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Abstract

Decentralized training has become a resource-
efficient framework to democratize the training
of large language models (LLMs). However,
the privacy risks associated with this frame-
work, particularly due to the potential inclusion
of sensitive data in training datasets, remain un-
explored. This paper identifies a novel and re-
alistic attack surface: the privacy leakage from
training data in decentralized training, and pro-
poses activation inversion attack (AIA) for the
first time. AIA first constructs a shadow dataset
comprising text labels and corresponding acti-
vations using public datasets. Leveraging this
dataset, an attack model can be trained to recon-
struct the training data from activations in vic-
tim decentralized training. We conduct exten-
sive experiments on various LLMs and publicly
available datasets to demonstrate the suscepti-
bility of decentralized training to AIA. These
findings highlight the urgent need to enhance
security measures in decentralized training to
mitigate privacy risks in training LLMs.

1 Introduction

Large language models (LLMs) (Brown et al.,
2020; Chen et al., 2023; Jiang et al., 2023; Team
et al., 2024) have demonstrated remarkable effi-
cacy across diverse domains (Li et al., 2024; Wu
et al., 2024; Lu et al., 2024b) due to their advanced
capabilities in semantic understanding and text gen-
eration. However, their emergent abilities follow
the scaling law (Bahri et al., 2024; Naveed et al.,
2023; Raiaan et al., 2024), which leads to state-
of-the-art LLMs typically comprising billions of
parameters. For instance, the DeepSeek-V3 (Liu
et al., 2024) model, with its 671 billion parame-
ters, requires 2,664 million H800 GPU hours for
training. This resource-intensive training and fine-
tuning process presents significant barriers to the
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democratization of LLMs. As a result, decentral-
ized training (Yuan et al., 2022; Ryabinin et al.,
2023) is gaining increasing attention as a promis-
ing solution to mitigate these resource challenges.

Decentralized training is mainly based on paral-
lel training (e.g., pipeline parallelism (Narayanan
et al., 2019)), which distributes training compu-
tations across heterogeneous computing devices
(typically GPUs) in a pipeline, with each device
acting as a distinct stage. Unlike traditional feder-
ated learning (FL), which is based on data paral-
lelism (Li et al., 2014; Luo et al., 2020), pipeline
parallelism allocates model layers across devices,
facilitating the concurrent processing of multiple
data batches over successive stages. During decen-
tralized training, each stage transmits activations
during forward propagation and gradients during
backward propagation to iteratively update model
parameters. This approach enhances memory uti-
lization and alleviates computational bottlenecks.
Frameworks such as GPipe (Huang et al., 2019)
and Megatron-LM (Narayanan et al., 2021) effec-
tively balance resource constraints with training ef-
ficiency, supporting the democratization of LLMs.

As research on the robustness of decentralized
training progresses, the security vulnerabilities of
this framework have become increasingly evident.
However, most existing studies (Thorpe et al., 2023;
Jang et al., 2023; Duan et al., 2024) primarily fo-
cus on addressing fault tolerance issues related to
hardware failures in pipeline parallelism, often ne-
glecting the impact of human threats. While some
research (Lu et al., 2024a) has examined the role
of attackers, demonstrating that malicious stages
in decentralized training can significantly disrupt
training outcomes and hinder model convergence,
this study typically assumes that attackers can con-
trol any stage of decentralized training. Such strong
assumptions about the attackers’ capabilities make
the attack methods impractical in real-world train-
ing scenarios, where tampering with transmitted
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values is highly likely to be detected by the train-
ing initiator. Furthermore, the above studies fail
to address privacy risks, which could lead to more
severe consequences (Bethany et al., 2024).

Motivated by this gap, we aim to investigate
whether malicious stages in decentralized training
can steal privacy without disrupting the training
process. However, implementing this privacy re-
construction attack presents a significant challenge:
decentralized training differs substantially from tra-
ditional training methods, such as localized training
or FL. In traditional training, attackers may have
access to a complete model copy (Li et al., 2023;
Morris et al., 2023) or its inputs and corresponding
outputs (Huang et al., 2024). In contrast, within the
decentralized training, malicious stages can only
access the transmitted values between stages. This
raises a critical research question: How to steal
privacy, such as training data, solely through trans-
mitted values in decentralized training?

To address this critical research question, this pa-
per first introduces the Activation Inversion Attack
(AIA) targeting decentralized training. Specifically,
we demonstrate how a malicious stage in decentral-
ized training can steal training data by exploiting
activations through a two-step process. In the first
step: Shadow Dataset Construction, the attacker
creates a shadow dataset of text-activation pairs
using a public dataset, aiming to align the data
distribution of the shadow dataset with that of the
actual training process. In the second step: Attack
Model Training, the attacker trains a generative
model using the shadow dataset to learn the map-
ping from activations to text labels. The attacker
then reconstructs the corresponding training data
from victim activations. In summary, the contribu-
tions of this paper are as follows:

• We identify a novel attack surface, marking the
first attempt to steal private training data within
decentralized training frameworks.

• We propose a two-step attack framework, AIA,
that steals training data through activations in
decentralized training without detection.

• We conduct a comprehensive evaluation of the
effectiveness of AIA, demonstrating its character-
level capability for training data reconstruction.
Specifically, AIA achieves 62% accuracy in steal-
ing private emails when fine-tuning GPT2-XL.

2 Related Work

2.1 Decentralized Training Safety

Yuan et al. (2022) initially explores decentralized
training for LLMs. Several studies then examine
decentralized training in slow networks (Ryabinin
et al., 2023; Wang et al., 2023) and explore the
development of geo-distributed training systems
tailored for LLMs (Gandhi et al., 2024; Tang et al.,
2024). While safety concerns in decentralized train-
ing have been identified in previous works (Tang
et al., 2023; Borzunov et al., 2022), most exist-
ing research focuses mainly on ensuring seamless
pipeline operations on preemptible devices, em-
ploying techniques such as model backup and re-
dundant computation (Thorpe et al., 2023; Jang
et al., 2023). Lu et al. (2024a) comprehensively
evaluate the potential threats in decentralized train-
ing. However, the proposed forward attack can be
easily mitigated by detection methods, making it
impractical in real-world scenarios.

2.2 Data Leakage from Transmitted Values

Data leakage from gradients. In the context of FL,
researchers such as Zhu et al. (2019) have explored
deep gradient leakage attacks on both visual and
language models. Balunovic et al. (2022) uses aux-
iliary language models to model prior probabilities,
reducing the loss through alternating continuous
and discrete optimization. Gupta et al. (2022) first
recovers a set of words from gradients, and then re-
constructs the sentence from this set of words using
beam search. Fowl et al. (2022) and Boenisch et al.
(2023) propose a powerful threat model in which
the server is malicious and can manipulate model
weights, easily reconstructing the data. Wu et al.
(2023) proposes a simple adaptive attack method
that can bypass various defense mechanisms, in-
cluding differential privacy and gradient compres-
sion, and successfully reconstruct the original text.
Data leakage from embeddings. Another line of
research focuses on embedding inversion attacks,
where the attacker aims to reconstruct text from em-
bedding representations. Song and Raghunathan
(2020) reconstructs 50%-70% of the input words
from embedding models. However, word-level in-
formation alone is insufficient to fully reconstruct
privacy. Li et al. (2023) proposes a generative
embedding inversion attack that reconstructs sen-
tences similar to the original input from embed-
dings. Morris et al. (2023) utilizes an iterative
correction approach to reconstruct text information.
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Huang et al. (2024) investigates a black-box at-
tack scenario, reducing the discrepancy between
the surrogate model and the victim model through
adversarial training. These studies assume that
the victim model is fully trained and static, allow-
ing the attacker to access the input sentence em-
beddings from the victim model, build a shadow
dataset, and then train an attack model to recon-
struct the original text. However, in decentralized
training settings, the malicious stage only has ac-
cess to a portion of the model, and thus cannot
directly access the victim model.

3 Preliminaries

3.1 Threat Model

Attack scenario. We consider a decentralized train-
ing scenario where the user intends to fine-tune a
pre-trained model Mpre using their private dataset
Dvic, resulting in a fine-tuned model Mfine. The
framework consists of K stages, where Mi repre-
sents the sub-layers (e.g., decode layers in LLMs)
of the i-th stage. During training iteration t, Mi

transmits activations a
(t)
i to Mi+1 and gradients

g
(t)
i to Mi−1. However, an unmonitored decentral-

ized training framework may introduce an honest-
but-curious stage as an attacker.
Attacker’s goals. The attacker’s objective is to
reconstruct character-level training data d(t) from
Dvic during iteration t in victim decentralized train-
ing. Additionally, the attacker seeks to conceal
their malicious activities, executing the attack with-
out disrupting the training process to avoid de-
tection by the training initiator or other detection
mechanisms.
Attacker’s knowledge. We assume the attacker,
as the iatt-th stage, has access to all information re-
lated to its own stage, including the sub-layers Miatt

and transmitted data aiatt and giatt . This enables the
attacker to infer the architecture of Mfine based on
the structure of Miatt . However, the attacker is as-
sumed to have no access to other training-related in-
formation, such as transmitted data between benign
stages or auxiliary information about the training
data. This assumption is realistic, as it facilitates
the deployment of this attack in real-world decen-
tralized training environments.

3.2 Motivation

In Section 3.1, it is established that attackers can
only reconstruct training data through the trans-
mitted values during the victim model’s training
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Figure 1: Cosine similarity between activations for the
same data in the pre-trained model and the fine-tuned
model across layer index.

process, such as activations and gradients. This
section discusses the challenges of using gradients
to conduct such attacks and explores the feasibility
of using activations to achieve similar objectives.

In decentralized training, traditional deep gra-
dient leakage attacks encounter a significant limi-
tation: the unavailability of the global model and
global gradients. Previous researches (Zhu et al.,
2019; Gupta et al., 2022; Balunovic et al., 2022)
focus on training or searching for a set of texts
that, through the victim model’s gradient, approxi-
mate the leaked gradient to reconstruct private data.
However, in decentralized training, each stage only
has access to a partial model and gradients, making
it difficult to reconstruct data through gradients.

In contrast, reconstructing data using the in-
termediate outputs of the victim model is much
more straightforward, as these intermediate out-
puts can be directly used as inputs to train the at-
tack model (Pasquini et al., 2021; Li et al., 2023).
Inspired by this, we examine the cosine similarity
between a

(t)
i for d(t) in Mpre and Mfine across layer

index i (experimental details can be found in Sec-
tion 5.1). As shown in Figure 1, activation similar-
ity in early layers approaches 100%, while similar-
ity in later layers remains above 50%. These results
suggest that the activations of the same data exhibit
minimal variation before and after fine-tuning, in-
dicating a strong correlation between activations
and the training data. This preliminary experiment
provides key insights for our attacks in Section 4.

4 AIA: Activation Inversion Attack

We introduce AIA, a framework for training data
reconstruction through activations in decentralized
training. During the victim model training, an at-
tacker at the iatt-th stage has access to the activa-
tions a

(t)
iatt−1 passed from Miatt−1 during forward

propagation. We denote the mapping function

14541



Victim Decentralized Training

𝓓𝐯𝐢𝐜 Stage 𝟏

…

Stage 𝒊𝐚𝐭𝐭

Forward Propagation

Backward Propagation

Activations 𝒂𝒊𝐚𝐭𝐭−𝟏
𝒕

Gradients 𝒈𝒊𝐚𝐭𝐭
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Activation Inversion Attack

𝓓𝐩𝐮𝐛 𝑴𝐬𝐡𝐚

Text Labels 𝒅𝐬𝐡𝐚 Activations 𝒂𝐬𝐡𝐚
The game began development in 
2010 , carrying over a large portion 
of the work done on Valkyria 
Chronicles II . While it retained the 
standard features of the series …

𝓓𝐬𝐡𝐚 𝑴𝐚𝐭𝐭
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…
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In case of fax, you can use 001-859-4 
191435. Their residence is located at 1191 
Elm Drive, Greenville, SC 29601, USA. Feel 
free to contact them through Plains954 
25.zoho.com. For official purposes, their 
SSN is 21 84 0940. If you want to send., 
use the addresses 
14MGiufGQJ5zoyFhGby63ukkrx897Ckz.

Activations 𝒂𝒊𝐚𝐭𝐭−𝟏
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In case of fax, you can use 001-869-
41914351. Their residence is located at 1191 
Elm Drive, Greenville, SC 29601, USA. Feel 
free to contact them through 
Plains95425@zoho.com. For official 
purposes, their SSN is 421-84-0940. If you 
want to send Bitcoin, use the address:
14MGiLFGQJ5zoyFhGby63UKkrxp897Cdkz. 

Figure 2: Overview of Activation Inversion Attack (AIA). In a decentralized training system, the victim model
Mvic undergoes fine-tuning using private data Dvic, which may contain personally identifiable information values
(highlighted in yellow). An honest-but-curious attacker controlling the iatt-th stage of the pipeline: (1) records
intermediate activation values a(t)

iatt−1 captured during the training process, and (2) collects shadow activations Dsha
from the shadow model Msha to train the attack model Matt. Finally, the attacker uses Matt to reconstruct the private
data Dvic, with the red and purple text representing precisely recovered and mostly recovered PII data, respectively.

from the original training data d
(t)
vic to a

(t)
iatt−1 as

f
(t)
[1:iatt−1](·). Therefore, we can conclude that:

a
(t)
iatt−1 = f

(t)
[1:iatt−1](d

(t)
vic)

The attacker’s goal can thus be simplified to con-
structing a mapping function ϕ ≈ (f

(t)
[1:iatt−1])

−1(·)
that reconstructs d

(t)
vic from a

(t)
iatt−1. AIA adopts a

learning-based approach by training a generative
model to perform this reconstruction. In simple
terms, AIA consists of two steps: (1) Shadow
Dataset Construction: The attacker first generates
a shadow dataset containing text labels and corre-
sponding activations leveraging a public dataset.
(2) Attack Model Training: The attacker then
uses Dsha to train a generative attack model Matt
that learns the mapping function ϕ. Finally, the
attacker inputs the actual activations transmitted
during the victim model training into Matt to re-
construct the training data. We provide a detailed
description of these two steps in the following.

4.1 Step 1: Shadow Dataset Construction
Since the attacker cannot access Dvic, a straightfor-
ward approach is to construct a shadow dataset Dsha
using a public dataset Dpub. Specifically, we use the
frozen pre-trained LLM Mpre as the shadow model
Msha, with the same type of the victim model, to
generate shadow activations asha, i.e.,

asha = Msha[1:iatt−1](dpub)

where dpub ∈ Dpub. The rationale for this approach
is analyzed in Section 3.2: the generalizability
of Mpre ensures that the activations remain rela-
tively stable when fine-tuning the victim model
Mvic on Dvic, allowing us to directly leverage the
pre-trained weights from HuggingFace as Msha. In
other words, no additional effort is required to train
Msha, significantly reducing the cost of AIA.

4.2 Step 2: Attack Model Training

Next, we focus on training Matt using the shadow
dataset Dsha = {(asha,dpub)}. Matt is designed to
take activations as input and output the distribution
probabilities of the generated text. It consists of a
set of decoder layers and an lm_head layer. Struc-
turally, it differs from a standard language model by
the absence of the initial embedding layer. Similar
to the recent work (Li et al., 2023), the training ob-
jective is to minimize the standard language model
loss using teacher forcing (Williams and Zipser,
1989):

L = −
N∑

k=1

logP (yk|x1, x2, . . . , xk−1)

where yk is the target word, and xi represent the
input activations. Finally, we input the activations
a
(t)
iatt−1 to Matt and obtain d

(t)
vic.
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name: Relic,
fax: 001-996-92842425,
birthday: 1965-09-29,
SSN: 669-83-0008,
address: 8281 Cedar Avenue, Madison, WI 53703, USA,
email: Relic6582@icloud.com,
job: chef,
bitcoin: 13TG31FbBAwEamXUMWXB1qhvTQBMBhMQ3d,
UUID: 4bd29a39-40df-43ac-8b7a-bd59d8617551
phone: 567-765-5270,

Personally identifiable information

Data item True-prefix attack: “Allow me to introduce Relic, his 

email address is Relic6582@icloud.com, he can be 

contacted via phone at”

SPT attack: Soft-prompt embeddings + “Relic can be 

contacted via phone at”

Figure 3: An example of PII data and baseline attacks.
The private data includes information such as names,
phone numbers, and email addresses. The True-Prefix
attack leverages other private attributes to prompt the
model to generate the target private attribute, while the
SPT attack employs a trained soft prompt added before
the query template to extract private information.

5 Experiments

5.1 Experimental Setup

Victim models. We conduct experiments on
three models: GPT2-XL (Radford et al., 2019),
Bloom-7B1 (Le Scao et al., 2023), and LLaMA3-
8B (Dubey et al., 2024), which have 48, 30, and
32 decoder layers, respectively. We directly down-
load the pre-trained models from HuggingFace and
use them as Msha to collect Dsha. To investigate
the effects of AIA under extreme conditions, we
fine-tune Mvic for 5 epochs on the corresponding
dataset to induce overfitting on the privacy data,
thereby maximizing the feature gap between Dvic
and Dsha. The training process is divided into 6
stages, with the assumption that the third stage is
malicious. The architecture of the attack model is
identical to that of the victim model, with all attack
models set to 12 decoder layers.
Datasets. We use the WikiText (Merity et al., 2016)
dataset as the attacker’s known dataset Dpub to con-
struct the shadow dataset Dsha. The victim datasets
Dvic include ArXiv, OpenWebText (Gokaslan et al.,
2019), The Pile (Gao et al., 2020), and a public PII
dataset1, which contains sensitive information. An
example of a PII data item is shown in Figure 3.
Baselines. In the privacy leakage experiments, we
adopt the following two methods as baselines. The
two methods do not apply to decentralized training,
we use them solely for comparison to illustrate the
potential risks of our attack. Their attack examples
can be seen in Figure 3.
• True-Prefix Attack (Carlini et al., 2021) utilizes

1https://github.com/zzzzsdaw/PII-dataset

real prefixes from Dvic to prompt the model. In
our experiments, we use real PII data of other
types within each PII item as the prompt, attempt-
ing to induce the model to output the value of the
target PII type.

• SPT Attack (Kim et al., 2024) trains an additional
set of prompt embeddings, which are appended to
the original query template. We train the prompt
embeddings using 64 PII data pairs, during which
the victim model remains frozen and does not
require gradient updates.

Evaluation metrics. To evaluate the quality of
text reconstruction, we employ the following four
metrics.
• Perplexity (Jelinek et al., 1977) assesses the

model’s capability by measuring the probabil-
ity distribution of its outputs, with lower values
indicating better performance.

• ROUGE (Lin, 2004) measures the similarity be-
tween the generated text and reference text by
comparing overlapping words or phrases.

• BLEU (Papineni et al., 2002) evaluates the simi-
larity between generated text and reference text
based on n-gram overlap and is commonly used
in machine translation tasks.

• Embedding cosine similarity calculates the se-
mantic similarity between the generated text
and reference text using the all-MiniLM-L6-v2
model2 (Wang et al., 2020).
In the privacy leakage experiments, we evaluate

the attack success rate (ASR) of our AIA method
and two baselines in precisely recovering the val-
ues of the target PII types. Precise recovery is
defined as correctly outputting the digits and letters
in the correct order. During the matching process
between the generated data and the original pri-
vate data, spaces and special characters, such as ’-’,
are ignored, as they do not affect the identification
of private data values. The ASR is calculated as
the ratio of the number of precisely recovered data
entries to the total amount of data.

5.2 Text Reconstruction
Table 1 presents the performance of AIA across
different victim LLMs and datasets. The results in-
dicate that the perplexity of the generated sentences
remains below 20, with most values under 10, sug-
gesting that the reconstructed text is relatively flu-
ent and closely aligns with the original fine-tuning
data. Both ROUGE-1 and BLEU-1 scores exceed

2https://huggingface.co/sentence-transformers/all-
MiniLM-L6-v2
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Table 1: Text reconstruction performance of GPT2-XL, Bloom-7B1, and LLaMA3-8B on four datasets. For all
metrics except PPL, higher values indicate better performance.

Victim Model Dataset PPL ROUGE BLEU COS
ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-4

GPT2-XL

PIIs 3.73 0.84 0.74 0.84 0.77 0.71 0.59 0.89
openwebtext 3.09 0.95 0.90 0.95 0.88 0.84 0.77 0.94

arxiv 5.43 0.92 0.85 0.92 0.81 0.75 0.64 0.92
pile 1.65 0.98 0.95 0.98 0.95 0.93 0.89 0.97

Bloom-7B1

PIIs 14.82 0.80 0.67 0.80 0.67 0.60 0.47 0.89
openwebtext 4.64 0.95 0.92 0.95 0.89 0.86 0.80 0.95

arxiv 15.45 0.91 0.83 0.90 0.77 0.70 0.56 0.90
pile 2.09 0.97 0.95 0.97 0.95 0.93 0.90 0.95

LLaMA3-8B

PIIs 7.36 0.80 0.67 0.79 0.73 0.66 0.54 0.77
openwebtext 6.50 0.93 0.88 0.93 0.88 0.84 0.77 0.88

arxiv 9.26 0.88 0.78 0.88 0.80 0.73 0.60 0.83
pile 2.18 0.96 0.93 0.96 0.94 0.92 0.89 0.92

0.7, with the highest result reaching nearly 0.95,
which confirms that the majority of words from
the original fine-tuning data are accurately recov-
ered. ROUGE-L scores are generally higher than
ROUGE-2, indicating that the generated text main-
tains high global similarity while exhibiting slightly
lower local continuity. However, this slight dis-
continuity in certain lexical elements has minimal
impact on human readability. We further compute
the cosine similarity between the embeddings of
the generated text and the original text, with values
ranging from 0.77 to 0.96, confirming a high level
of semantic similarity. These results validate the
effectiveness of AIA in reconstructing the original
fine-tuning data.

5.3 Privacy Leakage

Results compared with baselines. We compare
the ASR of AIA with the baselines on the PII
types of email and phone, with the detailed results
presented in Table 2. The findings indicate that
our method performs effectively on both phone
numbers and email addresses. For instance, the
Bloom-7B1 model achieves precise recovery rates
of 41% for phone numbers and 61% for email ad-
dresses. Even the relatively less effective LLaMA3-
8B model accurately recovers 15% of phone num-
bers and 41% of email addresses.

In contrast, the True-Prefix Attack and SPT At-
tack exhibit poor performance, showing minimal
success in recovering phone numbers. On the
Bloom-7B1 model, both baselines recover only
a small portion of email addresses, with ASR of
18% and 10%, respectively. We hypothesize that
this discrepancy arises from the structure of the PII
dataset, where email prefixes consist of a person’s
name combined with random numbers, enhancing

the model’s memory of the email. The GPT2-XL
model recovers only 2% to 4% of email addresses,
significantly lower than Bloom-7B1, likely due to
its smaller size and weaker capacity for data reten-
tion. Notably, neither baseline is able to recover
any private data accurately on the LLaMA3-8B
model. This may be attributed to the LLaMA3-8B
model’s alignment and data protection mechanisms
implemented during pre-training, which results in
the frequent generation of placeholders such as
“[email protected]”.
Results on various PII types. Table 3 presents the
ASR of AIA in precisely recovering the seven PII
types: fax, birthday, SSN, address, job, bitcoin, and
UUID. Remarkably, the ASR for birthdays and jobs
approaches 100%. Birthdays, which are short and
highly structured numerical sequences, likely bene-
fit from the model’s pre-training exposure to similar
formats, resulting in minimal changes to their se-
mantic encoding after fine-tuning. Jobs, typically
consisting of one to three words, are relatively eas-
ier to recover compared to other PII types. This
observation is further supported by the ROUGE-1
and BLEU-1 results on the PII dataset across dif-
ferent victim LLMs shown in Table 1.

All victim models exhibit strong recovery perfor-
mance for PII types other than Bitcoin addresses
and UUID, with recovery rates generally ranging
from one-third to over half of the data. Owing to
the inherent irregularity and extended length char-
acteristics of Bitcoin addresses and UUIDs, precise
reconstruction is significantly more challenging.
Specifically, only the GPT2-XL model achieves a
recovery rate of approximately 20% for the two PII
types, while the ASR for Bloom-7B1 and LLaMA3-
8B remains below 10%. Notably, even in cases
of incomplete reconstruction, the generated out-
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Table 2: Comparison of the ASR
between our AIA method and
baselines in stealing phone and
email data.

Victim Model Method ASR
phone email

GPT2-XL
True-Prefix 0 0.04

SPT 0 0.02
AIA(ours) 0.25 0.55

Bloom-7B1
True-Prefix 0.01 0.18

SPT 0 0.10
AIA(ours) 0.42 0.62

LLaMA3-8B
True-Prefix 0 0

SPT 0 0
AIA(ours) 0.16 0.42

Table 5: The impact of attack model architecture on the attack performance
of AIA. Each attack model is configured with 6 decoder layers. The results
are presented in terms of perplexity.

Victim Model Attack Model
Architecture

Shadow Datasets Victim Datasets
wikitext PIIs openwebtext arxiv pile

GPT2-XL
Mistral 1.53 117.45 44.14 109.31 24.54

Qwen2.5 1.71 410.47 115.35 301.26 68.74
GPT2 1.54 4.17 2.61 3.81 1.70

Bloom7B1
Mistral 1.54 7277.80 537.97 1203.97 445.71

Qwen2.5 1.48 7404.53 839.47 1947.76 651.55
Bloom 1.41 16.81 9.14 13.45 2.12

LLaMA3-8B
Mistral 2.60 2016.21 447.20 692.70 134.76

Qwen2.5 2.89 1810.44 549.28 1315.82 151.34
LLaMA 1.85 12.57 4.16 10.11 2.03

Origin

You can find their SSN: 757-01-0186. Their 

Bitcoin wallet address is 

19dCn4gAs4ETDqmo9RhVLzytjLH4XYJ

wmp. Their unique code (UUID) is 7c727ff9-

f1b2-402c-9607-d8e883b92eb2.This is 

Sharon, a professional pilot. Born on 1996-

11-22, You can reach them at 891-319-7880. 

For fax communication, use 001-154-

70659814. They live at 7059 Sunset 

Boulevard, Georgetown, TX 78626, USA. 

You can reach them via email at 

Sharon652974@protonmail.com.

Say hello to Simona, a professional barber. Born 

on 1993-12-04, Feel free to call them at 836-554-

7628. Their fax number is 001-413-23263236. 

Their home address is 7887 Oak Road, Madison, 

WI 53703, USA. You can reach them via email at 

Simona377759@yahoo.com. You can find their 

SSN: 758-08-0983. Their Bitcoin wallet address is 

1FsaZeyNCX5cPLYiceZWVro4fB9tGN8JzE. 

Their unique code (UUID) is 0c7346d4-b090-4891-

95f6-fb85d121d232. Allow me to introduce 

Lighthearted, who works as a painter.

In case of fax, you can use 001-869-41914351. 

Their residence is located at 1191 Elm Drive, 

Greenville, SC 29601, USA. Feel free to contact 

them through Plains95425@zoho.com. For 

official purposes, their SSN is 421-84-0940. If 

you want to send Bitcoin, use the address: 

14MGiLFGQJ5zoyFhGby63UKkrxp897Cdkz. 

You can identify them with the UUID: 

234f2342-9af3-4e95-bb23-32423dadd85d. Say 

hello to Aileen, a skilled designer. Born on 

1976-07-24, Feel free to call them at 616-616-75

Generated

You can find their SSN 755-0286. Their. Wal 

address is 19dCn4g As4etDqmo9 

RhLzyjLh4xyJwmp. Their unique code (Q) 

is 7727ff9-f1b2-402c 907-d8e88 

Rb92eb2.This is Shar, a professional pilot. 

Born on 1996 11 22, You can reach them at91-

3 197880. For fax communication, use001 

151- 70659814. They live at 7059 Sunset 

Boulevard, Georgetown, Texas 0626, USA. 

You can reach them via email at 

Shar652974.proton mail.com.

Say say to Simona, a professional barber. Born on 

1993-122, Feel free to call them at 836 5547628. 

Their fax number is001-413-23263236. Their home 

address is 77 Oak Road, Madison, WI 53 703, 

USA. You can reach them via email at Simona367 

159oa.com. You can find their SSN 755 08 0983. 

Their. Wal address is 1FsaZey 

NCXxeplYiceWVrof4BtGN8JzE. Their unique 

code (Q) is 0c7346d4-b080 4891 95f6-fb85d 

121d232. Allow me to introduce Lighthearted, 

who works as a painter.

In case of fax, you can use 001-859-4 1914354. 

Their residence is located at 1191 Elm Drive, 

Greenville, SC 29601, USA. Feel free to contact 

them through Plains954 25.zoho.com. For 

official purposes, their SSN is 21 84 0940. If you 

want to send., use the addresses 14M 

GiufGQJ5zoyFhGby63ukkrx897Ckz. You can 

identify them with the Uation: 234f2342 9af-

3e95-bb23-32423dadd85d. Say say to Aileen, a 

skilled designer. Born on 1976 07 24, Feel free 

to call them at 1916-616 75

Metrics ROUGE-L=0.69, BLEU-4=0.38, COS=0.80 ROUGE-L=0.79, BLEU-4=0.47, COS=0.91 ROUGE-L=0.86, BLEU-4=0.58, COS=0.94

Figure 4: Three comparative examples of generated texts versus original data. The yellow text represents the original
PII data, while the red and purple texts represent precisely recovered and mostly recovered PII data, respectively.
The text recovery performance improves from left to right.

Table 3: The ASR of AIA on all models in precisely
recovering the seven PII types: fax, birthday, SSN, ad-
dress, job, bitcoin, and UUID.

fax birthday SSN address job bitcoin UUID
GPT2-XL 0.25 1.00 0.76 0.56 0.97 0.22 0.17

Bloom-7B1 0.48 0.99 0.57 0.57 0.98 0.04 0.04
LLaMA3-8B 0.20 0.95 0.38 0.41 0.89 0.03 0.10

puts maintain substantial proximity to ground truth
values, exhibiting only minor character-level dis-
crepancies in alphanumeric sequences (e.g., single-
letter substitutions or partial numeric mismatches).

Figure 4 shows three comparison examples be-
tween the generated text and the original private
data, with the quality of text reconstruction improv-
ing from left to right. The majority of common
words and PII data can be precisely recovered, as
indicated by the red highlights in the figure. How-
ever, the recovery of less frequent words (e.g., "Bit-
coin") and special characters (e.g., "@") tends to
be less successful. Additionally, the recovery of
named entities may occasionally be imprecise. For

long character sequences, such as phone numbers
or UUIDs, over 80% of the characters are typically
recovered, although some minor errors in individ-
ual characters or capitalization issues may occur,
as highlighted in purple in the figure.

5.4 Ablation Study

To explore the factors influencing the attack perfor-
mance of AIA, we conducted three sets of ablation
experiments on the decoder layer index, model size,
and attack model architecture. The conclusions are
as follows:
• As the layer index increases, the attack perfor-

mance decreases; however, the original private
data can still be recovered to some extent.

• The attack performance is independent of model
size and AIA performs well in all model sizes.

• The attack performance is highly sensitive to the
architecture of the attack model, with different
architectures leading to poorer attack results.
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Figure 5: The attack performance of AIA on GPT2-
XL and Bloom-7B1 models as the attacker’s decoder
layer index varies, with the attack performance generally
decreasing as the layer index increases.

5.4.1 Decoder Layer Index
Figure 5 illustrates the trend of PPL on GPT2-XL
and Bloom-7B1 models as the attacker’s decoder
layer index varies. The results show that as the
decoder layer index increases, i.e., as the data leak-
age layer moves closer to the output layers, the
overall attack effectiveness declines. This observa-
tion aligns with the trend described in Section 3.2,
where the cosine similarity of activations before
and after fine-tuning decreases as the decoder layer
index increases. The decline in attack performance
can be attributed to the greater changes in the ac-
tivations of the decoder layers that is closer to the
output layer during fine-tuning.

Interestingly, when the cosine similarity of ac-
tivations before and after fine-tuning drops below
60% for a particular decoder layer, the perplexity of
the generated text remains below 40. This indicates
that the generated sentences become less natural,
with noticeable grammatical or contextual inconsis-
tencies, which suggests a reduction in the fluency
and coherence of the generated texts. However,
despite these linguistic limitations, the attacker is
still able to infer the original fine-tuning data to
a certain extent. This highlights the robustness of
AIA, even when the stage controlled by the attacker
is positioned further back in the pipeline.

5.4.2 Model Size
Table 4 systematically presents the experimental
results for GPT2 and Bloom models with vary-
ing parameter scales. To ensure comprehensive
experiments, we select three representative config-
urations for each model family: the GPT2 series
includes 355M, 774M, and 1.5B parameter variants,
while the Bloom series comprises 560M, 1.7B, and
7.1B parameter configurations. The experimen-
tal results demonstrate that the attack performance
of AIA is highly dependent on the victim dataset,

Table 4: Attack performance of AIA on GPT-2 and
Bloom models of varying sizes.

Victim Model Model Size Dataset Metrics
PPL ROUGE-L BLEU-4 COS

Bloom

560M

PIIs 15.22 0.76 0.46 0.84
openwebtext 4.06 0.94 0.75 0.92

arxiv 14.60 0.89 0.52 0.86
pile 2.46 0.97 0.88 0.94

1B7

PIIs 10.24 0.80 0.52 0.89
openwebtext 3.31 0.96 0.81 0.95

arxiv 9.83 0.92 0.58 0.91
pile 2.01 0.98 0.92 0.96

7B1

PIIs 12.06 0.81 0.48 0.89
openwebtext 4.41 0.96 0.81 0.95

arxiv 14.34 0.91 0.58 0.90
pile 1.92 0.98 0.91 0.96

GPT2

355M

PIIs 5.70 0.80 0.52 0.75
openwebtext 4.69 0.91 0.66 0.89

arxiv 11.84 0.87 0.54 0.86
pile 2.75 0.95 0.79 0.93

774M

PIIs 4.30 0.81 0.56 0.82
openwebtext 3.42 0.93 0.71 0.91

arxiv 8.79 0.90 0.60 0.88
pile 2.30 0.96 0.84 0.94

1.5B

PIIs 3.44 0.85 0.62 0.90
openwebtext 3.62 0.95 0.76 0.94

arxiv 5.16 0.92 0.67 0.92
pile 1.65 0.97 0.89 0.96

and it maintains stable performance across differ-
ent model sizes, with most PPL consistently below
10, ROUGE-L scores exceeding 0.9, and BLEU-4
scores above 0.6 in most cases.

5.4.3 Attack Model Architecture
To explore the impact of the attack model archi-
tecture on attack performance, we conduct ex-
periments using Mistral (Jiang et al., 2023) and
Qwen2.5 (Yang et al., 2024) as attack model ar-
chitectures and compare them to the victim model
architecture. Each attack model is configured with
six decoder layers. As shown in Table 5, while
all attack models exhibit excellent performance
when trained on the shadow dataset, their effec-
tiveness significantly declines when transitioning
to inverting the victim dataset after switching the
attack model architecture. Notably, even the best-
performing configuration on GPT2-XL still yields
perplexity values ranging from 24 to 120. On the
Bloom-7B1 and LLaMA3-8B models, the perplex-
ity can even reach values above a thousand, render-
ing AIA almost completely ineffective.

6 Conclusion

In this paper, we explore the privacy risks inherent
in decentralized training, particularly in scenarios
where an honest-but-curious attacker exists in the
pipeline. Despite lacking access to the complete
model weights, we demonstrate the feasibility of
simulating the victim model using a pre-trained
model and introduce Activation Inversion Attack
(AIA). We conduct extensive experiments on vari-
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ous large language models and public datasets to
emphasize the effectiveness of our attack. As the
application of decentralized training continues to
grow, we call for the development of effective de-
fense measures to mitigate the risk of AIA.

Limitations

Our method has a key limitation: the architecture
of the attack model must be consistent with that
of the clean model. While the attack model per-
forms well on the shadow dataset when using dif-
ferent architectures, its effectiveness significantly
decreases when applied to the clean dataset. This
constraint limits the flexibility in choosing the at-
tack model. Additionally, the generated text ex-
hibits issues such as lack of fluency, inconsistencies
in letter casing, errors with special characters, un-
common words, and difficulty in accurately recov-
ering long sequences. These observations indicate
that our method is influenced by the challenges of
transferring to unknown data distributions and the
variations introduced during model fine-tuning.

Ethics Statement

We declare that all authors of this paper adhere to
the ACM Code of Ethics and uphold its code of con-
duct. This paper investigates activation inversion
attack in decentralized training. The objective of
our work is to highlight the potential data leakage
risks associated with decentralized training, aiming
to encourage the community to give greater atten-
tion to privacy protection in such settings and to
advocate for measures to prevent such information
leaks. No real sensitive data is used in our experi-
ments; all experiments are conducted with publicly
available datasets. The data in the PII dataset we
use is randomly generated and does not represent
actual private information. All models employed
in this study are open-source and thus do not pose
any threat to proprietary models.
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A Hyperparameters

During the training of the attack model, the se-
quence length is set to 160. For fine-tuning the vic-
tim models, the sequence length is set to 1600 for
LLaMA3-8B and Bloom-7B1, and 800 for GPT2-
XL. The AdamW(Loshchilov, 2017) optimizer is
used for all training and fine-tuning processes, with
learning rates set to 5e-5 for GPT2-XL and Bloom-
7B1, and 7e-5 for LLaMA3-8B, along with an ep-
silon value of 1e-8.

B Datasets

The WikiText dataset serves as a high-quality,
clean, and large-scale collection of English text ex-
tracted from Wikipedia articles, providing a solid
foundation for creating the shadow dataset for the
attacker’s model. The ArXiv dataset is a large-
scale collection of scientific papers from the arXiv
repository. The OpenWebText dataset is a high-
quality, large-scale corpus of English web content,
curated from URLs shared on Reddit with high
karma. The Pile is an 800GB, diverse English
text dataset designed for training large language
models, combining content from 22 high-quality
sources, including books, academic papers, code,
and web text. The PII dataset consists of 1,000
instances of sensitive information and includes 10
types of personally identifiable information (PII),
such as phone numbers, email addresses, and home
addresses, presented in a structured format. These
data are randomly generated using regular expres-
sions and do not represent real private information.

C Toolkits

We use the NLTK package to measure the BLEU
score, the rouge_score library to calculate the
ROUGE score, and scikit-learn to compute the co-
sine similarity.

D True-Prefix and SPT Attack Examples

Figure 6 and Figure 7 present two examples of True-
Prefix (Carlini et al., 2021) and SPT (Kim et al.,
2024) attacks, respectively. In the True-Prefix at-
tack, we insert real data of additional PII types,
such as address or birthday, before the prompt tem-
plates, as shown in the blue sections in Figure 6.
In the SPT attack, we train on 64 PII data pairs
for 5 epochs to obtain the soft prompt embeddings,
which are set to a length of 10. The soft prompt em-
beddings are then concatenated before the prompt

14550



templates. During the training, the victim model
remains frozen, with no gradient updates applied.

Prompt: Say hello to Dominic, They live at 

9348 Pine Lane, Fairview, TX 75069, USA. 

You can reach them at

Output: 535-388-4713. Their fax number is 

001-932-89922513. You can find them at 

20199 Sunset Avenue, Geor

True label: 535-388-4713

Prompt: Say hello to Ada, Their date of birth 

is 1977-04-26. For fax communication, use 

001-475-33385229. You can reach them via 

email at

Output: [email protected] When is The date 

of the birth of The date of birth is 1977-04-27. 

For fax communication, use

True label: Ada462152@icloud.com

Figure 6: Two True-Prefix attack examples. Blue text
represents the real private data, while green and red text
indicate successful and failed privacy theft, respectively.

Prompt: {Soft prompt embeddings} + You 

can reach Hugh via email at

Output: Hugh2898@outlook.com. You can 

find their SSN: 721-94-0020. Their Bitcoin 

wallet address is 16L2h4P

True label: Hugh2898@outlook.com

Prompt: {Soft prompt embeddings} + 

Jerome can be contacted via phone at

Output: 709-679-8290. In case of fax, you 

can use 001-833-8172526. Their residence is 

located at 5970

True label: 709-876-1886

Figure 7: Two SPT attack examples. Orange text rep-
resents the soft prompt embeddings, with green and
red text indicating successful and failed privacy theft,
respectively.
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