QDTSynth: Quality-Driven Formal Theorem Synthesis for Enhancing
Proving Performance of LLMs

Lei Wang!, Ruobing Zuo', Gaolei He?, Jianlin Wang?, Zhengfeng Yang!*

'East China Normal University, 2Henan Univeristy

{51265902021, rbzuo}@stu.ecnu.edu.cn
{hegaolei, jlwangl}@henu.edu.cn
zfyang@sei.ecnu.edu.cn

Abstract

Automated Theorem Proving is an important
and challenging task. Although large language
models (LLMs) have demonstrated remarkable
potential in mathematical reasoning, their per-
formance in formal theorem proving remains
constrained by the scarcity of high-quality su-
pervised fine-tuning (SFT) data. To address
this limitation, we propose a Quality-Driven
Theorem Synthesis method (QDTSynth) in
Lean4. During the statement synthesis, we
enhance Monte Carlo Tree Search (MCTS)
with an adaptive adjustment mechanism that dy-
namically optimizes the search strategy based
on the synthesis of statements. In addition,
we propose diversity screening and the self-
assessment method to select theorems that ex-
hibit both diversity and high quality from the
initially synthetic statements, enabling the syn-
thesis of a high-quality Lean4 theorem dataset.
After fine-tuning three open-source large lan-
guage models on our synthetic dataset, experi-
ments on the miniF2F benchmark demonstrate
that QDTSynth significantly improves the per-
formance of various open-source LLMs in theo-
rem proving tasks. Our work offers a promising
new direction for the future synthesis of high-
quality formal mathematical theorems.

1 Introduction

In modern mathematical research and applications,
the importance of mathematical proofs is self-
evident. Due to the complexity of mathematical
reasoning and the potential limitations of manual re-
view, even experienced mathematicians may strug-
gle to identify all potential proof errors. The emer-
gence of formal languages such as Lean (Moura
and Ullrich, 2021), Coq (Coq, 1996) and Meta-
math (Megill and Wheeler, 2019) marks a signifi-
cant turning point for mathematical proofs. Formal
languages ensure that every step in the mathemat-
ical proof process can be rigorously checked by

*Corresponding author: Zhengfeng Yang

computer systems, thereby guaranteeing the cor-
rectness and reliability of the final results. Formal
mathematics requires a high level of expertise, lead-
ing to a scarcity of specialized talent in this field.
Additionally, interactive theorem proving demands
extensive manual input and meticulous human re-
view, which increases its cost of use. Against
this backdrop, automated theorem proving (Bibel,
2013; Loveland, 2016; Kusumoto et al., 2018), as
a method capable of significantly reducing manual
intervention and improving proof efficiency, has
become increasingly important.

Large language models (LLMs) have demon-
strated significant potential in the field of math-
ematical reasoning (Wei et al., 2023; Ahn et al.,
2024; Srivastava et al., 2024), with numerous stud-
ies integrating them with formal proof assistants to
achieve automated theorem proving (Vishwakarma
and Mishra, 2023; First et al., 2023; Yang et al.,
2024b; Dong et al., 2024). However, the complex-
ity of formal theorem proving and its reliance on
deep expertise have resulted in a critical shortage of
high-quality formal theorem-proof data suitable for
supervised fine-tuning (SFT) of LLMs. Although
there are many methods for data synthesis (Lu et al.,
2024; Wang et al., 2024b; Zhu et al., 2024; Cao
et al., 2025), they are difficult to migrate to the
complex formal theorems. To address this chal-
lenge, researchers have proposed several methods
for the automatic generation of formal theorems.
Lin et al., 2024 combines Monte Carlo Tree Search
(MCTS) (Chaslot et al., 2008) with language mod-
els (LMs), and introduces policy/value networks to
optimize the generation process. However, if inef-
fective tactics are selected during the exploration
of MCTS nodes, it may lead to the exploration
of low-quality branches and make it challenging
to synthesize high-quality theorems. In the pro-
cess of supervised fine-tuning, the quality of the
dataset is often more critical than its quantity (Shen,
2024; Pang et al., 2025), emphasizing the need for

14683

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 14683—-14698

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

methods capable of generating high-quality formal
theorems. Xin et al., 2024; Ying et al., 2024 have
proposed methods for synthesizing formal state-
ments and generating proof steps from informal
mathematical problems. However, the potential of
formal statements remains underutilized. There are
few methods available for the automatic synthesis
of formal theorems, and synthesizing high-quality
data remains an important task.

In this paper, we propose QDTSynth, focusing
on the automatic synthesis of high-quality Lean4
theorems from formal statements. We use theorem
statements extracted from Mathlib4 (mathlib Com-
munity, 2020) and mathematical problems from
high school and undergraduate exercises, exams,
and competitions formalized by LLMs as seed data.
Throughout the iterative process of MCTS, new
statements are continuously synthesized. QDT-
Synth enhances the traditional MCTS by incor-
porating an adaptive mechanism, which dynam-
ically adjusts the search rules based on the syn-
thetic statements, thereby optimizing the synthe-
sis process and improving the quality of the syn-
thetic statements. After synthesizing new state-
ments, we employ online dynamic clustering for
diversity screening by calculating the cosine simi-
larity between each new statement and the cluster
centers. Subsequently, we generate proof steps
for the screened statements and introduce a self-
assessment mechanism where the LLM evaluates
the quality of the theorem proofs. The final selected
theorems constitute a new high-quality Lean4 the-
orem dataset. We perform supervised fine-tuning
on three open-source LLMs using the synthesized
dataset and evaluate the effectiveness of QDTSynth
in Lean4 theorem proving on 488 problems from
miniF2F (Zheng et al., 2021). Experimental re-
sults demonstrate that the models trained with our
method achieve significant performance improve-
ments compared to traditional BFS, MCTS, and
MCTS+pvn (Lin et al., 2024).

Our contributions are summarized as follows:

* We integrate an adaptive mechanism into
MCTS, dynamically optimizing our tactic selec-
tion for synthesizing high-quality statements.

* We propose the QDTSynth framework, de-
signed to synthesize high-quality formal theorems.
Based on the adaptive MCTS, we further introduce
diversity screening and the self-assessment method
to select high-quality theorems.

* QDTSynth has shown notable advantages on
the miniF2F benchmark, providing a novel direc-

tion for automated formal theorem synthesis.

2 Related Works

LLMs for Data Synthesis. With the advent of
LLMs, there are numerous data synthesis meth-
ods based on LLMs (Park et al., 2024; Kang et al.,
2024), aimed at enhancing the performance of mod-
els. Xu et al., 2024 synthesized high-quality in-
struction data at scale by extracting it directly from
an aligned LLM. Wang et al., 2023b addressed dis-
tributional discrepancy by iteratively refining the
synthesized dataset using error extrapolation via
a LLM. Lupidi et al., 2024 takes as input a cus-
tom data source and produces synthetic data points
with intermediate reasoning steps grounded in real-
world sources. Although there are many methods
of data synthesis, they are difficult to migrate to the
complex formal theorem synthesis.

Formal Theorem Synthesis. In previous studies,
formal theorem synthesis methods have enhanced
the performance of provers. MetaGen (Wang and
Deng, 2020) is the first neural generator for syn-
thetic training data, using reinforcement learning
to synthetic theorems that resemble those writ-
ten by humans. PACT (Han et al., 2021) is an
approach for extracting abundant self-supervised
data from kernel-level proof terms for joint train-
ing alongside the usual tactic prediction objective.
DeepSeek-Prover (Xin et al., 2024) and Lean Work-
book (Ying et al., 2024) generated Lean4 state-
ments from broad natural language mathematical
problems. Lin et al. (2024) combined MCTS with
LMs and learned policy and value models to gener-
ate a new dataset. Unlike prior work, QDTSynth
presents a unique approach for theorem synthesis
from formal statements, combined with the opti-
mization of the synthesis process and quality filter-
ing.

3 QDTSynth

QDTSynth is an approach to quality-driven syn-
thesis of formal theorems, focusing on the synthe-
sis of high-quality Lean4 theorems from formal
statements. QDTSynth consists of following steps:
Statement Synthesis, Diversity Screening, State-
ment Proving, Self-Assessment and Data Filtering.
The process is illustrated in Figure 1.

3.1 Statement Synthesis

We continuously synthesize new statements
through iterative processes of selection, expansion,

14684

Stepl: Statement Synthesis

O Sy nthetic Statements

Fa<b.succe a<b

O O - (c;v]:plex.l 12)A2=-(1/4)

i | 0000 i
G esoee i

Fx*x<sqrty*2
Adaptive MCTS :N

Seed Data

ixA2<y

: R>0
-V (y:Bool), (h&&y)<h
: Bool

Step4: Self-Assessment and Data Filtering

1
o
29
22 <— "0
' %°
(]
26 — 1

Self-Assessment

Synthetic Data

m%n+m/n*n=m:=by
rw [mul_comm]
rw [Nat.mod_add_div] 1

Step2: Diversity Screening

—» 095 QL
—

0.75

ixA2<y
—» 045

o [”
—» 098

Online Dynamic Clustering

.
:
:
1
1
:
—> 099 “—p
:
:
:
.
:
.
|

Step3: Statement Proving

New Theorems
theoremnew{mn:Nat}:

or =0

Path Backtracking

Figure 1: Overview of QDTSynth framework. QDTSynth consists of four steps, starting with seed data and the LLM
trained from Mathlib4. (1) Statement Synthesis: We introduce an adaptive mechanism into MCTS to optimize the
statement synthesis process. (2) Diversity Screening: We employ online dynamic clustering for diversity screening
by calculating the cosine similarity between each new statement and the cluster centers. (3) Statement Proving:
We generate proof steps for the screened statements, synthesize complete theorems. (4) Self-Assessment and Data
Filtering: We introduce a self-assessment mechanism to evaluate the quality of theorems, and employ data filtering

to obtain high-quality theorems.

and backpropagation in MCTS. Starting from the
root node, we select tactics for nodes based on pol-
icy/value models, and interact with the Lean proof
assistant. After receiving feedback from Lean, we
expand the current node to generate new nodes and
determine whether a new statement has been syn-
thesized based on the node’s state. To optimize the
selection process in MCTS, we introduce an adap-
tive mechanism that allows search rules to dynam-
ically adjust based on the generation conditions,
thereby enhancing both the quality and efficiency
of statement generation.

Monte Carlo Tree Structure. The root node of the
search tree is derived from formal statements ex-
tracted from Mathlib4 and mathematical problems
from high school and undergraduate exercises, ex-
ams, and competitions formalized by LLMs. Each
node in the tree records its state, including interme-
diate results of theorems or outcomes of reasoning
steps. The state of a node is closely tied to the
results of interactions with Lean. If the state is
neither success nor failure, the state of the node is
considered as a statement. Additionally, we use the
input LLM trained by Mathlib4 to generate candi-
date tactics for each state, which form the edges of
the search tree.

In the process of statement generation, we clas-
sify the generated nodes into three types: error
nodes, duplicate statement nodes, and new state-
ment nodes. We design different rewards for each
of these three distinct node types. For error nodes,
if a tactic results in an erroneous state, the reward
of -1 is given. For duplicate statement nodes, if
the newly generated statement is a duplicate of an
existing statement, the reward is defined as 0. If the
statement is new, which does not exist in the cur-
rent statement database, the reward is determined
tobe 1.

Adaptive Optimization in Selection. The selec-
tion phase is central to the statement synthesis pro-
cess, determining both the direction and efficiency
of the search. During the selection phase, we uti-
lize the Predictor + Upper Confidence for Trees
(PUCT) search strategy. This strategy leverages
prior probabilities 7(s¢, a) for selecting specific
edges, which are produced by a policy model. The
selection of an action is based on the average value
and exploration value of state s;. Each time state s,
is traversed, the cumulative total reward W (s;) is
updated by adding the value v(s;) of the expanded
nodes,which is computed by our value model. The
cumulative reward is then divided by the number

14685

of visits N (s;) to state s;, resulting in the average
reward of state s;. The details of the selection pro-
cess are illustrated in Figure 2a. Building on the
original PUCT formula (Silver et al., 2017), we
introduce a policy penalty term Pen(s;, a), where
the value of the penalty increases with the propor-
tion of repeated theorems. At each state s, for
every time step ¢, a new action a will be selected
according to the formula:

W (st)
N(st)

a = argmax,(+U(st,a)) (1)

where

v/ N(s
Ul(sy,a) = cm(sy, a) 71+N(itt,()1) @)

—A(s¢)Pen(st, a)

During statement generation, if the same tactic
is repeatedly executed, it will seriously affect the
efficiency and quality of the statements. For ex-
ample, in Lean, continuously applying the "have"
tactic to declare the same lemma results in no new
statements being obtained and leads to excessively
long and useless generation steps, which negatively
impacts the effectiveness of SFT for LLMs. There-
fore, we introduce a tactic penalty term Pen(s;, a)
as a constraint mechanism for selection. The com-
putation of this penalty term is based on the ratio
between the repetition count Repeat(s;, a) of tac-
tic a and the length of the generation path Len(s;),
aimed at reducing the use of repeated tactics dur-
ing the search process. The specific formula is as
follows:

Repeat (s, a)
Pen(st,a) = “Len(sy) 3)
To further enhance the effect of tactic penalty
term, we introduce an adaptively adjusted penalty
weight A(s;). As the search depth increases, the
impact of the penalty term also grows. The calcula-
tion formula is as follows:

A(st) = Ao (1 +a- Len(st)) 4)

For the exploration coefficient c in PUCT, its pri-
mary role is to balance the exploration and exploita-
tion. In the initial stages of the search, we aim to
encourage the algorithm to explore a wider range of
possible statements by setting a larger ¢, avoiding
convergence to local optima. As the search pro-
gresses and the number of visits increases, we tend
to reduce c to focus on exploiting higher-quality

statements, improving the efficiency of the search
and the quality of the statements. To dynamically
adjust the value of c to adapt to different stages of
the search process, the formula for our adaptive
mechanism is as follows:

N o

C:CQ'GXP<—’Y'1_|_]V

Here, cq is the initial exploration coefficient, v
controls the decay rate, and N represents the total
number of visits.

Expansion and Backpropagation. During the ex-
pansion phase, the selected node is expanded by
randomly selecting an action from the candidate
tactics provided by LLMs and executing it on the
current state, thereby generating a node with a new
state. The left part of Figure 2b illustrates this pro-
cess, where the selected leaf node s3 is expanded
by executing the action ag, resulting in the creation
of a new node sg. If the state is neither success nor
failure, the state of the node can be considered as a
statement.

The backpropagation process is illustrated in the

right portion of Figure 2b. The current action se-
quence is updated based on the output of the newly
generated leaf node sg . The impact of the leaf
node’s expansion on its parent node is considered
by backtracking from the leaf node along its de-
cision path. This process involves updating the
associated values W (s;) += v(s;) and visit counts
N (St) +=1.
Policy Model and Value Model. QDTSynth in-
corporates a policy model and a value model in
selection phase, which are obtained through online
training. These models enhance the efficiency and
quality of MCTS-based decision-making during
the statement synthesis process.

The objective of the policy model is to generate
the probability values for different candidate tactics
with a given state. In our approach, when a state s;
and an action a are given, the policy model returns
the probability of this action in the given state s,
which will be used to guide the search processes.

The objective of the value model is to assess
the potential for generating more new statements
from a given state s;. Specifically, when the sys-
tem is in a certain state, the value model estimates
whether further exploration in this state is likely
to successfully produce valuable new statements.
This estimation helps guide the search algorithm by
focusing resources on paths that are most likely to
synthesize new statements without time-consuming

14686

Adaptive Mechanism
ron
[

N

o O s Penalty Adaptive c
0O O Term

So sS4l & :

O
51 S2 s Policy Model PUCT Sy . S,
Sz Sa Ss O g O S3 S Ss
OGN i
St : Normal Node O LA/ O | W(se) : Selected Path by PUCT

O
Value Model

: Failed Node

(a) Selection with adaptive mechanism.

So So So
Expand @ Backpropagate

51. |:>5152:>5152
S3) S, asl . Ss SLS Sy Ss

Se Se
(b) Expansion and Backpropagation.

Figure 2: Adaptive MCTS for Statement Synthesis.

simulation process, thereby optimizing the synthe-
sis process.

3.2 Diversity Screening

When generating statements starting from the same
root node, it is easy to produce repetitive or highly
similar statements. Therefore, introducing a diver-
sity screening mechanism for the generated state-
ments becomes particularly important.

QDTSynth introduces an online dynamic cluster-
ing method to assess the novelty of generated state-
ments. We employ the BERT model (Devlin et al.,
2019) to generate context-aware vector represen-
tations for text-based statements, achieving incre-
mental clustering through real-time computation of
cosine similarity between synthetic statements and
dynamic cluster centers. Specifically, for each new
synthetic statement, the statement is encoded to a
high-dimensional semantic embedding vector e;
using BERT. Subsequently, we compute the cosine
similarity between e; and historical cluster centers
inset C' = {cy, ca, ..., ¢ }, formally defined as:

€; - Cj

leilles |

(6)

sim(e;, ¢j) =

If the maximum similarity between the statement
embedding and existing cluster centers falls below
the predefined threshold, we initialize the statement
as anew cluster center(C <— C'| J{e; }). Otherwise,
the position of the most similar cluster center is
refined by an exponential smoothing strategy:

v = B + (1

— B (7N

The smoothing factor 5 € [0, 1] controls the blend-
ing weight between historical cluster center and
new statement.

3.3 Statement Proving

Through adaptive MCTS and diversity screening,
we have successfully obtained many high-quality
statements. However, generating proof steps for
these statements poses a significant challenge. Em-
ploying LLMs for automated proof generation of-
ten entails substantial resource consumption and
time investment, with no guarantee of successful
proof completion. To relieve this issue, for state-
ments generated from seed data extracted from
Mathlib4, we prioritize a path backtracking ap-
proach to derive proof steps. Specifically, if the
node is derived by expanding from an existing
statement in Mathlib4, during the proof generation
phase, we employ a reverse backtracking strategy
to trace the generation path from the current node
back to the root node. Throughout this backtrack-
ing process, we interact with the Lean proof assis-
tant, providing feedback on the node states and tac-
tic execution. If the Lean proof assistant confirms
a successful proof upon reaching the root node, it
indicates that the corresponding proof steps for the
statement have been successfully generated. Con-
versely, if the proof fails, these statements, along
with those not derived from Mathlib4, are subse-
quently processed by LLMs for proof generation.
Appendix B provides a detailed display of reverse
path backtracking

3.4 Self-Assessment and Data Filtering

To ensure the high-quality output of automatically
generated theorems, we establish a self-assessment
and data filtering mechanism, focusing on qual-
ity control for newly generated theorems and their
proof steps. The quality of these theorems and their
proof steps directly impacts model performance.
However, the quality of the generated theorem
proofs largely depends on the formal mathemat-
ical reasoning capabilities of the LLMs themselves.
Due to the inherent complexity and technical chal-
lenges of automated theorem proving, the quality
of the generated theorem proofs exhibits consider-
able uncertainty, necessitating systematic quality
evaluation and filtering mechanisms for further op-
timization and refinement.

We introduce a self-assessment mechanism,
wherein the LLMs evaluate the quality of the theo-
rems and proof steps they generate. A well-defined

14687

evaluation framework is designed, requiring the
models to score the theorems based on three di-
mensions: redundancy, clarity, and relevance. We
employ few-shot prompting for self-assessment,
providing several expert-crafted and representa-
tive examples in prompts. Upon completion of the
self-assessment, only those theorems and proofs
whose composite scores exceed a predefined thresh-
old are incorporated into the high-quality theorem
database. This filtering mechanism effectively en-
sures the high quality of all theorems and their
corresponding proof steps included in the database,
providing a reliable data foundation for subsequent
model training.

4 Experiments

4.1 Experimental Setup

Models. We selected three popular open-source
LLMs as our base models, including Mathstral-
7B (Jiang et al., 2023), Llama-3-8B (Dubey et al.,
2024) , and Qwen2.5-7B (Yang et al., 2024a).
These base models will be fine-tuned using our
synthetic dataset. In our approach, the entire pro-
cess employs a single large language model for
all stages, including statement generation, state-
ment proving, self-assessment, and supervised fine-
tuning.

Evaluation. We employ the best-first search ap-
proach to explore and validate intermediate proof
steps within the tactic space generated by large
models until the proof is successfully completed or
resources are exhausted. For each test theorem, we
perform an independent search. At each generation
step, the LLM generates 32 candidate proof tactics
for the current state. The maximum proof duration
for each theorem is limited to 10 minutes.

In this work, we use the miniF2F benchmark
to evaluate the performance of our models in for-
mal theorem proving. The miniF2F is a standard
test dataset consisting of 244 validation and 244
test formal statements of mathematical problems,
sourced from mathematical competitions such as
AMC, AIME, and IMO. Our evaluation metric is
the proving pass rate of each theorem within ten
minutes.

Baselines. We evaluate the effectiveness of our
approach by comparing its Lean theorem proving
performance against multiple baseline approaches.
Specifically, we fine-tune Llama-3-8B, Mathstral-
7B, and Qwen2-7B by our synthetic dataset com-
bined with Mathlib4, and assess their performance

in Lean theorem proving tasks. To establish a
comprehensive benchmark, we compare our mod-
els against the original untuned models, models
fine-tuned solely on Mathlib4, models trained on
datasets synthesized by traditional BFS combined
with Mathlib4, models trained on datasets synthe-
sized using conventional MCTS combined with
Mathlib4, and models trained on datasets synthe-
sized using MCTS+pvn proposed by Lin et al.
(2024) combined with Mathlib4.

Training Details and Dataset. In this study, we uti-
lized LlamaFactory to perform SFT on three base
models with LoORA method. Our training configura-
tion was as follows: a learning rate of 2.0 x 1075, a
cosine learning rate scheduler, and a warm-up ratio
of 0.03. We also set the floating-point precision to
bfloat16 and used a batch size of 4. During online
training of policy and value model, we employ the
Adam optimizer to train the networks, with a learn-
ing rate set at 5.0 x 10~*. All training is conducted
on a machine running Ubuntu 22.04, equipped with
A800-80G x 4 GPUs.

We decompose the synthetic theorems step-by-

step based on their proof traces, extracting each
goal and the corresponding tactic applied at each
step. The proof traces of all synthetic theorems
collectively form our training dataset.
Interaction Tool. The interaction tool with proof
environment is essential, which enables us to exe-
cute tactics in the current state and receive feedback
from the proof environment. We develop an inter-
active interface called Lean4Repl, implemented
directly in Lean over the standard input/output.
Through Lean4Repl, we can interact with Lean,
allowing provers to observe Lean’s proof state, ex-
ecute tactics to alter the state, and receive feedback
from Lean. Additionally, we develop a tool called
Lean4Client, which converts Lean files into JSON
files for fine-tuning and use with LLMs. This tool
systematically breaks down a complete Lean the-
orem into a step-by-step "goal-tactic-goalAfter"
format. Each JSON object contains the current
proof state, the tactic executed, and the resulting
new state. The version of Lean used in this paper
is leanprover/lean4:v4.10.0.

4.2 Main Results

Table 1 presents the performance of our QDTSynth
compared with five baseline approaches across
Mathstral-7B, Llama3-8B and Qwen2.5-7B. Fig-
ure 3 provides a clear comparison of the perfor-
mance between QDTSynth and the baseline meth-

14688

Mathstral-7B Llama3-8B Qwen2.5-7B
Training Data miniF2F- miniF2F- miniF2F- miniF2F- miniF2F- miniF2F-
valid test valid test valid test
Origin 22.13% 20.90% 23.77% 24.59% 18.44% 20.49%
Mathlib4 31.97% 31.97% 25.82% 25.82% 25.00% 23.36%
Mathlib4+BFS 31.97% 31.15% 26.64% 25.82% 28.69% 29.51%
Mathlib4+MCTS 32.38% 32.79% 27.87% 27.05% 29.92% 30.33%
Mathlib4+MCTS+pvn 32.79% 33.20% 28.69% 28.69% 31.15% 30.33%
Mathlib4+QDTSynth(ours) 37.70% 36.89% 33.61% 32.79% 36.07 % 35.25%

Table 1: Results of QDTSynth, compared the pass rates on miniF2F among Mathstral-7B, Llama3-8B and Qwen2.5-

7B trained on different datasets.

ods on miniF2F. We analyze the experimental re-
sults as follows:

(1) The proposed QDTSynth method demon-
strates significant advantages over baseline ap-
proaches across three models. The experimen-
tal results on Mathstral-7B show that QDTSynth
achieves pass rates of 37.70% and 36.89% on
the miniF2F-valid and miniF2F-test, surpassing
the suboptimal method (MCTS+pvn at 32.79%
and 33.20%) by margins of 4.91% and 3.69%.
This marked improvement confirms that QDT-
Synth enhances the quality of synthetic theorems
through quality-driven mechanisms, generating
high-quality Lean4 theorem datasets that substan-
tially enhance model performance in proving tasks.

(2) Although the integration of policy/value
networks (pvn) with traditional MCTS has re-
sulted in a slight increase in pass rates, QDT-
Synth introduces three critical refinements: adap-
tive mechanisms, diversity screening, and self-
assessment, which enable QDTSynth to outperform
MCTS+pvn by 4.91% and 3.69% on Mathstral-
7B. The results demonstrate that optimizing search
strategies alone has limited effectiveness in improv-
ing data quality. Due to the complexity of formal
theorem synthesis and proving, it is necessary to
assess and filter the synthetic theorems.

(3) It is noteworthy that, although BFS shows
performance improvements in Qwen2.5-7B, it
only yields a slight improvement on Llama3-8B
and even experienced performance degradation on
Mathstral-7B (a decrease of 0.82% compared to
Mathlib4 on the miniF2F-test). This phenomenon
underscores the importance of data quality in the
supervised SFT of LLMs. Although BFS can gener-
ate a larger volume of training data through exhaus-
tive search, the low-quality proof paths it produces

lead to the model learning incorrect reasoning pat-
terns. These experimental results suggest that in
LLM-based theorem proving systems, blindly in-
creasing the scale of data may be counterproduc-
tive, and the quality of the training dataset is crucial
for performance enhancement.

4.3 Ablation Study

We use data synthesized from Mathstral-7B and
conduct a series of ablation experiments to further
investigate the effects of the adaptive mechanism,
diversity screening, and self-assessment on model
training. The experimental results are obtained
from the pass rates of the trained Mathstral-7B on
miniF2F.

Training Data miniF2F-valid miniF2F-test

QDTSynth 37.70% 36.89%

- w/o Pen 36.07% (-1.63) 35.66% (-1.23)
- w/o Dynamic ¢ 36.89% (-0.81) 36.48% (-0.41)
- w/o Both 35.66% (-2.04) 35.25% (-1.64)

Table 2: Ablation results of the adaptive mechanism in
statement synthesis on Mathstral-7B. "Pen’ represents
the penalty term, and ’Dynamic ¢’ refers to the adaptive
dynamic exploration coefficient c.

Adaptive Mechanism. Table 2 demonstrates the
critical impact of the penalty term and dynamic ex-
ploration coefficient c¢ in the adaptive mechanism.
Removing the penalty term leads to pass rates re-
ductions of 1.63% and 1.23% on the miniF2F-valid
and miniF2F-test, confirming its essential role in
suppressing invalid proof paths. This observation
indicates that low-quality proof steps significantly
disrupt the training effect. Removal of the dynamic
exploration coefficient c results in performance de-
clines of 0.81% and 0.41%, illustrating its role

14689

40.00%

35.00%
30.00%
25.00%
20.00%

- | | I
0.00%

15.00%

10.00%
Mathstral-7B Llama3-8B Qwen2.5-7B
Origin Mathlib4
Mathlib4+BFS Mathlib4+MCTS
Mathlib4+MCTS+pvn B Mathlib4+QDTSynth(ours)

Pass Rates on MiniF2F-valid

40.00%

35.00%
30.00%
25.00%
20.00%

0.00%

15.00%

10.00%
Mathstral-7B Llama3-8B Qwen2.5-7B
Origin Mathlib4
Mathlib4+BFS Mathlib4+MCTS
Mathlib4+MCTS+pvn ® Mathlib4+QDTSynth(ours)

Pass Rates on MiniF2F-test

Figure 3: Comparison of QDTSynth with Baseline Methods on miniF2F pass rates across Mathstral-7B, Llama3-8B,

and Qwen2.5-7B.

in optimizing the efficiency of the search strat-
egy through dynamic adjustment of the exploration
weights. Notably, the penalty term has a more
pronounced influence on model performance than
dynamic ¢, further underscoring the importance
of data quality in theorem synthesis tasks. The
detrimental effects of low-quality proof paths far
outweigh the limitations of localized search strat-
egy optimizations. When both the penalty term and
dynamic ¢ are removed, the performance degra-
dation (-2.04% and -1.64%) exceeds the sum of
their individual losses (-2.44% and -1.64%). This
finding reveals a mutually dependent enhancement
mechanism between the two components. The re-
sults highlight the effectiveness of our adaptive
mechanism in model training.

Training Data miniF2F-valid miniF2F-test

QDTSynth 37.70% 36.89%
- w/o Diversity 36.48% (-1.22) 35.66% (-1.23)
- w/o SA 34.43% (-3.27) 34.84% (-2.05)
BFS 31.97% 31.15%
- w/ Both 32.79% (+0.82) 32.79% (+1.64)
MCTS+pvn 32.79% 33.20%
- w/ Both 35.66% (+2.87) 35.25% (+2.05)

Table 3: Ablation results of the diversity screening and
self-assessment on Mathstral-7B. *Diversity’ and *SA’
denote diversity screening and self-assessment respec-
tively

Diversity Screening and Self-Assessment. From
Table 3, it is evident that diversity screening (Di-
versity) and self-assessment (SA) play an impor-
tant role in theorem synthesis. Removing diversity
screening caused performance drops of 1.22% on
miniF2F-valid and 1.23% on miniF2F-test, indicat-

ing that similar training data restrict the model’s
ability to learn diverse reasoning patterns. The re-
moval of the self-assessment module results in a
more significant performance degradation (-3.27%
and -2.05%), indicating that our self-assessment
method effectively filters out high-quality formal-
ized theorems, thereby enhancing the model’s
proof performance. To further validate the effec-
tiveness of these two components, we integrated
them into BFS and MCTS+pvn. Experimental re-
sults show that our components are highly effective
in filtering out similar or low-quality theorems, con-
tributing to the synthesis of high-quality training
theorems.

5 Conclusion

In this work, we propose QDTSynth, an approach
to quality-driven synthesis of formal theorems, fo-
cusing on the synthesis of high-quality Lean4 theo-
rems from formal statements. QDTSynth enhances
Monte Carlo Tree Search (MCTS) with an adap-
tive adjustment mechanism that dynamically op-
timizes the statement synthesis process, and fur-
ther enhances theorem quality by incorporating di-
versity screening and self-assessment mechanisms,
thereby significantly improving the diversity and
high quality of the synthetic theorems. We perform
supervised fine-tuning on three open-source LLMs
using the synthetic dataset and evaluate the effec-
tiveness of QDTSynth in Lean4 theorem proving
on miniF2F. Experimental results demonstrate that
QDTSynth significantly improves the performance
of various open-source LLMs in theorem proving
tasks. QDTSynth provides a novel direction for
automated formal theorem synthesis.

14690

Limitations

Despite QDTSynth’s outstanding performance in
theorem proving, several limitations must be ac-
knowledged. QDTSynth uses seed data as the root
node for statement expansion, which limits the di-
versity and quality of the generated data based on
the coverage of the initial seed data. In the fu-
ture, we can extract seed data from open source
theorem sets such as DeepSeek-Prover(Xin et al.,
2024) and Lean Workbook(Ying et al., 2024). Fur-
thermore, for formal statements not derived from
the Mathlib4 library, the method relies on LLMs
to autonomously generate proof steps. This can
lead to resource wastage, and the ability to suc-
cessfully generate theorems depends on the proof
capabilities of the LLMs. These issues need to be
further addressed and improved, which may fur-
ther enhance the quality of the synthetic data and
synthesis efficiency.

Ethics Statement

In our work, we use LLMs for generating candi-
date tactics, statement proving, and self-assessment.
We have utilized Mathstral-7B, Llama3-8B and
Qwen2.5-7B, as well as open-source software such
as Hugging Face and PyTorch. Our models can
output untrue hallucinations, just like any language
model.We adhere to the policies and licenses of
these resources and acknowledge the role they have
played in our work.

Acknowledgement

This work was supported in part by the National
Key Research and Development Program of China
under Grant (2023YFA1009402), the National Nat-
ural Science Foundation of China under Grant
(No.12171159), the "Digital Silk Road”” Shanghai
International Joint Lab of Trustworthy Intelligent
Software under Grant (N0.22510750100), and the
Shanghai Trusted Industry Internet Software Col-
laborative Innovation Center. This work was also
supported by the GPU computing platform of the
Academy of Mathematics and Systems Science,
Chinese Academy of Science.

References

Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui
Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. Preprint, arXiv:2402.00157.

Kshitij Bansal, Sarah Loos, Markus Rabe, Christian
Szegedy, and Stewart Wilcox. 2019. HOList: An en-
vironment for machine learning of higher order logic
theorem proving. In Proceedings of the 36th Interna-
tional Conference on Machine Learning, volume 97
of Proceedings of Machine Learning Research, pages
454-463. PMLR.

Richard Bellman. 1966. Dynamic programming. sci-
ence, 153(3731):34-37.

Wolfgang Bibel. 2013. Automated theorem proving.
Springer Science & Business Media.

David Brandfonbrener, Sibi Raja, Tarun Prasad,
Chloe Loughridge, Jianang Yang, Simon Henniger,
William E Byrd, Robert Zinkov, and Nada Amin.
2024. Verified multi-step synthesis using large lan-
guage models and monte carlo tree search. arXiv
preprint arXiv:2402.08147.

Cameron B. Browne, Edward Powley, Daniel White-
house, Simon M. Lucas, Peter I. Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and Al in Games,
4(1):1-43.

Maosong Cao, Taolin Zhang, Mo Li, Chuyu Zhang,
Yunxin Liu, Haodong Duan, Songyang Zhang, and
Kai Chen. 2025. Condor: Enhance llm alignment
with knowledge-driven data synthesis and refinement.
Preprint, arXiv:2501.12273.

Guillaume Chaslot, Sander Bakkes, Istvan Szita, and
Pieter Spronck. 2008. Monte-carlo tree search: A
new framework for game ai. In Proceedings of the
AAAI Conference on Artificial Intelligence and Inter-
active Digital Entertainment, volume 4, pages 216—
217.

Projet Coq. 1996. The coq proof assistant-reference
manual. INRIA Rocquencourt and ENS Lyon, ver-
sion, 5.

Leonardo De Moura, Soonho Kong, Jeremy Avigad,
Floris Van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Auto-
mated Deduction-CADE-25: 25th International Con-
ference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pages 378-388.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. Preprint, arXiv:1810.04805.

Kefan Dong, Arvind Mahankali, and Tengyu Ma.
2024. Formal theorem proving by rewarding
IIms to decompose proofs hierarchically. Preprint,
arXiv:2411.01829.

14691

https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://arxiv.org/abs/2402.00157
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://proceedings.mlr.press/v97/bansal19a.html
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1109/TCIAIG.2012.2186810
https://arxiv.org/abs/2501.12273
https://arxiv.org/abs/2501.12273
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2411.01829
https://arxiv.org/abs/2411.01829

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Emily First, Markus N Rabe, Talia Ringer, and Yuriy
Brun. 2023. Baldur: Whole-proof generation and
repair with large language models. In Proceedings of
the 31st ACM Joint European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1229-1241.

Thibault Gauthier, Cezary Kaliszyk, Josef Urban, Ra-
mana Kumar, and Michael Norrish. 2021. Tactictoe:
learning to prove with tactics. Journal of Automated
Reasoning, 65(2):257-286.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward W
Ayers, and Stanislas Polu. 2021. Proof artifact co-
training for theorem proving with language models.
arXiv preprint arXiv:2102.06203.

Geoffrey Irving, Christian Szegedy, Alexander A Alemi,
Niklas Eén, Frangois Chollet, and Josef Urban. 2016.
Deepmath-deep sequence models for premise selec-
tion. Advances in neural information processing
systems, 29.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, et al. 2023. Mistral
7b. arXiv preprint arXiv:2310.06825.

Andrea Kang, Jun Yu Chen, Zoe Lee-Youngzie, and
Shuhao Fu. 2024. Synthetic data generation with
Ilm for improved depression prediction. Preprint,
arXiv:2411.17672.

Levente Kocsis and Csaba Szepesvari. 2006. Bandit
based monte-carlo planning. In European conference
on machine learning, pages 282—293. Springer.

Mitsuru Kusumoto, Keisuke Yahata, and Masahiro
Sakai. 2018. Automated theorem proving in intu-
itionistic propositional logic by deep reinforcement
learning. Preprint, arXiv:1811.00796.

Guillaume Lample, Timothee Lacroix, Marie-Anne
Lachaux, Aurelien Rodriguez, Amaury Hayat,
Thibaut Lavril, Gabriel Ebner, and Xavier Martinet.
2022. Hypertree proof search for neural theorem
proving. Advances in neural information processing
systems, 35:26337-26349.

Xiaohan Lin, Qingxing Cao, Yinya Huang, Zhicheng
Yang, Zhengying Liu, Zhenguo Li, and Xiaodan
Liang. 2024. Atg: Benchmarking automated theorem
generation for generative language models. arXiv
preprint arXiv:2405.06677.

Donald W Loveland. 2016. Automated theorem proving:
A logical basis. Elsevier.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang,
Weikang Shi, Junting Pan, Mingjie Zhan, and Hong-
sheng Li. 2024. Mathgenie: Generating syn-
thetic data with question back-translation for en-
hancing mathematical reasoning of llms. Preprint,
arXiv:2402.16352.

Alisia Lupidi, Carlos Gemmell, Nicola Cancedda, Jane
Dwivedi-Yu, Jason Weston, Jakob Foerster, Roberta
Raileanu, and Maria Lomeli. 2024. Source2synth:
Synthetic data generation and curation grounded in
real data sources. Preprint, arXiv:2409.08239.

The mathlib Community. 2020. The lean mathematical
library. In Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and
Proofs, POPL °20. ACM.

Norman Megill and David A Wheeler. 2019. Metamath:
a computer language for mathematical proofs. Lulu.
com.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language.
In Automated Deduction — CADE 28, pages 625-635,
Cham. Springer International Publishing.

Jens Otten and Wolfgang Bibel. 2003. leancop: lean
connection-based theorem proving. Journal of Sym-
bolic Computation, 36(1-2):139-161.

Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao
Cheng, Chen Qian, and Yang Liu. 2025. Token clean-
ing: Fine-grained data selection for llm supervised
fine-tuning. Preprint, arXiv:2502.01968.

Jeiyoon Park, Chanjun Park, and Heuiseok Lim. 2024.
Chatlang-8: An llm-based synthetic data genera-
tion framework for grammatical error correction.
Preprint, arXiv:2406.03202.

Stanislas Polu, Jesse Michael Han, Kunhao Zheng, Man-
tas Baksys, Igor Babuschkin, and Ilya Sutskever.
2022. Formal mathematics statement curriculum
learning. arXiv preprint arXiv:2202.01344.

Arthur L. Robinson. 1980. New Ways to Make Microcir-
cuits Smaller—Duplicate Entry. Science, 208:1019—
1026.

Ming Shen. 2024. Rethinking data selection for super-
vised fine-tuning. Preprint, arXiv:2402.06094.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioan-
nis Antonoglou, Matthew Lai, Arthur Guez, Marc
Lanctot, Laurent Sifre, Dharshan Kumaran, Thore
Graepel, et al. 2017. Mastering chess and shogi by
self-play with a general reinforcement learning algo-
rithm. arXiv preprint arXiv:1712.01815.

Pragya Srivastava, Manuj Malik, Vivek Gupta, Tanuja
Ganu, and Dan Roth. 2024. Evaluating llms’ math-
ematical reasoning in financial document question
answering. Preprint, arXiv:2402.11194.

14692

https://arxiv.org/abs/2411.17672
https://arxiv.org/abs/2411.17672
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/1811.00796
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2402.16352
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://arxiv.org/abs/2409.08239
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2502.01968
https://arxiv.org/abs/2406.03202
https://arxiv.org/abs/2406.03202
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.06094
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194
https://arxiv.org/abs/2402.11194

Zhen Tan, Dawei Li, Song Wang, Alimohammad
Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu.
2024. Large language models for data annotation and
synthesis: A survey. Preprint, arXiv:2402.13446.

Rahul Vishwakarma and Subhankar Mishra. 2023. En-
hancing neural theorem proving through data aug-
mentation and dynamic sampling method. arXiv
preprint arXiv:2312.14188.

Haiming Wang, Ye Yuan, Zhengying Liu, Jianhao Shen,
Yichun Yin, Jing Xiong, Enze Xie, Han Shi, Yujun
Li, Lin Li, et al. 2023a. Dt-solver: Automated theo-
rem proving with dynamic-tree sampling guided by
proof-level value function. In Proceedings of the
61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
12632-12646.

Ke Wang, Jiahui Zhu, Minjie Ren, Zeming Liu, Shiwei
Li, Zongye Zhang, Chenkai Zhang, Xiaoyu Wu, Qiqi
Zhan, Qingjie Liu, and Yunhong Wang. 2024a. A
survey on data synthesis and augmentation for large
language models. Preprint, arXiv:2410.12896.

Mingzhe Wang and Jia Deng. 2020. Learning to prove
theorems by learning to generate theorems. Advances
in Neural Information Processing Systems, 33:18146—
18157.

Ruida Wang, Wangchunshu Zhou, and Mrinmaya
Sachan. 2023b. Let’s synthesize step by step: It-
erative dataset synthesis with large language models
by extrapolating errors from small models. Preprint,
arXiv:2310.13671.

Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T.
Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and
Tomas Pfister. 2024b. Codeclm: Aligning lan-
guage models with tailored synthetic data. Preprint,
arXiv:2404.05875.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le, and
Denny Zhou. 2023. Chain-of-thought prompting elic-
its reasoning in large language models. Preprint,
arXiv:2201.11903.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Minchao Wu, Michael Norrish, Christian Walder, and
Amir Dezfouli. 2021. Tacticzero: Learning to prove
theorems from scratch with deep reinforcement learn-

ing. Advances in Neural Information Processing
Systems, 34:9330-9342.

Yuhuai Wu, Albert Qiaochu Jiang, Jimmy Ba, and Roger
Grosse. 2020. Int: An inequality benchmark for
evaluating generalization in theorem proving. arXiv
preprint arXiv:2007.02924.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus
Rabe, Charles Staats, Mateja Jamnik, and Christian
Szegedy. 2022. Autoformalization with large lan-
guage models. Advances in Neural Information Pro-

cessing Systems, 35:32353-32368.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333.

Huajian Xin, Haiming Wang, Chuanyang Zheng, Lin
Li, Zhengying Liu, Qingxing Cao, Yinya Huang,
Jing Xiong, Han Shi, Enze Xie, et al. 2023. Lego-
prover: Neural theorem proving with growing li-
braries. arXiv preprint arXiv:2310.00656.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024. Magpie: Alignment data
synthesis from scratch by prompting aligned 1lms
with nothing. Preprint, arXiv:2406.08464.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. 2024b. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang,
Dahua Lin, and Kai Chen. 2024. Lean work-
book: A large-scale lean problem set formalized
from natural language math problems. Preprint,
arXiv:2406.03847.

Di Zhang, Jiatong Li, Xiaoshui Huang, Dongzhan Zhou,
Yugiang Li, and Wanli Ouyang. 2024. Accessing gpt-
4 level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

He Zhu, Junyou Su, Tianle Lun, Yicheng Tao, Wenjia
Zhang, Zipei Fan, and Guanhua Chen. 2024. Fanno:
Augmenting high-quality instruction data with open-
sourced llms only. Preprint, arXiv:2408.01323.

A Finetuning Details

We present the hyperparameters used for LoRA
training in the LLamaFactory as Figure 4.

We convert the synthetic theorems into the Al-
paca format. In the Lean proof environment, one
formalized theorem is as Figure 5.

14693

https://arxiv.org/abs/2402.13446
https://arxiv.org/abs/2402.13446
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2410.12896
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2310.13671
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2404.05875
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2406.03847
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323
https://arxiv.org/abs/2408.01323

Hyperparameters for LoRA Training

--stage: sft

--do_train: true

--finetuning_type: lora
--lora_target: all
--deepspeed-examples/deepspeed/ds z0 config.json
--template: mistral

--cutoff len: 4096
--max_samples: 100000000

-- overwrite_cache: true

-- preprocessing num_workers: 16
-- output_dir: saves/

-- logging_steps: 10

-- save_steps: 100

-- plot_loss: true

-- overwrite_output dir: true

-- per_device_train_batch_size: 4
-- gradient_accumulation_steps: 4
-- learning_rate: 2.0e-5

-- num_train_epochs: 3

-- Ir_scheduler type: cosine

-- warmup_ratio: 0.01

-- bf16: true

-- ddp_timeout: 180000000

-- val_size: 0.01

-- per_device eval batch size: 2
-- eval_strategy: steps

-- eval_steps: 2000

Figure 4: Hyperparameters for LoRA Training.

theorem div_mul _add mod (mn: Nat) :m/n *
n+m % n=m:=by

rw [«—mul _comm]

rw [div_add mod]

Figure 5: An example of Lean4 Theorem.

After reading the state of a theorem, the model
should provide effective tactics. The GOAL and
tactic from the converted theorems are extracted
as the "input" and "output" portions of the fine-
tuning dataset respectively. The supervised dataset
format is as Figure 6.

B Details of Statement Proving

In statement proving phase, for statements synthe-
sized from seed data extracted from Mathlib4, we
prioritize a path backtracking approach to derive
proof steps. Specifically, if the node is derived by
expanding from an existing statement in Mathlib4,
we employ a reverse backtracking strategy to trace
the generation path from the current node back to
the root node. Taking the Mathlib4 theorem in Fig-
ure § as an example, this theorem serves as the root

"input": "[GOAL]lmn : N - m/n * n+m % n = m[tactic]",
"output": "rw [«— mul_comm]",

"instruction": "",
"history": []

"input": "[GOALlm n : N F n * (m/n) + m % n = m[tactic]",
"output": "rw [div_add mod]",

"instruction":
"history": []

Figure 6: Supervised Dataset Format.

node to synthesize new statements, and backtrack
their synthesis path. Figure 7 shows in detail the
statement proving process synthesized by this theo-
rem. Starting from the root node, a1, a4, and ag are
selected. During the statement proving, we trace
the synthesis path back from the reverse ag until
reaching the root node, and finally executed "rw"
tactic and assumption (may not be necessary). The
complete proof steps of the new statement obtained
is shown in Figure 9.

C Prompts

For better reproduction, we have provided all
prompt templates in the appendix. We list the fol-
lowing for reference:

Figure 10: Generating candidate tactics for the
input state.

Figure 11: Generate proof steps for the current
statement, using them in both the statement proving
and evaluation stages.

Figure 12: Self-assessment and scoring for syn-
thetic theorems based on three dimensions: redun-
dancy, clarity, and relevance.

Figure 13: An example for self-assessment.

D Interactive Tool

We develop an interactive interface called
Lean4Repl, implemented directly in Lean over the
standard input/output. Through Lean4Repl, we
can interact with Lean, allowing provers to ob-
serve Lean’s proof state, execute tactics to alter the
state, and receive feedback from Lean. Lean4Repl
presents the following API:

e Lean4Gym(lean_workdir, lean_file): Ini-
tializes an instance of the Lean4Gym class, based
on the root path of the Lean project and the file
path of the initial theorem.

14694

Statement Synthesis

Theorem:
choose_succ_succ0'

So hin-k#0
ay: rw[« mul_right_inj'h, nk:N

mul_add]

S1 S2
ay: rw[mul_comm (n-k) _,
mul_comm (n-k)]
S3 Sa Ss

ag: rw[« choose_succ_right_eq] l

S¢: Synthetic Statement

Se - (n + 1).choose (k + 1) * (n A
-k) =n.choose (k + 1) * (k + 6
1)+ (n - k) * n.choose (k + 1)

J

h:n-k#0
nk:N

So : Root Node

F (n + 1).choose (k + 1) =
n.choose k + n.choose (k + 1)

Backnlackin%

Path Backtracking

ay: rw [choose_succ_succ0’]

So
a;’: rw[«— mul_add,
mul_right inj'h]

S1 S2
ay’: rw[« mul_comm (n-k) _,
«— mul_comm (n-k)_]
S3 Sa Ss

ag’: rw[choose_succ_right _eq]

Figure 7: An example of path backtracking during statement proving.

theorem Nat.choose_succ_succ@®' (n : N)
(k : N)(h: n - k #90) :

Nat.choose (n + 1) (k + 1) = Nat.choose
n k + Nat.choose n (k + 1)

Figure 8: An example as the seed data from Mathlib4.

theorem new_choose (n : N) (k : N)(h: n - k # 9) :
(n + 1).choose (k + 1) * (n - k) = n.choose (k + 1)
* (k + 1) + (n - k) * n.choose (k + 1) := by
rw[choose_succ_right_eq]
rw[« mul_comm (n - k) _, « mul_comm (n - k) _]
rw[emul_add, mul_right_inj' h]
rw[Nat.choose_succ_succo']
assumption

Figure 9: The synthetic theorem and its proof steps.

e getInitState(): Extracts the initial state of
the theorem from the lean_file

erun_tactic(state, tac): Facilitates interac-
tion with Lean through Lean4Repl by inputting the
state and tactic, and returns feedback from Lean.

Additionally, we develop a tool -called
Lean4Client, converting Lean files into JSON files.
The tool breaks down a complete Lean theorem
into a step-by-step "goal-tactic-goal After" format.
Each JSON object contains the current proof state,
the tactic executed, and the resulting new state.
Figure 14 displays the converted data format.

Prompt for Statement Synthesis

You are using Lean4 for theorem generation.
Now give you the current state of the theorem
you need to give me a tactic to generate high-
quality theorems as:

[GOAL] <Input State> [tactic]

You should generate a tactic that can help
generate high-quality theorems. If you use a "rw"
or "simp" tactic, please do not rewrite multiple
theorems at the same time. It is necessary to
ensure that the executed tactics can be executed
successfully without errors

(Note: Do not output any extra content, only
the tactic itself in plain text.)

S

Figure 10: Prompt template to generate tactics for state-
ment synthesis.

Prompt for Theorem Proving

You are using Lean4 for theorem proving. Now
give you the current state of the theorem you
need to prove in Lean4 language as:

[GOAL] <Input State> [tactic|

You should generate a tactic that can help prove
the theorem.

(Note: Do not output any extra content, only the
tactic itself in plain text.)

Figure 11: Prompt template for theorem proving.

14695

Prompt for Self-Assessment

The user will provide a section of the Lean4 theorem and its proof steps. You need to score
the proof of the theorem from the following three aspects, provide detailed evaluation
reasons, and give a total score for the theorem based on the following three aspects:

1. Redundancy (0-1 points):

Evaluate whether there are unnecessary repetitions or redundancies in the proof steps. A
high rating indicates efficiency and no redundancy.

Scoring criteria: 0 indicates complete redundancy, 1 indicates no redundancy.

2. Clarity (0-1 points):

Evaluate whether the logic of the proof is clear and whether the steps are easy to understand.
A high rating indicates that it is easy to understand and well structured.

Scoring criteria: 0 indicates very unclear, 1 indicates very clear.

3. Relevance (0-1 points):

Evaluate whether the proof always revolves around the goal and avoids irrelevant steps or
lemmas. A high rating indicates proof of focusing on the goal.

Scoring criteria: 0 indicates complete deviation from the target, 1 indicates complete focus
on the target.

Please strictly follow the following format for output:

1. Redundancy rating: X/1

Explanation: [Briefly explain the reasons for the redundancy rating]
2. Clarity rating: X/1

Explanation: [Briefly explain the reasons for the clarity rating]

3. Relevance score: X/1

Explanation: [Briefly explain the reasons for the relevance rating]
Total score: X/3

Summary: [Briefly summarize the overall quality of the theorem, with a focus on
redundancy, clarity, relevance, and other aspects]

[Examples]

Now, the Lean4 theorem entered by the user is as follows:
[Theorem|
<Input Theorem>
[Response]

Figure 12: Prompt template for self-assessment.

14696

An Example for Self-Assessment

Example:
The Lean4 theorem entered by the user is as follows:

[Theorem]

theorem mathd numbertheory 3012525(G: N) (ho:0<j):3*3+3*(7*) % 7=2 =
by

simp [mul_comm]

simp [Nat.add comm, Nat.mul comm, Nat.add assoc, Nat.mul assoc]

rw [mul_comm, mul assoc, mul comm, mul assoc, add comml]

simp [mul comm]

[Response]

Response:

1. Redundancy rating: 0.6/1

Explanation:

The proof contains multiple simp steps with overlapping lemmas, such as mul comm and
Nat.mul comm, which are repeated unnecessarily. The use of rw [mul_comm, mul_assoc,
mul_comm, mul assoc, add comm] is also redundant, as some of these rewrites could be
combined or simplified. The proof could be made more efficient by reducing repetitive
steps.

2. Clarity rating: 0.5/1

Explanation:

The proof logic is somewhat clear, but the repeated use of simp with similar lemmas and
the lengthy rw step make it harder to follow. The proof could benefit from clearer
structuring and fewer overlapping steps. A more streamlined approach would improve
readability.

3. Relevance score: 0.8/1

Explanation:

The proof stays focused on the goal of showing (3 * 3 + 3 * (7 * j)) % 7 = 2, and all steps
are relevant to this goal. However, the inclusion of unnecessary lemmas (ec.g.,

Nat.add comm, Nat.mul comm) slightly detracts from the relevance, as they do not
contribute significantly to the proof.

Total score: 1.9/3

Summary:

The theorem's proof is relevant and mostly focused on the goal, but it suffers from
redundancy and lacks clarity due to repetitive and overlapping steps. The proof could be
significantly improved by streamlining the use of simp and rw to eliminate redundancy and
make the logic clearer. Overall, the proof is functional but not optimal in terms of efficiency

and readability.
_ J

Figure 13: An example for self-assessment.

14697

{
"tactics": |
{
"tactic": "rw [« mul_comm]",
"proofState": 0,
"pos": {
"line": 11,
"column": 0
}s
"goalsAfter": "unknown goal",
"goals": " mn:NrFm/n*n+m%n=m",
"endPos": {

"line": 11,
"column": 14
}
}s
{

"tactic": "rw [div_add mod]",
"proofState": 1,

"pOS":{
"line": 12,
"column": 0
1
IE)

"goalsAfter": "no goals",
"goals":"mn:NFn*(m/n)+m%n=m",
"endPos": {

"line": 12,

"column": 15
}

}

Figure 14: Theorem with "goal-tactic-goal After" format.

14698

