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Abstract

Domain-Adaptive Pre-training (DAP) has
recently gained attention for its effectiveness
in fine-tuning pre-trained models. Building
on this, continual DAP has been explored
to develop pre-trained models capable of
incrementally incorporating different domain
datasets. However, existing continual DAP
methods face several limitations: (1) high com-
putational cost and GPU memory usage during
training; (2) sensitivity to incremental data
order; and (3) providing a single, generalized
model for all end tasks, which contradicts the
essence of DAP. In this paper, we propose
DoMIX, a novel approach that addresses these
challenges by leveraging LoRA modules, a
representative parameter-efficient fine-tuning
(PEFT) method. Our approach enables efficient
and parallel domain-adaptive pre-training
that is robust to domain order and effectively
utilizes accumulated knowledge to provide
tailored pre-trained models for specific tasks.
We also demonstrate that our method can be
extended beyond the DAP setting to standard
LLM fine-tuning scenarios. Code is available at
https://github.com/dohoonkim-ai/DoMIX.

1 Introduction

Large Language Models (LLMs) (Devlin et al.,
2019; Liu et al., 2019; Brown et al., 2020; Touvron
et al., 2023; Achiam et al., 2023; Team et al., 2024,
Al@Meta, 2024) have demonstrated exceptional
performance across various tasks, including senti-
ment classification (Devlin et al., 2019; Liu et al.,
2019), commonsense reasoning (Sap et al., 2020),
arithmetic reasoning (Brown et al., 2020; Wei et al.,
2022), and natural language understanding (Wang
et al., 2018). This success is attributed to a training
strategy involving two steps—pre-training and fine-
tuning—which has now become standard practice.

Moreover, instead of directly fine-tuning on the
end task, conducting additional pre-training on
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unlabeled domain-specific datasets related to the
end task, followed by fine-tuning on the end-task
datasets, has been shown to be far more effec-
tive (Gururangan et al., 2020; Xu et al., 2019; Ke
et al., 2022b). This training framework is known
as Domain-Adaptive Pre-training (DAP). Further-
more, Ke et al. (2021a,b,c, 2022a,b, 2023) have
extended the DAP setting to a continual DAP set-
ting, arguing that in real-world scenarios, there is
a need for a framework that incrementally incor-
porates knowledge from newly obtained domain
datasets into a foundation model.

However, existing continual DAP methods (Ke
etal.,2021a,b,c, 2022a,b, 2023) and traditional con-
tinual learning methods (Kirkpatrick et al., 2017;
Serra et al., 2018; Buzzega et al., 2020), which can
be applied to continual DAP, lack efficiency in do-
main knowledge accumulation, incurring high com-
putational costs due to the need to prevent catas-
trophic forgetting while integrating new domain
knowledge. This inefficiency hinders their applica-
tion in real-world scenarios, especially when man-
aging large datasets. Moreover, these methods are
limited to settings where datasets arrive incremen-
tally, whereas real-world data are often obtained
simultaneously through multiple channels. Due to
the nature of sequential methods, where training
on new data depends on previously processed data,
they are sensitive to the order in which data are
processed, as we will show in Section 5.1.3. There-
fore, we argue that a new training framework is
needed to enable efficient, parallel accumulation of
domain knowledge.

Furthermore, the continual DAP methods (Kirk-
patrick et al., 2017; Serra et al., 2018; Buzzega
et al., 2020; Ke et al., 2021a,b,c, 2022a,b, 2023)
lack the ability to exploit appropriate domain
knowledge for a specific task. This is because they
accumulate all domain knowledge, especially gen-
eral knowledge, into a single model and fine-tune
this model to any target task. The essence of DAP
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is to provide appropriate model for each target task
but continual DAP does not satisfy the essence by
providing a same model for any target task. Knowl-
edge contained within unlabeled domain corpora is
valuable not only for its general natural language
understanding but also for its specialized, domain-
specific knowledge. However, existing continual
DAP methods compromise the specialization of
each domain by merging them into a single model.

As a result, we propose a new training frame-
work based on LoRA (Hu et al., 2022), a repre-
sentative parameter-efficient fine-tuning (PEFT)
method. For knowledge accumulation, we preserve
the specialization of each domain by separately
storing domain knowledge in distinct LoORA mod-
ules. For knowledge exploitation, we concatenate
the domain-specific LORA modules at each layer
and introduce a square bridge module—diagonally
initialized for effective integration—while partially
freezing the LoORA modules. This design efficiently
and effectively leverages the accumulated domain
knowledge for the end task. Our contributions are
as follows:

* We propose a novel knowledge accumulation
and exploitation framework based on LoRA,
where domain knowledge is saved separately
and flexibly exploited for target tasks.

¢ In the continual DAP scenario, we demon-
strate superior performance compared to state-
of-the-art continual DAP methods, while re-
ducing pre-training time by 58%, GPU mem-
ory usage during pre-training by 87%, and
GPU memory usage during end-task fine-
tuning by 37%.

* We also extend our method to a standard LLM
fine-tuning scenario, achieving superior per-
formance while reducing training time by 36%
and memory usage by 18% compared to the
state-of-the-art PEFT method.

2 Related Work

Continual Domain-Adaptive Pre-training. Per-
forming pre-training on domain-specific datasets re-
lated to the end task—a process known as domain-
adaptive pre-training (DAP)—has proven effec-
tive (Alsentzer et al., 2019; Gururangan et al.,
2020; Lee et al., 2020; Xu et al., 2019; Sun et al.,
2019). Building on this idea, the continual DAP
setting has emerged, applying the concept of con-
tinual learning (CL) (Kirkpatrick et al., 2017; Serra
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Figure 1: Cross-domain transferability of domain-

adaptive pre-training. Each cell (¢, j) shows the end-
task performance when using domain-adaptive pre-
training on domain ¢ and fine-tuning on task j.

et al., 2018; Buzzega et al., 2020; Liang and Li,
2024) to DAP, with the goal of constructing a sin-
gle model that incrementally incorporates domain
knowledge (Ke et al., 2022b, 2023). However,
previous work often underestimates the computa-
tional and memory overheads required to prevent
catastrophic forgetting and preserve general knowl-
edge, thereby limiting real-world applicability. In
contrast, we improve the efficiency of both pre-
training and fine-tuning, reducing training time and
GPU memory usage without compromising perfor-
mance. Our method builds on insights from Liang
and Li (2024), which demonstrated that freezing
specific weights constrains model updates to the
corresponding subspace, as detailed in Section 4.2.

Parameter-Efficient Fine-Tuning. Parameter-
Efficient Fine-Tuning (PEFT) (Houlsby et al., 2019;
Pfeiffer et al., 2020; He et al., 2022; Lester et al.,
2021; Li and Liang, 2021; Hu et al., 2022) has
emerged as a promising approach to fine-tune
LLMs with significantly reduced memory and com-
putational costs. In this paper, we focus on LoRA
(Hu et al., 2022), which has become a standard
PEFT method. Several LoRA variants have been
proposed to improve its effectiveness (Liu et al.,
2024; Si et al., 2025; Wu et al., 2024; Kopiczko
et al., 2024). Our method shares similarities with
Wau et al. (2024) in introducing additional modules
within the LoRA architecture, but differs in initial-
ization strategy and overall objective, as discussed
in Section 5.3.3.
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3 Motivation

In this section, we present our observations on
Domain-Adaptive Pre-training (DAP) that motivate
our proposed method, DoMIX.

Following the dataset configuration of Ke et al.
(2023), we consider 6 domain datasets — Yelp
Restaurant (Xu et al., 2019), Amazon Phone (Ni
et al., 2019), Amazon Camera (Ni et al., 2019),
ACL Papers (Lo et al., 2020), Al Papers (Lo et al.,
2020), and PubMed Papers' — and their corre-
sponding 6 end tasks. Further details are provided
in Appendix A.1. Starting from the RoBERTa-Base
model (Liu et al., 2019), we adapt it to each of the
6 domain datasets using LoRA (Hu et al., 2022),
resulting in 6 separate domain-adapted models. We
then fully fine-tune each of these models on the
corresponding end tasks, mirroring the evaluation
process of Ke et al. (2023). Figure 1 illustrates
the results; the rows represent domain-adaptive
pre-trained models trained on each domain corpus,
while the columns correspond to the respective end-
task datasets. Each entry (4, j) denotes the perfor-
mance of the model pre-trained on domain ¢ when
evaluated on task j. For reference, each domain
corresponds to its respective task in the same order
(e.g., Restaurant domain with Restaurant task, and
so on). Further details of this experimental setup
are provided in Appendix C.1.

Previous DAP studies (Gururangan et al., 2020;
Xuetal., 2019; Ke et al., 2022b) commonly assume
that domain knowledge related to a given end task
is most beneficial for that specific task. Under
this assumption, each diagonal entry in our results
should surpass all other entries in the corresponding
column. However, our experiments indicate that
this is not always the case—domain knowledge
from different domains can also be helpful. For
instance, in the Al, Phone, and PubMed tasks, we
observe such behavior.

As aresult, we argue that certain domain knowl-
edge can indeed be beneficial for specific end tasks,
but it is often unclear which domain will be most
helpful for a given task. Therefore, we propose
a novel framework that allows models to flexibly
exploit pre-trained domain knowledge during fine-
tuning, regardless of the target task.

4 Method

In this section, we present the preliminaries and
describe our method, DoMIX, in detail. The overall

"https://pubmed.ncbi.nlm.nih.gov/

framework is illustrated in Figure 2.

4.1 Preliminaries

In this section, we briefly explain LoRA (Hu et al.,
2022), a PEFT method that adapts pre-trained mod-
els by introducing low-rank learnable matrices to
approximate full weight updates. LoRA keeps the
original model weights frozen and updates only the
residual weights, represented as:

W' =W 4+ AW, AW = BA,

in which W € R™*" represents the frozen orig-
inal model weights, AW is the learnable resid-
ual weight, and A € R"™*" and B € R™*" are
low-rank matrices with rank r < min(m,n). By
decomposing AW into the product of A and B,
LoRA significantly reduces the number of trainable
parameters while maintaining competitive perfor-
mance.

4.2 Three Steps of DoMIX

(1) Efficient and Parallel DAP with LoRA. For
each domain dataset, we train a separate LoRA
module on the corresponding corpus while keeping
the foundation model weights frozen. Specifically,
we optimize the standard masked language model-
ing (MLM) objective:

Lyvim(8) = — Z Z log po (@ | T\ p(z))s

€D te M(z)

where D is the training corpus, M (x) denotes the
set of masked positions in the tokenized sequence x,
and py(z¢ | 2\ p(2)) is the predicted probability of
the original token x; given the unmasked context.

Notably, we do not need to record any domain
identifiers at this stage, as our method is designed
to exploit accumulated domain knowledge without
relying on explicit domain identification.

(2) Preparation for Knowledge Exploitation. To
exploit the domain knowledge accumulated in the
LoRA modules, we propose the following method,
as illustrated in Figure 2. Inspired by Wu et al.
(2024), the multiplication of LoRA matrices A and
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Figure 2: Overall Framework of DoMIX.

B can be interpreted as a sum of r submatrices.

AW = BA
_ql_
1
| ]| —aZ-
= bl bQ o e br .
L
= bla{ + b2a2T + -+ braz

where b; € R™ is the i-th column vector of B, and
al € RY" is the i-th row of A.

In this interpretation, we assume that domain
knowledge is encoded in these r subspaces. Based
on this observation, the LoRA modules are con-
catenated to form unified knowledge subspaces.
To flexibly exploit these subspaces, we introduce
a diagonally initialized matrix P, referred to as
the bridge module, between all A modules (closer
to the input) and B modules (closer to the out-
put). This bridge module serves to control the
extent to which each knowledge subspace is em-
phasized or suppressed. For example, when ex-
ploiting two domains of knowledge (represented
by B1A; and By As, where By, Bo € R™*" and
A1, Ay € R™™), the corresponding LoRA mod-
ules are concatenated in a column-wise manner
for B and a row-wise manner for A, resulting in

Beat = [B1, By] and Agy = [ﬁj A diagonally

initialized bridge matrix P is then inserted between
them. As a result, the weight update equation takes
the following form:

Ay
=By B3| P
B B P[4
D11 0 0 —aj —
| | 0 p22 0 —ai—
= (b1 ... | ba .
| | : :
0 0 P2ror —ad —

= pubial + paoboal + -+ + popoyboral,

where b; € R™ is the i-th column vector of By,
and a;fr € R™" is the i-th row of Agy. The scalar
pii € R denotes the ¢-th diagonal entry of the
bridge matrix P € R2"*?r,

As shown in the equation, the diagonal entries p;;
of P correspond to the extent of domain-specific
knowledge employed. Specifically, entries from
p11 to py correspond to the first domain knowl-
edge, while entries from p,{1 41 tO payo, corre-
spond to the second domain knowledge.

(3) Exploit Domain Knowledge for End-task
Fine-tuning. During fine-tuning on the end task,
the A modules remain frozen, while the bridge
matrix P and B modules are trainable. InfLoRA
(Liang and Li, 2024) demonstrated that freezing
the A modules and training only the B modules
updates the foundation model’s weights within the
subspace defined by span(A). Motivated by this
finding, we adopt a similar approach by freezing
the A modules. Our objective is to fine-tune the
model within the A subspace, which encodes the
relevant domain knowledge. We anticipate that up-
dating parameters exclusively in these subspaces
will facilitate more effective exploitation of the ac-
cumulated domain knowledge.
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We initialize the bridge matrix P as a diagonal
matrix with uniform diagonal entries that sum to
one. By ensuring the diagonal entries are evenly
set, we avoid introducing biases regarding which
domain knowledge should be favored during fine-
tuning.

As a result, the combination of the bridge matrix
and the freezing strategy (freezing the A modules)
enables flexible utilization of accumulated domain
knowledge. Specifically, it determines the extent
of domain-specific knowledge employed while ef-
fectively leveraging domain subspaces.

5 Experiments

We demonstrate the efficiency and effectiveness of
our method across various experimental settings,
including continual DAP scenarios and standard
LLM fine-tuning with multiple PEFT methods. In
addition, we provide extensive ablation studies to
verify the underlying intuitions of our approach.

5.1 Continual Domain Adaptive Pretraining

In this setting, we primarily follow the configu-
ration of Ke et al. (2023). Specifically, we use
RoBERTa-Base (Liu et al., 2019) as our base model
and incrementally train on 6 domains, each associ-
ated with a corresponding end task. After this incre-
mental training, we fine-tune the resulting model
on each end task.

Unlike Ke et al. (2023), we consider 6 differ-
ent domain orders to evaluate robustness against
variations in data order. Furthermore, when fine-
tuning on the end tasks, we explore not only full
fine-tuning, but also LoRA-based fine-tuning and
our proposed method. End-task fine-tuning is con-
ducted using 10 random seeds for more reliable
evaluation. Details of the hyperparameters are pro-
vided in Appendix B.1.

5.1.1 Datasets

The domain data consist of raw text drawn from
several domains: Yelp Restaurant (Xu et al., 2019),
Amazon Phone (Ni et al., 2019), Amazon Camera
(Ni et al., 2019), ACL Papers (Lo et al., 2020), Al
Papers (Lo et al., 2020), and PubMed Papers®.
There are also six corresponding end-task clas-
sification datasets, each containing text and as-
sociated labels: Restaurant’, Phone (Ding et al.,
2008; Hu and Liu, 2004), Camera (Ding et al.,

2https ://pubmed.ncbi.nlm.nih.gov/
Shttps://alt.qcri.org/semeval2014/task4/

2008; Hu and Liu, 2004), ACL (ACL-ARC from
(Jurgens et al., 2018)), Al (SCIERC from (Luan
et al., 2018)), and PubMed (CHEMPROT from
(Kringelum et al., 2016)).

5.1.2 Baselines

For the domain-adaptive pre-training stage, we
compare our method against three Non-CL base-
lines and four CL baselines. RoBERTa refers
to the foundation model without DAP. Separate
LoRA trains a distinct LoORA module on each do-
main dataset independently. Joint LoRA trains a
single LoRA module across all domain datasets
simultaneously. NCL (Naive Continual Learning)
trains a single model as new domain data arrive,
without any specialized mechanism for mitigating
forgetting. EWC (Kirkpatrick et al., 2017) is a
representative CL. method that regularizes changes
in parameters deemed important for previously
learned domains, thus reducing catastrophic for-
getting. DAS (Ke et al., 2023) is a state-of-the-art
continual DAP method that employs soft-masking,
contrastive loss, and distillation to effectively ac-
cumulate domain knowledge without forgetting.
KD (Hinton, 2015) applies knowledge distillation
whenever new domain data arrive, transferring
knowledge from the previous model to the updated
model.

Using the pre-trained models derived from these
baselines, we then fine-tune each model on the end
tasks with three strategies: full fine-tuning, LoRA-
based fine-tuning, and our proposed approach,
DoMIX. To elaborate on DoMIX, we first apply
Separate LoRA during the domain-adaptive pre-
training stage and then utilize the DoMIX frame-
work during end-task fine-tuning.

5.1.3 Results

Performance. In Table 1, we observe that DoMIX
achieves the best average performance. Specif-
ically, ours show the better performance than
Seperate LoRA with LoRA finetuning and full-
finetuning. This results suggest that our fientuning
method exploits several domain knowledges appro-
priately so that it can improve the performance.

Efficiency. The performance of DoMIX is note-
worthy given its efficiency. In the right two plots
of Figure 3, we present the peak GPU memory us-
age and training time during the DAP stage. Our
method demonstrates significantly lower memory
usage and training time, reducing memory usage
by 87% and training time by 58% compared to
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Table 1: Comparison of Accuracy and F1 Scores (micro-F1 for PubMed, following Gururangan et al. (2020); Dery
et al. (2022); Beltagy et al. (2019), and macro-F1 for other domains) across different pre-training and fine-tuning
methods. v: Indicates that the method requires a domain ID during end-task fine-tuning. Bold values represent the
best scores in each column.

Pretrain Finetune Domain ID ‘ Restaurant ACL Al Phone PubMed Camera ‘ Average
| Acc FI  Acc  FI  Acc Fl  Acc Fl F1 Acc  Fl | Acc Fl
ROBERTa Full : 86.67 79.25 7252 6871 76.13 70.08 86.26 83.84 72.20 89.73 83.84 | 80.59 76.32
LoRA 86.17 78.60 69.52 6333 74.15 6651 8694 85.15 72.40 90.70 86.10 | 79.98 75.35
Seperate LORA Full v 87.75 81.07 7382 6995 7829 7272 85.15 8235 72.52 90.93 86.37 | 81.41 77.50
P LoRA 86.75 79.24 7233 6698 7720 7092 87.65 85.79 72.50 92.57 89.16 | 81.50 77.43
Joint LoORA Full X 87.31 80.51 73.82 6991 7848 7293 84.77 81.69 72.48 89.95 8432 | 81.14 76.97
LoRA 86.63 79.43 7143 66.25 76.66 69.88 85.37 82.48 72.15 91.05 86.62 | 80.55 76.13
NCL Full X 87.56 80.87 74.74 70.82 7828 7225 8551 8296 72.89 89.94 8442 | 8149 77.37
LoRA 86.38 78.69 72.09 6659 76.58 69.50 86.35 84.20 72.63 93.10 89.76 | 81.19 76.90
EWC Full X 87.33 8042 7395 6994 79.28 7391 8555 8292 72.96 89.82 8394 | 8148 77.35
LoRA 87.38 8032 7227 6699 7691 70.00 86.43 84.37 72.27 91.62 87.25 | 81.15 76.87
KD Full X 87.27 8041 7431 70.11 7820 7233 8599 83.69 73.04 90.96 86.08 | 81.63 77.61
LoRA 87.18 80.21 7255 67.63 7629 69.19 86.68 84.88 72.97 91.78 87.86 | 81.24 77.12
DAS Full X 87.57 80.90 7447 7052 7872 72.85 8540 82.82 72.99 890.98 8447 | 81.52 7743
LoRA 87.44 80.62 72.02 6637 7633 6875 86.48 84.38 72.27 91.55 87.28 | 81.01 76.61
Seperate LORA  DoMIX (Ours) X ‘ 86.67 79.30 7297 69.10 79.11 74.01 87.12 85.23 73.61 90.54 85.79 ‘ 81.67 77.84
20 Accuracy Ci i 1550 F1 C Memory Comparison Training Time C
. 587 218 _
o 77.84 *
F ool siles gre g :m
2 + 033 :1 f‘:ﬁl - [ 7737 7735 ” ‘313'3 QE E
g S7* =d52 :da7 i ) o
e @ £ E 10 91 92 922
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< v 2.1 196
™ 7675 o 7.4
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Figure 3: Left: Variance comparison of average accuracy and F1 scores. Right: Memory usage and training time
costs during the DAP stage.

Table 2: Comparison of trainable parameters and GPU

same LoRA size as ours, due to the freezing of
memory usage during end-task fine-tuning.

the A module. Furthermore, DoMIX requires only
3.3% of the trainable parameters compared to full

Finetune Method  # of Domains # of Params (vs Full) GPU Mem. X K 5 . K

Full Finetuning _ 124.06M (100%) 6253 {ine-tuning, resulting in a 37% reduction in peak

LoRA (r = 48) - 11.28M 9.09%)  5076MiB  GPU memory usage. While it may be a concern
! 0.67M (0.54%)  4,063MiB  that the number of parameters of DoMIX increases
2 135M (1.09%)  4,093MiB . . o .

DoMIX (Ours) 3 203M (1.64%) 4123vip  linearly with the number of utilized domains, Ta-

(= 8 per domain) 4 273M(220%)  417T3MiB - ple 2 demonstrates that this results in only a small
5 343M (276%)  4217MiB . )
6 415M (3.35%) 4235miB overhead in memory usage for each added domain

module. Further explanations are provided in Ap-
pendix C.2.
DAS, which is known as a state-of-the-art (SOTA)
method in continual DAP scenario. However, in
our experiments, DAS does not achieve SOTA per-
formance due to the extensive evaluation of robust-
ness across six domain orders.

Robustness. As shown in the left two plots of Fig-
ure 3, DoMIX is not affected by variations in the
domain sequence. In these plots, the error bars indi-
cate the standard deviation computed over six val-
ues—each representing the average performance

In the end-task fine-tuning stage, Table 2 shows
the number of trainable parameters and the corre-
sponding memory usage. DoMIX (last row) re-
quires less than half the trainable parameters com-
pared to LoRA (r = 48) tuning, which has the

across six end tasks under a specific domain or-
der. Specifically, for each of six randomly sam-
pled domain orders, we perform continual domain-
adaptive pre-training, then fine-tune the resulting
model on all six end tasks. We then compute a sin-
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gle average performance score per domain order,
resulting in six such scores in total. The standard
deviation across these six average scores is visu-
alized using error bars. As illustrated, all contin-
ual methods exhibit large variance across domain
orders, indicating their sensitivity to the order in
which data are presented. This characteristic is crit-
ical in real-world scenarios, where the sequence of
data cannot be predetermined. In contrast, DoMIX
demonstrates robust performance regardless of the
domain sequence, as it does not rely on previously
seen domains.

5.2 Extension to Standard LLM Fine-tuning

In this section, we demonstrate that our method can
be easily extended to standard LLM fine-tuning.
We illustrate this on a common-sense reasoning
task using LLaMA3-8B (Al@Meta, 2024), fol-
lowing the setup of Hu et al. (2023). To further
validate the scalability of DoMIX across different
architectures and model sizes, we also conduct ex-
periments with Gemma2-9B (Team et al., 2024).
Common-sense reasoning involves asking LLMs
to answer questions based on general world knowl-
edge. This particular task consists of 8 subtasks,
and the training set is constructed from these 8 sub-
tasks: Common-sensel 70K (Hu et al., 2023). After
fine-tuning the model on the training set, we eval-
uate its performance on each of the 8 individual
tasks. We use a batch size of 16 for LLaMA3-8B
and 8 for Gemma2-9B, and set the sequence length
to 256 for all experiments. Further experimental
details are provided in Appendix B.2.

5.2.1 Baselines

We primarily compare our method against LoORA
and its variants. DoRA (Liu et al., 2024) achieves
state-of-the-art results in this setting by decompos-
ing weights into magnitude and direction. LoRA-
Dash (Si et al., 2025) identifies task-specific direc-
tions in an initial stage to enhance performance.
MoSLoRA (Wu et al., 2024) introduces a mixer
matrix to utilize multiple subspaces during fine-
tuning. Although MoSLoRA is closely related
to our method, our approach differs by inserting
a bridge matrix to appropriately exploit domain
knowledge. We employ an intuitive initializa-
tion strategy, rather than random initialization, and
adopt a different training procedure by freezing part
of the modules. In addition to LoRA-based meth-
ods, we also compare our approach with non-LoRA
PEFT techniques. AdapterH (Houlsby et al., 2019)

inserts a fully connected (FC) layer after both the
attention and FFN layers, while AdapterP (Pfeif-
fer et al., 2020) inserts an FC layer only after the
self-attention layer. Parallel Adapter (He et al.,
2022) introduces parallel learnable modules into
the layers of the backbone model.

5.2.2 Details of the Fine-tuning Process

We use Common-sensel70K as one domain dataset
and Mathl0k (Hu et al., 2023), which contains
mathematical questions and solutions, as another
domain dataset. Following Hu et al. (2023),
baseline models are trained for three epochs on
Common-sensel 70K. For DoMIX, the model is first
trained for two epochs using LoRA, after which
the module trained on MathlOk is incorporated to
apply our method during the final epoch. This en-
sures that DoMIX undergoes the same number of
training iterations on Common-sensel70K as the
baselines, allowing for a fair comparison.

5.2.3 Results

DoMIX either matches the state-of-the-art or
achieves the best average performance across all
settings.  Specifically, it matches DoRA, the
state-of-the-art method, at rank 16 on LLaMA3-
8B, and outperforms all baselines at rank 32 on
LLaMA3-8B and rank 16 on Gemma2-9B. This re-
sult is notable given that DoMIX requires substan-
tially fewer computational resources—reducing
GPU memory usage by 18% and training time by
36%—compared to DoRA (Liu et al., 2024). The
training time of DoMIX is the sum of the train-
ing time for LoORA on MathlOk and the training
time for DoMIX on Common-sensel 70k, which
amounts to 0.5h + 8.7h for LLaMA3-8B and 0.8h
+ 13.5h for Gemma2-9B.

We also compared DoMIX with two cases:
training from a LoRA module pre-trained on the
MathlOk dataset, referred to as LoRA (from
Math LoRA), and training a LoORA module on
a joint dataset (MathlOk and Common-sensel70k),
referred to as LoRA (with Joint Dataset).
DoMIX demonstrates significantly better perfor-
mance (+2.29%p and +3.17%p, respectively), for
LLaMA3-8B at rank 16, suggesting that DoMIX
is an effective framework for exploiting domain
knowledge.
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Table 3: Accuracy comparison on commonsense reasoning tasks using LLaMA3-8B and Gemma2-9B. "Mem."
denotes peak GPU memory usage during training. Bold numbers indicate the best performance for each task.

Model | Method | Rank Mem. Time | WinoG. OBQA SIQA ARC-e BoolQ ARC-c PIQA HellaS. | Avg.
AdapterP — 434G 70h | 81.69 81.60 78.10 8203 6838 69.97 83.08 9048 | 79.41
AdapterH — 483G 80h | 7577 7380 76.15 73.19 6544 5896 8025 76.69 | 7253
Parallel — 484G 7.7h | 80.74 7540 7825 79.04 67.65 6493 8297 8871 | 77.21
LoRA 16 545G 87h | 84.61 8360 7958 8729 71.16 7509 86.18 9397 | 82.68
LoRA-Dash 16 748G 134h | 8737 8600 79.17 8952 7272 7696 8721 94.65 | 84.20
MoSLoRA 16 545G 87h | 86.19 8440 80.50 89.56 6856 79.95 8836 9525 | 84.10
LLaMA3-8B | DoRA 16 665G 143h | 8564 8580 8030 90.66 7495 7952 8934 9552 | 8522
LoRA (from Math LoRA) | 16 545G 92h | 84.69 8500 79.84 8632 7205 75.17 86.56 93.84 | 82.93
LoRA (with Joint Dataset) | 16 545G 92h | 8540 8400 80.99 8678 6443 7466 87.05 94.02 | 82.05
DoMIX (+ Math LoRA) 16 545G 92h | 8595 8580 8025 91.04 7394 80.55 8836 95.85 | 85.22
LoRA 32 546G 87h | 8295 8100 7953 8510 69.85 70.73 8585 92.00 | 80.88
DoRA 32 666G 143h | 87.92  86.60 8096 9045 7373 7782 8874 9563 | 8523
DoMIX (+ Math LoRA) 32 546G 92h | 8635 8520 79.63 9108 7477 80.72 89.12 9584 | 85.34
LoRA 16 518G 13.5h | 87.69  90.00 81.78 9289 7544 8430 89.72 9558 | 87.17
Gemman.oB | DORA 16 603G 21.3h | 8824 9120 8214 9520 7813 8771 9048 96.62 | 88.72
LoRA (with Joint Dataset) | 16  51.8G  14.3h | 89.11 8820 8142 93.10 7572 8276 9021 9531 | 86.98
DoMIX (+ Math LoRA) 16 518G 143h | 9037 9280 8240 9600 77.61 8874 91.51 96.93 | 89.55

Table 5: Performance com-
Table 4: Average accuracy parison of trainable config-
and F1 scores based on the ;rations.

presence and trainability of

p. Trainable Average (%)
Pinit. Trainable Acc (%) F1 (%) A P B Acc F1
I X L7 61.99 v X v 8139 77.63

4 73.61 65.44 S/ X 80.74 76.57
ows 5w s v v/ 8L31 77.00
X v v 8167 77.84

Table 6: Performance comparison of different initializa-
tion configurations.

Initialization Average (%)
A P B Acc F1

Ours Zero Ours 81.27 77.30
Ours Kaiming Ours 80.10  75.58
Ours Ours Zero 81.13 77.04
Ours Ours Kaiming 81.11 77.12
Kaiming Ours Ours 81.15 77.29
Ours Ours Ours 81.67 77.84

5.3 Ablation Studies
5.3.1 Effect of the Bridge Module P

In this section, we analyze the effect of the bridge
module P by varying its presence and trainability.
In Table 4, the first row represents the absence of a
bridge module—specifically, P is initialized as the
identity matrix and kept frozen. Comparing this
configuration with our proposed method (last row)
clearly demonstrates the benefit of introducing a
bridge module. Furthermore, the performance dif-
ference between the first and second rows (identity
initialization, with and without training), as well
as between the third and fourth rows (our initial-

ization, with and without training), indicates that
the trainability of P is crucial. Lastly, a compari-
son between the second and fourth rows—where
the only difference is the initialization of trainable
P—highlights the importance of initialization. A
more detailed analysis on initialization strategies is
provided in Section 5.3.3.

In summary, these results validate both the ne-
cessity of the bridge module P and the importance
of making it trainable.

5.3.2 Effect of Freezing

In this section, we verify the rationale for freez-
ing only the A modules (those closer to the input).
Table 5 presents various freezing configurations.
Freezing the bridge module P (first row) or the
B modules (second row) results in inferior perfor-
mance compared to freezing the A modules (our
method, fourth row). These findings suggest that
the performance gains of our method are not merely
a result of freezing any module. Moreover, our ap-
proach (fourth row) achieves superior performance
compared to the configuration where the A mod-
ules remain trainable (third row). This validates
our intuition that fine-tuning within the pre-trained
knowledge subspace—enabled by freezing the A
modules—facilitates more effective domain knowl-
edge exploitation and leads to improved fine-tuning
performance.

5.3.3 Effect of Initialization

In this section, we evaluate the effectiveness of our
initialization strategy, as shown in Table 6. We
tested three initialization methods—OQOurs, Zero,
and Kaiming—for each module (A4, P, and B).
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In the "Ours" initialization, A and B are initial-
ized by concatenating domain-specific pre-trained
weights, while P is initialized as a trainable diag-
onal matrix whose equal-valued diagonal entries
sum to 1. "Zero" represents zeroed initialization,
and "Kaiming" corresponds to Kaiming uniform
initialization (He et al., 2015).

By comparing the first, second, and last rows, we
observe that our initialization of P is effective. This
result differs from Wu et al. (2024), where random
initialization was found to be optimal. The dis-
crepancy arises because their method, MoSLoRA,
operates in standard fine-tuning settings without
leveraging pre-trained domain-specific modules. In
contrast, our framework is designed to exploit pre-
trained domain knowledge, for which a diagonal
initialization of P is more appropriate and effec-
tive.

Furthermore, by comparing the third, fourth, and
fifth rows with the last row, we observe that ran-
dom or zeroed initialization of the A and B mod-
ules results in inferior performance compared to
our method. These results confirm that our per-
formance gains stem from effectively exploiting
pre-trained knowledge using an appropriate initial-
ization of the bridge matrix.

5.4 Analysis on the Bridge Module P
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Figure 4: Comparison of diagonal values in P heatmaps:
DAP setting (top) and LLM fine-tuning setting (bottom).

Since the bridge module P is introduced to con-
trol the extent of domain knowledge exploitation,
we conducted an analysis of its values. Figure 4

presents the diagonal values of P, where we apply
softmax to the diagonal entries within each layer.
The y-axis corresponds to the diagonal indices of
the P matrix. These values indicate how strongly
each subspace (i.e., domain-specific knowledge) is
emphasized during fine-tuning.

In the DAP setting (upper plot), no clear patterns
were observed in the diagonal values of P, indi-
cating that various domain knowledge was utilized.
However, in the LLM fine-tuning setting (lower
plot), a distinct pattern emerged: the diagonal val-
ues corresponding to the LoRA module trained
on Common-sensel 70k were generally higher than
those corresponding to the LoRA module trained
on MathlOk. While the difference is noticeable,
the values for the Math10k module were still non-
trivial, considering that all diagonal values ranged
approximately from 0.028 to 0.036. This indicates
that the model incorporated mathematical knowl-
edge to some extent.

These results suggest that the model effectively
exploited the appropriate domain knowledge dur-
ing fine-tuning without requiring any prior informa-
tion. Furthermore, the presence of non-zero values
for Math LoRA indicates that DoMIX also lever-
aged this knowledge, contributing to its improved
performance.

6 Conclusion

In this paper, we emphasize the need for an effi-
cient, parallel, and effective methodology for do-
main learning and knowledge exploitation. To ad-
dress this, we proposed DoMIX, which achieves
performance on par with or better than state-of-
the-art methods, while demonstrating superior effi-
ciency in terms of training time and GPU memory
usage. We validated the efficacy of our method in
both the continual DAP setting and the standard
LLM fine-tuning setting.

We hope this work contributes to advancing re-
search on enabling models to generalize effectively
across diverse tasks by leveraging pre-trained mod-
els, which are abundantly available online, as in-
spired by the notion of “standing on the shoulders
of giants.”

7 Limitations

While DoMIX demonstrates efficiency in terms of
memory usage and training time, both in continual
DAP settings and standard LLM fine-tuning, it has
some minor limitations. First, it requires linearly
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increasing parameters to accommodate additional
domain knowledge, although the overhead in pa-
rameter and memory cost per domain is relatively
small. Second, the pre-trained LoORA modules must
be stored for use during the fine-tuning step.

To address these limitations, a promising direc-
tion for future work could involve identifying im-
portant subspaces to retain and dismissing redun-
dant subspaces through theoretical analysis. Such
an approach could reduce the number of parame-
ters required for each domain and further lower the
memory cost during fine-tuning.
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A Datasets
A.1 Continual DAP datasets

Statistics. We utilized the same datasets from Ke
et al. (2023). For domain-adaptive pre-training
stage, there are 6 unlabeled domain datasets, which
is related to reviews and academic papers. The
detailed statistic is in Table 7.

For end-task classification datasets, please refer

to Table 8. We have 6 end task datasets correspond-
ing to the 6 domain data corpus.
Examples. We provide examples of each dataset
and their corresponding classification tasks in Ta-
bles 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, and
28. Below, we provide detailed explanations of the
end-task classifications:

1. Aspect Sentiment Classification (ASC):
This task is relevant for the Phone, Camera, and
Restaurant datasets. The objective is to determine
the sentiment (positive, negative, or neutral) asso-
ciated with a specific aspect or feature mentioned
in a review sentence.
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Table 7: Domain-specific corpora used for unlabeled
domain-adaptive pre-training.

Unlabeled Domain Datasets

Source Dataset Size (MB)
Yelp Restaurant 758

Reviews Amazon Phone 724
Amazon Camera 319
ACL Papers 867

Academic Papers Al Papers 507
PubMed Papers 989

Common-sensel 70K and we utilized this dataset.
We provide some examples of these dataset, in
Table 29, 30, 31.

Arithemetic Reasoning. In arithemetic task, we
also follow the dataset of Hu et al. (2023). The
datset statistics is represented in Table 10. Hu et al.
(2023) constructed Mathl0Ok and we utilized this
datset. We provide some examples of these datasets
in Table 32.

Table 9: Details of Common-Sense Reasoning Datasets

Table 8: Labeled datasets for end-task classification
corresponding to each domain.

End-Task Classification Datasets

Dataset Task # Training # Testing # Classes

Restaurant ~ Aspect Sentiment Classification (ASC) 3,452 1,120 3
Phone Aspect Sentiment Classification (ASC) 239 553 2
Camera Aspect Sentiment Classification (ASC) 230 626 2
ACL Citation Intent Classification 1,520 421 6

7

Al Relation Classification 2,260 2,388
PubMed Chemical-Protein Interaction Prediction 2,667 7,398 13

2. Citation Intent Classification: This task is
associated with the ACL dataset and involves ana-
lyzing sentences containing citations. The goal is to
classify the function of the citation in the sentence
into one of several predefined categories, such as
“background,” “motivation,” “uses,” “extension,’
“comparison or contrast,” or “future work.”

3. Relation Classification: Applied to the Al
dataset, this task focuses on identifying the type of
relationship expressed within a specified span of
words that contains two entities in a sentence. The
relationships to be classified include “feature of,”
“conjunction,” “evaluate for,” “hyponym of,” “used
for,” “part of,” and “compare.”

4. Chemical-Protein Interaction Classifica-
tion: This task is designed for the PubMed dataset
and involves determining the type of interaction
between a chemical and a protein mentioned
within a text span. The possible interaction types
include “downregulator,” “substrate,” “indirect-
upregulator,” “indirect-downregulator,” “agonist,”
“activator,” “product of,” “agonist-activator,” “in-
hibitor,” “upregulator,” “substrate product of,’
“agonist-inhibitor,” and “antagonist.”

A.2 Reasoning datasets

Common-sense Reasoning. We follow the dataset
of Hu et al. (2023), so the dataset used in common-
sense reasnoning task is represented in Table 9.
From these 8 datasets, Hu et al. (2023) constructed

Dataset #Train # Test Answer Format
BoolQ 9.4K 3,270 Yes/No
PIQA 16.1K 1,830 Option
SIQA 33.4K 1,954 Option
HellaSwag 399K 10,042 Option
WinoGrande 63.2K 1,267 Option
ARC-e 1.1K 2,376 Option
ARC-c 2.3K 1,172 Option
OBQA 5.0K 500 Option

Table 10: Details of Arithemetic Reasoning Datasets

Dataset # Train # Test Answer Format
GSM8K 8.8K 1,319 Number
AQuA 100K 254 Option

B Experimental Details

This section provides a detailed explanation of the
experimental setup. All experiments were con-
ducted using four NVIDIA A100 GPUs with 80GB
of memory each.

B.1 Continual DAP Setting

Architecture. For all continual DAP experiments,
we adopt the RoBERTa-Base model (Liu et al.,
2019), following the settings described in Ke et al.
(2023). During the DAP stage, a masked language
modeling head is attached to the backbone model.
In the end-task fine-tuning stage, a classification
head, with outputs corresponding to the number of
classes, is appended to the domain-adaptive pre-
trained backbone.

Hyperparameters. We primarily follow the hyper-
parameter settings of Ke et al. (2023), except for
modifications explicitly mentioned here. During
the DAP stage, we did not set the max samples
parameter, allowing the model to train on all sam-
ples from the domain dataset. In contrast, Ke et al.
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(2023) set max samples to 640,000, resulting in
training for 2.5K steps per domain. This approach
leads to underutilization of data in some domains
and overutilization in others. Our setting is more re-
alistic as it ensures equal utilization of domain data
without overfitting, even for domains with fewer
samples.

Additionally, for end-task fine-tuning, we con-

ducted experiments using 10 seeds, compared to 5
seeds in Ke et al. (2023), for more robust results.
We set the number of fine-tuning epochs to 15 and
the learning rate to 3e-5. For the DAP stage with
LoRA, the learning rate was set to 5e-4 and the
batch size to 64. For the end-task fine-tuning stage
with LoRA, the learning rate was set to 3e-4. The
complete set of hyperparameters is detailed in Ta-
ble 11.
Domain order. We experimented with the follow-
ing six domain orders, each ending with a different
domain, to evaluate the robustness of methods un-
der varying data orders:

1. Yelp Restaurant — ACL Papers — Al Pa-
pers — Amazon Phone — PubMed Papers
— Amazon Camera

2. Amazon Phone — Al Papers — PubMed Pa-
pers — Amazon Camera — Yelp Restaurant
— ACL Papers

3. PubMed Papers - Amazon Camera — ACL
Papers — Yelp Restaurant — Al Papers —
Amazon Phone

4. Amazon Camera — ACL Papers — Amazon
Phone — Yelp Restaurant — PubMed Papers
— Al Papers

5. Al Papers — PubMed Papers — Amazon
Camera — Amazon Phone — ACL Papers
— Yelp Restaurant

6. Al Papers — ACL Papers — Yelp Restaurant
— Amazon Camera — Amazon Phone —
PubMed Papers

B.2 Reasoning

We utilize both LLaMA3-8B (Al@Meta, 2024) and
Gemma2-9B (Team et al., 2024) for the reasoning
tasks. For LLaMA3-8B, we follow the hyperpa-
rameter settings reported in the respective paper.
For Gemma?2-9B, due to resource constraints, we
reduce the batch size by half and accordingly lower
the learning rate to ensure stable optimization. The

full hyperparameter configurations are provided in
Table 12.

C Details of Experiments

C.1 Details of the Motivation Experiment

The exact domain names presented in Figure 1, in
the same order, are listed in Table 1. The DAP stage
follows the same procedure as Separate LoRA in
Table 1. Fine-tuning is conducted using full fine-
tuning, with hyperparameters specified in Table 11.

C.2 Details of GPU Memory Overhead
According to the Number of Domains

In Table 2, we report the number of trainable pa-
rameters and the GPU memory usage during end-
task fine-tuning for various settings. As shown,
although GPU memory usage increases linearly
with the number of domains, the growth is mini-
mal. This implies that DoMIX can scale to more
domains without significant overhead.

Figure 5 visualizes this trend and includes an ex-
trapolated estimate of memory usage as the number
of domains increases. The dotted gray line indi-
cates the GPU memory usage of standard LoRA
with rank 48. Note that this rank corresponds to
the total parameter size of DoMIX when using 6
domains with rank 8 each—excluding the bridge
matrix. Despite having a similar number of train-
able parameters, DoMIX consumes significantly
less GPU memory due to its partially frozen struc-
ture and selective training. The extrapolated red
line shows that only when scaling to around 30 do-
mains does DoMIX reach the same memory usage
as standard LoRA (r = 48), highlighting its strong
scalability and memory efficiency.

This scalability is possible because DoMIX
freezes the input-side LoORA matrices (A) and se-
lectively trains only the necessary components,
thereby minimizing memory overhead per added
domain.

C.3 Detailed Results of Ablation Studies

In this section, we provide task-wise results for
the ablation studies, complementing the average
accuracy and F1 scores reported in the main text.
Tables 13, 14, and 15 respectively provide the de-
tailed results corresponding to Tables 4, 5, and 6.
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Table 11: DAP Hyperparameter Settings

Category Hyperparameter
General

Optimizer AdamW

Max Sequence Length 164

Training Steps per Domain
End-Task Fine-Tuning Epochs

All samples (full pass through domain data)
15 (all datasets)

# of End-Task Fine-Tuning Seeds 10
DAP Stage
Learning Rate le-4
Batch Size 256
DAP Stage (With LoRA)
Learning Rate Se-4
Batch Size 64
Target All Linear Layer
Rank r 8
o} 16
End-Task Fine-Tuning Stage (Full-Finetuning)
Learning Rate 3e-5
Batch Size 16
End-Task Fine-Tuning Stage (With LoRA)
Learning Rate 3e-4, S5e-5
Batch Size 16
Target All Linear Layer
Rank r 8, 48
o 16, 96

Memory Usage Comparison by Number of Domains

] =Bl Full Finetuning (6253 MiB)
=@~ Ours (Observed)
5000 S8 Estimated to reach LoRA (5076 MiB)
= = LoRA Mem Requirement {5076 MiB)
_ 5500
@
=
g x
.......................................
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-
-
-
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-
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Figure 5: Comparison of memory usage by increasing

number of domains.

D Ablation Study on Bridge Module P in

LLaMA3-8B

In this section, we present ablation experiments on
the LLaMA3-8B model to assess the effects of the
presence and trainability of the bridge module P
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(corresponding to Table 4 in Section 5.3.1). The
results are shown in Table 16, and they are consis-
tent with those reported in Table 4, highlighting the
necessity of the bridge module and the importance
of its trainability—even in large-scale LL.Ms.



Table 12: Hyperparameters used for reasoning tasks with LLaMA3-8B and Gemma2-9B.

Hyperparameter LLaMA3-8B Gemma2-9B
Rank r 16, 32 16

« 32, 64 32
Dropout 0.05 0.05
Optimizer AdamW AdamW
Learning Rate (Common-sense) le-4 5e-5
Learning Rate (Arithmetic) 3e-4 1.5e-4
Learning Rate Scheduler Linear Linear
Batch Size 16 8
Sequence Length 256 256
Warmup Steps 100 100
Epochs 3 3
Target Modules Q, K, V,Up, Down Q,K,V, Up, Down

Table 13: Task-wise results, comparing the presence and trainability of the bridge module P.

Pinit. Trainabl Restaurant ACL Al Phone PubMed Camera Avg.
: amable | Acc Fl1 Acc Fl1 Acc Fl1 Acc F1 Fl1 Acc F1 Acc F1
Id X 82.89 71.53 71.16 66.71 51.68 30.54 7548 66.84 62.17 8545 74.16 | 71.47 61.99
’ 4 83.67 7420 6791 61.17 67.12 5533 76.06 66.88 61.94 8495 73.13 | 73.61 65.44
Ours X 85.09 75.63 57.89 40.20 64.10 48.10 64.38 39.16 68.64 7748 43.65 | 69.59 52.57
v 86.67 79.30 7297 69.10 79.11 74.01 87.12 85.23 73.61 90.54 85.79 | 81.67 77.84
Table 14: Task-wise results for different trainable configurations of A, P, and B.
Trainable | Restaurant ACL Al Phone PubMed Camera Avg.
A P B | Acc F1 Acc F1 Acc F1 Acc F1 F1 Acc F1 Acc F1
v X v |86.67 7947 7147 67.06 7742 71776 87.96 86.32 72.47 92.38 88.73 | 81.39 77.63
v v X |8675 7946 7143 66.75 77.04 71.04 86.93 84.94 72.19 90.13 85.06 | 80.74 76.57
vV / V| 8496 7489 7230 68.65 79.60 74.57 86.87 84.87 73.86 90.24 85.17 | 81.31 77.00
X v v/ 8667 7930 7297 69.10 79.11 74.01 87.12 85.23 73.61 90.54 85.79 | 81.67 77.84
Table 15: Task-wise results for different initialization strategies of A, P, and B.
Initialization Restaurant ACL Al Phone PubMed Camera Avg.

A P B Acc F1 Acc F1 Acc F1 Acc F1 F1 Acc F1 Acc F1
Ours Zero Ours 87.30 80.11 73.47 69.94 78.04 7176 85.01 82.67 73.15 90.67 86.16 | 81.27 77.30
Ours Kaiming Ours 86.21 78.75 71.69 67.34 77.26 70.84 83.73 80.40 71.93 89.81 84.22 | 80.10 75.58
Ours Ours Zero 86.41 78.80 71.76 67.59 78.14 7221 86.67 84.55 73.02 90.78 86.03 | 81.13 77.04
Ours Ours Kaiming | 86.63 79.43 71.78 67.53 77.70 7140 86.67 84.62 72.48 91.41 87.30 | 81.11 77.12

Kaiming Ours Ours 86.13 78.68 7124 66.64 77.89 7245 8792 86.40 72.52 91.18 87.06 | 81.15 77.29
Ours Ours Ours 86.67 79.30 7297 69.10 79.11 74.01 87.12 85.23 73.61 90.54 85.79 | 81.67 77.84

Table 16: Task-wise commonsense reasoning results on LLaMA3-8B, evaluating the impact of the presence and
trainability of the bridge module P.

P init. Trainable ‘ WinoG. OBQA SIQA ARC-e BoolQ ARC-¢c PIQA HellaS. ‘ Avg.
1d X 84.77 83.60 80.25 8645 7211 7568 87.54 94.11 | 83.06
’ v 84.53 8420 80.19 86.62 72.14  76.02 87.49 94.14 | 83.17
Ours X 75.06 77.00 72.11 88.80 2291 7372 86.02 89.02 | 73.08
v 85.95 85.80 80.25 91.04 7394 80.55 8836 9585 | 85.22
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Table 17: Examples of Yelp Restaurant Reviews

ID

Review Text

The food is always great here. The service from both the manager as well as the staff is super.
Only drawback of this restaurant is it’s super loud. If you can, snag a patio table!

This place used to be a cool, chill place. Now it’s a bunch of neanderthal bouncers hopped
up on steroids acting like they can do whatever they want. There are so many better places in
Davis Square where they are glad you are visiting their business. Sad that the Burren is now the
worst place in Davis.

The setting is perfectly adequate, and the food comes close. The dining chains like Chili’s
and Victoria Station do barbecue better. It’s no surprise you can always pick up coupons for
Linwood at restaurant.com.

Table 18: Examples of Restaurant Aspect Sentiment Classification (ASC)

ID

Polarity Aspect Term Sentence

Positive  Staff The staff is very kind and well-trained. They’re fast, they are always
prompt to jump behind the bar and fix drinks, they know details of every
item on the menu, and make excellent recommendations.

Negative Server The service is always bad though, don’t expect much of anything from
your server, and I would not recommend bringing a date here either.

Neutral ~ Brunch Where tanks in other Chinatown restaurants display a lurking myriad of
sad-looking marine life in their murky waters, the tanks at Ping’s are clear
as glass with healthy-looking creatures who do not yet know that they will
be part of some dim sum lover’s brunch.

Positive  Food This was my first time at Cafe St. Bart’s, and I must say how delicious the
food and the service was.

Table 19: Examples of ACL Papers

ID

Text

This paper describes the three phases of the Durkheim Project. For this project we developed
a clinician’s dashboard that displays output of models predicting suicide risk of veterans and
active duty military personnel. During phase one, we built the clinician’s dashboard and
completed a Veterans Affairs (VA) predictive risk medical records study, based on an analysis
of the narrative, or free text, portions of VA medical records. In phase two, we will predict
suicide risk based on opt-in social media postings by patients using social media websites, e.g.,
Facebook. We describe the software infrastructure that we have completed for this phase two
system. During phase three we will provide a three-layer intervention strategy. We discuss our
methodology for the three phases, including IRB-approved protocols for the first two phases
and a soon-to-be approved IRB protocol for phase three.

Diagnosis of psychological health and the prediction of negative events, such as suicide, or
suicide ideation, is limited by: a) a lack of understanding of the true differentiating risks of
suicidality (Health Promotion, 2010; Treating Soldiers, 2010) and b) a lack of near real-time
reaction capability to large volumes of data. There is a need for broader coverage suicide risk
detection and a better understanding of the expression of suicide ideation through data mining of
text and images. The Durkheim Project’s proposed solution is to provide continuous monitoring
of text-based information, such as found in social network user behavioral intent enabling
intervention; facilitated by social/online data sources, powered by a medically-validated suicide
risk classifier.
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Table 20: Examples of ACL Citation Intent Classification

ID Sentence

Label

1 This was done by MERT optimization (Och, 2003) towards post-edits under the TER target Uses

metric.

2 She evaluates 3,000 German verbs with a token frequency between 10 and 2,000 against the Background
Duden (Dudenredaktion 2001).
3 The following four components have been identified as the key elements of a question related Background
to patient care (Richardson et al. 1995):
4 Briscoe and Carroll (1997) report on manually analyzing an open-class vocabulary of 35,000 CompareOrContrast
head words for predicate subcategorization information and comparing the results against the
subcategorization details in COMLEX.

Table 21: Examples of Amazon Phone Reviews

ID Review Text

1 Saw this same case at a theme park store for 25 dollars. This is very good quality for a great

price.

2 Best phone case ever. Everywhere I go I get a ton of compliments on it. It was in perfect
condition as well.

3 The case is good, but the two pieces do not fit all the way together. It is slightly off and no
matter how much I tried (even shaving the side a little) it wouldn’t slide into each other. The
gap is very, very little and you can barely notice it. The bottom of the case has never slid off, so
I will deal with it for the wonderful price!

Table 22: Examples of Phone Aspect Sentiment Classification (ASC)

ID Polarity

Aspect Term

Sentence

0 Positive

1 Positive

2 Negative

3 Positive

4 Positive

Work

Phone

AT&T Customer Service

Signal Quality

Speaker Phone, Radio, Infrared

There is much which has been said in other reviews about the features of
this phone, it is a great phone, mine worked without any problems right
out of the box.

There is much which has been said in other reviews about the features of
this phone, it is a great phone, mine worked without any problems right
out of the box.

After several years of torture in the hands of AT&T customer service, I
am delighted to drop them, and look forward to August 2004 when I will
convert our other 3 family-phones from AT&T to T-Mobile!

I have had the phone for 1 week, the signal quality has been great in the
Detroit area (suburbs) and in my recent road trip between Detroit and
northern Kentucky (Cincinnati) I experienced perfect signal and reception
along I-75, far superior to AT&T’s which does not work along several
long stretches on that same route.

My favorite features, although there are many, are the speaker phone, the
radio, and the infrared.
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Table 23: Examples of Amazon Camera Reviews

ID Review Text

1 I bought this battery as a backup for my camera. It seems to work okay, but even "fully
charged," the camera only reads the battery as 75% full. I haven’t used it enough to know if the
battery life really is shorter than expected, though.

2 This battery worked great in my camera. My old battery was lasting less than a day. This
battery took me through over half of my vacation with lots of use before I needed to recharge it.
Great deal!

3 Why pay 3x the amount for an original equipment Sony battery when this one works just as
well? Great product!!

4 I purchased two of these for my Sony digital point-and-shoot camera because the original
ones died. They work very well and are listed at a good price, certainly much less than the
replacement Sony batteries.

Table 24: Examples of Camera Aspect Sentiment Classification (ASC)
ID Polarity Aspect Term Sentence
0  Positive Canon Powershot G3 I recently purchased the Canon Powershot G3 and am extremely satisfied with the purchase.
1 Positive  Use The camera is very easy to use. In fact, on a recent trip this past week, I was asked to take a picture of a vacationing elderly group.
2 Positive  Picture They fired away, and the picture turned out quite nicely (as all of my pictures have thus far).
3 Positive  Picture Quality A few of my work constituents owned the G2 and highly recommended the Canon for picture quality.
4 Positive  Picture Quality I’m easily enlarging pictures to 8 1/2 x 11 with no visible loss in picture quality and not even using the best possible setting yet (super fine).

Table 25: Examples of Al Papers

ID

Text

1

We consider two novel representations and feature extraction schemes for automatic recognition
of emotion-related facial expressions. In one scheme, facial landmark points are tracked over
successive video frames using an effective detector and tracker to extract landmark trajectories.
Features are extracted from landmark trajectories using the Independent Component Analysis
(ICA) method. In the alternative scheme, the evolution of the emotion expression on the face is
captured by stacking normalized and aligned faces into a spatiotemporal face cube. Emotion
descriptors are then 3D Discrete Cosine Transform (DCT) features from this prism or DCT &
ICA features. Several classifier configurations are used, and their performance is determined in
detecting the 6 basic emotions. Decision fusion applied to classifiers improved the recognition
performance of the best classifier by 9 percentage points.

The human face is a rich source of nonverbal information. Indeed, not only is it the source of
identity information, but it also provides clues to understanding social feelings and can reveal
mental states via social signals. Facial expressions form a significant part of human social
interaction. Automatic understanding of emotions from face images is instrumental in the
design of affective human-computer interfaces. Next-generation human-computer interfaces
will be empowered with the capability to recognize and respond to nonverbal communication
clues.

In this study, we consider two types of data representation for emotion analysis, the first one
being facial landmark trajectories, and the second one being the evolution of face texture
patches. Discriminative features are extracted from these two face representations for automatic
facial expression recognition. Based on these features, we develop a novel algorithm for the
automatic classification of emotional expressions in the face.
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Table 26: Examples of Al Relation Classification

ID Sentence Label

1 The agreement in question involves number in [[nouns]] and «reflexive CONJUNCTION
pronouns» and is syntactic rather than semantic in nature because gram-
matical number in English, like grammatical gender in languages such as
French, is partly arbitrary.

2 The agreement in question involves number in nouns and reflexive pro- FEATURE-OF
nouns and is syntactic rather than semantic in nature because grammatical
number in English, like [[grammatical gender]] in «languages» such as
French, is partly arbitrary.

3 The agreement in question involves number in nouns and reflexive pro- HYPONYM-OF
nouns and is syntactic rather than semantic in nature because grammati-
cal number in English, like grammatical gender in «languages» such as
[[French]], is partly arbitrary.

4 In this paper, a novel [[method]] to learn the «intrinsic object structure» USED-FOR
for robust visual tracking is proposed.

Table 27: Examples of PubMed Papers

ID Text

1 Several gold(I) complexes containing a thiolate ligand functionalized with several amino acid or
peptide moieties of the type [Au(SPyCOR)(PPh2R’)] (where R = OH, amino acid or dipeptide
and R’ = Ph or Py) were prepared. These thiolate gold complexes bearing biological molecules
possess potential use as antitumor agents. Cytotoxicity assays in different tumour cell lines
such as A549 (lung carcinoma), Jurkat (T-cell leukaemia) and MiaPaca2 (pancreatic carcinoma)
revealed that the complexes exhibit good antiproliferative activity, with IC50 values in the low
micromolar range. Several structural modifications were carried out to establish the structure-
activity relationship in this family of complexes, which has led to the design of new and more
potent cytotoxic complexes. Observations of different cellular events after the addition of the
complexes indicated the possible mechanism of action or the biological targets of this type of
new gold(I) drug.

2 Mass spectrometry provides a versatile detection method for high-throughput drug screening

because it permits the use of native biological substrates and the direct quantification of
unlabeled reaction products. This paper describes the design and application of a Swan-
shaped probe for high-throughput and nanoliter-scale analysis of biological samples in both a
microfluidic droplet array and a multiwell plate with electrospray ionization mass spectrometry
(ESI-MS). The Swan probe is fabricated using a single capillary and consists of a U-shaped
section with a micrometer-sized hole for sampling and a tapered tip for sample electrospray
ionization. To validate its potential in drug discovery, the present system was applied in the
screening of inhibitors of acetylcholinesterase (AchE) and the measurement of the IC50 values
of identified inhibitors.
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Table 28: Examples of PubMed Chemical-Protein Interaction Prediction

ID

Sentence Label

Taken together, our results demonstrate the ability of «Fc11a-2» to inhibit INHIBITOR
[[NLRP3]] inflammasome activation and its potential use in the treatment
of inflammatory bowel diseases.

At PND35, the medial prefrontal cortex (mPFC) of rats given «sMPH» INDIRECT-UPREGULATOR

showed 55% greater immunoreactivity (-ir) for the catecholamine marker

[[tyrosine hydroxylase]] (TH), 60% more Nissl-stained cells, and 40%

less norepinephrine transporter (NET)-ir density.

«Epidermal growth factor receptor» inhibitors currently under investiga- INHIBITOR
tion include the small molecules gefitinib (Iressa, ZD1839) and erlotinib

(Tarceva, OSI-774), as well as monoclonal antibodies such as cetuximab

(IMC-225, [[Erbitux]]).

Agents that have only begun to undergo clinical evaluation include «CI- INHIBITOR
1033», an irreversible pan-[[erbB]] tyrosine kinase inhibitor, and PKI166

and GW572016, both examples of dual kinase inhibitors (inhibiting epi-

dermal growth factor receptor and Her2).

Table 29: Examples from the BoolQ Dataset

ID

Instruction and Question

Answer

Please answer the following question with true or false: is the Golden State Warriors in the playoffs?
Answer format: true/false

Output: The correct answer is true.

Please answer the following question with true or false: Downton Abbey, will there be a season 7?
Answer format: true/false

Output: The correct answer is false.

True

False

Table 30: Examples from the PIQA Dataset

ID

Instruction, Question, and Solutions

Answer

Instruction: Please choose the correct solution to the question: To seal leather for furniture.
Solutionl: Place the leather on a work surface, pour a small amount of Neatsfoot oil onto
the leather, rub the oil into all parts of the leather with a sponge, and allow the leather to dry
overnight.

Solution2: Place the leather on a work surface, pour a small amount of Neatsfoot oil onto the
leather, rub the oil into all parts of the leather with your hands, and allow the leather to dry
overnight.

Answer format: solutionl/solution2

Output: The correct answer is solution?2.

Solution2

Instruction: Please choose the correct solution to the question: Make lemonade.
Solutionl1: Fill a glass about 3/4 full with water. Using freshly squeezed lemon juice or bottled

juice, add 1-2 tablespoons to the water. Sweeten with sugar or non-caloric sweetener to taste.

Add ice and enjoy!
Solution2: Fill a glass about 3/4 full with water. Using freshly squeezed lemon juice or bottled

juice, add 1-2 tablespoons to the water. Sweeten with sugar or non-caloric sweetener to taste.

Add gin and enjoy!
Answer format: solutionl/solution2
Output: The correct answer is solutionl.

Solutionl
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Table 31: Examples from the ARC-Challenge Dataset

ID

Instruction, Question, and Answers Answer

Instruction: Please choose the correct answer to the question: Screech  Answer4
owls have two color variations—red and grey. What advantage does the

grey screech owl have over the red screech owl in a habitat that is made

up of trees with dark-colored bark?

Answerl: Nesting

Answer2: Feeding

Answer3: Reproduction

Answer4: Camouflage

Answer format: answerl/answer2/answer3/answer4

Output: The correct answer is answer4.

Instruction: Please choose the correct answer to the question: A scientist Answer3
is measuring the amount of movement along a fault. Which tool is best

used for making this measurement?

Answerl: Barometer

Answer2: Stopwatch

Answer3: Meter stick

Answer4: Magnifying lens

Answer format: answerl/answer2/answer3/answer4

Output: The correct answer is answer3.

Table 32: Examples from the Math10K Dataset

ID

Instruction, Reasoning, and Answer

Instruction: Find the area of a circle whose radius is 70m? The options are: A) 28866, B)
23456, C) 76766, D) 16866, E) 15400.

Reasoning: The formula for the area of a circle is A = 712, where r is the radius of the circle.
Substituting the given radius, we get: A = 7(70)? = 49007. Approximating 7 to 3.14 gives
A =2 15400. Therefore, the answer is E) 15400.

Answer: E

Instruction: Jimmy has a collection of 5 action figures. Each figure is worth $15, except for
one which is worth $20. He decided to sell his collection. To do it fast, he decided to sell each
of them for $5 less than their value. How much will Jimmy earn if he sells all the figures?
Reasoning: Step 1: Calculate the total value of the collection: 4 action figures are worth $15
each ($60), and 1 is worth $20. Total value = $60 + $20 = $80.

Step 2: Calculate the selling price: Each figure will be sold for $5 less than its value. For 4
figures worth $15 each: $15 - $5 = $10. For the figure worth $20: $20 - $5 = $15.

Step 3: Calculate total earnings: Jimmy earns $10 for 4 figures ($40) and $15 for 1 figure. Total
earnings = $40 + $15 = $55.

Answer: 55.0

14602



