U miTz _ le V. mgb
0, if m!*=0andm]>=0,
1, otherwise.
(10)

C.7 Subnetwork Compositions

When creating circuit compositions, we apply the
union operator between the binary masks of two
circuits, as illustrated in Equation 10. For zero-
ablated circuits, this operation remains symmet-
ric. However, in the case of mean-ablated circuits,
symmetry is not preserved. This is primarily due
to the fact that the mediator value, z;, for which
m; = 0 after the union, is ablated by the mean
value across the reference distribution associated
with the first circuit’s task, 2?1. Specifically, for
the union m”"2 = mTt U m72, the mediator
value z; is determined as follows:

i mlt = 0and m? =0,

z,, otherwise,

(11)

zZ; =

This means that m”* Um™ # m™ Um™ for
mean ablations if iiTl =+ il-T?. For zero ablation,
the ablation value remains the same for both cases
iiTl = EZ-TQ = (0, thus yielding symmetry of the
operator.

D Supplemental Results

In this section, we report supplemental results that
complement the paper’s key findings.

D.1 Mean Ablation

We first report additional results related to circuits
identified via mean ablation.

D.1.1 Circuit Performance

In Figure 11 and Figure 12 we report the KL diver-
gence between the predicted output distributions of

14947



the mean-ablated circuits, m, and the base model,
M, for both unary and binary string-edit opera-
tions. The results exhibit a trend consistent with
the observations discussed in Section 4.3.1.

D.1.2 Local Sparsity

Figure 20 illustrates the local sparsity of each
unary circuit identified via mean-ablations, while
21 presents the local sparsity of each binary circuit,
respectively. It is evident that unary circuits are
highly sparse, with no module retaining more than
45% of activations. Notably, the feed-forward (FF)
and multi-head self-attention (MHSA) modules
within the decoder demonstrate pronounced spar-
sity across all layers, typically retaining only 0.0%
to 10% of activations. In contrast, the multi-head
cross-attention (MHCA) modules retain a higher
proportion of activations. As shown in Figure 21,
binary circuits generally retain a greater number of
activations. Specifically, the append and prepend
circuits show substantial remaining activations in
both the encoder and decoder.

D.1.3 Lambda Sensitivity Analysis

To assess the impact of the hyperparameter
A in Equation 6, we perform a parameter
sensitivity analysis for the two unary op-
erations copy and repeat. Specifically,
we consider six different A values: A €

1x1072,1x1073,1x 107%,1 x 107°,1 x 1075,

and train a mask for each, following the procedure
outlined in Sections 3 and 4. We report task
faithfulness Fr, KL-divergence D, (as defined
in Section 4.1.3), and the resulting circuit’s sparsity
for each task in Table 6.

As expected, we observe that the A parameter
governs the trade-off between task faithfulness and
circuit sparsity: higher values of A place greater
emphasis on the regularization term in Equation 5,
thereby promoting sparsity in the resulting circuit
while sacrificing some faithfulness. In contrast,
lower values of A result in less sparse but more
faithful models. For instance, a value of A\ =
1 x 1076 yields a high faithfulness performance of
Feopy = 0.999 on the copy task and a sparsity level
of 0.298, whereas a value of A = 1x 1072 results in
a lower faithfulness performance of Feopy = 0.228
and higher sparsity level of 0.022.

D.1.4 Deterministic Mask Approximation

As discussed in Section 3, a key advantage of learn-
ing a binary mask through continuous sparsification

is the deterministic nature of the approach. To as-
sess whether our method consistently converges to
the same circuits despite the stochastic elements of
the training process (e.g., dataset shuffling), we ex-
amine the node overlap of circuits trained using dif-
ferent random seeds. Our findings demonstrate that
the method reliably converges to the same mask for
identical subtasks, regardless of the random seed.
This holds true for both mean and zero ablation.
For example, we report an IoU and IoM of 1.0
when comparing five prepend circuits trained with
varying random seeds.

D.1.5 Set Operations

In Figure 13 we present the cross-task accuracy
of additional composite circuits as supplementary
results to Section 4.3.3. Consistent with previous
observations, the union of two circuits acquires
functional capacities for subtasks that the original
base circuits cannot perform independently. For ex-
ample, the union m>"P U m"ePeat achieves a 56%

1.0

echo N 0.40 0.25 0.26 0.28 0.28 0.16 0.14 0.19 0.32
copy 0.40 v 0.22 0.26 0.26 0.29 0.14 0.13 0.18 0.39
repeat 0.25 0.22 RNV} 0.22 0.28 0.24 0.24 0.23 0.22 0.25
reverse 0.26 0.26 0.22 [NV) 0.34 0.31 0.17 0.16 0.22 0.26 07
swap 0.28 0.26 0.28 0.34 RNV} 0.33 0.19 0.19 0.22 0.27 L 0.6
shift 0.28 0.29 0.24 0.31 0.33 gKUW 0.18 0.16 0.22 0.27
append 0.16 0.14 0.24 0.17 0.19 0.180.44 0.28 0.18
prepend 0.14 0.13 0.23 0.16 0.19 0.16 0.440.30 0.17
rm_first 0.19 0.18 0.22 0.22 0.22 0.22 0.28 0.300.23
rm_second 0.32 0.39 0.25 0.26 0.27 0.27 0.18 0.17 0.23
& > >

S e R >

P LRSS S SE S

A L O L
K

QQJ
& & e S
7

<

(a) Intersection over Union (IoU).

echo NV} 0.62 0.56 0.38 0.45 0.44 0.56 0.54 0.53 0.50
copy 0.62 KV 0.53 0.45 0.47 0.53 0.57 0.59 0.58 0.61 0.9
repeat 0.56 0.53 NV 0.48 0.45 0.49 0.56 0.64 0.49 0.43
reverse 0.38 0.45 0.48 RNV 0.57 0.54 0.48 0.55 0.51 0.39
swap 0.45 0.47 0.45 0.57 Rl 0.56 0.53 0.60 0.44 0.33 0.7
shift 0.44 0.53 0.49 0.54 0.56 EHUW 0.49 0.54 0.50 0.39
append 0.56 0.57 0.56 0.48 0.53 0.490.57 0.43 0.50
prepend 0.54 0.59 0.64 0.55 0.60 0.54 0.570.49 0.48 -0.5
rm_first 0.53 0.58 0.49 0.51 0.44 0.50 0.43 0.490.41
rm_second 0.50 0.61 0.43 0.39 0.33 0.39 0.50 0.48 0.41
& > >

S oo 9 SN
d & LRSS & LE S
& & & & & & S5
&

2
& & & g
¢

o
&t
&

N

(b) Intersection over Minimum (IoM).

Figure 8: Node overlap for circuits identified via zero
ablation.

14948



accuracy on the reverse task and 31% on shift,
representing significant improvements over the per-
formance of these circuits in isolation. Similarly,
the union m Ve ¢ U me° reaches 31% accuracy
on swap. In the case of ms"ftUme"°, we observe
that while the composite retains approximately half
of the performance on the individual tasks, it also
enhances performance on the copy task.

D.2 Zero Ablation

While the main paper focuses on circuits obtained
through mean ablation, this section presents the re-
sults of experiments conducted using zero ablation.

D.2.1 Circuit Performance

In Figure 14 and Figure 15, we present the task
faithfulness performance F7r and generation accu-
racy for the zero-ablated circuits. Similarly, Fig-
ure 16 and Figure 17 illustrate task faithfulness in
terms of the KL divergence between the predicted
output distributions of the zero-ablated circuits, m,
and the base model, M, for both unary and bi-
nary string-edit operations. The key finding from
these experiments is that zero ablation yields re-
sults closely aligned with those of mean ablation
for binary operations, but not for unary operations.
Similarly, patterns observed in mean-ablated unary
circuits are not evident here. As noted in the liter-
ature, zero ablation can significantly shift the dis-
tribution, leading to degraded performance, which
is one of the reasons for adopting mean ablation
(Miller et al., 2024).

D.2.2 Node Overlap

Figure 8 illustrates the IoU and IoM between all
circuit-pairs under zero ablation. The observed
patterns are consistent with those identified under
mean ablation (Figure 6), where unary circuits tend
to exhibit higher node overlap than binary circuits.

100

loU
. 777 1oM
- 67
X 61 7
P
::’40 w3 2 Pt 2322 3% 2 ;
© z ? 7 /23;24/ % % ; ;
“—rErrii
111 A AR
MAIMIANIII)
© N S RS OSR
e(}\ &Q o“@\\é" é@ P @Q?’ & %QQQ, @Qo
((\/
<

Figure 9: The overlap between mean and zero ablated
circuits for all subtasks.

80

60

Remaining act. (%)

(a) Mean ablation.

100

80

60

Remaining act. (%)

(b) Zero ablation.

Figure 10: Overall remaining nodes after activation
pruning.

D.3 Comparison Between Mean and Zero
Ablation

Figure 9 illustrates the overlap between the mean
and zero ablated circuits for identical subtasks.
As discussed in Section 7, we find significant dif-
ferences in the circuits identified, specifically for
unary circuits that tend to engage a smaller por-
tion of the base model’s activation space (refer to
Figure 10 for comparison).

D.4 Global Sparsity

In Figure 10 we present the global sparsity of
the circuits for both mean and zero ablation. As
touched upon in Section 7, we observe that while
the two ablation strategies identify circuits of com-
parable sizes, they do not necessarily yield identical
circuits. Additionally, the ordering of circuits in
terms of remaining activations is nearly the same
for both methods, with the only notable difference
being the internal ordering of swap and reverse.

E Use of AI Assistants

For parts of our project’s source code, we used
GitHub Copilot as an assistant tool.

14949



o
§ 009 025 272 353 8 2 021 [REREN 379 4.10 361 12
()
2 ! =
g 199 012 260 3.39 & 4097 11.95 BEREN 7.99 YA 10
6 o
T T
g o7 o019 233  3.03 5 2 163 0.01 343 372 310 8
= [
® o
o -4 ) -6
g 5.64 BEEE:) 1.93 2.88 il 6.76 3.67 239
] 5 &
g 8 ¢
% 163 0.31 0.11 1.55 ) % 2.65 2.04
= = 2
% 4.00 1.33 2.78 0.11 -1 = 415 3.68
[}
echo copy repeat reverse swap  shift echo copy repeat reverse swap  shift
(a) All token positions. (b) Differing token positions.

Figure 11: Task faithfulness measured via D, (ym | yM) for the mean-ablated unary circuits. The y-axis
corresponds to the circuit, while the x-axis represents the evaluation task. When we only evaluate selected positions,
we omit the diagonal, as there are no applicable tokens for comparison.

E: 8 2
§ 0.28 2.92 4.45 0.97 2:,_ 3.5 453 4.66 10
Q
© 7 ®©
2 6 2 8
:% 0.44 0.20 0.51 0.15 2 0.45 2.20 0.15
= 5 o
Q S 6
B 4 B
= 4.12 4.07 0.03 0.40 'E‘ 0.44
g -3 IS -4
ko) -2 ko]
% 0.17 -9 g‘
E E
append  prepend  rm_first rm_second append  prepend  rm_first rm_second
(a) All token positions. (b) Diftfering token positions.

Figure 12: Task faithfulness measured via D, (ym I yM) for the mean-ablated binary circuits. The y-axis
corresponds to the circuit, while the x-axis represents the evaluation task. When we only evaluate selected positions,
we omit the diagonal, as there are no applicable tokens for comparison.

1.0
swap 0.65 0.00 0.00 0.27 0.07 [

repeat 0.90 0.06 0.12 0.21 0.01 05
swap U repeat 0.89 0.13 0.00 0.56 0.84 0.31 oo

copy echo repeat reverse swap shift

shift 0.16 0.00 0.00 0.00 0.00 [ 10

echo 0.83 0.93 0.00 0.01 0.08 0.00 05

shift U echo 0.94 0.46 0.00 0.01 0.02 oo
copy echo repeat reverse swap shift

reverse 0.00 0.00 oo HEEEE oo 0.00 [ 10

echo 0.83 0.93 0.00 0.01 0.08 0.00 05
reverse U echo 0.54 0.06 0.00 0.27 0.15 0o
copy echo repeat reverse swap shift

Figure 13: The results of combining circuits through a union operation on their respective binary masks.

14950



o o E¥ 100 100 094 099 100 099
5 035 027 5 013 014 007 005 024 8
@ @
1.0
> 08 > 08 o
s 045 0.34 S 040 0.07 008 003 020 § ONGE 001 000 000 000 0.00
o o
K] 3 2 002 MM 000 002 012 001 08
2 044 023 06 o BGGYA 0.08 0.15 0.03 0.20 06 g+ : : : : :
[ [ -
2 @ zi WG 001 023 002 000 0.00 -0.6
g 017 04 2 027 039 0.15 0.18 | L) 04 g
£ 2 g- 000 000 000 MONAM 001 0.01 0.4
g 0.34 g 0.37 0.54 -
@ -02 @ -02 €000 001 000 005 025 001
7 -0.2
= &=
G 0.30 1032 A G 0.231 gl £-016 019 000 000 000 S
-0.0 -0.0 : , . , , .
echo copy repeat reverse swap  shift echo copy repeat reverse swap  shift echo copy repeat reverse swap shift 00
(a) Fr across all token positions. (b) Fr for selected token positions. (c) Accuracy.

Figure 14: Task faithfulness performance Frr and accuracy for the unary tasks for the zero ablated circuits. The
y-axis corresponds to the circuit, while the x-axis represents the evaluation task. For task faithfulness with respect to
positions where the ground truth tokens differ between the circuit and the evaluation task, the diagonal is omitted, as
there are no applicable token positions for comparison.

1.0 1.0

base
=)
oo
a
o
oo
%)
o
©
oo
o
S]

0.32 0.16 0.15

append
append

°
c
@
aQ
a
©

prepend
o
[}
prepend

prepend

B 14
= 034 04 &1 034 0.22 (04
E 13 g
2 02 E -02 E
$ o35 0.05 0.11 T8 o0 0.05 0.07 C 3 02
@ : : : @ : : : 2-  0.00 0.00
13 E g
-0.0 -00 E , , ’ -0.0
append prepend rm_first rm_second append prepend rm_first rm_second append prepend rm_first rm_second
(a) Fr for all token positions. (b) Fr for selected token positions. (c) Accuracy.

Figure 15: Task faithfulness performance Fr and accuracy for the binary tasks for the zero ablated circuits. The
y-axis corresponds to the circuit, while the x-axis represents the evaluation task. For task faithfulness with respect to
positions where the ground truth tokens differ between the circuit and the evaluation task, the diagonal is omitted, as
there are no applicable token positions for comparison.

o 2 6
5 40 3
[}
z 35 g 5
g ' 8
o
§ 3.0 51;3_ )
Q
) 25 2
[ -
E) 2.0 i’ -3
a -15 &
©
=
5 @ -2
-1.0
=
£ 1.14 a
@ -0.5 @ .
echo copy repeat reverse swap  shift echo copy repeat reverse swap  shift
(a) All token positions. (b) Differing token positions.

Figure 16: Task faithfulness measured via D, (ym I yM) for the zero-ablated unary circuits. The y-axis
corresponds to the circuit, while the x-axis represents the evaluation task. When we only evaluate selected positions,
we omit the diagonal, as there are no applicable tokens for comparison.

14951



2 2
e 0.28 2.74 1.03 5 e 2.94
Qo Qo
© © 5
kel el
c 4 c
:’.) 0.50 0.22 0.44 0.07 § 0.51 1.46 0.07 4
a a
-~ 73 -~ 73
4 2
= 2.80 2.66 0.05 1.37 = 1.30
E 2 E -2
© kel
o j o
S IR 2 - g B
gl X 5.88 5.68 0.20 gl
E E
append prepend rm_first rm_second append prepend rm_first rm_second
(a) All token positions. (b) Differing token positions.

Figure 17: Task faithfulness measured via D, (ym I yM) for the zero-ablated binary circuits. The y-axis
corresponds to the circuit, while the x-axis represents the evaluation task. When we only evaluate selected positions,
we omit the diagonal, as there are no applicable tokens for comparison.

Attn 1 MLP 1

m.—«va U’HNMQ’

latent activation

P el
PAWNFRFOOONOUIRWNRFO

1\

(a) The active nodes extracted from the compiled copy (b) The local sparsity of the copy TRACR circuit.
TRACR program.

Attn1  MLP1 Attn2 MLP2 Attn3 MLP3 Attn4 MLP4

3 |10.87%| | 6.52%

ER L e e g e e kR T

0

latent activation

8
9

(c) The active nodes extracted from the compiled echo (d) The local sparsity of the echo TRACR circuit.
TRACR program.

Figure 18: The activation patterns from the compiled copy and echo TRACR programs along the corresponding
circuits we identify. We display the fraction of the circuit’s remaining activations for each layer and module.

14952



Attn1 MLP1 Attn2 MLP2 Attn3 MLP3 Attn4 MLP4

1%

latent activation

10.81%

0.0% 10.81%

2.7

4
3 | 0.0%
2
1

=}
X

Hems groms T

(a) The active nodes extracted from the compiled reverse (b) The local sparsity of the reverse TRACR circuit.
TRACR program.

Attn1 MLP1 Attn2 MLP2 Attn3 MLP3 Attn4 MLP4 Attn5 MLP5 Attn 6 MLP 6
! Attn MLP
4.059 %
4
¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

(c) The active nodes extracted from the compiled swap (d) The local sparsity of the swap TRACR circuit.
TRACR program.

Jatent activation

Figure 19: The activation patterns from the compiled reverse and swap TRACR programs along the corresponding
circuits we identify. We display the fraction of the circuit’s remaining activations for each layer and module. We
note that for these two circuits, we prune the first attention module because we do not consider the BOS token
during our pruning, which is the only activated position in this layer.

14953



o) el (o)

Decoder

Encoder

] ) ()

Decoder

Encoder

IENERI R
i o w - w 4
« « N o a8 o«
<[ s .
sl sl
. HJEEEJE
F || e]|2l]le

o N T e A e

4.0%

(b) The local sparsity of the echo circuit.

Encoder

(a) The local sparsity of the copy circuit.

o) fimcd) (o)

Decoder

] ) ()

Decoder

Encoder

® ® I I L N
S S < S i P
— — (o] o - -
— ——J J
e W W W W e
R R 53 ® ¥ ®
aQa o wn =] wn =
-+ N a — — a1
- J __J
N0 N1 N1
<

® R S ® ® R
° ) < - ° s
) ) 5} 1} L) -
3 = n = - <

— - - @ -

o N T n A

2.0%

(d) The local sparsity of the reverse circuit.

(c) The local sparsity of the repeat circuit.

o) ) (o)

Decoder

fose) ) ()

Encoder

Decoder

Encoder

T\J\JJ\JL
I3 I3 I3 IS ® ®
= = Q = ) H
— - Sl g el Q
S L JL J Ju J
N Y Y Y
® I ® I S IS
I Q 7 ) - <+
L) « a - 1] Q
L L L J J
YY) )
® e ® ® ® ®
< < < =] =] <
« « « « « S
ﬁ[\[[[[é

nnnnnn
wn wn =y ® IS a
0 o o o el -+
nnnnnn
~ o0 o0 =y =) =
— - - — Q —

[6 wn A en (g\] 1\

TJ\JJ\JL
I I IS I IS IS
< < < < “© S
- - — o - Q
« o J J Ju JL
T N Y Y Y
N ® N I I N
=3 - N ° ® o0
+ «a Q - - «Q
-
N YY)
Q ® I I Q ®
< < < < = =
- - « o < s

f\[[[[i

I N IS S R S
I = ) = N =
“ « « ) « -+
N ® ® I I N
3 - — ISl ® <

- = - Q <

o 1N T e A e

9.0%

k—

(f) The local sparsity of the shift circuit.

(e) The local sparsity of the swap circuit.

Figure 20: The local sparsity of the unary circuits achieved via mean ablation. Considered are feed-forward (FF),

multi-head self-attention (MHSA), and multi-head cross-attention (MHCA) modules for each layer.

14954



) () o ) () ) () ) el ()
Encoder Decoder Encoder Decoder

B Bel EYELBEL I
s () (o) (68 ()| |59 () 38 ()
) D)) @@ (@0)| (6 @6 @ (=
s (o F @ =) |6 (o) () ()
2 (@) @@ @ (o) (@@ [
(o) @) (e ’ @) 1 mT DIE ’ )

(a) The local sparsity of the append circuit.

(b) The local sparsity of the prepend circuit.

oo (] o) ) () ) () o) el ()
Encoder Decoder Encoder Decoder

EE e (B E
s @] | @) (0| (500 69| | () (o)
(50 @8 | () (58] ()| [o () @0 (] (3] (o)
260 @] (o) @) (o] (o0 (9| | () (o)
@) @] |0 @ )| 2060 59| | 6 ()
a2 e =8 28

(c) The local sparsity of the remove_first circuit.

Figure 21: The local sparsity of the binary circuits achieved via mean ablation. Considered are feed-forward (FF),

(d) The local sparsity of the remove_second circuit.

multi-head self-attention (MHSA), and multi-head cross-attention (MHCA) modules for each layer.

14955



