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Abstract

Recent advancements in Vision-Language
Models (VLMs) have opened new possibilities
in automatic grading of handwritten student
responses, particularly in mathematics. How-
ever, a comprehensive study to test the ability
of VLMs to evaluate and reason over handwrit-
ten content remains absent. To address this gap,
we introduce FERMAT, a benchmark designed
to assess VLMs’ ability to detect, localize and
correct errors in handwritten mathematical con-
tent. FERMAT spans four key error dimensions
- computational, conceptual, notational, and pre-
sentation - and comprises over 2,200 handwrit-
ten math solutions derived from 609 manually
curated problems from grades 7-12 with inten-
tionally introduced perturbations. Using FER-
MAT we benchmark nine VLMs across three
tasks: error detection, localization, and correc-
tion. Our results reveal significant shortcom-
ings in current VLMs in reasoning over hand-
written text, with GEMINI-1.5-PRO achieving
the highest error correction rate (77%). We also
observed that some models struggle with pro-
cessing handwritten content, as their accuracy
improves when handwritten inputs are replaced
with printed text or images. These findings
highlight the limitations of current VLMs and
reveal new avenues for improvement. We re-
lease FERMAT and all the associated resources
in the open-source to drive further research.

1 Introduction

Recent advancements in Large Language Mod-
els (LLMs) (Jiang et al., 2023; Touvron et al.,
2023; Yang et al., 2024; Anil et al., 2023) and
Vision-Language Models (VLMs) (Team et al.,
2024; Dubey et al., 2024; OpenAl, 2024; Wang
et al., 2024b; Agrawal et al., 2024; Liu et al., 2024)
have significantly enhanced the ability to interpret
both textual and visual data. These developments
are driving progress in core language (Zhao et al.,
2023; Xinyi et al., 2023; Wang et al., 2024d) and
vision-language tasks (Zhang et al., 2024; Li et al.,
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Figure 1: We introduce FERMAT, a novel multimodal
benchmark to evaluate VLMs on their ability to detect,
reason about, and assess the correctness of handwritten
grade-school level math solutions.

2023a), with notable advancements in mathemati-
cal reasoning and problem-solving (Frieder et al.,
2023; Lu et al., 2023b; Shao et al., 2024; Zhou
et al., 2024; Imani et al., 2023; Bang et al., 2023).
As these models evolve, they are increasingly en-
abling sophisticated applications in educational
tools (Wang et al., 2024e), including automated
evaluation (Malik et al., 2021; Li et al., 2024a;
Sonkar and Baraniuk, 2023; Tigina et al., 2023),
quiz generation (Li et al., 2024a; Scaria et al.,
2024), and personalized tutoring systems (Wang
et al., 2024c; Alhafni et al., 2024; Abu-Rasheed
et al., 2024; Li et al., 2023b).

One promising application of VLMs is exempli-
fied by OpenAI’s widely referenced demo', which
demonstrated the potential of such models to evalu-
ate handwritten math content produced by students.
This requires a model to accurately understand,
identify, and correct potential errors. Although
these demonstrations highlight potential, a robust
and comprehensive evaluation of VLMs for this
task remains lacking. To address this gap, a bench-
mark analogous to Checklist-based fine-grained as-
sessments for text (Ribeiro et al., 2020; Zhou et al.,
2024; Sonkar and Baraniuk, 2023) is essential.

! https://www.youtube.com/watch?v=_nSmkyDNulk
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To address this need, we introduce FERMAT,
a benchmark to evaluate a VLM’s capability in
Finding and correcting ERrors in handwritten
MAThematical content. This benchmark enables
the evaluation of Vision-Language Models (VLMs)
as automatic evaluators for handwritten math re-
sponses across four common error axes: (a) com-
putational errors, (b) conceptual misunderstand-
ings, (c) notation errors, and (d) presentation issues.
To accomplish this, we first manually curated 609
math problems from grades 7 to 12, along with their
correct solutions. We then used a human-in-the-
loop approach to introduce targeted perturbations
into these correct solutions along the previously de-
fined error axes. Finally, these perturbed solutions
were transcribed by more than 40 human annota-
tors to produce handwritten versions. The tran-
scriptions reflect natural variations in handwriting
styles, and the captured images reflect differences
in lighting, paper types, and overall image quality.
The resulting benchmark contains more than 2200
handwritten erroneous math solutions and their cor-
responding correct “gold” answers in IX[EX format.

Using FERMAT, we evaluate nine VLMs on
three core tasks: (a) Error Detection, (b) Error
Localization, and (c¢) Error Correction. Our experi-
ments show that most models struggle with these
tasks, with GEMINI-1.5-PRO leading with the best
performance of 77% in Error Correction. We also
find that providing additional meta-information
about the problem type, grade level, error category,
etc. improves model performance. Furthermore,
our analysis shows that Error Localization accuracy
increases when handwritten inputs are replaced
with printed images or direct text, highlighting
the challenges in processing handwritten content.
Overall, these findings highlight key limitations in
modern VLMs when processing handwritten math-
ematical content, emphasizing the need for caution
in real-world applications.

2 Related Work

Multimodal Evaluations. The evaluation of
VLMs across different multimodal tasks has gar-
nered significant attention in recent works. Prior
works (Zhang et al., 2023; Yue et al., 2024a;
Das et al., 2024; Yue et al., 2024b; Zhong et al.,
2023) have introduced multi-disciplinary bench-
marks using questions from different competitive
exams. Additionally, reasoning benchmarks, in-
cluding mathematical (Mishra et al., 2022; Lu et al.,

2023a; Wang et al., 2024a) and broader STEM-
oriented benchmarks (He et al., 2024), have been
widely explored. While most existing studies eval-
uate images paired with simple typed text, Liu et al.
(2023) and Bubeck et al. (2023) investigate OCR
capabilities for handwritten text, focusing on single-
line mathematical expressions. In contrast, our
benchmark includes dense, handwritten, multi-line
derivations and complex mathematical notations,
hence providing a more rigorous evaluation.
Error Evaluation Abilities of LL.Ms. Prior stud-
ies (Kamoi et al., 2024; Doddapaneni et al., 2024;
An et al., 2023) have explored LLMs’ ability to
detect textual errors. Some works (Li et al., 2024b;
Tyen et al., 2024; Sonkar and Baraniuk, 2023) high-
light that, although LLMs struggle with error detec-
tion in mathematical text, they show strong correc-
tion abilities. While most research has focused on
text-based contexts, a few works (Yan et al., 2024;
Zhou et al., 2024) examine multimodal error de-
tection, primarily targeting simple objective errors.
In contrast, our benchmark introduces a more real-
istic evaluation, including multiple variations of a
single error type, resulting in a deeper assessment
of VLMs’ ability to identify and correct complex
multimodal mathematical errors.
CHECKLIST-inspired Work. The CHECKLIST
framework (Ribeiro et al., 2020) established a sys-
tematic approach for evaluating NLP models via
behavioral testing. Its principles have been adapted
for LLM evaluations, such as FBI (Doddapaneni
etal., 2024), MATHCHECK (Zhou et al., 2024), and
DUPE (Sonkar and Baraniuk, 2023), with a focus
on robustness by introducing controlled perturba-
tions in the outputs. Building on this foundation,
we introduce a tailored perturbation taxonomy for
evaluating handwritten error detection, localization
and correction ability of different VLMs.

3 FERMAT Benchmark

We present FERMAT, a benchmark of 2,244 hand-
written solved math problems spanning middle and
high school topics, including Arithmetic, Alge-
bra, Mensuration, Geometry, Probability, Statistics,
Trigonometry and Calculus. Each solution reflects
common mistakes made by students across four
different axes: (i) computational errors, (ii) concep-
tual misunderstandings, (iii) notation errors, and
(iv) presentation issues. Additionally, we also in-
clude some superficial perturbations that do not ren-
der the solution incorrect (e.g., “16 cm” vs. “16.0
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Domain: Mensuration

Subdomain: Surface Area

Perturbation:
Invalid Assumption

Introduce an invalid assumption
perturbation that affects the
logical consistency of the
solution by making unsupported
or unjustified assumptions.
These errors lead to incorrect
reasoning without basis in the
given problem context, resulting
in logical inconsistencies.
Examples include assuming x > 0
without verifying conditions,
presuming a triangle is
equilateral without
justification, or assuming a

Q: The internal measures of a
cuboidal room are 12m x 8m x 4m.
Find the total cost of whitewashing
all four walls of the room if the cost
of whitewashing is X 5 per m’.

A:...[SOLUTION TRUNCATED]
Area=2(l+b)xh

=2(12+8) x4

=2x20x4

=160 m’
The cost of whitewashing is X 5 per

@ GPT-40 Output

Perturbed Answer

FERMAT Sample

Handwritten QA Pair

A: ...[SOLUTION TRUNCATED]
The cost of whitewashing is X 5 per
m’.
Assuming the floor also needs to be
whitewashed,
Area of the floor = 12 x 8 m’
=96 m
Cost of whitewashing the floor
=3 (96 % 5)
=3 480
So the total cost of whitewashing

. function is differentiable =X (800 + 480)
Hence, the total cost of whitewashing without verification. The error =X 1280
the four walls of the room =X 160 x 5 should appear reasonable ...

=3 800 [PROMPT TRUNCATED]

Figure 2: The construction of FERMAT involves four steps: (1) sampling problems with detailed solutions from
math domains (§3.1), (2) defining a perturbation taxonomy (§3.2), (3) applying perturbations to solutions (§3.3),

and (4) transcribing the perturbed QA pairs (§3.4).

cm”). Each instance in FERMAT comprises a tuple
(@, Inw, Agold), Where @ represents the question,
Iy, denotes the image containing the handwritten
question and the erroneous solution, and A4 is
the original correct solution of (). Both @) and
Agolq are provided in ISTEX to ensure standard uni-
form representation across different benchmarks.
The introduced errors are based on well-defined
axes of commonly occurring errors designed to
rigorously test multimodal reasoning and auto-
evaluation capabilities of VLMs. A detailed de-
scription of these axes can be found in Table 2. To
ensure high standards and sanctity of the bench-
mark, each instance undergoes multiple stages of
manual vetting, from problem-set curation (§3.1),
defining different error categories (§3.2), creating
perturbations (§3.3), to manually transcribing and
verifying the perturbed handwritten answers (§3.4).

3.1 Problem Set Collection

Initial Data Collection We first manually collect
well-formulated solved problems from widely rec-
ognized math textbooks commonly used in grades
7 to 12 curricula. These problems and their so-
lutions are extracted as images from these text-
books, ensuring a diverse representation of core
mathematical domains, including Arithmetic, Alge-
bra, Mensuration, Geometry, Probability, Statistics,
Trigonometry, and Calculus. This approach ensures
comprehensive coverage of foundational concepts
across middle and high school levels.

This initial problem set includes only problems
with detailed free-form solutions. To enhance
the diversity of question formats, we also include

multiple-choice questions (MCQs) along with their
solutions. These MCQs, sourced from various com-
petitive exams, cover key topics in Quantitative Ap-
titude, such as profit and loss, time and work, and
data interpretation. These topics often involve prac-
tical applications of mathematical concepts often
underrepresented in standard textbooks.

IATEX Conversion and Verification After collect-
ing around 850 diverse problem-solution images,
we used GPT-40 to extract the content in IKTEX
format. We choose GPT-40 over standard OCR en-
gines due to its superior capability in handling com-
plex mathematical notations (Kaltchenko, 2024)
and its ability to give well-formatted outputs. All
the extracted I&TEX content was then rigorously
reviewed by the authors for correctness, resulting
in 609 high quality IATEX problem-solution pairs
(Q, Agola), spanning more than 50 fine-grained top-
ics across the above mentioned 7 domains.

3.2 Designing the Perturbation Taxonomy

To reflect common mistakes made by students, we
manually designed a comprehensive taxonomy of
perturbations specific to our mathematical domains.
These perturbations, introduced into correct solu-
tions, are categorized into five broad axes:
Computational Errors (CO): Errors made in dif-
ferent computations, such as arithmetic mistakes in
intermediate or final steps.

Conceptual Errors (CP): Errors made while in-
correctly applying concepts, including misinterpre-
tations (e.g., solving for area instead of perimeter)
or misuse of identities, like (a + b)? = a? + b°.
Notational Errors(NO): Errors made by incor-
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Category # Instances
TOTAL NUMBER OF QUESTIONS 2,244
Free-Form Question-Answer Pairs 1,814 (82%)
MCQs with Free-Form Explanations 430 (18%)
DOMAINS (# SUBDOMAINS)
Algebra (11) 686 (28.6%)
Aptitude (1) 430 (17.9%)
Arithmetic (13) 500 (20.9%)
Calculus (8) 305 (12.8%)
Mensuration and Geometry (11) 260 (10.9%)
Probability and Statistics (4) 109 (4.6%)
Trigonometry (2) 101 (4.2%)
GRADE LEVELS 7-12
Total Number of Annotators 43
Average Annotations per Annotator 55.6

Table 1: Key statistics of FERMAT. Subdomains and
perturbation versus grade are detailed in Appendix A.

rect usage of symbols, operators, or formulae, such
as writing 2 as 22 or substituting + for x.
Presentation Errors(PR): Clarity or formatting
issues, such as providing an answer in fraction form
when a decimal is requested, or using inconsistent
terminology (e.g., switching between "vector" and
"line") that may cause contextual confusion.
Superficial Perturbations (SU): Non-impactful
errors made by making subtle changes, such as su-
perficially altering variable names (f(z) = 2 to
f(t) = t?) or omitting non-essential intermediate
steps without affecting solution correctness. These
errors evaluate the VLMs’ ability to maintain eval-
uation accuracy despite superficial modifications.
A detailed description of each error axis and per-
turbations are provided in Table 2. For each of
these, the VLM is expected to detect, and correct
errors accurately, while ignoring the superficial per-
turbations that do not affect the solution’s validity.

3.3 Human-In-The-Loop Perturbation
Generation

Based on the perturbation taxonomy (§3.2), a
subset of relevant perturbations is manually se-
lected for each math domain. For each problem
curated in (§3.1), a domain-specific perturbation
is applied using GPT-40, denoted as f(-), by
prompting it with the IATEX question () and cor-
rect solution Ag,y4. This process is represented
as f(P,Xp,Q, Agora) — (exp, Apert), where P
is the chosen perturbation, X p represents instruc-
tions for inducing the perturbation along with three
in-context examples, A,c,; is the perturbed solu-

tion, and exp explains the introduced perturbation.
This process is repeated until all problems undergo
the relevant perturbations within its domain’s sub-
set, ensuring comprehensive coverage.

While GPT-40 generally produces the intended
perturbations, occasional inconsistencies are ob-
served, such as deviations from the specified per-
turbation, irrelevant modifications, misaligned rea-
soning, or unchanged answers despite correct rea-
soning. To address these issues, all perturbed an-
swers (Aper¢) are manually verified by the authors
to ensure that intended perturbation is correctly
applied and that the reasoning aligns with it. Dur-
ing this review process, the induced perturbations
are further classified as true errors or superficial
changes. Further details of this are provided in
Appendix A.2.

3.4 Handwritten Transcription with Manual
Verification

We engaged a team of 43 annotators from diverse
demographic backgrounds to manually transcribe
each perturbed answer A,;. Annotators were in-
structed to use various paper types and colored
pens or inks. The handwritten questions and solu-
tions were captured using mobile phone cameras
by the annotators and subsequently uploaded to a
centralized portal. This process ensured a diverse
benchmark, reflecting a wide range of handwriting
styles, paper types, and lighting conditions. As
each problem underwent multiple perturbations,
the dataset effectively simulates exam-like scenar-
ios where students encounter similar questions but
make distinct mistakes in their responses.

Each image I,,, was then manually verified by
the authors to ensure correct replication of the in-
tended perturbation. During this verification, we
recorded additional metadata such as handwriting
legibility, image orientation, and overall image
quality for each Ij,,. A custom validation tool
was developed to streamline this review and anno-
tation process. Detailed statistics on FERMAT are
provided in Table 1, and further details on the veri-
fication tool in Appendix B.

4 Evaluation Setup

In this section, we outline the different tasks on
which we evaluate different VLMs on FERMAT.
Each VLM, denoted by f(-), takes as input a hand-
written answer I, (§3.4) and a prompt P, specific
to a task z. Detailed prompts for all tasks are pro-
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Perturbation Axes # Inst

Perturbation Description

COMPUTATIONAL (CO) 611 CALCULATION & PROPAGATION ERRORS

FINAL NUMBER 156  Incorrect final answer including digit swaps or misplaced decimals.
INTERMEDIATE CALCULATION 100  Arithmetic calculation errors in intermediate steps.

NON-PROPAGATED STEP ERROR 80  Error in intermediate step corrected in subsequent steps.

PROPAGATED STEP ERROR 108  Error in intermediate step carried forward.

CorYy ERROR 167  Copying wrong numbers/expressions from question (e.g., copying 45 as 54).
CONCEPTUAL (CP) 609 INCORRECT INTERPRETATION OF CONCEPTS

THEOREM MISAPPLICATION 62  Applying theorems/identities incorrectly (e.g., using sin® @ + cos? § = 0).
MISINTERPRET QUESTION 145  Misreading problem requirements such as reporting area instead of volume.
INVALID ASSUMPTION 122 Making assumptions without justification/verification.

OUTRIGHT INCORRECT FACT 143 Stating objectively false information (e.g., a triangle has two right angles).
FORMULA MISUSE 137  Incorrectly writing a standard formula (e.g., Circle Area: 772 — 277).
NOTATIONAL (NO) 255 MISTAKES IN MATH SYMBOLS & OPERATORS

SYMBOL ERROR 81  Mistakes in symbols/notation (e.g., z° — x2).

OPERATOR SWAP 115 Incorrect substitution of operators (e.g., + — X).

MISPLACED PARENTHESES 59  Misplacing parentheses, thus changing the intended order of operations.
PRESENTATION (PR) 429 ISSUES IN FORMATTING & LOGICAL FLOW

FORMAT IGNORED 47  Ignoring question-specified format (e.g., standard vs scientific notation).
TERMINOLOGY SWAP 25  Switching inconsistently between terms (e.g., “vector” «— “line”).

Logic DISRUPTION 101  Presenting steps out of logical order (e.g., final answer used in earlier steps).
CONTEXTUAL SWAP 43 Contextually similar but incorrect term substitution (e.g., circle — ellipse).
VARIABLE MISNAMING 67  Swapped variables (e.g., swapping a and b in a quadratic formula).
INCORRECT UNITS 146  Reporting with wrong units (e.g., length in kg instead of m).
SUPERFICIAL (SU) 340 MODIFICATIONS WITHOUT IMPACTING CORRECTNESS

SUPERFICIAL VAR CHANGE 100  Superficially changing variable names (e.g., f(z) = 2> — f(t) = t?).
STEP OMISSION 81  Skipping non-essential intermediate steps.

IRRELEVANT INFO 159 Including unnecessary information (e.g., adding unrelated discussions).

TOTAL INSTANCES 2244

Table 2: Overview of perturbation categories with descriptions for perturbation. Correct original text is highlighted

in green, while perturbed text is highlighted in red.

vided in Appendix F. We propose three tasks of
increasing difficulty: (i) Error Detection (§4.1), (ii)
Error Localization (§4.2), and (iii) Error Correction
(§4.3). For each task, we evaluate multiple strate-
gies, all using a Chain-of-Thought (COT) (Wei
et al., 2022) method, by asking the VLM to provide
a step-by-step reasoning before giving its answer.

4.1 Error Detection

In this task, the VLM f(+) is prompted to detect
the error in the given handwritten image Iy, and
give a binary output indicating the presence of an
error along with its reasoning.

ED: In this strategy, the VLM, f(-) is directly
provided with a handwritten image [, and a
prompt (Pgp) to detect the error and output a
binary value (T'rue/False), indicating the pres-
ence of an error in the solution and a reasoning
(exp) for the same. We denote this formally as
f(Pep, Inw) — (exp, True/False).

ED+OCR: In this strategy, we decompose the
task into two steps, where first the VLM, f(-),
is provided with the handwritten image [Ij,, and
prompt (Pocr) to perform OCR and convert the
handwritten content into IATgX format. Next, the
same VLM, f(-), is prompted with the resulting
IATEX text, to detect the error and output a binary
value (T'rue/False) along with the reason. This
is formally denoted as f(Pgp, f(Pocr, Ihw)) —
(exp, True/False).

4.2 Error Localization

In this task, the VLM, f(-), is prompted to accu-
rately localize the error in the given handwritten
image Iy,,, by identifying the specific line where
the error occurs and providing reasoning for its
decision. If no error is present, then the model
is asked to output “NA” (Not Applicable). This
task is more challenging than error detection (ED)
(§4.1) since the VLM must perform both error de-
tection and localization simultaneously.
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EL: In this strategy, the VLM, f(-) is directly
given a handwritten image [, along with a prompt
(Pgp) to localize the error, if present, in the im-
age. The VLM describes the specific line(s) con-
taining the error(s) and provides an explanation.
Formally, this is represented as f(Pgr, Ihy) —
(exp, textioe /N A).

EL+OCR: Similar to the ED+OCR strategy
discussed in Sec §4.1, the VLM f(-) is first
prompted to perform OCR on the given hand-
written image Iy, and then asked to localize the
error in the output IAIEX text by describing the
specific line(s) containing the error(s). This is
formally denoted as f(Pgr, f(Pocr, Ihw)) —
(exp, textioe/NA).

4.3 Error Correction

In this task, the VLM f(-) is prompted to correct
any errors found in a given handwritten image Ij,,
and output the entire corrected solution in IATEX for-
mat. If no error is present, the VLM is asked to
output “NA”. This is the most challenging of the
three tasks, as the VLM must perform error detec-
tion, localization, and correction in a single step.

EC: In this strategy, the VLM, f(-), is directly
given the handwritten image I, along with the
prompt (Pgc) to correct any errors. If errors are
detected, the model outputs the entire corrected so-
lution Ao, otherwise, it returns “NA” to indicate
the solution is already correct. Since a problem can
often be solved in multiple different ways to reach
the final answer, the model is allowed to explore all
possible ways to generate the correct answer to the
problem. The error correction strategy is formally
denoted as f(Pgrc, Inyw) — (exp, Acorr /N A).

EC+OCR: Similar to the strategies discussed in
Sec §4.1 and §4.2, the VLM f(-) is first prompted
to perform OCR on the given image and then
prompted to give the entire corrected answer or
“NA” if no error is found. Formally, we repre-
sent this process as f(Prc, f(Pocrs Ihw)) —
(exp, Acorr /N A).

4.4 Cascaded Setup

In the above setups, each of the three tasks was
performed independently. Here, we evaluate a
cascaded setup where these tasks are executed se-
quentially, as shown in Figure 3. In this approach,
the VLM f(-) first performs error detection as out-
lined in ED (§4.1). For images identified as con-

GT:0
S
arror No Error
Detected Detected Al

(TTTTIoTTTmY GT:1
Error

GT:0
No EL
Possble L BJ

GT:1

.
-
o 1
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S m,
53
a8
T
1
1
1
1
1

__________

GT: 0

___________

No kc :
Possible c

GT:1
Error
Corrected

LLM Verifier |—>

Valid
Eama L))
EC

Invalid E]
EC

Figure 3: Cascaded black-box evaluation setup, as de-
scribed in §4.4.GT denotes Ground Truth. The total
number of correctly evaluated FERMAT samples in this
setup is represented by the summation of A0, B0, C0,
and D.

taining errors, error localization is then performed
using EL (§4.2). Finally, for images with local-
ized errors, the error correction step is executed
based on the method described in EC (§4.3). Un-
like previous setups, the output of each stage is
passed as input to the next. For example, during
error correction, the VLM is provided with both
the original image and the localized error line(s)
from the previous step to improve accuracy. The
cascaded setup aims to achieve precise error cor-
rection by leveraging the context generated at each
stage. Formally, this process can be represented
as f(Pec, Inw, f(PeL, Inw, f(PED, Inw))) —
(exp, Acorr /N A).

4.5 LLM as an Evaluator

Error localization (§4.2) and correction (§4.3) are
inherently subjective tasks, as multiple valid solu-
tions can exist. While human evaluation remains
the gold standard for VLM assessment, it is costly
and time-intensive. To address this, we use Large
Language Models (LLMs) as automated evaluators,
following recent advancements (Zheng et al., 2023;
Chiang and Lee, 2023). For localization, the LLM
checks if errors are correctly identified, and for
correction, it verifies the accuracy of the corrected
solution. We use GPT-40 as our Evaluator LLM
due to its widespread use as an evaluator.

To validate the reliability of our GPT-40-based
Evaluator LLM, we conducted a study on 464
randomly sampled task outputs from four VLMs:
GPT-40, LLAMA-3.2-11B, PIXTRAL-12B, and
PHI-3.5-VI. Graduate students were independently
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Non-cascaded | Cascaded

|
Models | ED
|

| ED+OCR | EL | EL+OCR | EC | EC+OCR | ED»EL»EC

BACC | BACC | ACC| ACC |ACC| AcCC | ACC
G GEMINI-1.5-PRO 0.63 0.67 0.43 0.56 0.76 0.77 0.50
G GEMINI-1.5-FLASH | 0.60 0.62 0.39 0.51 0.70 0.72 0.46
® GPT-40 0.65 0.64 0.45 0.50 0.66 0.71 0.45
® GPT-40-MINI 0.55 0.57 0.44 0.45 0.56 0.58 0.51
00 LLAMA-3.2-90B 0.52 0.62 0.18 0.41 0.25 0.57 0.31
o0 LLAMA-3.2-11B 0.50 0.52 0.14 0.27 0.21 0.38 0.20
I PIXTRAL-124B 0.52 0.59 0.24 0.40 0.46 0.56 0.26
I PIXTRAL-12B 0.51 0.55 0.24 0.27 0.30 0.34 0.32
7 PHI-3.5-VI 0.52 0.51 0.06 0.09 0.15 0.12 0.11

Table 3: Performance comparison of VLMs in cascaded and non-cascaded settings on FERMAT across different
evaluation strategies. Metrics include Balanced Accuracy (BACC) for error detection, and Accuracy (ACC) for

error localization and correction. Higher values (1) indicate better performance.

tasked with assessing the VLM outputs to deter-
mine their accuracy. We then compared these
human judgments with the evaluations produced
by our Evaluator LLM and found a 94% average
agreement between the two. Given this strong
alignment with human evaluations, we opted to
use our GPT-40 based Evaluator LLM as a faster
but equally reliable alternative to the expensive
and time-consuming human evaluations for all sub-
sequent experiments. The prompts used for our
Evaluator LLM as well as details about the human
verification are provided in Appendix C and F.

S Experiments

We evaluate nine popular VLMs, including both
closed-proprietary and open-sourced models as
listed in Table 3 on FERMAT. For each task,
we ensure consistent evaluation by using identi-
cal prompts across all models and setting the sam-
pling temperature to zero to maintain reproducibil-
ity. Similarly, for the Evaluator LLM, we use GPT-
40 with a temperature of zero. Detailed prompts
for all the experiments are provided in Appendix F.

For the Error Detection task (§4.1), we report
the model performance using Balanced Accuracy,
which accounts for the class imbalance by averag-
ing the sensitivity (true positive rate) and specificity
(true negative rate). Ground truth labels are defined
as 0 for Superficial Perturbations (SU) (§3.2) and 1
for all other error types. We report Balanced Accu-
racy instead of the standard F1 score since it gives
equal importance to both positive and negative la-
bels, whereas the F1 score ignores the true nega-
tives altogether. We provide additional information
regarding F1 and Accuracy scores in Appendix D.

For the Error Localization (§4.2) and Error Cor-
rection (§4.3) tasks, we report Accuracy, which
we define as the proportion of times the Evaluator
LLM (§4.5) determines that the VLM has done an
accurate job.

5.1 How do different VLMs perform?

We present the main results of our tasks in Ta-
ble 3. Overall, all models face challenges in
the core tasks of FERMAT, with GPT-40 and
GEMINI-1.5-PRO consistently leading across all
tasks. GPT-40 demonstrates superior performance
in the ED and EL tasks, while GEMINI-1.5-
PRO achieves the best results in the remaining tasks.
Most models perform well on the Error Detection
task, but performance declines significantly as task
complexity increases for Localization and Correc-
tion. A detailed analysis of this trend is provided
in Table 7. We also observe that introducing an ex-
plicit OCR step, improves performance for certain
models. Notably, PIXTRAL-124B and LLAMA-
3.2-90B show large gains, which can be attributed
to stronger handwriting OCR capabilities compen-
sating for weaker multimodal reasoning. By con-
trast, models with strong multimodal understand-
ing, such as GPT-40 and GEMINI-1.5-PRO, gain
marginal benefits from the OCR step, suggesting
they rely less on textual signals and are better at
jointly interpreting visual and textual content.

5.2 How do VLMs perform in the Cascaded
Approach?

We evaluate all models in the cascaded setup de-
scribed in §4.4. As shown in the last column of
Table 3, decomposing the Error Correction task into
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Model Base L1 L2 L3 L4
GPT-40 0.658 0.670 0.676 0.691

0.702

Table 4: BACC (Balanced Accuracy) scores of GPT-40
on the error detection task under increasing levels of
helpful contextual information included in the prompt.
Higher scores indicate better performance.

sequential steps leads to a significant performance
drop across models, including GPT-40, GEMINI-
1.5-FLASH, GEMINI-1.5-PRO, and PIXTRAL-
124B. This decline is primarily attributed to the
cautious error detection behavior of these models
(discussed in Table 7), which results in a large
proportion of images being filtered out during the
initial stage (ED). A comprehensive breakdown of
intermediate and final outputs for each VLM in the
cascaded setup is provided in Appendix E.

5.3 Does more information help VLMs?

We conducted an ablation study to evaluate whether
providing additional information about the error
type improves model performance. Four settings
with increasing levels of information were de-
signed: L1 (basic context, including grade, math
domain, and subdomain), L2 (L1 + descriptions of
all perturbations specific to that domain + some ex-
amples of perturbations), L3 (L1 + specifying the
exact perturbation category that was applied), and
L4 (L3 + a sample erroneous solution accompa-
nied by an explanation of the mistake). As shown
in Table 4, performance consistently improves with
the addition of more detailed information, indicat-
ing that increasing error context facilitates better
Error Detection. Prompts designed for this study
are provided in Appendix F.

We note that while this experiment provides valu-
able insights from an ablation perspective, incor-
porating such detailed information may be chal-
lenging in practical scenarios. For example, if a
teacher is required to specify the exact error type
in a solution, they might find it more practical to
evaluate the solution directly without relying on a
VLM.

5.4 How much does handwriting affect model
performance on FERMAT ?

We hypothesize that weaker handwriting recogni-
tion capabilities in some models (Table 3) may
impair their ability to identify and correct mistakes.
To test this, we conduct two studies to isolate rea-
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Figure 4: Performance of VLMs on the error localiza-
tion task across various benchmark settings. Higher
scores (1) indicate better performance.

soning abilities from visual processing. First, we
replace handwritten images with printed I£IEX ren-
dered images from the (Q, Apertury) pairs (§3.3).
Second, we eliminate images entirely, providing
direct IATEX text inputs for @ and Apcryrp. AS
shown in Figure 4, performance improves consis-
tently as visual complexity is reduced. The largest
gains occur when switching to text input while re-
placing handwritten images with printed IATEX still
offers small benefits on an average. These results
highlight the challenges of processing handwritten
content and reinforce FERMAT’s rigor as a bench-
mark for evaluating both reasoning and visual un-
derstanding in VLMs.

6 Conclusion

We introduce FERMAT, a comprehensive bench-
mark to assess Vision-Language Models (VLMs)
on their ability to detect, localize, and correct errors
in handwritten mathematical content. By spanning
four critical error dimensions — computational,
conceptual, notational, and presentation — and cu-
rating over 2,200 perturbed handwritten solutions
from 609 math problems (grades 7-12), FERMAT
provides a robust evaluation framework. Our analy-
sis of nine prominent VLMs reveals key limitations
in their reasoning over handwritten content. While
GEMINI-1.5-PRO achieves the highest error cor-
rection rate (77%), we find that smaller models
often struggle. Our findings also highlight the chal-
lenges posed by handwritten content, as models
perform better with printed images or text inputs.
By releasing FERMAT and all associated resources
as open-source, we hope that this fosters further re-
search on evaluating and enhancing the capabilities
of VLMs for real-world applications.
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Limitations

While we have compiled a comprehensive list of
perturbation categories, we acknowledge that it
may not be exhaustive, leaving room for further
expansion. Our benchmark primarily focuses on
school-level mathematics questions, with more ad-
vanced topics and question types left for future
work. Additionally, we do not explore complex
multi-agent approaches for error detection, instead
limiting our study to single or dual LLM calls.

Ethics Statement

Annotators who participated in the annotation
and/or verification task are paid a competitive
monthly salary to help with the tasks. The salaries
were determined based on the qualification and
the prior experience working on similar tasks and
adhering to the norms of the government of our
country. The annotators were made aware that the
datasets will be publicly released. The annotated
datasets have no personally identifying informa-
tion. The datasets used in this paper will be made
available under permissible licenses, and we adhere
strictly to their intended usage, maintaining compli-
ance with licensing requirements. Additionally, all
the code used for our evaluations and perturbation
generation will be made publicly available under
the MIT License. We only used Al Assistants for
assistance purely with the language of the paper,
e.g., paraphrasing, spell-checking, or polishing the
author’s original content, without suggesting new
content
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Appendix
A Additional details of FERMAT

A.1 Distribution of Math Domains and
Perturbation Domains in FERMAT

Aptitude
380

Computational
611

Calculus
276

Grade 12
648
Conceptual I
609 Sggbr
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2,244 Grade 11
Notational 488 Trigonometry
255 101
Probability &
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175 Geometry &
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Grade 9
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Figure 5: Distribution of different error types (left)
across educational levels (middle) and math topics
(right) within FERMAT.

A.2 Human Verification of Perturbations

We enlisted three mathematically proficient grad-
uate students familiar with VLMs to verify the
perturbations. Each annotator received task in-
structions, the original question-answer pair, the
perturbation category, and the GPT-40-generated
perturbed pair. The annotators categorized each
perturbation as either: (1) Valid Perturbation, (2)
Invalid Perturbation, or (3) Not Relevant. Detailed
guidelines explaining the expected perturbations
and the rationale for their validity were provided.
To assist in this task, we developed a custom ap-
plication, shown in Figures 6 and 7. The interface
enables side-by-side comparison of original and
perturbed answers to facilitate accurate categoriza-
tion.

Perturbations were classified as “Valid” only if
they conformed to the specified perturbation cat-
egory. Those irrelevant to the category or of in-
sufficient quality were labeled as “Invalid”. Those
that had minor mistakes were classified as “Not
Relevant” and subsequently were resurrected after
minor adjustments.

Domain Subdomains

Arithmetic Decimals, Exponents,
Factorization, Fractions,
Percentages, Propor-
tion, Ratio, Squares,
Cubes, Arithmetic
Progression, ~ Permu-
tation, Combination,
Sequences

Algebra Complex Numbers,
Determinants, Expres-
sions, Linear Equations,
Linear Inequalities,
Matrices, Polynomial,
Relations, Functions,
Sets, Vectors

Mensuration & Geometry | 3D Geometry, Circles,
Ellipse, Hyperbola,
Lines, Parabola,
Perimeter, Polygon,
Surface Area, Triangles,
Volume

Calculus Continuity, Definite In-
tegral, Derivatives, Dif-
ferential Equations, Dif-
ferentiability, Indefinite
Integral, Limits, Max-
ima Minima, Area Un-
der Curve

Probability & Statistics Bayes Theorem, Condi-
tional Probability, Data

Handling, Independent

Events

Trigonometry Inverse Trigonometric
Equations, Trigonomet-
ric Functions

Aptitude | Quantitative Aptitude

Table 5: Domains and Subdomains in FERMAT

A.3 Handwritten transcription

We engaged 43 experienced OCR annotators to
manually generate perturbed question-answer pairs,
using diverse writing instruments, paper types,
lighting conditions, and paper qualities. An-
notators reproduced the GPT-40 generated per-
turbed question-answer pairs verbatim, captured
photographs, and uploaded the images directly. A
dedicated application was developed to streamline
this process, as illustrated in Figures 8 and 9.

B Manual annotation quality assessment

Three graduate students with expertise in Vision
Language Models reviewed the annotations for
quality assurance. Each reviewer received task in-
structions, the original question-answer pair, the
perturbation reasoning and category, the GPT-40-
generated perturbed pair, and its handwritten ver-
sion. Annotations were classified as: (1) High-
Quality, (2) Low-Quality, or (3) Not Sure. The
application interface used for this task is depicted
in Figures 10, 11, and 12.
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Subcategory: Wrong formula

Panel A: Original QA Panel B: Pertubed QA

Panel C: Pertubation Prompt and Reasoning Panel D: Annotator Instructions

Figure 6: Interface for manual verification of perturbations (1).

Panel A: Original QA Panel B: Pertubed QA

Panel C: Pertubation Prompt and Reasoning Panel D: Annotator Instructions

Annotation Instructions
1. oo

Figure 7: Interface for manual verification of perturbations (2).

Panel B: Pertubed QA Panel D: Annotation

Panel B: Pertubed QA Panel D: Annotation

Figure 9: Interface for annotators to upload handwritten perturbed question-answer pairs (2).
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Figure 11: Interface for annotation quality assessment (2).

{Questtan « Bnd S e o
ool equabion ,qmi“ S

) ;77

Figure 12: Interface for annotation quality assessment (3).

Each annotation was further evaluated based on
the following criteria: legibility (legible or illeg-
ible), image quality (good or bad), score invari-
ance (variant or invariant), and rotation (default,
left, right, or upside down). This rigorous process
ensures adherence to perturbation categories and
accurate identification of score invariance, critical
for benchmark quality.

C LLMs as Evaluators

C.1 Evaluator Details and Prompt Design

Using human evaluation to assess VLM localiza-
tion and correction outputs for FERMAT samples
is both cost-intensive and laborious. Furthermore,
this process must be repeated with the emergence
of each new state-of-the-art VLM, limiting scalabil-
ity and rapid adoption. To address these challenges,
we employ LLMs as verifiers of VLM outputs,
specifically leveraging GPT-40. This decision is
based on GPT-40’s broad adoption and strong per-
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formance on reasoning-based tasks.

VLMs LLM Accuracy
GPT-40 0.96
LLAMA-3.2-11B 0.94
PIXTRAL-12B 0.91
PHI-3.5-VI 0.94
OVERALL 0.94

Table 6: Comparison of GPT-40 performance with re-
spect to human evaluation in verifying the correctness of
error localization outputs across various VLMs. Higher
values indicate better performance.

We assessed the reliability of GPT-40 as
an Evaluator LLM through a controlled study
involving 464 randomly selected outputs from
EL across four VLMs: GPT-40, LLAMA-3.2-
11B, PIXTRAL-12B, and PHI-3.5-VI. Graduate
students independently evaluated the correctness
of the VLMs’ error localization outputs. These
outputs were then provided to GPT-40 along
with detailed prompts (Figures 29, 30) outlin-
ing the scoring criteria, including explicit guide-
lines on awarding or withholding scores. For er-
ror localization, we prompt the LLM, denoted as
g(+), using the VLM’s output text;,. (§4.2) as
the predicted text, alongside the perturbed answer
(Apert) and the explanation for the perturbation
(exp) (8§3.3) as the ground truth. The LLM is
tasked with determining whether the VLM cor-
rectly localizes the error(s). This can be for-
mally represented as g(text;oc, Apert, €XPpert) —
(reason, True/False). Similarly, for error cor-
rection, we prompt the LLM, ¢(-), using the
VLM’s corrected output (Aor) (§4.3) as the pre-
dicted solution and the original solution (Ag.q)
as the ground truth. The LLM is asked to ver-
ify if the VLM accurately corrected the solution.
This process is represented as g(Acorr, Agold) —*
(reason,True/False). Prompts are designed to
cover potential output scenarios and includes com-
prehensive guidelines to ensure consistent scoring.

Our findings indicate that GPT-40 achieves 94%
accuracy in aligning with human judgments of lo-
calization correctness. Table 6 presents a compari-
son of GPT-40’s performance with human evalua-
tion, demonstrating its effectiveness as an Evalua-
tor LLM.

C.2 Testing the reliability of Evaluator LLM

We developed a dashboard to compare human
and LLM performance in reasoning and decision-

making. The evaluation was based on 464 ran-
domly sampled items from the dataset, ensuring
equal representation across all perturbation cate-
gories. The evaluation compared LLM reasoning
with human reasoning, LLM decisions with human
decisions, and LLM decisions with its own reason-
ing. This analysis is crucial to determine whether
LLMs can effectively replace human annotators in
error localization and correction tasks.

D VLM Performance in Error Detection

Non-cascaded
Models ED ED+OCR
ACC F1 ACC F1

GEMINI-1.5-FLASH 0.51 0.55 0.67 0.70
GEMINI-1.5-PrRO 054 058 068 0.71
GPT-40 0.51 055 059 0.63

GPT-40-MINI 0.78 0.74 073 0.72
LLAMA-3.2-11B 0.68 068 072 0.70
LLAMA-3.2-90B 0.66 067 070 0.72
PIXTRAL-12B 077 072 075 0.73
PIXTRAL-124B 030 027 061 0.65
PHI-3.5-VI 0.70 0.70 0.59 0.62

Table 7: Performance of VLMs on error detection task
with accuracy (Acc) and F1 scores as the evaluation
metrics. Higher values indicate better performance.

We provide the Accuracy and F1 scores for
the Error Detection task across all nine VLMs
in Table 7. Interestingly, for Error Detection
(ED), GPT-40, GEMINI-1.5-PRO and GEMINI-
1.5-FLASH models perform only slightly better
than random, while GPT-40-MINI outperforms all
other models, a behavior that is significantly dif-
ferent from their performance in error localization
and correction while looking at Accuracy and F1
score as a metric. To further investigate this, we
analyze the explanations (exp) generated as part of
the ED task output for all models to determine if
they correctly identify errors. As shown in Figure
13, we observe that smaller models, including GPT-
40-MINI, predict a high rate of positives with incor-
rect reasoning, indicating that these models incor-
rectly classify many instances as errors. Given the
class imbalance in FERMAT, this results in inflated
Accuracy and F1 scores. In contrast, larger models
such as GPT-40 and GEMINI-1.5-PRO produce
significantly fewer False Positives. This finding
aligns with previous research by Li et al. (2024b),
which demonstrated that such models are generally
more cautious in error detection.
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Figure 13: Performance of VLMs on the error detection
task: comparing cases where predicted positives align
with their reasoning against cases where they do not.

E Performance of VLMs in Cascaded
Setup

We observe that bigger models like GPT-40,
GEMINI-1.5-PRO and GEMINI-1.5-FLASH per-
form worse in a cascaded Error Evaluation setup
due to their cautious nature of identifying errors
in a solution. On the other extreme, PIXTRAL-
124B gets heavily penalized due to its very high
false negative prediction rate, resulting in degraded
error evaluation performance. Table 3 shows the
modelwise performance on the cascaded setup.
Sankey graphs illustrating the performance of
VLMs in the Cascaded Setup, along with their in-
termediate output values, are shown in Figure 3
and detailed further in Figure 14 through Figure 22.
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Figure 14: Breakdown of intermediate and final output
proportions in GPT4o.

F Prompts used for various Experiments

The task-specific evaluation prompts for all Vision-
Language Models (VLMs) assessed on FER-
MAT are detailed below in Figure 23 through Fig-
ure 32. For each task, we ensured consistent evalu-
ation by using identical prompts across all models
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Figure 15: Breakdown of intermediate and final output
proportions in GPT40-mini.
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Figure 16: Breakdown of intermediate and final output
proportions in Gemini Pro.
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Figure 17: Breakdown of intermediate and final output
proportions in Gemini Flash.
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Figure 18: Breakdown of intermediate and final output
proportions in LLaMA Large.

and setting the sampling temperature to zero to en-
sure reproducibility. Similarly, for the Evaluator
LLM, we employed GPT-40 with a temperature
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Figure 19: Breakdown of intermediate and final output
proportions in LLaMA.
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Figure 20: Breakdown of intermediate and final output
proportions in Pixtral Large.
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Figure 21: Breakdown of intermediate and final output
proportions in Pixtral.
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Figure 22: Breakdown of intermediate and final output
proportions in Phi.

of zero.

The image provided contains a handwritten problem with both a
Question and an Answer at a middle or high school level. Your
task is to explicitly perform OCR on the handwritten text and
extract the content in LaTeX format. Return only the extracted
content exactly as it appears in the image, formatted in
LaTeX.

Ensure that no extra information is added that
is not in the image.

Please return the LaTeX output as follows:

**Question:**<Extracted Question text in
LaTex>

**Answer: **<Extracted Answer text in LaTex>

Figure 23: Prompt for OCR Extraction from Image.

The image provided contains a handwritten math problem consisting
of both a Question and an Answer at a middle or high school level.
Your task is to analyze the Answer to determine whether there is
any error. Begin by providing a brief reasoning for your analysis,
explaining where and why you believe an error is present or absent
in the Answer. If the problem is multiple-choice (MCQ), judge the
presence or absence of error based only on the explanation given in
the Answer, not the option selected by the student.

After the reasoning, provide a binary output
indicating whether an error exists (1 for error, © for no error).

Please follow the exact format below without adding
any extra information:

**Reasoning:** <Brief Explanation of Error Presence
or Absence>
**Error:** <@ or 1>

Figure 24: Prompt for Error Detection.
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The image provided contains a handwritten math problem
with both a Question and an Answer at a middle or high
school level. Your task is to analyze the Answer
identify any errors, and if present, localize the errors
in the **Error Localization:** field below.

Begin by providing a brief reasoning for your
analysis, explaining where and why an error is present
or absent in the Answer. If the problem is
multiple-choice (MCQ), focus on the explanation in the
Answer and not the option selected by the student when
identifying errors.

After the reasoning, based on your analysis,
localize the exact lines or steps in the Answer where
the error occurs, in the **Error Localization** field.
If no error is present, mention 'NA' in the **Error
Localization:** field.

Please follow the exact format below without
adding any extra information:

**Reasoning:** <Brief Explanation of Error
Presence or Absence>

**Error Localization:** <Specific lines or steps
in the Answer where the error occurs, or 'NA' if no
error>

Figure 25: Prompt for Error Localization.

(The image provided contains a handwritten math problem
with both a Question and an Answer at a middle or high
school level. Your task is to analyze the Answer,
identify any errors, and if present, correct the errors
in the Answer and return it in the **Corrected Answer
LaTeX:** field below.

Begin by providing a brief explanation of where
and why an error is present or absent in the Answer. If
the problem is multiple-choice (MCQ), focus on the
explanation provided in the Answer rather than the
option selected by the student when identifying errors.

Next, based on your analysis, give the correct
Answer in LaTeX format and ensure that the LaTeX Answer
is meaningful, logical, and aligns with the instructions
in the Question. If the problem is multiple-choice
(MCQ), return the full LaTeX Answer with the complete
corrected explanation retained as visible in the image,
along with the correct option that should have selected.
If no error is present in the Answer, mark 'NA' in the
**Corrected Answer LaTeX:** field.

Please follow the exact format below without
adding any extra information:

**Reasoning:** <Brief Explanation of Error
Presence or Absence>

**Corrected Answer LaTeX:** <Complete Corrected
ALaTeX Answer, or 'NA' if no error>

Figure 26: Prompt for Error Correction.

The image provided contains a handwritten math problem, containing both a Question and its
Answer at a middle or high school level. The Answer contains one or multiple instances of
errors. Your task is to analyze the Answer, identify all instances of errors, and localize these
errors in the **Error Localization** field below.

- Begin by providing a brief reasoning for your analysis, clearly explaining the nature
and location of the error in the Answer. If the problem is multiple-choice (MCQ), focus on the
explanation within the Answer or the selected option when identifying errors.

- Based on your reasoning, pinpoint the exact lines or steps in the Answer where the
error occurs and include them in the **Error Localization** field.

- If no error can be confidently identified, mention 'NA' in the **Error Localization**

field.
**Format:**
Please strictly adhere to the format below without adding any additional information:
**Reasoning:** <Brief explanation of the error, its nature, and why it is incorrect>
**Error Localization:** <Specific lines or steps where the error occurs, or 'NA' if no
error>

Figure 27: Prompt for Cascaded Error Localization.

The image provided contains a math problem, including both a Question and its Answer at a middle or high school level.
The Answer contains one or more instances of errors in the Answer, localized below:

[INSERT ERROR LOCATION FROM PREVIOUS STEP]

Your task is to analyze the Answer and, based on the localized errors provided, correct the errors in the Answer
and return it in the **Corrected Answer LaTeX** field below.

- start by briefly explaining whether you agree with the identified errors and why. If the problem is
multiple-choice (MCQ), focus on the explanation provided in the Answer and the option selected by the student when
identifying errors.

- Next, based on your analysis, give the corrected Answer in LaTeX format. Ensure that the LaTeX Answer is
meaningful, logical, and aligns with the instructions in the Question.

- If the problem is multiple-choice (MCQ), return the complete LaTeX Answer, including the corrected explanation
visible in the image, along with the correct option that should have been selected.

- If no error can be confidently identified, mention 'NA' in the **Corrected Answer LaTex** field.

Please strictly adhere to the format below without adding any extra information:

**Reasoning:** <Brief explanation of the error, its nature, and why it is incorrect or absent>
**Corrected Answer LaTeX:** <Complete corrected LaTeX Answer, or 'NA' if no error to correct>

Figure 28: Prompt for Cascaded Error Correction.
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You are tasked with evaluating a model's performance in identifying and
locating errors in a math problem solution. Your goal is to assess
whether the **Predicted Error Location** sufficiently matches the
**Ground Truth (GT) Error Location**, considering both the predicted
location and the model’s reasoning.

**Provided Information:**

- **Original Question**: The math problem being solved.

- **Answer**: The solution to the above math problem with no
errors.

- **GT Error Location**: There is no error in the solution.

- **Predicted Error Location**: Error Location(s) as
identified by the model.

- **Reasoning behind Predicted Error Location**: The model’s
explanation for its prediction.

**Goal:**

To evaluate whether the model was able to output that there
was no error in **Answer** by mentioning 'NA' (Not Applicable) explicitly
or a similar statement indicating that there are no errors to localize.

**Your Task:**

1. **Evaluate Prediction and Reasoning**:

- Compare whether the **Predicted Error Location** aligns
with the **GT Error Location** by either explicitly stating 'NA' or
mentioning indicating that there are no errors in the Answer.

- Examine the **Reasoning behind Predicted Error Location**
to determine whether it justifies the predicted location. If **Predicted
Error Location** is marked 'NA', assess whether the reasoning provides
sufficient evidence to verify why there are no errors in the solution.

2. **Scoring Guidelines**:
- NOTE: The **Answer** contains no errors.
- Award **1** in the following cases:

- The **Predicted Error Location**, combined with the
**Reasoning behind Predicted Error Location**, mentions 'NA' (Not
Applicable) explicitly or a similar statement indicating that there are
no errors to localize.

- The **Reasoning behind Predicted Error Location**
sufficiently justifies the prediction when **Predicted Error Location**
is marked 'NA'

- Award **@** in the following cases:

- **Predicted Error Location** tries to localize some
error within the answer wrongly.

- The reasoning fails to justify the prediction,
particularly when **Predicted Error Location** is 'NA.'

**Final Verdict**:

- If the **Predicted Error Location** mentions 'NA'
explicitly or mentions that there are no errors in the answer, award a
score of **1** to it for correctness, else if it tries to localize some
error within the answer, penalize it by awarding a score of **0**.

**Response Format:**
**Reasoning:** <Clear explanation assessing the
prediction and reasoning, referencing key details where relevant.>
**Is Error Location Correct:** <0 or 1>

**Example:**

- If **Predicted Error Location** mentions 'NA' or 'The
solution is error-free' or something similar, score **1**,

- If **Predicted Error Location** tries to localize some
error in the solution, score **@**,

Figure 29: Prompt for LLM Verification of Error Localization outputs from VLM when the Problem Solution is
error-free.
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You are tasked with evaluating a model's performance in identifying and locating errors in
a math problem solution. Your goal is to assess whether the **Predicted Error Location**
sufficiently matches the **Ground Truth (GT) Error Location**, considering both the
predicted location and the model’s reasoning.

**Provided Information:**

- **Original Question**: The math problem being solved.

- **Answer**: The solution to the above problem containing errors.

- **GT Error Location**: The true location(s) of error(s) in the solution.

- **Predicted Error Location**: Error Location(s) as identified by the model.

- **Reasoning behind Predicted Error Location**: The model’s explanation for
its prediction.

**Goal:**

To evaluate whether the model was able to output the locations of all errors
in **Answer** either through **Predicted Error Location** or **Reasoning behind Predicted
Error Location**.

**Your Task:**

1. **Analyze Errors**: Review the **Answer** and the **GT Error Location** to
understand the error(s) location(s).

2. **Evaluate Prediction and Reasoning**:

- Compare the **Predicted Error Location** to the **GT Error Location** for
alignment.

- Examine the **Reasoning behind Predicted Error Location** to determine
whether it justifies the predicted location. If **Predicted Error Location** is explicitly
marked 'NA' or mentions that there are no errors in **Answer**, assess whether the
reasoning provides sufficient evidence to identify the true error(s).

3. **Scoring Guidelines**:

- NOTE: The **Answer** contains one or more errors with the error location
mentioned in **GT Error Location**

- Award **1** in the following cases:

- The **Predicted Error Location**, combined with the reasoning correctly
aligns with the **GT Error Location**, capturing all key error instances.

- If **Predicted Error Location** is marked 'NA' or mentions that there is
no errors in the answer, look at the **Reasoning behind Predicted Error Location** and if
it sufficiently localizes errors, award **1**,

- Award **0** in the following cases:

- Key errors in the **GT Error Location** are missed by both the
prediction and the reasoning.

- Errors not present in the **GT Error Location** are incorrectly
identified in the **Predicted Error Location**

- The reasoning also fails to locate the errors, particularly when
**Predicted Error Location** is 'NA.'

**Final Verdict**:

- Prioritize **Reasoning** if **Predicted Error Location** is marked 'NA'

- Balance your assessment between the **Predicted Error Location** and the
**Reasoning** for a comprehensive evaluation. If the **Predicted Error Location** contains
'NA', consider the **Reasoning behind Predicted Error Location** for evaluating
correctness with respect to **GT Error Location**.

**Response Format:**
**Reasoning:** <Clear explanation assessing the prediction and reasoning,
referencing key details where relevant.>
**Is Error Location Correct:** <@ or 1>

**Example:**

- If **Predicted Error Location** misses a key error but the reasoning clearly
identifies and justifies it, score **1** based on combined performance.

- If **Predicted Error Location** and **Reasoning behind Predicted Error
Location** both fail to identify the error locations properly, score **@**,

Figure 30: Prompt for LLM Verification of Error Localization outputs from VLM when the Problem Solution
contains errors.
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You are tasked with evaluating a model's performance by comparing two answers for
a math problem to assess how accurately the model corrected the response.

**Provided Information:**

- **QOriginal Question**: The math problem being solved.

- **Original Answer**: The ground-truth correct answer.

- **Erroneous Answer**: The answer with superficial modifications to
the **Original Answer**. It contains no errors. This has been provided as input to
the model.

- **Corrected Answer**: The answer as corrected by the model.

- **Reasoning behind Corrected Answer**: The model's explanation
justifying its corrections or changes.

**Goal:**

To evaluate whether the model is able to determine that the
**Corrected Answer** should be 'NA' (Not Applicable) or a similar statement
indicating that there are no errors to correct.

**Your Task:**

1. Determine whether the **Corrected Answer** either explicitly states
'NA' or mentions that there are no errors to correct in the Answer.

2. **Scoring Guidelines**:

- Award **1** in the following cases:

- The **Corrected Answer** mentions 'NA', indicating there was no
error to correct.

- The **Corrected Answer** mentions that there are no errors in the
answer or similar statements.

- The **Corrected Answer** essentially restates the **Erroneous
Answer** without changes, indicating that the model has returned back the answer
due to absence of errors. As long as the corrected answer is essentially identical
(or very close) to the **Erroneous Answer**, treat that as if the model recognized
no errors needed correction.

- there are minor stylistic changes (e.g., rephrasing sentences,
changing formatting) in **Corrected Answer** but does not introduce any
mathematical or logical errors

- Award **@** in the following cases:

- The model introduces new significant errors in the **Corrected
Answer** that are not present in the **Original Answer**.

- The model fails to identify that the **Corrected Answer** should be
'NA' or mention that there are no errors in the answer.

**Final Verdict**:

- Determine if the **Corrected Answer** either explicitly states 'NA',
or mentions that there are no errors to correct, or provides a **Corrected
Answer** text that closely matches the **Original Answer** with minimal
differences. In all these cases, award **1**, else **0**.

**Response Format:**
- **Reasoning:** <Brief explanation of whether the Corrected Answer is
an accurate match to the Original Answer.>
**Is Error Correction Accurate:** <0 or 1>

**Example:**

- Score **1** if the **Corrected Answer** mentions 'NA', indicating
there was no error to correct.

- Score **0** if the **Corrected Answer** introduces new errors not
present in the **0riginal Answer**.

Figure 31: Prompt for LLM Verification of Error Correction outputs from VLM when the Problem Solution is
error-free.
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You are tasked with evaluating a model's performance by comparing two answers for a math
problem to assess how accurately the model corrected the response.

**Provided Information:**

- **Original Question**: The math problem being solved.

- **Original Answer**: The ground-truth correct answer.

- **Erroneous Answer**: The answer with errors that need correction. This has
been provided as input to the model.

- **Corrected Answer**: The answer as corrected by the model.

- **Reasoning behind Corrected Answer**: The model's explanation justifying
its corrections or changes.

**Goal:**
To evaluate whether the **Corrected Answer** as corrected by the model is a
logically consistent and close match to the **Original Answer**.

**Your task:**

1. Determine whether the **Corrected Answer** properly corrects the error(s)
in **Erroneous Answer**, Next, check whether **Corrected Answer** closely matches the
**Original Answer**. The **Corrected Answer** should not contain any new significant
errors that were not present in the **Original Answer**.

2. If the problem is multiple-choice (MCQ), consider the correction accurate
only if the selected option in **Corrected Answer** exactly matches the **Original
Answer**, and the answer explanation in the **Corrected Answer** logically matches the
explanation in the **Original Answer**. Focus on the explanation to assess correctness,
rather than the just the option selected.

3. **Scoring Guidelines**
- **Almost exact match**: The **Corrected Answer** does not need to be an
exact match but should align closely in content with the **Original Answer**.

- Award **1** in the following cases:

- All errors in **Erroneous Answer** are rectified in **Corrected Answer** and
the **Corrected Answer** is a logical, corrected match to the **Original Answer**.

- If the **Corrected Answer** is marked 'NA' or mentions that there are no
errors in the answer, look at the **Reasoning behind Corrected Answer** and if it
sufficiently points out the errors in **Erroneous Answer** and explains their corrected
versions, award **1**,

- If the **Corrected Answer** is logically correct and fixes the error(s), but
uses a different valid approach or representation than the **Original Answer**, still
award **1**,

- Award **0** in the following cases:

- If there are still errors remaining in the **Corrected Answer** that are
not present in the **Original Answer**, i.e. all mistakes in the **Erroneous Answer** are
not corrected properly.

- If **Corrected Answer** is 'NA' or mentions that there are no errors in the
answer, look at the **Reasoning behind Corrected Answer**. If that also fails to
sufficiently point out the errors in **Erroneous Answer** and explains their corrected
versions, award **0**.

**Final Verdict**:

- Prioritize **Reasoning behind Corrected Answer** to assess correctness if
**Corrected Answer** is marked 'NA'. If reasoning also fails to identify the error
locations in **Erroneous Answer** and mention their proper corrections, only then award
**0**, else award **1**,

- Determine whether the **Corrected Answer** closely matches the **Original
Answer** in logical correctness, with minimal differences.

**Response Format:**

**Reasoning:** <Brief explanation of whether the Corrected Answer is an
accurate match to the Original Answer>

**Is Error Correction Accurate:** <@ or 1>

**Example:**

- If **Corrected Answer** misses a key error in **Erroneous Answer**, but the
reasoning clearly identifies and justifies it, score **1** based on combined performance.

- If **Corrected Answer** and **Reasoning behind Correction** both fail to
identify the error locations and mention their proper corrections, score **@**

Figure 32: Prompt for LLM Verification of Error Correction outputs from VLM when the Problem Solution contains
eITors.
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You are provided with a handwritten math problem
image, containing a Question and its corresponding
Answer. This problem is from the **[INSERT
SUBDOMAIN]** subdomain in **[INSERT DOMAIN]** and is
designed for **[INSERT GRADE INFO]** math students.
Analyze the Answer for accuracy by following these
steps:

1. Evaluate for Errors: Examine the solution
process in the Answer. If an error is present,
describe where it occurs and why it’s incorrect based
on mathematical reasoning, logical progression, or
calculation accuracy. If no error is found, state why
the solution is correct and aligns with the problem
requirements.

2. For Multiple-Choice (MCQ) Problems: Assess
the correctness of both the option chosen and the
explanation given, ensuring they are consistent and
valid.

3. Binary Decision: After providing your
reasoning, indicate whether an error exists. Use "1"
to represent an error and "O@" to indicate no error.

Please follow the exact format below without
adding any extra information:

**Reasoning:** <Brief Explanation of Error
Presence or Absence>
**Error:** <0 or 1>

Figure 33: Level 1 Error Detection Prompt for Section 5.3.

14811




You are provided with a handwritten math problem image,
containing a Question and its corresponding Answer. This problem
is from the **[INSERT SUBDOMAIN]** subdomain in **[INSERT
DOMAIN]** and is designed for **[INSERT GRADE INFO]** math
students.

The problem solution may contain one or more errors from
the following categories:
[INSERT PERTURBATION CATEGORIES]

Analyze the Answer for correctness by following these
steps:

1. Evaluate for Errors: Examine the solution process in
the Answer. If an error is present, describe where it occurs and
why it’s incorrect based on mathematical reasoning, logical
progression, or calculation accuracy. If no error is found, state
why the solution is correct and aligns with the problem
requirements.

2. For Multiple-Choice (MCQ) Problems: Assess the
correctness of both the option chosen and the explanation given,
ensuring they are consistent and valid.

3. Binary Decision: After providing your reasoning,
indicate whether an error exists. Use "1" to represent an error
and "0" to indicate no error.

Please follow the exact format below without adding any
extra information:

**Reasoning:** <Brief Explanation of Error Presence or
Absence>
**Error:** <0 or 1>

Figure 34: Level 2 Error Detection Prompt for Section 5.3.
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You are provided with a handwritten math problem image, containing a
Question and its corresponding Answer. This problem is from the

** [INSERT SUBDOMAIN]** subdomain in **[INSERT DOMAIN]** and is designed
for **[INSERT GRADE INFO]** math students.

There may be a [INSERT PERTURBATION SUPERCATEGORY] error
present in the solution such as [INSERT PERTURBATION CATEGORIES].

More specifically, the error could be [INSERT SPECIFIC
PERTURBATION],i.e. [INSERT PERTURBATION DESCRIPTION]

Examples of this type of error include:
[INSERT PERTURBATION EXAMPLES]

Analyze the Answer for correctness by following these steps:

1. Evaluate for Errors: Examine the solution process in the
Answer. If an error is present, describe where it occurs and why it’s
incorrect based on mathematical reasoning, logical progression, or
calculation accuracy. If no error is found, state why the solution is
correct and aligns with the problem requirements.

2. For Multiple-Choice (MCQ) Problems: Assess the correctness
of both the option chosen and the explanation given, ensuring they are
consistent and valid.

3. Binary Decision: After providing your reasoning, indicate
whether an error exists. Use "1" to represent an error and "0" to
indicate no error.

Please follow the exact format below without adding any extra
information:

**Reasoning:** <Brief Explanation of Error Presence or Absence>
**Error:** <@ or 1>

Figure 35: Level 3 Error Detection Prompt for Section 5.3.
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You are provided with a math problem, containing a Question and its corresponding
Answer. This problem is from the **[INSERT SUBDOMAIN]** subdomain in **[INSERT DOMAIN]**
and is designed for **[INSERT GRADE INFO]** math students.

There may be a [INSERT PERTURBATION SUPERCATEGORY] error present in the solution
such as [INSERT PERTURBATION CATEGORIES].

More specifically, the error could be [INSERT SPECIFIC PERTURBATION],i.e. [INSERT
PERTURBATION DESCRIPTION]

Examples of this type of error include:
[INSERT PERTURBATION EXAMPLES]

For reference, here is a problem with a similar error in the Answer:
**Sample Question**: [INSERT ORIGINAL QUESTION]

**Sample Answer with Error**: [INSERT ERRONEOUS ANSWER]

**Error Location**: [INSERT ERROR LOCATION(S) IN ANSWER]

Now, given the reference problem above, analyze the below Answer for correctness by
following these steps:

1. Evaluate for Errors: Examine the solution process in the Answer. If an error is
present, describe where it occurs and why it’s incorrect based on mathematical
reasoning, logical progression, or calculation accuracy. If no error is found, state why
the solution is correct and aligns with the problem requirements.

2. For Multiple-Choice (MCQ) Problems: Assess the correctness of both the option
chosen and the explanation given, ensuring they are consistent and valid.

3. Binary Decision: After providing your reasoning, indicate whether an error
exists. Use "1" to represent an error and "0" to indicate no error.

Please follow the exact format below without adding any extra information:

**Reasoning:** <Brief Explanation of Error Presence or Absence>
**Error:** <@ or 1>

Figure 36: Level 4 Error Detection Prompt for Section 5.3.
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