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Abstract

Sparse attention can effectively alleviate the
significant demands on memory when large
language models (LLMs) process long con-
texts. Existing methods typically apply the
same sparse pattern across different attention
heads and inputs. However, this uniform ap-
proach fails to capture the inherent diversity of
attention patterns within LLMs — the intrinsic
attention clustering. To address this, we pro-
pose ClusterAttn, a training-free sparse atten-
tion method that provides an efficient prompt
cache compression scheme under intrinsic at-
tention clustering for efficient LLM inference.

Our findings show that attention heads consis-
tently focus on specific clusters of the prompt
during decoding, a pattern detectable from an
observation window at the prompt’s end. Clus-
terAttn adaptively fits these clusters utilizing
a density-based attention clustering algorithm,
thus compressing the KV cache of the prompt.
Evaluations on different models across various
benchmarks demonstrate ClusterAttn’s supe-
rior compression rates and efficiency. By uti-
lizing only 1024 tokens, it can reduce memory
usage by 10%—-65%, resulting in a latency re-
duction of 12%-23% and a throughput increase
of 2.6-4.8 times, all with nearly no accuracy
loss. Additionally, ClusterAttn can handle up
to 128k context on a single A100-80GB GPU,
outperforming existing methods.

1 Introduction

Large Language Models (LLMs) like GPT (Brown
et al., 2020; OpenAl, 2023; Ouyang et al., 2022)
and LLaMA (Touvron et al., 2023a,b; Meta, 2024)
series have significantly advanced natural language
processing and artificial general intelligence. These
models are trained on large-scale datasets using
extensive computational resources (Kaplan et al.,
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Figure 1: The intrinsic attention clustering phenomenon
within the prompt exhibited by Mistral 7B across atten-
tion heads during the decode phase.

2020) and massive datasets (Anil et al., 2023), en-
abling them to generate human-like text and per-
form complex reasoning. However, efficient de-
ployment is challenging due to the high memory
demands of KV cache during inference. For in-
stance, a GPT-3 model with 175 billion parame-
ters requires about 1208 GB of GPU memory to
store the KV cache when processing 64 sequences
of 4096 tokens, which is 3.45 times the memory
needed for model weights. To address this chal-
lenge, KV cache compression emerges to reduce
memory usage, speed up generation, and lower
costs, offering substantial commercial benefits.

Previous works proposed sparse attention to im-
prove efficiency but they often lack detailed evalu-
ations for long contexts and primarily focus on op-
timizing KV cache during decoding. This neglects
prompt cache compression, a significant memory
bottleneck in real-world applications where inputs
are typically larger than responses (OpenAl, 2023;
Liu and Mazumder, 2021; Bairi et al., 2024). Ex-
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isting methods also overlook the inherent attention
patterns in LLMs that naturally highlight important
tokens, a key insight driving our approach — the
intrinsic attention clustering.

Our analysis explored the intrinsic attention clus-
tering phenomenon during LLM generation, as il-
lustrated in Figure 1. We observed that, for the
same prompt, although the attention distributions
vary across attention heads, most heads consistently
follow a similar clustering pattern. Specifically, to-
kens with higher attention scores tend to cluster
together, and these clusters remain largely stable
throughout the decoding process. This intriguing
characteristic suggests that by utilizing these clus-
ters within the prompt, we can extract the critical
tokens required for subsequent decoding, enabling
effective prompt cache compression while main-
taining strong performance, as shown in Table 2.

In this paper, we propose ClusterAttn, a training-
free sparse attention method that provides an effec-
tive prompt cache compression scheme for efficient
LLM inference. As shown in Figure 2, ClusterAttn
identifies intrinsic attention clusters in the prompt
before decoding, enabling high-compression, high-
accuracy prompt cache reduction. It first performs
a full prefill, then the process involves three steps:
(1) aggregating attention importance from context
prefix using an observation window to form the
clusters, (2) fitting the clusters with a density-based
attention clustering algorithm to compress the con-
text prefix, and (3) concatenating the clusters with
the observation window as the final compressed
KV cache for subsequent decoding.

Our contributions are summarized as follows:

* We introduce ClusterAttn, a simple yet ef-
fective KV cache compression scheme for
the prompts. To our knowledge, it’s the first
method to explore KV compression via intrin-
sic attention clustering.

* Our experiments reveal the universality of in-
trinsic attention clustering and its consistency
during generation, guiding the compression
of the prompt cache.

* Inspired by intrinsic attention clustering, we
propose an efficient density-based attention
clustering algorithm that fits the clusters for
compression. With it, we can profile the opti-
mal fit for the clusters for specific models and
datasets within hours.

We conducted extensive experiments on Clus-
terAttn ,using two large language models, Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023) and LWM-
text-chat-1m (Liu et al., 2024a). Our evaluation
of ClusterAttn demonstrated its ability to signifi-
cantly compress the KV cache while maintaining
accuracy comparable to full attention. With only
1024 tokens, ClusterAttn can reduce memory us-
age by 10%—-65%, resulting in a latency reduction
of 12%-23% and a throughput increase of 2.6-4.8
times, with nearly no accuracy loss. Additionally,
it can handle up to 128k context on a single A100-
80GB GPU, outperforming existing methods.

2 Related Work

Previous works have proposed several methods to
reduce the computational and memory costs of at-
tention mechanisms. Some studies use dynamic
sparse attention masks to skip computations dur-
ing prefill stage (Pagliardini et al., 2023; Qu et al.,
2022; Roy et al., 2021; Wang et al., 2021; Lu et al.,
2021; Kitaev et al., 2020) , while others discard KV
cache based on the input sequence during decod-
ing (Anagnostidis et al., 2023; Sheng et al., 2023;
Zhang et al., 2023; Ge et al., 2024; Liu et al., 2023).
However, dynamic prefill often necessitates spe-
cific hardware for effective real-time acceleration
(Qu et al., 2022; Wang et al., 2021; Lu et al., 2021;
Ham et al., 2021, 2020) , and dynamic KV cache
pruning during decoding may require extensive
retraining (Anagnostidis et al., 2023) or extra cu-
mulative attention score calculations (Sheng et al.,
2023; Zhang et al., 2023; Liu et al., 2023; Ge et al.,
2024).

Another research avenue focuses on static sparse
attention, where predefined masks are applied con-
sistently across all inputs. This fixed computation
flow makes static sparse attention more efficient
and better suited for GPUs. In models like BERT
(Devlin et al., 2019), various masks have been used
(Zaheer et al., 2020; Beltagy et al., 2020; Child
et al., 2019; Zhou et al., 2024; Xiao et al., 2024;
Han et al., 2024). For generative large language
models, fixed-span sliding window masks with
global attention on initial tokens are commonly
used (Xiao et al., 2024; Han et al., 2024). This
local attention pattern allows KV cache outside
current span to be discarded, reducing memory us-
age in long sequences. However, applying static
masks uniformly across different attention heads
and input lengths may not consider model and data
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Figure 2: Overview of the ClusterAttn on each layer. After a full prefill, the process involves three steps: (1)
aggregating attention importance from context prefix using an observation window to form the clusters, (2) fitting
the clusters with a density-based attention clustering algorithm to compress the context prefix, and (3) concatenating
the clusters and the observation window to form the KV cache required for subsequent decoding.

characteristics, potentially limiting effective con-
text length and leading to suboptimal performance
in long sequences.

Our method falls within dynamic sparse atten-
tion, benefiting from the training-free advantages,
it can address the performance limitations encoun-
tered by previous methods.

3 Observation

In this section, we introduce the intrinsic cluster-
ing patterns that emerge within the attention dis-
tribution during decoding. We discuss how these
patterns can be leveraged for prompt cache com-
pression. Our findings are based on an analysis
of various contexts and the behavior of attention
mechanisms in LLMs.

3.1 Preliminaries

To structure our experimental analysis, we intro-
duce the following terminologies:

Prompt(prompt): User-provided input com-
posed of context prefix and observation window.

Context Prefix (pre): It’s part of the prompt,
which provides contextual information for current
conversation or task.

Observation Window (win): It’s the final part
of the prompt, typically containing the user’s query
in the task. This window is crucial for analyzing
the attention patterns within context prefix.

The definitions above are related as follows (£
denotes the length):

Ep'rompt = Epre + Ewin (1)

Observation Window Mask (M ,;,,): It’s the
mask that obscures the attention weights for subse-
quent softmax function in the observation window.

Feature Aggregation: Within the observation
window, we perform a column sum of the atten-
tion scores for the context prefix, facilitating the
observation of intrinsic attention clusters.

For each sequence, the feature aggregation pro-
cess can be expressed through Equation 2 to 5:

Wain = Qls = Luin 1K 0)

Wwin denotes the attention weights between the
prompt and observation window across all heads.
Wi = mask(Wayinl:s 5, —Luwin 3], Mwin) (3)
., denotes the attention weights masked by

Min because we only focus on the attention
weights of the context prefix.

A = softmax(W),,) 4)
Am

win
normalization of

denotes the attention scores after softmax

m.
win®

Z‘:»Crprompt -1

Z Agm[a ia : ﬁpre] (5)

i=—Luyin

P =

‘P denotes the aggregated column sum for the con-
text prefix within the observation window, which
reflects the intrinsic attention clustering patterns.
Hit Rate: The hit rate quantifies the effective-
ness of feature aggregation by measuring the prob-
ability that intrinsic attention clusters remain im-
portant during subsequent generation. It can be
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expressed through Equation 6 to 9:

1, ifP>40
Twin = 6
e 0, otherwise ©)
1, if Acyr >
Icur = ' o a (N

0, otherwise

A denotes the attention scores of the context pre-
fix for the current generated token. The threshold-
ing operation filters P and A, retaining positions
exceeding # and p, indicating significant attention
activations. We used § = be —4 and y = 5e — 5
(note that these are relatively large values due to
the softmax function over long sequences).

overlap = Zyin A Leyr (8)

The overlap between these significant activations
quantifies the consistency of the clusters.

2y > overlap
Z Icur

The hit rate H is then calculated as the ratio of
total overlap to total current significant activations,
measuring the attention clusters’ effectiveness in
emphasizing important contextual features.

All our observations were conducted on Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023).

€))

3.2 Clustering Universality Across Contexts

We conducted observations on sequences with
prompt lengths around 3k from long-document
question-answering datasets, including QMSum
(Zhong et al., 2021) and OpenReview (An et al.,
2024). Before decoding, we used the observation
window to aggregate attention features and filtered
out positions smaller than 6. We found that for
different prompts, intrinsic attention clustering pat-
terns universally appeared in context prefix across
attention heads, as shown in Figure 3.
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Figure 3: Intrinsic attention clusters in attention heads
exhibit universality across different prompts before de-
coding, where tokens with higher attention scores tend
to cluster together.

3.3 Clustering Consistency during Generation

We then explored whether intrinsic attention clus-
ters retain their significance during subsequent gen-
eration. Using samples from Ultrachat (Ding et al.,
2023) dataset, we filtered sequences with response
lengths over 512 and prompt lengths over 1000.
We calculated the average hit rate of the intrinsic
attention clusters during the generation of 512 to-
kens. As shown in Figure 4, the clusters maintain
consistency throughout the process, evidenced by
the high hit rate.
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Figure 4: The layer-wise average hit rate of intrinsic at-

tention clusters along token generation with input length
varies from 1k to 8k.

The clusters only consist of less than 50% of the prompt!

CEan R we—

Figure 5: The attention score sum of the context pre-
fix with length 2048 across all heads in a layer during
generation of 512 tokens. The ridges indicate that the
clusters consistently hold higher attention scores during
generation.

To further validate this, we summed the attention
scores of the context prefix across all heads dur-
ing generation. Figure 5 shows that, although the
clusters vary across different heads, they exhibit a
high degree of consistency within each head. Since
these clusters account for a significant proportion
of the attention scores, we heuristically assumed
that the context prefix can be greatly compressed
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based on the intrinsic attention clustering patterns
and designed an algorithm that leverages these pat-
terns to dynamically compress the prompt cache.

4 Method

In this section, we introduce ClusterAttn, a sim-
ple yet effective method for compressing prompt
cache leveraging intrinsic attention clustering af-
ter a full prefill, as shown in Figure 2. Compared
to full attention, it significantly reduces the KV
cache by retaining only the most relevant informa-
tion, decreasing memory usage and latency while
maintaining accuracy and improving throughput.

4.1 Aggregating Attention Features from the
Context Prefix to Form Clusters

In Section 3.1, based on the observed phenomena,
we proposed using the query of every prompt as
the observation window to aggregate attention fea-
tures from the context prefix and form intrinsic
attention clusters. This approach ensures context
awareness, laying a foundation for subsequent clus-
ter fitting. In this section, for each sample, we
use corresponding P obtained in Equation 5 as the
object for cluster fitting.

4.2 Density-Based Attention Clustering
Algorithm for Compressing Context Prefix

After feature aggregation, we need to compress
the context prefix based on the clustering patterns.
Since the intrinsic attention clusters are formed
based on attention scores, and unlike traditional
clustering of discrete data, these clusters are com-
posed of continuous tokens, we designed a density-
based attention clustering algorithm inspired by
DBSCAN (Ester et al., 1996) to fit the intrinsic
attention clusters, as shown in Algorithm 1.

Given L. as the context prefix size, L., as
the compression size, and L,,;, as the observation
window size, we define blksize and r in Line 2
and 5 respectively, corresponding to the minimal
points(minPts) and neighborhood size used in DB-
SCAN, where num_block and 6 are the hyperpa-
rameters to manage the granularity of the clustering.
Notably, different from the minimal points required
for each cluster in DBSCAN, we use blksize to
control the size and range for attention clusters.

According to the algorithm, we first perform max
pooling on P based on blksize to obtain the block-
wise maximum indices Z within each cluster range.
Then, we filter out indices with scores less than

Algorithm 1 Density-Based Attention Clustering.
Input: K, V, P, num_block, 0, Lyre, Lwin, Lep
Output: Compressed Context Prefix KV Cache
1: for Attention Head h in LLM do
blksize % > Cluster Range
P;,, L < maxpool(Pp, blksize, blksize)
Ty < {i| P;li] > 0} > 0 Filtering
T4 % > Neighborhood Size
I < gather(Z,Zy) + range(—r,7)
Ty « unique(clamp(Zg, 0, Lep — Luin))
T < topk(PrV, Ly — Luin — | Zo]])
Ip +— Iy U1k > Clusters’ Indices
10 Ky, Vi, K}{F V,LIF > Compressed KV
11: end for
12: return {K,V}

D AN L i

0 to obtain Zy. The clustering process is defined
as Line 6, where the gather operation obtains the
cluster centers and r controls the clustering neigh-

borhood. P,fU denotes the remaining attention af-
ter excluding the already selected attention clusters.
Notably, the unique and topk operations in Line 7
and 8 are intended to eliminate redundant indices
while collecting critical elements between cluster
gaps. Finally, we obtain the compressed context
prefix KV cache {K,V}. We use different 6 for
threshold filtering depending on the compression
size, as shown in Table 1. Thus, the optimal fit for
intrinsic attention clusters is primarily determined
by num_block, which dictates the granularity of
the size and the range of the clusters.

1024 2048 4096
2e-3  le-3 8e4

Compression Size

O(theta)

Table 1: Values of 6 under different compression sizes.

To select the most appropriate num_block, we
need to profile num_block for each dataset at each
compression size. To ensure the consistency and
stability of the attention distribution before and
after compression, we use the cosine similarity be-
tween the attention distribution at the correspond-
ing positions before and after compression during
decoding as the metric. Then, we evaluate the opti-
mal fit by measuring the average cosine similarity
across all heads for all samples. This is because,
although num_block is same for each dataset, the
formation of attention clusters for each sample and
head is adaptive when performing the algorithm.
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The final optimization objective is as follows:

arg raax (a"g [Zsample Pheat Lint cossim( A}y, AQF)]) (10)
Here, A}u” and A%F denote the attention distri-
bution at the corresponding positions before and
after compression when generating the i token. D
denotes the total number of generated tokens. For
each dataset, we select 20% samples and profile the
optimal num_block. It should be noted that there
is a trade-off with respect to num_block in our
experiments and a detailed analysis is lied in Ap-
pendix F. We choose the num_block resulting in
the highest average similarity as the optimal cluster-
ing fit. By applying the corresponding num_block
for each dataset, ClusterAttn is able to make tai-
lored cluster selection under fine granularity, allow-
ing for context-aware KV cache compression.

4.3 Concatenating Clusters with Observation
Window as Compressed Prompt Cache

After compressing the context prefix with the clus-
ter patterns, the last step is to combine the clusters
with the observation window to obtain the final
compressed KV cache for the prompt, like in Fig-
ure 2. This is because the clusters represent a
compression of the context prefix and do not in-
clude user’s query within the observation window,
which is crucial for the model’s responses. Addi-
tionally, previous studies (Xiao et al., 2024; Zhang
et al., 2023; Sun et al., 2024) have demonstrated
that recent tokens are vital for the quality of sub-
sequent generations, as they ensure the model’s
stability and fluency.

S Experiments

In this section, we evaluated the performance of
ClusterAttn across multiple models and various
tasks, comparing it with other state-of-the-art base-
lines to highlight the effectiveness of our proposed
method. Below are some experimental settings:

Baselines We compared ClusterAttn with the
latest sparse attention methods: StreaminglLLM
(Xiao et al., 2024) and H20 (Zhang et al., 2023),
which are all training-free. We followed the con-
figurations from their respective papers. For
StreamingLLLM, the initial four tokens remain un-
masked as attention sinks. For H20, we ensured the
same number of key tokens (heavy hitter tokens)
and recent tokens. We adopted the compression
sizes of 1024, 2048, and 4096 from their papers

and applied them to ClusterAttn. Besides, we used
FlashAttn (Dao et al., 2022) as the baseline for full
attention since ClusterAttn was implemented on it.

Models and Benchmarks We conducted our ex-
periments primarily on two models: LWM-text-
chat-1m (Liu et al., 2024a) and Mistral-7B-Instruct-
v0.2 (Jiang et al., 2023). To effectively evaluate
the models’ handling of different sequence lengths
and retrieval capability, we conducted the "Needle
in a Haystack" (Gkamradt, 2023) experiment on
LWM for ClusterAttn. To comprehensively assess
the models’ long-context understanding abilities,
we performed experiments using LongBench (Bai
et al., 2024), which includes 16 sub-tasks.

ClusterAttn’s Settings Before conducting the
experiments, we first selected 20% samples from
each dataset required for the experiments. We then
performed profiling at compression sizes of 1024,
2048, and 4096 to obtain the optimal num_block
for fitting intrinsic attention clusters. During exper-
iments, we directly used the optimal num_block
for inference to demonstrate the best performance
of our method. Unless otherwise specified, the
same num_block was used for each model across
each task and length.

Further experiments and ablation studies are
shown in Appendix. All our experiments were
conducted on a single A100 80GB GPU.

5.1 Evaluation on Intrinsic Attention Clusters
Fitting

Before testing the performance of ClusterAttn, we
first conducted experiments on the Qasper (Dasigi
et al., 2021) dataset to evaluate the fitting perfor-
mance of our density-based attention clustering
algorithm on the attention clusters. We compared
it with traditional K-means (MacQueen, 1967) and
DBSCAN (Ester et al., 1996). To ensure a fair
comparison, for prompts with length 3k, we set
the number of clusters for K-means to 8, and set
miniPts and neighborhood size for DBSCAN to
128 and 64, respectively. For our algorithm, we set
0, num_block and compression size to 2e-3, 8 and
1024, respectively.

Figure 6 shows the clustering performance of
different algorithms on a specific head (left) and
the average fitting rate across all heads in the LLM
(right). The high fitting rate demonstrates the ef-
fectiveness of our clustering algorithm, avoiding
the inefficiency of K-means in defining correlation
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Single-Document QA

Multi-Document QA

Summarization

Few-shot Learning

Model Method NurvQA Qasper MF-en HotpotQA  2WikiMQA  Musique | GovReport QMSum  MultiNews TREC TriviaQA  SAMSum
(F1 Score) (F1 Score) (F1 Score) | (F1 Score) (F1 Score)  (F1 Score) | (Rouge-L) (Rouge-L) (Rouge-L) | (Accuracy) (FI Score) (Rouge-L)

Full Attention 18.20 25.56 40.94 24.57 19.39 10.49 27.97 249 24.81 71.0 60.9 39.73

StreamingLLM: 4096 11.83 2245 18.57 16.32 9.15 7 18.54 21.74 23.93 67.5 58.86 37.69

H20: 4096 13.18 2481 20.02 16.86 9.74 72 25.74 23.25 23.82 71.0 61.05 40.32

LWMChat ClusterAttn: 1024 18.04 23.72 40.23 24.6 19.85 10.76 19.8 24.45 23.54 70.0 61.44 39.64

ClusterAttn: 2048 17.94 25.01 4141 24.5 19.39 11.33 21.62 2421 24.38 70.0 61.14 39.93

ClusterAttn: 4096 17.93 25.46 40.78 24.91 19.52 11.28 25.36 25.44 24.61 70.5 61.12 39.65

Full Attention 26.82 33.06 49.28 42.717 27.33 19.27 32.85 2423 27.06 71.0 86.23 42.98

StreamingLLM: 4096 20.47 27.64 45.55 37.87 20.74 12.47 25.77 20.86 23.93 66.5 79.85 39.63

H20: 4096 22.59 29.07 47.17 36.52 20.61 16.26 30.01 238 26.74 70.5 86.18 42.98

Mistral ClusterAttn: 1024 25.56 29.5 49.25 40.93 2574 19.45 25.92 23.83 26.13 69.5 86.53 42.10

ClusterAttn: 2048 25.88 3248 48.6 41.72 27.33 18.69 28.84 24.5 26.61 70.0 86.29 42.44

ClusterAttn: 4096 26.41 33.37 49.81 4235 27.96 18.79 30.78 24.23 27.1 71.0 86.26 43.04

Table 2: Evaluation of different KV cache compression methods across different LLMs on LongBench.
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Figure 6: Different algorithms for fitting the intrinsic
attention clusters on a specific head (left) and across
all heads (right). (IAC denotes the intrinsic attention
clusters.)

through mean in long-context scenarios, while be-
ing able to capture elements between cluster gaps
with greater granularity than DBSCAN.

5.2 [Evaluation on Long Context
Understanding

We conducted our experiments on LongBench (Bai
et al., 2024) for long context understanding abil-
ity. For each model, we tested the performance
of ClusterAttn at different compression sizes. As
shown in Table 2, with only 1024 tokens, the per-
formance drop across 12 different datasets using
ClusterAttn is negligible compared to full atten-
tion, with some tasks even outperforming it. For
LWM model, the average input length is 13,422;
for Mistral, it is 13,160. Thus, ClusterAttn achieves
an average compression rate of 92% with 1024 to-
kens, and 68% with 4096 tokens, with negligible
accuracy loss. We also compared ClusterAttn with
H20 (Zhang et al., 2023) and Streamingl.LM (Xiao
et al., 2024) on the LongBench datasets to further
demonstrate ClusterAttn’s performance. To ensure
a fair accuracy comparison, we set the compression
size of H20 and StreamingLLLM to 4096 tokens.
As shown in Table 2, ClusterAttn significantly out-
performs them. Even with KV cache compressed
to 1024 tokens, ClusterAttn on Mistral outperforms
H20 with 4096 tokens on 8 out of 12 tasks, and it

comprehensively outperforms StreamingLLLM.

5.3 Evaluation on Long Context Retrieval

To evaluate the retrieval capability and effective
context length of ClusterAttn, we applied it to the
LWM model for the "Needle in a Haystack" (Gkam-
radt, 2023) test. This test requires the model to
accurately retrieve a specific sentence ("Needle")
hidden in a random position within a long docu-
ment ("Haystack"). To rigorously assess Cluster-
Attn’s capability, we extended the document length
to 128k tokens, which is the maximum sequence
length a single A100-80GB GPU can handle when
using ClusterAttn with compression size 1024. Re-
sults in Figure 7 show that while full attention
leads to an out-of-memory error when the sequence
length reaches 40k, ClusterAttn can handle a maxi-
mum sequence length of 128k with retrieval accu-
racy still exceeding 90%. This remarkable result
highlights ClusterAttn’s potential to accurately pro-
cess details in extremely long input contexts with
a 128x compression rate, as well as its immediate
effectiveness in saving GPU memory.

e
o

11.0
22.0
33.0
44.0
56.0
67.0
78.0
89.0
100.0

Accuracy

Depth Percent(needle)

l0.0
Q %\

RO DS QS DS
ROX @“’ D‘Qme@ \'\'@ %% @’&'\@«”'

0,
CENS NN AU
Sequence Length(haystack)

Figure 7: Needle-in-a-Haystack test performance of
ClusterAttn on a single A100-80GB GPU. The x-axis
denotes the length of the sequence (the “haystack™);
the y-axis indicates the position that the “needle” (a
short sentence) is located within the sequence, from 1k
to 128k tokens. For example, 50% indicates that the
needle is placed in the middle of the sequence.
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5.4 Coherence Testing

To test the impact of ClusterAttn on the coherence
of the original model, we constructed a compre-
hensive and concise test set by extracting 50 x
4 data items at each length level from the test
sets of four long-context understanding datasets:
Qasper (Dasigi et al., 2021), MultiNew (Fabbri
et al., 2019), TREC (Hovy et al., 2001; Li and
Roth, 2002), and LCC (Mohler et al., 2016). These
datasets respectively represent the LLM’s capabil-
ities in question answering, summarization, few-
shot learning, and code completion. According
to LongBench (Bai et al., 2024) standards, these
data items are organized as question-answer pairs.
The questions and answers are human-written and
included in the datasets. Perplexity is calculated
only on the answer portions of the data to demon-
strate the model’s coherence in responding to user
requests. Table 3 shows the average perplexity of
ClusterAttn, H20, StreamingLLLLM, and full atten-
tion across different inputs and compression sizes.
The table reveals that ClusterAttn consistently ex-
hibits lower perplexity, indicating that our method
does not negatively impact the coherence of the
generated inference results. On the contrary, by re-
moving redundant information, it can even enhance
the coherence of the generated outputs.

‘ Perplexity
Model Method ‘1024 2048 4096
Full Attention 3.79 379 3.9
Mistral H20 394 390 3.85
StreamingLLM | 448 427 4.08
ClusterAttn 375 3.82 377
Full Attention | 4.52 4.52 4.52
LWM  H20 4.63 4.58 4.6
StreamingLLM | 4.79 472 4.63
ClusterAttn 449 452 451

Table 3: Average perplexity for four types of tasks
across different models and methods.

5.5 Efficiency

In the following experiments, we set the compres-
sion size of ClusterAttn and H20 to 1024 tokens
to better prove the performance of ClusterAttn. We
didn’t compare with StreamingLLLM here because
it performed poorly in previous experiments thus
has limited application in real-world scenarios. We
used samples of different lengths in "Needle in a
Haystack" (Gkamradt, 2023) as the inputs.

50
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Q) FlashAttn - Batch 4
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Figure 8: Throughput comparison of FlashAttn (full
attention) and ClusterAttn on various batch sizes. Com-
pared to FlashAttn, ClusterAttn improves throughput by
2.6 to 4.8 times.

Throughput Improvement We first tested the
throughput of the LWM model using ClusterAttn
under different batch sizes. The results shown in
Figure 8 lead to two main conclusions. First, as
the input length increases, the throughput of the
ClusterAttn-optimized model remains constant be-
cause the KV cache size is nearly fixed during infer-
ence, while FlashAttn (Dao, 2024) (full attention)
increases exponentially. Second, under same batch
size, ClusterAttn-optimized model can decode sig-
nificantly longer sequences. This demonstrates the
effectiveness of ClusterAttn in minimizing memory
consumption and enhancing efficiency.

‘ Memory (GB)
Model Method ‘ 4k 8k 16k 32k 64k 128k
FlashAttn 169 18.8 22.6 302 - -
Mistral H20 219 333 567 723 - -
ClusterAttn  17.1 18.3 21.1 264 - -
FlashAttn 35.1 40.7 51.8 739 OOM OOM
LWM  H20 457 587 758 OOM OOM OOM

ClusterAttn  31.7 329 35.6 415 519 742

Table 4: Peak memory comparison across different
methods and models. With 1024 tokens, ClusterAttn
reduces memory usage by 10%—-65%.

Peak Memory and Inference Latency We next
tested the peak memory usage and inference latency
of different methods as sequence length increases,
with batch size of 1.

Regarding memory usage (Table 4), for Mistral,
the maximum sequence length is set to 32k due to
its maximum sequence length limit. H20 reaches
its memory limit at 32k, consuming two to three
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Figure 9: Inference latency comparison across different
methods and models. With 1024 tokens, ClusterAttn
reduces latency by 12%-23%.

times more memory than FlashAttn and Cluster-
Attn, because it requires complete prefill and ad-
ditional overhead for generating dynamic masks.
For LWM, with a maximum sequence length of 1
million, H20 encounters OOM issues beyond 16k,
FlashAttn faces OOM beyond 32k, while Clus-
terAttn extends the sequence length to 128k, far
exceeding the limits of the other two methods.

In terms of inference latency (Figure 9), as
the sequence length increases, the latency reduc-
tion achieves by ClusterAttn gradually widens the
gap with FlashAttn and H20. When the sequence
length reaches 32k, ClusterAttn provides at least a
20% reduction in latency. These outstanding results
in both memory usage and latency highlight Clus-
terAttn’s significant potential to reduce inference
costs and improve inference quality.

6 Conclusion

We present a sparse attention method for prompt
cache compression based on intrinsic attention clus-
tering — ClusterAttn. It’s simple, effective, and
training-free, leveraging the attention clustering
patterns during the decode process. With only 1024
tokens, it can reduce memory usage by 10%—-65%,
resulting in a latency reduction of 12%-23% and a
throughput increase of 2.6—4.8 times, with nearly
no accuracy loss. Furthermore, it can handle up to
128k context on a single A100-80GB GPU, outper-
forming existing methods. ClusterAttn effectively
alleviates the computational and memory burdens
of processing large inputs, offering valuable in-
sights and tools for the community to better manage
the challenges of large-scale language modeling.

Ethical Considerations

In compliance with ethical considerations, we
emphasize that the entirety of our research re-
volves around open-source datasets, models, and

tools. Notably, we exclusively focus on improv-
ing model’s efficiency and mitigating memory con-
straints during inference and do not engage in any
commercial usage or ethical implications.

Limitations

Despite ClusterAttn’s advantages, its research
scope is primarily limited to the generative aspects
of models. This limitation means that if a model
inherently struggles with handling long contexts
or exhibits poor performance, ClusterAttn cannot
extend the model’s long-context capabilities. Ad-
ditionally, ClusterAttn’s design does not address
the decoding process, which still relies on standard
attention or FlashAttn. This limitation restricts its
ability to dynamically update the KV cache dur-
ing decoding, potentially leading to performance
bottlenecks if the output sequence is too long.

Acknowledgments

This work was supported in part by the National
Key R&D Program of China 2024 YFE(0200800,
the National Natural Science Foundation of China
under Grants (62101064, 62321001, 62471055,
U23B2001, 62171057, 62201072, 62071067),
the High-Quality Development Project of the
MIIT(2440STCZB2584), the Ministry of Educa-
tion and China Mobile Joint Fund (MCM20200202,
MCM20180101), the Fundamental Research Funds
for the Central Universities (2024PTB-004) and
the 2024 Education and Teaching Reform Project
Funding at Beijing University of Posts and
Telecommunications (2024YB17).

References

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury
Zemlyanskiy, Federico Lebrén, and Sumit Sanghai.
2023. GQA: training generalized multi-query trans-
former models from multi-head checkpoints. In Pro-
ceedings of the 2023 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2023,
Singapore, December 6-10, 2023, pages 4895-4901.
Association for Computational Linguistics.

Reza Yazdani Aminabadi, Samyam Rajbhandari, Am-
mar Ahmad Awan, Cheng Li, Du Li, Elton Zheng,
Olatunji Ruwase, Shaden Smith, Minjia Zhang, Jeff
Rasley, and Yuxiong He. 2022. Deepspeed- infer-
ence: Enabling efficient inference of transformer
models at unprecedented scale. In SC22: Interna-
tional Conference for High Performance Computing,
Networking, Storage and Analysis, Dallas, TX, USA,
November 13-18, 2022, pages 46:1-46:15. IEEE.

14459


https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.298
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051
https://doi.org/10.1109/SC41404.2022.00051

Chenxin An, Shansan Gong, Ming Zhong, Xingjian
Zhao, Mukai Li, Jun Zhang, Lingpeng Kong, and
Xipeng Qiu. 2024. L-eval: Instituting standardized
evaluation for long context language models. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), ACL 2024, Bangkok, Thailand, August 11-
16, 2024, pages 14388-14411. Association for Com-
putational Linguistics.

Sotiris Anagnostidis, Dario Pavllo, Luca Biggio,
Lorenzo Noci, Aurélien Lucchi, and Thomas Hof-
mann. 2023. Dynamic context pruning for efficient
and interpretable autoregressive transformers. In Ad-
vances in Neural Information Processing Systems 36:
Annual Conference on Neural Information Process-
ing Systems 2023, NeurlPS 2023, New Orleans, LA,
USA, December 10 - 16, 2023.

Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie Mil-
lican, David Silver, Slav Petrov, Melvin Johnson,
Ioannis Antonoglou, Julian Schrittwieser, Amelia
Glaese, Jilin Chen, Emily Pitler, Timothy P. Lilli-
crap, Angeliki Lazaridou, Orhan Firat, James Molloy,
Michael Isard, Paul Ronald Barham, Tom Henni-
gan, Benjamin Lee, Fabio Viola, Malcolm Reynolds,
Yuanzhong Xu, Ryan Doherty, Eli Collins, Clemens
Meyer, Eliza Rutherford, Erica Moreira, Kareem
Ayoub, Megha Goel, George Tucker, Enrique Pi-
queras, Maxim Krikun, Iain Barr, Nikolay Savinov,
Ivo Danihelka, Becca Roelofs, Anais White, Anders
Andreassen, Tamara von Glehn, Lakshman Yagati,
Mehran Kazemi, Lucas Gonzalez, Misha Khalman,
Jakub Sygnowski, and et al. 2023. Gemini: A fam-
ily of highly capable multimodal models. CoRR,
abs/2312.11805.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,

Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang,
and Juanzi Li. 2024. Longbench: A bilingual, multi-
task benchmark for long context understanding. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 3119-3137. Association for
Computational Linguistics.

Ramakrishna Bairi, Atharv Sonwane, Aditya Kanade,

Vageesh D. C., Arun Iyer, Suresh Parthasarathy, Sri-
ram K. Rajamani, Balasubramanyan Ashok, and
Shashank Shet. 2024. Codeplan: Repository-level
coding using llms and planning. Proc. ACM Softw.
Eng., 1(FSE):675-698.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.

Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,

14460

Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Rewon Child, Scott Gray, Alec Radford, and Ilya

Sutskever. 2019. Generating long sequences with
sparse transformers. CoRR, abs/1904.10509.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,

David Dohan, Xingyou Song, Andreea Gane, Tamds
Sarl6s, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In 9¢h Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Luciano Del Corro, Allie Del Giorno, Sahaj Agarwal,

Bin Yu, Ahmed Awadallah, and Subhabrata Mukher-
jee. 2023. Skipdecode: Autoregressive skip decoding
with batching and caching for efficient LLM infer-
ence. CoRR, abs/2307.02628.

Damai Dai, Chenggi Deng, Chenggang Zhao, R. X. Xu,

Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan
Huang, Fuli Luo, Chong Ruan, Zhifang Sui, and Wen-
feng Liang. 2024. Deepseekmoe: Towards ultimate
expert specialization in mixture-of-experts language
models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), ACL 2024, Bangkok, Thailand,
August 11-16, 2024, pages 1280—-1297. Association
for Computational Linguistics.

Tri Dao. 2024. Flashattention-2: Faster attention with

better parallelism and work partitioning. In The
Twelfth International Conference on Learning Rep-
resentations, ICLR 2024, Vienna, Austria, May 7-11,
2024. OpenReview.net.

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra,

and Christopher Ré. 2022. Flashattention: Fast and
memory-efficient exact attention with io-awareness.
In Advances in Neural Information Processing Sys-
tems 35: Annual Conference on Neural Information
Processing Systems 2022, NeurIPS 2022, New Or-
leans, LA, USA, November 28 - December 9, 2022.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan,

Noah A. Smith, and Matt Gardner. 2021. A dataset
of information-seeking questions and answers an-
chored in research papers. In Proceedings of the
2021 Conference of the North American Chapter of


https://aclanthology.org/2024.acl-long.776
https://aclanthology.org/2024.acl-long.776
http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/cdaac2a02c4fdcae77ba083b110efcc3-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2312.11805
https://doi.org/10.48550/ARXIV.2312.11805
https://aclanthology.org/2024.acl-long.172
https://aclanthology.org/2024.acl-long.172
https://doi.org/10.1145/3643757
https://doi.org/10.1145/3643757
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://openreview.net/forum?id=Ua6zuk0WRH
https://doi.org/10.48550/ARXIV.2307.02628
https://doi.org/10.48550/ARXIV.2307.02628
https://doi.org/10.48550/ARXIV.2307.02628
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://aclanthology.org/2024.acl-long.70
https://openreview.net/forum?id=mZn2Xyh9Ec
https://openreview.net/forum?id=mZn2Xyh9Ec
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/67d57c32e20fd0a7a302cb81d36e40d5-Abstract-Conference.html
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365
https://doi.org/10.18653/V1/2021.NAACL-MAIN.365

the Association for Computational Linguistics: Hu-
man Language Technologies, NAACL-HLT 2021, On-
line, June 6-11, 2021, pages 4599-4610. Association
for Computational Linguistics.

DeepSeek-Al, Aixin Liu, Bei Feng, Bin Wang, Bingx-
uan Wang, Bo Liu, Chenggang Zhao, Chengqi Deng,
Chong Ruan, Damai Dai, Daya Guo, Dejian Yang,
Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fuli
Luo, Guangbo Hao, Guanting Chen, Guowei Li,
Hao Zhang, Hanwei Xu, Hao Yang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li,
Hui Qu, J. L. Cai, Jian Liang, Jianzhong Guo, Ji-
aqi Ni, Jiashi Li, Jin Chen, Jingyang Yuan, Junjie
Qiu, Junxiao Song, Kai Dong, Kaige Gao, Kang
Guan, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia,
Liang Zhao, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qihao Zhu, Qinyu Chen, Qiushi Du,
R.J. Chen, R. L. Jin, Ruiqi Ge, Ruizhe Pan, Runxin
Xu, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan
Zhou, Shanhuang Chen, Shaoqing Wu, Shengfeng
Ye, Shirong Ma, Shiyu Wang, Shuang Zhou, Shuip-
ing Yu, Shunfeng Zhou, Size Zheng, Tao Wang, Tian
Pei, Tian Yuan, Tianyu Sun, W. L. Xiao, Wangding
Zeng, Wei An, Wen Liu, Wenfeng Liang, Wenjun
Gao, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xi-
anzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan Wang,
Xiaojin Shen, Xiaokang Chen, Xiaosha Chen, Xiao-
tao Nie, and Xiaowen Sun. 2024. Deepseek-v2: A
strong, economical, and efficient mixture-of-experts
language model. CoRR, abs/2405.04434.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke
Zettlemoyer. 2022. Gpt3.int8(): 8-bit matrix multi-
plication for transformers at scale. In Advances in
Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA,
November 28 - December 9, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. In Advances in Neural Information
Processing Systems 36: Annual Conference on Neu-
ral Information Processing Systems 2023, NeurlPS
2023, New Orleans, LA, USA, December 10 - 16,
2023.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers),
pages 4171-4186. Association for Computational
Linguistics.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin,
Shengding Hu, Zhiyuan Liu, Maosong Sun, and
Bowen Zhou. 2023. Enhancing chat language models
by scaling high-quality instructional conversations.

In Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2023, Singapore, December 6-10, 2023, pages 3029—
3051. Association for Computational Linguistics.

Martin Ester, Hans-Peter Kriegel, Jorg Sander, and
Xiaowei Xu. 1996. A density-based algorithm for
discovering clusters in large spatial databases with
noise. In Proceedings of the Second International
Conference on Knowledge Discovery and Data Min-
ing (KDD-96), Portland, Oregon, USA, pages 226—
231. AAAI Press.

Alexander R. Fabbri, Irene Li, Tianwei She, Suyi Li, and
Dragomir R. Radev. 2019. Multi-news: A large-scale
multi-document summarization dataset and abstrac-
tive hierarchical model. In Proceedings of the 57th
Conference of the Association for Computational Lin-
guistics, ACL 2019, Florence, Italy, July 28- August
2, 2019, Volume 1: Long Papers, pages 1074—1084.
Association for Computational Linguistics.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach.
Learn. Res., 23:120:1-120:39.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang,
Jiawei Han, and Jianfeng Gao. 2024. Model tells you
what to discard: Adaptive KV cache compression
for llms. In The Twelfth International Conference
on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net.

Gkamradt. 2023. Llmtest_needleinahaystack: Doing
simple retrieval from 1lm models. [Online; accessed
29-December-2023].

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Alek-
sander Wawer. 2019. Samsum corpus: A human-
annotated dialogue dataset for abstractive summa-
rization. CoRR, abs/1911.12237.

Albert Gu and Tri Dao. 2023. Mamba: Linear-time
sequence modeling with selective state spaces. CoRR,
abs/2312.00752.

Tae Jun Ham, Sungjun Jung, Seonghak Kim, Young H.
Oh, Yeonhong Park, Yoonho Song, Jung-Hun Park,
Sanghee Lee, Kyoung Park, Jac W. Lee, and Deog-

Kyoon Jeong. 2020. A3: Accelerating attention
mechanisms in neural networks with approximation.
In IEEE International Symposium on High Perfor-
mance Computer Architecture, HPCA 2020, San
Diego, CA, USA, February 22-26, 2020, pages 328—
341. IEEE.

Tae Jun Ham, Yejin Lee, Seong Hoon Seo, Soosung
Kim, Hyunji Choi, Sung Jun Jung, and Jae W. Lee.
2021. ELSA: hardware-software co-design for effi-
cient, lightweight self-attention mechanism in neural
networks. In 48th ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2021,
Virtual Event / Valencia, Spain, June 14-18, 2021,
pages 692-705. IEEE.

14461


https://doi.org/10.48550/ARXIV.2405.04434
https://doi.org/10.48550/ARXIV.2405.04434
https://doi.org/10.48550/ARXIV.2405.04434
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/c3ba4962c05c49636d4c6206a97e9c8a-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/1feb87871436031bdc0f2beaa62a049b-Abstract-Conference.html
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/N19-1423
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.183
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
http://www.aaai.org/Library/KDD/1996/kdd96-037.php
https://doi.org/10.18653/V1/P19-1102
https://doi.org/10.18653/V1/P19-1102
https://doi.org/10.18653/V1/P19-1102
http://jmlr.org/papers/v23/21-0998.html
http://jmlr.org/papers/v23/21-0998.html
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://openreview.net/forum?id=uNrFpDPMyo
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://arxiv.org/abs/1911.12237
https://arxiv.org/abs/1911.12237
https://arxiv.org/abs/1911.12237
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/HPCA47549.2020.00035
https://doi.org/10.1109/ISCA52012.2021.00060
https://doi.org/10.1109/ISCA52012.2021.00060
https://doi.org/10.1109/ISCA52012.2021.00060

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong,
Yu Chen, Heng Ji, and Sinong Wang. 2024. Lm-
infinite: Zero-shot extreme length generalization for
large language models. In Proceedings of the 2024
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies (Volume 1: Long Papers),
NAACL 2024, Mexico City, Mexico, June 16-21, 2024,
pages 3991-4008. Association for Computational
Linguistics.

Eduard H. Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research, HLT 2001, San Diego,
California, USA, March 18-21, 2001. Morgan Kauf-
mann.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang,
Ze Liu, Han Hu, Zilong Wang, Rafael Salas, Jithin
Jose, Prabhat Ram, HoYuen Chau, Peng Cheng, Fan
Yang, Mao Yang, and Yongqiang Xiong. 2023. Tutel:
Adaptive mixture-of-experts at scale. In Proceedings
of the Sixth Conference on Machine Learning and
Systems, MLSys 2023, Miami, FL, USA, June 4-8,
2023. mlsys.org.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Praneeth Kacham, Vahab Mirrokni, and Peilin Zhong.
2023. Polysketchformer:  Fast transformers
via sketches for polynomial kernels. CoRR,
abs/2310.01655.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. CoRR,
abs/2001.08361.

Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya.
2020. Reformer: The efficient transformer. In 8th
International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-
30, 2020. OpenReview.net.

Tomads Kocisky, Jonathan Schwarz, Phil Blunsom, Chris
Dyer, Karl Moritz Hermann, Gabor Melis, and Ed-
ward Grefenstette. 2018. The narrativeqa reading
comprehension challenge. Trans. Assoc. Comput.
Linguistics, 6:317-328.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. 2023. Efficient mem-
ory management for large language model serving
with pagedattention. In Proceedings of the 29th Sym-
posium on Operating Systems Principles, SOSP 2023,

Koblenz, Germany, October 23-26, 2023, pages 611-
626. ACM.

Juho Lee, Yoonho Lee, Jungtack Kim, Adam R. Ko-
siorek, Seungjin Choi, and Yee Whye Teh. 2019.
Set transformer: A framework for attention-based
permutation-invariant neural networks. In Proceed-
ings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 3744-3753. PMLR.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu,
Dehao Chen, Orhan Firat, Yanping Huang, Maxim
Krikun, Noam Shazeer, and Zhifeng Chen. 2021.
Gshard: Scaling giant models with conditional com-
putation and automatic sharding. In 9th International
Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net.

Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lian-
min Zheng, Joseph Gonzalez, Ion Stoica, Xuezhe Ma,
and Hao Zhang. 2023a. How long can context length
of open-source llms truly promise? In NeurIPS 2023
Workshop on Instruction Tuning and Instruction Fol-
lowing.

Xin Li and Dan Roth. 2002. Learning question classi-
fiers. In 19th International Conference on Computa-
tional Linguistics, COLING 2002, Howard Interna-
tional House and Academia Sinica, Taipei, Taiwan,
August 24 - September 1, 2002.

Yuhong Li, Tianle Cai, Yi Zhang, Deming Chen, and
Debadeepta Dey. 2023b. What makes convolutional
models great on long sequence modeling? In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5,
2023. OpenReview.net.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat
Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle Cali,
Patrick Lewis, and Deming Chen. 2024. Snapkv:
LLM knows what you are looking for before genera-
tion. In Advances in Neural Information Processing
Systems 38: Annual Conference on Neural Informa-
tion Processing Systems 2024, NeurIPS 2024, Van-
couver, BC, Canada, December 10 - 15, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-
Ming Chen, Wei-Chen Wang, Guangxuan Xiao,
Xingyu Dang, Chuang Gan, and Song Han. 2024.
AWQ: activation-aware weight quantization for on-
device LLM compression and acceleration. In Pro-
ceedings of the Seventh Annual Conference on Ma-
chine Learning and Systems, MLSys 2024, Santa
Clara, CA, USA, May 13-16, 2024. mlsys.org.

Bing Liu and Sahisnu Mazumder. 2021. Lifelong and
continual learning dialogue systems: Learning dur-
ing conversation. In Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, Thirty-Third
Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium

14462


https://doi.org/10.18653/V1/2024.NAACL-LONG.222
https://doi.org/10.18653/V1/2024.NAACL-LONG.222
https://doi.org/10.18653/V1/2024.NAACL-LONG.222
https://aclanthology.org/H01-1069/
https://aclanthology.org/H01-1069/
https://proceedings.mlsys.org/paper_files/paper/2023/hash/5616d34cf8ff73942cfd5aa922842556-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/5616d34cf8ff73942cfd5aa922842556-Abstract-mlsys2023.html
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.01655
https://doi.org/10.48550/ARXIV.2310.01655
https://arxiv.org/abs/2001.08361
https://openreview.net/forum?id=rkgNKkHtvB
https://doi.org/10.1162/TACL_A_00023
https://doi.org/10.1162/TACL_A_00023
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
http://proceedings.mlr.press/v97/lee19d.html
http://proceedings.mlr.press/v97/lee19d.html
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=qrwe7XHTmYb
https://openreview.net/forum?id=LywifFNXV5
https://openreview.net/forum?id=LywifFNXV5
https://aclanthology.org/C02-1150/
https://aclanthology.org/C02-1150/
https://openreview.net/forum?id=TGJSPbRpJX-
https://openreview.net/forum?id=TGJSPbRpJX-
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/28ab418242603e0f7323e54185d19bde-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://proceedings.mlsys.org/paper_files/paper/2024/hash/42a452cbafa9dd64e9ba4aa95cc1ef21-Abstract-Conference.html
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768
https://doi.org/10.1609/AAAI.V35I17.17768

on Educational Advances in Artificial Intelligence,
FEAAI 2021, Virtual Event, February 2-9, 2021, pages
15058-15063. AAAI Press.

Hao Liu, Wilson Yan, Matei Zaharia, and Pieter
Abbeel. 2024a. World model on million-length video
and language with blockwise ringattention. CoRR,
abs/2402.08268.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong,
Jianfei Cai, and Bohan Zhuang. 2024b. QLLM: accu-
rate and efficient low-bitwidth quantization for large
language models. In The Twelfth International Con-
ference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao
Wang, Victor Xie, Zhaozhuo Xu, Anastasios Kyril-
lidis, and Anshumali Shrivastava. 2023.  Scis-
sorhands: Exploiting the persistence of importance
hypothesis for LLM KV cache compression at test
time. In Advances in Neural Information Processing
Systems 36: Annual Conference on Neural Informa-
tion Processing Systems 2023, NeurIPS 2023, New
Orleans, LA, USA, December 10 - 16, 2023.

Ligiang Lu, Yicheng Jin, Hangrui Bi, Zizhang Luo,
Peng Li, Tao Wang, and Yun Liang. 2021. Sanger:
A co-design framework for enabling sparse attention
using reconfigurable architecture. In MICRO ’21:
54th Annual IEEE/ACM International Symposium on
Microarchitecture, Virtual Event, Greece, October
18-22, 2021, pages 977-991. ACM.

Xuezhe Ma, Xiang Kong, Sinong Wang, Chunting Zhou,
Jonathan May, Hao Ma, and Luke Zettlemoyer. 2021.
Luna: Linear unified nested attention. In Advances
in Neural Information Processing Systems 34: An-
nual Conference on Neural Information Processing
Systems 2021, NeurIPS 2021, December 6-14, 2021,
virtual, pages 2441-2453.

J. MacQueen. 1967. Some methods for classification
and analysis of multivariate observations.

Al Meta. 2024. Introducing meta llama 3: The most
capable openly available 1lm to date. Meta Al

Michael Mohler, Mary Brunson, Bryan Rink, and
Marc T. Tomlinson. 2016. Introducing the LCC
metaphor datasets. In Proceedings of the Tenth In-
ternational Conference on Language Resources and
Evaluation LREC 2016, PortoroZ, Slovenia, May 23-
28, 2016. European Language Resources Association
(ELRA).

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.

2022. Training language models to follow instruc-
tions with human feedback. In Advances in Neural
Information Processing Systems 35: Annual Confer-
ence on Neural Information Processing Systems 2022,
NeurIPS 2022, New Orleans, LA, USA, November 28
- December 9, 2022.

Matteo Pagliardini, Daniele Paliotta, Martin Jaggi, and
Francois Fleuret. 2023. Faster causal attention over
large sequences through sparse flash attention. CoRR,
abs/2306.01160.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Al-
balak, Samuel Arcadinho, Stella Biderman, Huangi
Cao, Xin Cheng, Michael Chung, Leon Derczyn-
ski, Xingjian Du, Matteo Grella, Kranthi Kiran GV,
Xuzheng He, Haowen Hou, Przemyslaw Kazienko,
Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hay-
den Lau, Jiaju Lin, Krishna Sri Ipsit Mantri, Ferdi-
nand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan
Zhang, Qinghua Zhou, Jian Zhu, and Rui-Jie Zhu.
2023. RWKYV: reinventing rnns for the transformer
era. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2023, Singapore, Decem-
ber 6-10, 2023, pages 14048-14077. Association for
Computational Linguistics.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Michael Poli, Stefano Massaroli, Eric Nguyen, Daniel Y.
Fu, Tri Dao, Stephen Baccus, Yoshua Bengio, Ste-
fano Ermon, and Christopher Ré. 2023. Hyena hier-
archy: Towards larger convolutional language mod-
els. In International Conference on Machine Learn-
ing, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learn-
ing Research, pages 28043-28078. PMLR.

Zheng Qu, Liu Liu, Fengbin Tu, Zhaodong Chen, Yufei
Ding, and Yuan Xie. 2022. DOTA: detect and omit
weak attentions for scalable transformer acceleration.
In ASPLOS ’22: 27th ACM International Confer-
ence on Architectural Support for Programming Lan-
guages and Operating Systems, Lausanne, Switzer-
land, 28 February 2022 - 4 March 2022, pages 14-26.
ACM.

Aurko Roy, Mohammad Saffar, Ashish Vaswani, and
David Grangier. 2021. Efficient content-based sparse
attention with routing transformers. Trans. Assoc.
Comput. Linguistics, 9:53-68.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. In
Advances in Neural Information Processing Systems
35: Annual Conference on Neural Information Pro-
cessing Systems 2022, NeurlPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022.

14463


https://doi.org/10.48550/ARXIV.2402.08268
https://doi.org/10.48550/ARXIV.2402.08268
https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=FIplmUWdm3
https://openreview.net/forum?id=FIplmUWdm3
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a452a7c6c463e4ae8fbdc614c6e983e6-Abstract-Conference.html
https://doi.org/10.1145/3466752.3480125
https://doi.org/10.1145/3466752.3480125
https://doi.org/10.1145/3466752.3480125
https://proceedings.neurips.cc/paper/2021/hash/14319d9cfc6123106878dc20b94fbaf3-Abstract.html
https://api.semanticscholar.org/CorpusID:6278891
https://api.semanticscholar.org/CorpusID:6278891
https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1156.html
http://www.lrec-conf.org/proceedings/lrec2016/summaries/1156.html
https://doi.org/10.48550/ARXIV.2303.08774
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b1efde53be364a73914f58805a001731-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2306.01160
https://doi.org/10.48550/ARXIV.2306.01160
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.936
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.936
https://openreview.net/forum?id=QtTKTdVrFBB
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html
https://proceedings.mlr.press/v202/poli23a.html
https://doi.org/10.1145/3503222.3507738
https://doi.org/10.1145/3503222.3507738
https://doi.org/10.1162/TACL_A_00353
https://doi.org/10.1162/TACL_A_00353
http://papers.nips.cc/paper_files/paper/2022/hash/6fac9e316a4ae75ea244ddcef1982c71-Abstract-Conference.html

Noam Shazeer. 2019. Fast transformer decoding: One
write-head is all you need. CoRR, abs/1911.02150.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan
Li, Max Ryabinin, Beidi Chen, Percy Liang, Christo-
pher Ré, Ion Stoica, and Ce Zhang. 2023. Flexgen:
High-throughput generative inference of large lan-
guage models with a single GPU. In International
Conference on Machine Learning, ICML 2023, 23-29
July 2023, Honolulu, Hawaii, USA, volume 202 of
Proceedings of Machine Learning Research, pages
31094-31116. PMLR.

Hanshi Sun, Zhuoming Chen, Xinyu Yang, Yuandong
Tian, and Beidi Chen. 2024. Triforce: Lossless accel-
eration of long sequence generation with hierarchical
speculative decoding. CoRR, abs/2404.11912.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yugqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023. Retentive network: A successor to
transformer for large language models. CoRR,
abs/2307.08621.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller,
Cynthia Gao, Vedanuj Goswami, Naman Goyal, An-
thony Hartshorn, Saghar Hosseini, Rui Hou, Hakan
Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa,
Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Di-
ana Liskovich, Yinghai Lu, Yuning Mao, Xavier Mar-
tinet, Todor Mihaylov, Pushkar Mishra, Igor Moly-
bog, Yixin Nie, Andrew Poulton, Jeremy Reizen-
stein, Rashi Rungta, Kalyan Saladi, Alan Schelten,
Ruan Silva, Eric Michael Smith, Ranjan Subrama-
nian, Xiaoqing Ellen Tan, Binh Tang, Ross Tay-
lor, Adina Williams, Jian Xiang Kuan, Puxin Xu,
Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurélien Ro-
driguez, Robert Stojnic, Sergey Edunov, and Thomas
Scialom. 2023b. Llama 2: Open foundation and
fine-tuned chat models. CoRR, abs/2307.09288.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-
cade token and head pruning. In IEEE International
Symposium on High-Performance Computer Archi-
tecture, HPCA 2021, Seoul, South Korea, February
27 - March 3, 2021, pages 97-110. IEEE.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang,
and Hao Ma. 2020. Linformer: Self-attention with
linear complexity. CoRR, abs/2006.04768.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed KV
cache for efficient inference of large language models.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, August
11-16, 2024, pages 11175-11188. Association for
Computational Linguistics.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2024. Efficient streaming lan-
guage models with attention sinks. In The Twelfth
International Conference on Learning Representa-
tions, ICLR 2024, Vienna, Austria, May 7-11, 2024.
OpenReview.net.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
taiién, Philip Pham, Anirudh Ravula, Qifan Wang,
Li Yang, and Amr Ahmed. 2020. Big bird: Trans-
formers for longer sequences. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong
Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark W. Barrett,
Zhangyang Wang, and Beidi Chen. 2023. H2O:
heavy-hitter oracle for efficient generative inference
of large language models. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia
Mutuma, Rahul Jha, Ahmed Hassan Awadallah, Asli
Celikyilmaz, Yang Liu, Xipeng Qiu, and Dragomir R.
Radev. 2021. Qmsum: A new benchmark for query-
based multi-domain meeting summarization. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2021, Online, June 6-11, 2021, pages 5905—
5921. Association for Computational Linguistics.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian J.
McAuley, Ke Xu, and Furu Wei. 2020. BERT loses
patience: Fast and robust inference with early exit.
In Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, virtual.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Ji-
aming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao
Dai, Xiao-Ping Zhang, Yuhan Dong, and Yu Wang.
2024. A survey on efficient inference for large lan-
guage models. CoRR, abs/2404.14294.

14464


https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/1911.02150
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://proceedings.mlr.press/v202/sheng23a.html
https://doi.org/10.48550/ARXIV.2404.11912
https://doi.org/10.48550/ARXIV.2404.11912
https://doi.org/10.48550/ARXIV.2404.11912
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.1109/HPCA51647.2021.00018
https://doi.org/10.1109/HPCA51647.2021.00018
https://doi.org/10.1109/HPCA51647.2021.00018
https://arxiv.org/abs/2006.04768
https://arxiv.org/abs/2006.04768
https://aclanthology.org/2024.acl-long.602
https://aclanthology.org/2024.acl-long.602
https://openreview.net/forum?id=NG7sS51zVF
https://openreview.net/forum?id=NG7sS51zVF
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c8512d142a2d849725f31a9a7a361ab9-Abstract.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6ceefa7b15572587b78ecfcebb2827f8-Abstract-Conference.html
https://doi.org/10.18653/V1/2021.NAACL-MAIN.472
https://doi.org/10.18653/V1/2021.NAACL-MAIN.472
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/d4dd111a4fd973394238aca5c05bebe3-Abstract.html
https://doi.org/10.48550/ARXIV.2404.14294
https://doi.org/10.48550/ARXIV.2404.14294

A Additional Related Work

Large Language Models (LLMs) are constrained by
considerable computational and memory require-
ments during inference, particularly in resource-
constrained environments. To mitigate these chal-
lenges, alone with sparse attention, a variety of ef-
ficient inference techniques have been developed.

For instance, dynamic inference methods (Zhou
et al., 2020; Corro et al., 2023; Schuster et al.,
2022; Wu and Tu, 2024), represented by mixture-
of-experts (MoE) (Fedus et al., 2022; Lepikhin
et al., 2021; Dai et al., 2024; Hwang et al., 2023;
DeepSeek-Al et al., 2024), adaptively select spe-
cific sub-structures of the model during the in-
ference process based on the input data, signifi-
cantly improving inference efficiency while keep-
ing model capacity.

Techniques like Multi-Query Attention (Ainslie
et al., 2023; Shazeer, 2019) and low-rank attentions
(DeepSeek-Al et al., 2024; Wang et al., 2020; Ma
etal., 2021; Lee et al., 2019) approximate the func-
tionality of traditional attention mechanisms but
with more efficient implementations.

Quantization (Lin et al., 2024; Dettmers et al.,
2023, 2022; Liu et al., 2024b) involves converting
the model’s weights and activations into a low bit-
width format, thereby reducing memory footprint
and computational intensity.

Alternative mechanisms have also been proposed
to replace traditional attention for long-sequence
modeling (Gu and Dao, 2023; Peng et al., 2023;
Sun et al., 2023; Li et al., 2023b; Kacham et al.,
2023; Peng et al., 2021; Choromanski et al., 2021;
Wang et al., 2020; Poli et al., 2023). However, these
new mechanisms often require weights different
from the original transformer, leading to significant
retraining costs for large language models.

Previous work has also introduced acceleration
frameworks for large language models (Aminabadi
et al., 2022; Sheng et al., 2023; Kwon et al., 2023)
and kernel-level optimizations (Dao et al., 2022;
Dao, 2024). These kernel and system optimizations
are orthogonal to our work and can be integrated
to further enhance efficiency.

B Extended Comparison with SnapKV

SnapKV (Li et al., 2024) is also a method for KV
cache compression that does not require training.
It discovered that each attention head in the model
consistently focuses on specific prompt features
during generation, and these features can also be

obtained through an observation window at the end
of the prompt. Based on this observation, SnapKV
automatically compresses the KV cache by select-
ing important KV positions for each attention head.

SnapKYV is very similar to our findings and so-
lution but differs in terms of observation window
and compression algorithm. First, ClusterAttn’s
observation window uses the user’s query at the
end of the input prompt as the observation window,
whereas SnapKV uses a fixed-length observation
window for all prompts. This approach may affect
SnapKV’s robustness in capturing task-relevant in-
formation from the context prefix and its adapt-
ability to different user queries. Second, SnapKV
employs a relatively simple pooling method to cap-
ture important information from the context pre-
fix, whereas ClusterAttn uses a more fine-grained
DBAC(Density-Based Attention Clustering) algo-
rithm. As a result, SnapKYV is likely to perform
worse after compression compared to ClusterAttn.

To comprehensively compare the performance
and accuracy of ClusterAttn and SnapKV, we con-
ducted experiments on the LongBench (Bai et al.,
2024) dataset using the Mistral (Jiang et al., 2023)
and LWM (Liu et al., 2024a) models. According
to the LongBench experimental results in Table 5,
ClusterAttn performed slightly better overall than
SnapKYV, but the difference was not significant. We
attribute this to the fact that the average length of
the LongBench dataset is still not at an ultra-long
level, making it difficult to create a clear perfor-
mance gap when both methods have strong infor-
mation extraction capabilities.
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Figure 10: Needle-in-a-Haystack test performance of
ClusterAttn on a single A100-80GB GPU. The x-axis
denotes the length of the sequence (the “haystack™);
the y-axis indicates the position that the “needle” (a
short sentence) is located within the sequence, from 1k
to 128k tokens. For example, 50% indicates that the
needle is placed in the middle of the sequence.

Therefore, we conducted a Needle-in-a-haystack
(Gkamradt, 2023) experiment on SnapKV using
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the LWM model (with a compression size of 1024).
The experimental results in Figure 10 indicate that
although SnapKV maintains good compression
ability as sequence length increases, its retrieval
accuracy shows a significant decline compared to
ClusterAttn. This demonstrates the robustness of
ClusterAttn’s performance, which benefits from the
use of a more fine-grained compression algorithm.

C Extended Results on LLaMA-3

We also extended ClusterAttn on LLaMA3-8B-
Instruct, we compared full attention, SnapKV (Li
et al., 2024), and ClusterAttn on the LongBench
(Bai et al., 2024) experiment, with the maximum
sequence length in the experiment set to match the
model’s maximum processing length (8192). The
experimental results in Table 6 show that Cluster-
Attn performed as expected, with both accuracy
and efficiency consistent with other models.

D Different Sparse Attention on
Preserving Contextual Integrity

In large language models (LLMs), information re-
trieval and generation rely on features with high
attention scores, supplemented by using inductive
heads to replicate the rest of the context. Therefore,
simply selecting top-ranked features may result in
retaining only partial details, leading to a loss of
information integrity. For instance, this type of
compression might cause an LLM to retrieve only
the country code of a phone number while fabri-
cating the rest. Our experiments also demonstrate
that selecting only the highest-weighted features is
insufficient. Such sparse selection can disrupt the
contextual integrity of features, reducing accuracy,
as shown in Table 7. In contrast, ClusterAttn per-
forms well on all tasks as each cluster represents a
continuous segment rather than a sparse selection,
preserving the contextual integrity. This approach
maintains the stability of attention scores in the
compressed KV cache during subsequent decoding,
comparable to full attention.

E LongEval

To further evaluate the long context retrieval capa-
bility of ClusterAttn, we alse used a modified ver-
sion of the LongEval-Lines benchmark (Li et al.,
2023a), which includes randomly generated pairs
and average scores. Compared to the "Needle in a
Haystack" (Gkamradt, 2023) test, LongEval-Lines
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StreamingLLM
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Sequence Length

Figure 11: Retrieval accuracy tests on LongEval.

presents a greater challenge as it involves identify-
ing key-value pairs within a noisy context with sim-
ilar formatting, whereas the relevant information in
the "Needle in a Haystack" test is more distinctly
separated from other context. We implemented this
task on the Mistral model with a compression size
of 1024, applying ClusterAttn, H20 (Zhang et al.,
2023), and StreaminglLLM (Xiao et al., 2024) re-
spectively. Our findings (Figure 11) indicate that
as the sequence length increases, ClusterAttn con-
sistently performs on par with full attention, while
H20 and StreamingLLLM show poorer results, with
H20 even encountering an OOM error when the se-
quence length exceeds 20k. This demonstrates that
preserving intrinsic attention clusters enables accu-
rate extraction of critical information in long con-
texts, significantly improving retrieval accuracy.

F Ablation Study

In Section 4.2, we mentioned our ClusterAttn
algorithm. There, two hyperparameters play a
crucial role in the cluster fitting process: 6 and
num_block. In the following sections, we will an-
alyze the impact of different 6 and num_block on
the quality of the intrinsic attention cluster fitting
on Mistral-7B-Instruct-v0.2 (Jiang et al., 2023).

F.1 The Impact of Theta Selection on Cluster
Fitting
We evaluated the selection of § for various tasks
at different compression sizes by measuring the
similarity between attention distributions at the cor-
responding positions before and after compression
during decoding. Based on the attention scores in
long contexts, we defined the range of § between
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Model Method Single-Document QA Multi-Document QA Summarization Few-shot Learning

NuvQA Qasper MF-en HotpotQA  2WikiMQA  Musique | GovReport QMSum  MultiNews TREC TriviaQA  SAMSum
(F1 Score) (F1 Score) (F1 Score) | (FI Score)  (FI Score)  (F1 Score) | (Rouge-L) (Rouge-L) (Rouge-L) | (Accuracy) (F1 Score) (Rouge-L)

Full Attention 18.20 25.56 40.94 24.57 19.39 10.49 27.97 249 24.81 71.0 60.9 39.73

SnapKV: 1024 18.02 23.72 40.22 24.61 19.84 10.74 19.79 24.44 23.51 70.0 61.41 39.62

SnapKV: 2048 17.92 24.99 41.38 24.48 19.38 11.33 21.6 2422 24.36 70.0 61.11 39.9

LWMChat SnapKV: 4096 17.90 25.44 40.76 24.90 19.53 11.27 25.34 2542 24.58 70.5 61.08 39.62

ClusterAttn: 1024 18.04 23.72 40.23 24.6 19.85 10.76 19.8 24.45 23.54 70.0 61.44 39.64

ClusterAttn: 2048 17.94 25.01 41.41 245 19.39 11.33 21.62 24.21 24.38 70.0 61.14 39.93

ClusterAttn: 4096 17.93 25.46 40.78 2491 19.52 11.28 25.36 25.44 24.61 70.5 61.12 39.65

Full Attention 26.82 33.06 49.28 42.77 27.33 19.27 32.85 24.23 27.06 71.0 86.23 42.98

SnapKV: 1024 25.54 29.51 49.23 40.91 25.71 19.42 25.88 23.81 26.1 69.5 86.49 42.08

SnapKV: 2048 25.87 3247 48.58 41.7 273 18.68 28.8 245 26.59 70.0 86.27 4245

Mistral SnapKV: 4096 26.41 33.36 49.8 42.33 27.94 18.77 30.76 242 27.08 71.0 86.23 43.01

ClusterAttn: 1024 25.56 29.5 49.25 40.93 25.74 19.45 25.92 23.83 26.13 69.5 86.53 42.10

ClusterAttn: 2048 25.88 3248 48.6 41.72 27.33 18.69 28.84 24.5 26.61 70.0 86.29 42.44

ClusterAttn: 4096 26.41 33.37 49.81 42.35 27.96 18.79 30.78 2423 27.1 71.0 86.26 43.04

Table 5: Evaluation of ClusterAttn and SnapKV across different LLMs on LongBench.

Task Attention LLaMA-3-8B-Instruct
Method 1024 ‘ 2048 ‘ 4096

Full Attention | 37.33 | 37.33  37.33

Single QA SnapKV 36.38 | 36.65 36.87
ClusterAttn | 36.94 | 36.95 36.93

Full Attention | 36.04 | 36.04 36.04

Multi QA SnapKV 3592 | 3598 35.96
ClusterAttn | 36.03 | 36.05 35.99

Full Attention | 26.83 | 26.83  26.83

Sum SnapKV 22.58 | 23.78  25.34
ClusterAttn | 22.54 | 24.14  25.58

Full Attention | 69.56 | 69.56  69.56

Few-shot SnapKV 69.34 | 69.41 69.33
ClusterAttn 69.68 | 69.55  69.62

Table 6: Average performance of ClusterAttn and
SnapKV on various tasks from LongBench. The results
show that across three different compression lengths,
ClusterAttn outperforms SnapKV in most cases and is
comparable to full attention.

le-4 and 8e-2. 6 influences the neighborhood size
during the clustering fitting process (such as e-
neighborhood in DBSCAN (Ester et al., 1996)),
as shown in Figure 13, as 6 increases, cosine simi-
larity initially rises gradually to the top but rapidly
decreases across compression sizes. This is be-
cause larger 6 filters out weaker, yet crucial, clus-
ters, leading to poorer fitting quality, while overly
small 6 will include irrelevant tokens. Notably,
for each compression size, we selected the first 0
where cosine similarity declines, balancing detailed
cluster selection and information preservation.

F.2 The Impact of BlockNum Selection on
Cluster Fitting

To evaluate the impact of num_block on fitting
quality, we fixed the corresponding 6 for each com-
pression size and measured the similarity between
attention distributions at the corresponding posi-
tions before and after compression during decod-
ing across different tasks (Figure 13). We tested

Task Attention Mistral-7B-Instruct-v(.2
Method 1024 ‘ 2048 ‘ 4096
Full Attention | 2.75 | 2.75 2.75
H20 2.89 | 3.18 3.46
PCount = StreamingLLM | 2.44 | 2.57 2.62
TopK 273 | 2.85 2.83
ClusterAttn 298 | 3.09 2.73
Full Attention | 86.98 | 86.98 86.98
H20 85.45 | 87.12 86.38
PRe  StreamingLLM | 78.08 | 82.56 83.77
TopK 81.18 | 82.47 81.56
ClusterAttn 88.56 | 87.43 86.18
Full Attention | 55.51 | 55.51 55.51
H20 54.38 | 55.47 53.72
Lcc StreamingLLM | 50.23 | 52.24 53.01
TopK 53.38 | 53.78 54.37
ClusterAttn 55.65 | 55.93 55.62
Full Attention | 52.88 | 52.88 52.88
H20 50.74 | 52.24 51.1
RB-P  StreamingLLM | 47.32 | 49.57 50.11
TopK 51.29 | 51.12 52.45
ClusterAttn 51.87 | 52.01 52.65

Table 7: Performance of different sparse attention on var-
ious tasks. PCount and PRe represent retrieval-related
tasks, while Lcc and RB-P are related to code comple-
tion tasks. These four datasets are from LongBench
(Bai et al., 2024). The results show that across three
different compression lengths, ClusterAttn significantly
outperforms the other three baselines in most cases and
is comparable to full attention.

num_block values ranging from 1 to 32, ensuring
blksize were appropriate for the compression size.

Results show that cosine similarity peaks at a
specific num_block value for each task. This is be-
cause that smaller blksize may overfit to single to-
kens, limiting generalization, while larger blksize
may dilute high-score tokens with low-score ones,
resulting in reduced differentiation among clusters.
Larger blksize also reduce fitting flexibility, con-
straining diversity within a fixed compression size.
With the optimal num_block, ClusterAttn effec-
tively captures crucial attention clusters, adapting
to context variability and enabling context-aware
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Qasper | HotpotQA | GovReport TREC
8 8 16 10
NtrvQA | 2WikiMQA | QMSum | TriviaQA
8 10 16 10
MF-en Musique MultiNews | SAMSum
8 24 18 10
PCount PRe Lce RB-P
10 12 10 16
LongEval
12

Table 8: The num_block to obtain the optimal cluster
fitting for all experiments on Mistral-7B-Instruct-v0.2.

Qasper | HotpotQA | GovReport TREC
8 10 18 8
NtrvQA | 2WikiMQA | QMSum | TriviaQA
10 10 18 10
MF-en Musique MultiNews | SAMSum
8 20 24 8
PCount PRe Lce RB-P
10 12 10 18

Needle-in-a-Haystack
10

Table 9: The num_block to obtain the optimal cluster
fitting for all experiments on LWM-text-chat-1m.

compression in the KV cache. Table 8 and Table 9
reveal the best num_block to fit the intrinsic atten-
tion clusters for all our experiments after profiling.
Besides, we also show the profiling time required
to obtain the optimal num_block for all tasks in
LongBench as in Table 10 and Table 11. It can be
seen that ClusterAttn only requires a small number
of samples and just a few hours to get the opti-
mal num_block for each dataset, demonstrating
the efficiency and practicality of ClusterAttn.

F.3 ClusterAttn v.s. N-gram-based Attention
Clustering

The intrinsic attention clustering is quite straight-
forward as a word has been tokenized to n-gram
tokens. Thus, pivotal information naturally clus-
ters among these n-gram tokens. To better show
the effectiveness of our proposed Density-Based
Attention Clustering Algorithm, we conducted the
comparison between ClusterAttn and a simple n-
gram-based Attention Clustering Algorithm here.
To implement the n-gram-based Attention Clus-
tering Algorithm, we first use the observation win-
dow for feature aggregation like ClusterAttn. After
aggregation, we select important positions based
on the prefix attention sum in a descending order

Qasper HotpotQA GovReport TREC
0.49h,0.5h,0.56h | 0.8h,0.79h,0.78h | 4.12h,4.13h,4,38h | 0.92h,0.92h,0.95h
NtrvQA 2WikiMQA QMSum TriviaQA
1.42h,1.44h,1.55h | 0.48h,0.51h,0.52h | 1.46h,1.55h,2.06h | 0.76h,0.77h,0.84h
MF-en Musique MultiNews SAMSum
0.64h,0.68h,0.72h | 0.95h,1.03h,1.01h | 4.2h,4.48h,4.64h | 0.8h,0.81h,0.93h

Table 10: The profiling time for all datasets in Long-
Bench on Mistral-7B-Instruct-v0.2. From left to right,
the compression sizes are 1024, 2048, 4096.

Qasper HotpotQA GovReport TREC
0.43h,0.43h,0.45h | 0.77h,0.77h,0.79h 4.1h,4.1h,4,4h 0.34h,0.35h,0.38h
NtrvQA 2WikiMQA QMSum TriviaQA

1.97h,1.98h,2h | 0.45h,0.46h,0.48h | 0.97h,1h,1.05h | 0.63h,0.65h,0.66h
MF-en Musique MultiNews SAMSum
0.54h,0.54h,0.57h | 0.92h,0.92h,0.94h | 1.43h,1.51h,1.46h | 0.66h,0.68h,0.68h

Table 11: The profiling time for all datasets in Long-
Bench on LWM-text-chat-1m. From left to right, the
compression sizes are 1024, 2048, 4096.

and perform n-gram-based attention clustering iter-
atively until we reach the pre-set compression size.
Specifically, we first (1) cluster and retain each po-
sition and its surrounding tokens that belong to the
same word or phrase. Then, (2) for the current po-
sition, retain the n-1 neighboring clusters obtained
from step (1) that are adjacent to the already clus-
tered word or phrase, until the total compression
length reaches the set compression size.

We still chose to compare the n-gram-based at-
tention clustering algorithm and our density-based
attention clustering algorithm on LongBench (Bai
et al., 2024) using the LWM (Liu et al., 2024a)
model, with the compression size set to 1024. From
the results in Table 12, the n-gram-based attention
clustering algorithm achieved its best performance
at 2-gram (although still showing some gap com-
pared to ClusterAttn). Our analysis is as follows:

Overall, the n-gram-based attention clustering
focuses more on clustering based on the physical
proximity of words and phrases, rather than under-
standing the semantics of the context (an important
evaluation criterion for the effectiveness of com-
pression algorithms). This results in clusters that
are discrete, lacking semantic continuity, which in
turn undermines the integrity of contextual infor-
mation to some extent, and cannot guarantee the
stability of the attention distribution in subsequent
generation stages.

At the same time, we observed that the overall
performance first increased from 1-gram to 2-gram
and then decreased. Our understanding of this is
that, similar to the effect of num_block on the
clustering range in ClusterAttn, the value of n in

14468



Task Attention | LWM
Method 1024

1-gram 25.71

2-gram 26.83
Single QA 3-gram 25.1
4-gram 23.31

ClusterAttn | 27.32

1-gram 16.73

2-gram 17.97

Multi QA 3-gram 16.47
4-gram 16.28

ClusterAttn | 18.40

1-gram 21.23

2-gram 21.59

Sum 3-gram 21.11

4-gram 20.72

ClusterAttn | 22.59

1-gram 55.77

2-gram 56.33

Few-shot 3-gram 55.68
4-gram 55.17

ClusterAttn | 57.01

Table 12: Average performance of ClusterAttn and the
n-gram attention clustering algorithm on various tasks
from LongBench.

n-gram also determines the size of the clustering
range. Smaller values of n may result in clusters
that are too dispersed, while larger values may in-
clude more redundant information, both of which
lead to worse generation results after compression.

G Visualization of the BlockNum on
Head-level Cluster Fitting

Additionally, to prove that the obtained optimal
num_block can achieve a relatively suitable clus-
ter fit for each head, we presented the average co-
sine similarity for different num_block at the same
compression size across attention heads. Taking
the Qasper (Dasigi et al., 2021) dataset at com-
pression size of 1024 as an example, as is shown
in Figure 12, the best fit occurs when num_block
equals 8. It can be seen that the overall similarity is
higher when num_block is 8 compared to the oth-
ers, further highlighting our method’s capability
to refine and apply context-aware compression to
the KV cache for each head.

H Visualization of Text Generation

We provide visualization of generation examples
from narrativeqa (Kocisky et al., 2018), qasper
(Dasigi et al., 2021) and samsum (Gliwa et al.,
2019) datasets on Mistral-7B-Instruct-v0.2, as
shown in Table 13, Table 14 and Table 15. Results
are compared between ground truth, ClusterAttn
with compression size 1024, 2048, 4096 and the

num_block 4 num_block 12

1.00

4

0.98

8

g ey

0.96

0.94

32 28 24 20 16 12

4 8 12 16 20 24 28 32
Head ID

0 4 8 12 16 20 24 28 32
Head ID

num_block 8 100

0.98

32 28 24 20 16 12 8 4

0 4 8 12 16 20 24 28 32
Head ID

Figure 12: The average cosine similarity across all
heads under different num_block with compression
size 1024.

full attention.
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Figure 13: The average cosine similarity of § and num_block under all compression sizes for LongBench.
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NarrativeQA
You are given a story, which can be either a novel or a movie
script, and a question. Answer the question asconcisely as you can
, using a single phrase if possible. Do not provide any explanation.
Story: Transcribed from the 1915 Martin Secker edition
by David Price, email ccx074 @pglaf.org [Picture: Book cover]
THE COXON FUND BY HENRY JAMES [Picture: Decorative
graphic] * * * * * LONDON: MARTIN SECKER NUMBER FIVE
JOHN STREET ADELPHI * * * * * This edition first published
Context 1915 The text follows that of the Definitive Edition * * * * * |
“THEY’VE got him for life!” I said to myself that evening on my
way back to the station;

Now, answer the question based on the story as concisely as you
can, using a single phrase if possible. Do not provide any
explanation.

Question: What is Saltram’s living situation?

Answer:

Ground Truth He is a guest in the home of the Mulvilles.

ClusterAttn 1024 | Saltram is an inmate at the Mulvilles’ house.

Saltram is an inmate and doesn’t dress, but he keeps dinner on at

ClusterAttn 2048 the Mulvilles’.
ClusterAttn 4096 | Saltram is an inmate at the Mulvilles’ and doesn’t dress for dinner.
Full Attention Saltram is an inmate at the Mulvilles’ house.

Table 13: Visualization of generation examples from narrativeqa dataset on Mistral-7B-Instruct-v0.2. Results are
compared between ground truth, ClusterAttn with compression size 1024, 2048, 4096 and the full attention.
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Qasper
Answer the question based on the given passages. Only give me the
answer and do not output any other words.
The following are given passages.
INTRODUCTION The idea of language identification is to classify
a given audio signal into a particular class using a classification
algorithm. Commonly language identification task was done using
i-vector systems [1]. A very well known approach for language
identification proposed by N. Dahek et al. [1] uses the GMM-UBM
model to obtain utterance level features called i-vectors.

Context

Answer the question based on the given passages. Only give me the
answer and do not output any other words.

Question: What is the GhostVLAD approach?

Answer:

extension of the NetVLAD, adds Ghost clusters along with the
NetVLAD clusters

The GhostVLAD approach is an extension of the NetVLAD
approach for face recognition, which adds Ghost clusters to map
any noisy or irrelevant content into ghost clusters and are not
included during the feature aggregation stage.

The GhostVLAD approach is an extension of the NetVLAD
approach for face recognition, which adds Ghost clusters to map
any noisy or irrelevant content and assigns less weights to them
during feature aggregation.

The GhostVLAD approach is an extension of the NetVLAD
approach for face recognition, which adds Ghost clusters to map
any noisy or irrelevant content into ghost clusters and are not
included during the feature aggregation stage.

The GhostVLAD approach is an extension of the NetVLAD
approach for face recognition, which adds Ghost clusters to map
any noisy or irrelevant content into ghost clusters and are not
included during the feature aggregation stage.

Ground Truth

ClusterAttn 1024

ClusterAttn 2048

ClusterAttn 4096

Full Attention

Table 14: Visualization of generation examples from qasper dataset on Mistral-7B-Instruct-v0.2. Results are
compared between ground truth, ClusterAttn with compression size 1024, 2048, 4096 and the full attention.

14472



SAMSum
Answer the question based on the given passage. Only give me the
answer and do not output any other words. The following are some
examples.
Dialogue: Caron: are you getting the last c/s message? Rob: can
you? Caron: yes ok Rob: I'm tied up Caron: that was good.. they
wanted referrals for people top drove their food bank vans after they

Context have done one of our courses Rob: I dont understand? Caron: they
thought we were a training school and had a list of trained people
looking for work Rob: oh??

Dialogue: Meg: still at school? Ann: i have extra math classes Meg:
so when can 1 meet you? Ann: 1 will be home at 7 Summary:

Ground Truth Ann is still at school. She will be home at 7 so she can meet Meg
then.

ClusterAttn 1024 hMoerielsa f;kmg Ann when she can meet her, Ann tells her she will be

ClusterAttn 2048 | Meg is asking Ann when she can meet her. Ann will be home at 7.
ClusterAttn 4096 | Meg is asking Ann when she can meet her. Ann will be home at 7.
Full Attention Meg is asking Ann when she can meet her. Ann will be home at 7.

Table 15: Visualization of generation examples from samsum dataset on Mistral-7B-Instruct-v0.2. Results are
compared between ground truth, ClusterAttn with compression size 1024, 2048, 4096 and the full attention.
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