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Abstract

Argumentation Mining (AM) aims to extract
argumentative structures from texts by identify-
ing argumentation components (ACs) and their
argumentative relations (ARs). While previous
works focus on representation learning to en-
code ACs and AC pairs, they fail to explicitly
model the underlying reasoning patterns of AM,
resulting in limited interpretability. This paper
proposes a novel First-Order Logic reasoning
framework for AM (FOL-AM), designed to ex-
plicitly capture logical reasoning paths within
argumentative texts. By interpreting multiple
AM subtasks as a unified relation query task
modeled using FOL rules, FOL-AM facilitates
multi-hop relational reasoning and enhances in-
terpretability. The framework supports two flex-
ible implementations: a fine-tuned approach to
leverage task-specific learning, and a prompt-
based method utilizing large language models
to harness their generalization capabilities. Ex-
tensive experiments on two AM benchmarks
demonstrate that FOL-AM outperforms strong
baselines while significantly improving explain-
ability.

1 Introduction

Argumentation Mining (AM) focuses on ex-
tracting argumentation structures from texts,
which has garnered significant attention in recent
years (Lawrence and Reed, 2019; Schaefer and
Stede, 2021; Vecchi et al., 2021). AM enables au-
tomation of human argumentation logic and has
been shown to provide support across various do-
mains, such as decision-making (Vassiliades et al.,
2021; Walker et al., 2018), writing support (Wamb-
sganss and Rietsche, 2019; Wambsganss et al.,
2020), and argument generation (Khatib et al.,
2021; Hua et al., 2019; Slonim et al., 2021).

Given an argumentative text, an Argumentation
Mining (AM) system must identify argumentation
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⚫ ARC example: 
1

Ground Truth:

[The government should increase taxes on 

tobacco]AC1. According to statistics, [taxes 

account for over 50% of commodity prices]AC2. 

[Taxation will increase the consumption cost of 

tobacco]AC3, [but high prices can effectively 

suppress the willingness to purchase tobacco]AC4. 

[Although increasing taxes is negative for 

consumers ]AC5.

PITA Predication: 

[The government should increase taxes on 

tobacco]AC1  …

[but high prices can effectively suppress the 

willingness to purchase tobacco]AC4. [Although 

increasing taxes is negative for consumers ]AC5.

𝒓𝟏 
= Promotion

𝒓𝟐 = Entailment

FOL-AM Predication: 

Promotion(AC1,AC4)     Entailment(AC4,AC5)

Support(AC1,AC5)

Attack(AC1,AC5)

Support(AC1,AC5)

?(AC1,AC5)

Figure 1: Illustration of ARC subtask, comparing the
results of PITA (previous state-of-the-art model) and
FOL-AM (ours).

components (ACs) and their corresponding argu-
mentative relations (ARs). AM generally consists
of three key subtasks (Morio et al., 2022a; Stab
and Gurevych, 2017a): (i) Argumentation Com-
ponent Segmentation (ACS), which identifies and
extracts the boundaries of ACs within the input
text; (ii) Argumentation Component Type Clas-
sification (ACTC), which categorizes ACs into
predefined types (e.g., Claim and Premise); and
(iii) Argumentative Relation Classification (ARC),
which determines the type of relation (e.g., Sup-
port or Attack) between pairs of ACs. Following
previous works (Potash et al., 2017a; Kuribayashi
et al., 2019a), we assume that the ACS step has
already been performed, meaning that ACs are
pre-segmented. Thus, we focus on addressing the
ACTC and ARC subtasks.

Previous works (Kuribayashi et al., 2019b; Bao
et al., 2021a; Morio et al., 2022b; Sun et al., 2024)
primarily focus on representation learning to en-
code ACs and AC pairs for AM. For instance,

14133



Kuribayashi et al. (2019b) enhances AC represen-
tations using discourse markers, while Bao et al.
(2021a) employs a transition-based network for AC
and AC pair modeling. Morio et al. (2022b) lever-
ages biaffine functions to encode relational repre-
sentations, and Sun et al. (2024) incorporates task
interactions into AC and AC pair representations.
However, these methods fail to explicitly model
the reasoning patterns underlying AM, potentially
leading to sub-optimal performance. Moreover,
they lack interpretability, as they rely on black-box
neural networks.

For example, as shown in Figure 1, the state-
of-the-art (SOTA) model PITA misclassifies the
relation between AC1 and AC5 as Attack due to
their shared contextual cue increase taxes, whereas
AC5 actually expresses a negative stance toward the
topic. In contrast, humans can deduce the correct
relation using logical reasoning, recognizing that
“if AC1 promotes AC4, and AC4 entails AC5, then
AC1 and AC5 are in a Support relation.”

In this paper, we propose a novel first-order logic
reasoning framework for multi-task AM (FOL-
AM). As indicated in Figure 1, our method aligns
with human reasoning by introducing interpretable
FOL rules derived from the argumentative text for
AM. For example, we may use the following logic
rule to identify the relation between AC pair 𝐴𝐶1
and 𝐴𝐶5 as “Support”: Support(AC1, AC5) ←
Promotion 1(AC1, AC4) ∧ Entailment(AC4, AC5).
This logic reasoning framework has two clear ben-
efits over previous approaches: First, it naturally
captures multi-hop relations among ACs owing to
the compositional structure of the reasoning chain.
Second, it improves interpretability as the reason-
ing processes are visible.

Specifically, we uniformly transform ACTC and
ARC subtasks as relation query 𝑞(𝑥1, 𝑥𝐿+1) asso-
ciated with an AC pair (𝑥1, 𝑥𝐿+1) within the argu-
mentative text. The query is modeled as the FOL
rule to conduct logical deduction: 𝑞(𝑥1, 𝑥𝐿+1) ←
𝑟1(𝑥1, 𝑥2) ∧ · · · ∧ 𝑟𝐿 (𝑥𝐿 , 𝑥𝐿+1). The body of the
rule (on the left) is formed by attentively select-
ing proper ACs 𝑥𝑖 and predicates 𝑟𝑖 upon given
argumentative text. We implement the FOL-AM
framework in two settings: a fine-tuned method and
a prompt-based method using LLMs. Intuitively,
the former method can learn the nuanced patterns
specific to the AM task directly from the dataset,

1These phrases serve as human-interpretable descriptions
of the abstract logical predicates induced via LLM prompting,
as described in Section 3.3.

while the latter can leverage the remarkable per-
formance of the LLMs, which is supposed to have
better generalization in various corpora.

In summary, our contributions are as follows: (i)
We introduce the first FOL-based reasoning frame-
work for multi-task AM; (ii) We propose a unified
FOL rule-based approach to model reasoning pat-
terns in AM; (iii) We implement both fine-tuned
and LLM prompt-based methods, demonstrating
the flexibility of our framework; (iv) Extensive
experiments on two AM datasets showcase the su-
periority of FOL-AM.

2 Background

Task Definition Building on previous
works (Potash et al., 2017a; Morio et al.,
2020a), we assume that the ACS subtask
has been completed, meaning the spans of
ACs are given. Given an argumentative text
𝑊 = {𝑤1, 𝑤2, · · · , 𝑤𝑛} consisting of 𝑛 tokens
and 𝑚 ACs 𝑋 = {𝑥1, 𝑥2, · · · , 𝑥𝑚}, with the start
and end word indexes (𝑏𝑖 , 𝑒𝑖) of each AC 𝑥𝑖, the
objective is twofold: first, to classify each AC’s
type 𝑦𝑖 ∈ 𝑌ACTC (e.g., Claim or Premise), and
second, to determine the argumentative relation
(AR) type 𝑦 (𝑖, 𝑗 ) ∈ 𝑌ARC (e.g., Support, Attack, or
No-Relation) between two ACs 𝑥𝑖 and 𝑥 𝑗 .

FOL Rule In this work, we define a 𝐿-hop FOL
rule that has the conjunctive form as follows:

𝑞(𝑎1, 𝑎𝐿+1) ← 𝑟1 (𝑎1, 𝑎2) ∧ 𝑟2 (𝑎2, 𝑎3) · · · ∧ 𝑟𝐿 (𝑎𝐿 , 𝑎𝐿+1)
(1)

where 𝑎𝑖 denotes an argument, 𝑟𝑖 denotes a pred-
icate, i.e., a relation between 𝑎𝑖 and 𝑎𝑖+1. Each
𝑟𝑖 (𝑎𝑖 , 𝑎𝑖+1) is a logic atom and an atom is com-
posed of a predicate 𝑟𝑖 and its arguments 𝑎𝑖 and
𝑎𝑖+1. The left side of← represents the head atom,
while the right side constitutes a rule body. 𝐿 de-
notes the number of predicates in the rule body. In
this way, the body rule suggests a reasoning path to
deduce the relation query 𝑞(𝑎1, 𝑎𝐿+1) in the head
atom.

The ACTC and ARC have different task objec-
tives that hinder the direct incorporation of FOL
rules into a multi-task AM. Concretely, ACTC clas-
sifies individual ACs, while ARC predicts the re-
lation type between AC pairs. To bridge the gap
between multi-task AM and FOL rule, we refor-
mulate the ACTC and ARC subtasks into a unified
relation query task driven by the FOL rule. For
ACTC, we define the relation query 𝑞(𝑥𝑖 , 𝑥𝑊 ) as
the head atom of a FOL rule that predicts the AC
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type 𝑦𝑥𝑖 of the AC 𝑥𝑖 . Similarly, for ARC, the rela-
tion query 𝑞(𝑥𝑖 , 𝑥 𝑗) is defined as the head atom of a
FOL rule that predicts the AR type 𝑦 (𝑥𝑖 ,𝑥 𝑗 ) for AC
pair (𝑥𝑖 , 𝑥 𝑗). Here, we introduce the argumentative
text input 𝑊 as a special AC 𝑥𝑊 . This is because
the type of an AC is determined by its context and
its relations with other ACs (Stab and Gurevych,
2014).

3 Methodologies

We propose FOL-AM, a First-Order Logic (FOL)
reasoning framework designed to explicitly un-
cover the reasoning patterns in Argumentation Min-
ing (AM). FOL-AM consists of two key com-
ponents: (i) an FOL Term Constructor, which
learns representations of Argumentation Compo-
nents (ACs) and predicates; and (ii) an FOL Rule
Generator, which utilizes these representations to
instantiate logical atoms. The rule bodies are then
constructed by selecting relevant atoms, and subse-
quently evaluated to infer the relation query in the
head atom.

3.1 FOL Term Constructor

AC Representation Learning We define the
ACs as the argument candidates within the FOL
rules, as the relation query in the head atom oper-
ates on AC pairs. Given an argumentative text 𝑊
with AC set 𝑋 , we employ a Longformer (Beltagy
et al., 2020) to model the representations of the
text𝑊 and ACs. Specifically, the text𝑊 is passed
through Longformer to obtain contextual represen-
tations 𝐻𝑊 . Then the whole text representation
h𝑊 is then derived by applying mean-pooling over
𝐻𝑊 . For each AC 𝑥𝑖, its representation h𝑖 is com-
puted by mean-pooling over the tokens in the span
(𝑏𝑖 , 𝑒𝑖), i.e., h𝑖 = 1

𝑒𝑖−𝑏𝑖+1
∑𝑒𝑖
𝑘=𝑏𝑖

𝐻𝑊𝑘 .

Predicate Generation We assume that there are
𝑀 atomic predicates with indecomposable seman-
tics, represented by a predicate set R = {𝑟𝑖}𝑀𝑖=1.
Each predicate is assigned a learnable vector to
represent its semantics, with𝑈 ∈ R𝑀×𝑑 denoting
the embedding matrix for the 𝑀 predicates.

3.2 FOL Rule Generator

The FOL Rule Generator aims to conduct complex
FOL reasoning by first generating multiple proba-
ble rule bodies and then ranking each rule body to
derive the final FOL rule.

3.2.1 Rules Generation
Given the AC set 𝑋 and predicate set R, the 𝑙-
hop FOL rule 𝑞(𝑥1, 𝑥𝑙+1) ← 𝑟1(𝑥1, 𝑎2) ∧ · · · ∧
𝑟𝑙 (𝑎𝑙, 𝑥𝑙+1) 2 consists of atoms 𝑟𝑡 (𝑎𝑡 , 𝑎𝑡+1) defined
over arguments 𝑎𝑡 and predicates 𝑟𝑡 to derive the
relation query 𝑞(𝑥1, 𝑥𝑙+1). Generating the FOL rule
involves three steps: (1) AC autoregression learn-
ing selects relevant ACs {𝑥2, · · · , 𝑥𝑙} to instantiate
the bridging arguments {𝑎2, · · · , 𝑎𝑙} in the rule
body. (2) Predicate autoregressive learning sequen-
tially generates predicate 𝑟𝑡 for each atom in the
rule body, ensuring logical consistency across steps.
(3) Body atom generation integrates the selected
ACs and predicates to form the body atoms. These
steps work together to generate multiple probable
rule bodies.

AC Autoregression Learning We first apply
AC autoregression learning to select ACs from
which one may be chosen as a bridging argument
𝑎𝑡 (1 < 𝑡 ≤ 𝑙) of a rule body. The first and last argu-
ments (𝑎1, 𝑎𝑙+1) are referred to as (𝑥1, 𝑥𝑙+1) based
on the head atom 𝑞(𝑥1, 𝑥𝑙+1). Specifically, we cal-
culate a score 𝐴𝑙𝑡 for each AC using the previously
instantiated argument 𝑥𝑡−1. The score indicates the
probability of selecting an AC as the instantiation
of the argument 𝑎𝑡 from the AC set 𝑋 . For example,
the score for 𝑥𝑡 is:

𝐴𝑙𝑡 =
exp(W𝐴[h𝑡−1; h𝑡 ])∑𝑚
𝑘=1 exp(W𝐴[h𝑡−1; h𝑘])

(2)

where𝑊 𝐴 is a learnable weight matrix. h𝑡−1 is the
AC representation of instantiated argument 𝑥𝑡−1.
[; ] represents concatenation. Instead of selecting
only the AC with the highest score, we choose the
top-𝐾 ACs {𝑥1

𝑡 , . . . , 𝑥
𝐾
𝑡 } ⊆ 𝑋 as the possible in-

stantiation of the argument 𝑎𝑡 according to 𝐴𝑙𝑡 . This
is because the local optimum derived from autore-
gression learning may not be the global optimum,
as demonstrated in Section 4.6.

Predicate Autoregressive Learning Then, we
learn a predicate association that indicates which
predicates are likely to be generated for construct-
ing a rule body. To do this, we denote u𝑙 ∈ R𝐷 as
the query vector for the 𝑙-hop reasoning rule and
use predicate autoregressive learning to generate a
probability vector 𝑠𝑙𝑡 ∈ R𝑀 . This probability vector
represents the distribution of the predicate in the
𝑡-th atom over the predicate set R:

s𝑙𝑡 = softmax((𝑊 𝑙𝑡u𝑙𝑡 )𝑇 (𝑊 𝑙𝑏𝑈)) (3)

2We denote the 𝑎𝑡 as uninstantiated argument and 𝑥𝑡 as
instantiated argument with an AC.
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2. FOL Rule Construction

𝑟1 𝐴𝐶1, 𝐴𝐶2 ∧ 𝑟2(𝐴𝐶2, 𝐴𝐶5)
𝑟2 𝐴𝐶1, 𝐴𝐶3 ∧ 𝑟3 𝐴𝐶3, 𝐴𝐶5
𝑟3 𝐴𝐶1, 𝐴𝐶4 ∧ 𝑟1 𝐴𝐶4, 𝐴𝐶5

2.1 Rules Generation2.2 Rules Ranking

Argumentation Text: Despite the fact that 

[advertisements can be exaggerated]AC1, it is 

also true that [it plays an important role 

economically]AC2. [They introduce new 

products]AC3. [Advertising also helps to keep 

prices at reasonable levels]AC4. [Otherwise

the market may be monopolistic]AC5. 

Relation Query: 𝑞(𝐴𝐶1, 𝐴𝐶5)

✓ 0.9
× 0.7
× 0.1

Predicate Autoregressive Learning

t=0 t=1

r1
r2
r3

rM

…

r1
r2
r3

rM

…

AC Autoregressive Learning

𝐴𝐶1

𝐴𝐶2

𝐴𝐶3 𝐴𝐶5

t=0 t=1 t=2

𝐴𝐶4

𝐴𝐶1 → 𝐴𝐶2 → 𝐴𝐶5
𝐴𝐶1 → 𝐴𝐶3 → 𝐴𝐶5
𝐴𝐶1 → 𝐴𝐶4 → 𝐴𝐶5

Predicate Set

r1 r2 𝑟3 rM… 𝐴𝐶1 𝐴𝐶2 𝐴𝐶3 𝐴𝐶4 𝐴𝐶5

AC Set

1. FOL Term Construction

Body Atom Generation

(𝐴𝐶1 𝐴𝐶2) (𝐴𝐶2 𝐴𝐶5)

𝐫𝟏
r2
r3

rM

…

r1
𝐫𝟐
r3

rM

…

Support 𝐴𝐶1, 𝐴𝐶5 ←
𝑟1 𝐴𝐶1, 𝐴𝐶2 ∧ 𝑟2 𝐴𝐶2, 𝐴𝐶5

Probable AC Instantiations

Relational 

Network

Figure 2: The overview of our approach, with a running example for classifying the relation between an AC pair.

u𝑙𝑡+1 = u𝑙𝑡 + s𝑙𝑡 · (𝑊 𝑙𝑏𝑈) (4)

where u𝑙0 = u𝑙, 𝑊 𝑙
𝑡 and 𝑊 𝑙

𝑏 are learnable weight
matrices. Intuitively, to learn to define a 𝑙-hop rule
body, Eq. 3 and 4 sequentially produce predicate
𝑟𝑡 at each step 𝑡 ∈ {1, ..., 𝑙} by attending to all the
predicates with probability 𝑠𝑙𝑡 .

Body Atom Generation We integrate the se-
lected ACs and predicates to generate the body
atoms of a rule body. However, the AC and pred-
icate autoregression learning ignore the correla-
tion between predicates and ACs. This causes al-
ways generating the same predicates for different
selected AC pairs in each step and has a pretty poor
performance in Section 4.5. To address this, we
propose a relational network that produces an AC-
specific probability distribution p(𝑥𝑡 , 𝑥𝑡+1) ∈ R𝑀
over all predicates based on selected AC pairs
𝑥𝑡 , 𝑥𝑡+1. This distribution denotes the compatibility
of selected AC pair (𝑥𝑡 , 𝑥𝑡+1) with each predicate
𝑟𝑡 ∈ R to form an atom 𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1):

p(𝑥𝑡 , 𝑥𝑡+1) = softmax(𝑊𝑟 tanh[h𝑡 ; h𝑡+1]) (5)

where𝑊𝑟 is a weight matrix.
We combine the probabilities from predicate au-

toregression learning with AC-specific probabili-
ties to compute the value 3 𝜇(𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1)) of an
body atom 𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1) being true formed by the
predicate 𝑟𝑡 and two ACs (𝑥𝑡 , 𝑥𝑡+1):

𝜇(𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1)) = max(s𝑙𝑡 ⊙ p(𝑥𝑡 , 𝑥𝑡+1)) (6)

3For smooth optimization, we use 𝜇(·) ∈ [0, 1] to denote
the value of an atom or a rule body, which indicates the proba-
bility of the atom or rule body being true.

where ⊙ denotes element-wise multiplication and
𝑟𝑡 is selected as the entry with the highest probabil-
ity. Note that the predicate autoregression learning
captures the sequential dependency among predi-
cates and the relational network models the correla-
tion between the predicate and ACs. By combining
the two information, we can construct more robust
reasoning rules.

Finally, we can combine the body atoms
𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1) (1 ≤ 𝑡 ≤ 𝑙) into a complete rule body.
Since the AC instantiations of bridging arguments
are variable, we input each probable AC pair from
AC autoregression learning into Eq. 5 and 6 for
each body atom, forming multiple probable rule
bodies. For example, consider the case in Figure 2
where 𝑙 = 2. Given the possible AC instantiations
(𝑥1, 𝑥2, 𝑥5) for all arguments, Eq. 5 and 6 first gen-
erate a body atom 𝑟1(𝑥1, 𝑥2) based the AC pair
(𝑥1, 𝑥2). Then, the next AC pair (𝑥2, 𝑥5) is used to
generate another predicate 𝑟2, forming the second
body atom 𝑟2(𝑥2, 𝑥5). As a result, the rule body
𝑟1(𝑥1, 𝑥2) ∧ 𝑟2(𝑥2, 𝑥5) is constructed.

3.2.2 Rules Ranking
These rule body candidates need to be evaluated
and selected to induce the relation query in the
head atom. We compute the value of each proba-
ble rule body being true. Given a 𝑙-hop rule body
consisting of body atoms (i.e., 𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1)) and con-
junction operators (∧), computing its value is dif-
ficult due to its discrete nature (Qu et al., 2020).
Here, we introduce T-Norm logic (Klement et al.,
2013) to relax the discrete nature of the rule body
evaluation, enabling an end-to-end learning pro-
cess. The T-Norm logic defines the value of a
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rule with two atoms and conjunction operator as
𝑇 (𝜇1 ∧ 𝜇2) = 𝑚𝑖𝑛(𝜇1, 𝜇2), where 𝜇1, 𝜇2 ∈ [0, 1]
refer to the values of two atoms. Thus, the value of
the 𝑙-hop rule body based on the atom values can
be computed as min({𝜇(𝑟𝑡 (𝑥𝑡 , 𝑥𝑡+1))}𝑙𝑡=0).

We rank all probable rule bodies over all possible
AC instantiations and use a max operator to select
the rule body with the highest value, representing
the truth value 𝜇𝑙 of the 𝑙-hop rule body.

𝜇𝑙 = max
𝑥∈X
(min({𝜇(𝑥𝑡 , 𝑥𝑡+1)}𝑙𝑡=1)) (7)

where X = {𝑥 |𝑥 = (𝑥1, 𝑥
𝑘
2 , ..., 𝑥

𝑘
𝑙 , 𝑥𝑙+1)}𝐾𝑘=1 de-

notes the set for all possible AC instantiations
for the 𝑙-hop rule body. The selected ACs and
predicates form the rule body with the maximum
score. In this way, the generated 𝑙-hop FOL rule
is 𝑞(𝑥1, 𝑥𝑙+1) ← 𝑟1(𝑥1, 𝑥2) ∧ · · · ∧ 𝑟𝑙 (𝑥𝑙, 𝑥𝑙+1), sug-
gesting a reasoning path for deducing the relation
between 𝑥1 and 𝑥𝑙+1.

The number of reasoning hops 𝑙 required to de-
rive the query head should be flexibly decided
by the model itself. We iterate through the rule
generation and ranking process for different 𝑙-
hop (1 ≤ 𝑙 ≤ 𝐿) rules and obtain the values
{𝜇1, · · · , 𝜇𝐿} of different 𝑙-hop FOL rules. Fi-
nally, the value 𝜇(𝑞(𝑥1, 𝑥𝐿+1)) of the head atom
𝑞(𝑥1, 𝑥𝐿+1) is computed by selecting the maximum
score over the 𝐿 rule bodies:

𝜇(𝑞(𝑥1, 𝑥𝐿+1)) = max
1≤𝑙≤𝐿

(exp(s log( [𝜇1; · · · ; 𝜇𝐿])))

s = v𝑞 [u1, . . . , u𝐿]
(8)

where s is a selective distribution over the 𝐿 rule
bodies with different hop and v𝑞 denotes the learn-
able vector of the relation label 𝑞 between the AC
pair (𝑥1, 𝑥𝐿+1).
Training and Inference The generated FOL
rules need to be tested and refined against the
ground-truth label, known as learning from entail-
ment, which maximizes the probabilities of the
ground-truth label and minimizes those of other la-
bels. We use cross-entropy loss to train the model
during the training process:

𝐿 = −𝑙𝑜𝑔 𝜇(𝑞(𝑥𝑖 , 𝑥 𝑗 ))∑
𝑞∈𝑌 𝜇(𝑞(𝑥𝑖 , 𝑥 𝑗 ))

(9)

where 𝑞(𝑥𝑖 , 𝑥 𝑗) denotes the ground-truth label for
AC pair (𝑥𝑖 , 𝑥 𝑗) in ACTC (ARI) and 𝑌 denotes
the label set 𝑌𝐴𝐶𝑇𝐶 (𝑌𝐴𝑅𝐶) of ACTC (ARC). The
choice of the label set depends on the type of re-
lation query 𝑞(𝑥𝑖 , 𝑥 𝑗). For example, if 𝑥 𝑗 denotes

the specific AC 𝑥𝑤 , then 𝑌𝐴𝐶𝑇𝐶 is used; otherwise,
𝑌𝐴𝑅𝐶 is applied. During inference, we query all
labels in ACTC (ARC) and select the label with
the highest truth value of the reasoning rule as the
prediction result. Although our methods apply au-
toregressive learning to produce instantiated ACs
and predicates, our use of parallel tensor opera-
tions allows it to perform as efficiently as previous
methods. The time cost of FOL-AM is detailed in
Appendix A.6.

3.3 Adaptiveness for LLM

Inspired by recent advancements in LLMs (Minaee
et al., 2024), we extend our FOL-AM framework to
leverage LLMs, prompting them to perform FOL-
based reasoning for AM. The reasoning process in
LLM-enhanced FOL-AM𝑃𝑇

4 closely follows the
fine-tuned FOL-AM𝐹𝑇 approach, including both
FOL Term Construction and FOL Rule Generation.

FOL Term Construction We construct the fun-
damental FOL terms, including arguments and
predicates, within the FOL rule. ACs are used
to instantiate the arguments. Unlike fine-tuned
FOL-AM, which employs shared parameterized
predicates across all samples, the predicates in the
LLM-based approach are dynamically derived for
each sample. Specifically, we input the argumenta-
tive text𝑊 and each AC pair (𝑥𝑖 , 𝑥 𝑗) into an LLM
and instruct it to generate multiple relation phrases
𝑅𝑖, 𝑗 as potential predicates for the given AC pair.

FOL Rule Generation To generate FOL rules,
we first identify relevant ACs and predicates. Given
a relation query 𝑞(𝑥𝑖 , 𝑥 𝑗) for ACTC (ARC) as the
head atom, we provide the argumentative text 𝑊
and the AC set 𝑋 as input to the LLM and instruct
it to select the three most relevant ACs from 𝑋 for
each AC in the head atom. These selected ACs
instantiate the bridging arguments in the FOL rules,
while the relation phrases between them serve as
potential predicates for each AC pair. Next, we
input the selected ACs, along with all probable
predicates for each AC pair, into the LLM and
instruct it to generate several candidate rule bodies
for the head atom.

Finally, we perform FOL rule ranking by in-
structing the LLM to identify the most plausible
rule body from the generated rule set and use it

4We distinguish two implementations: FOL-AM𝐹𝑇 using
task-specific fine-tuning and FOL-AM𝑃𝑇 employing LLM
prompting. Unless otherwise specified, FOL-AM refers to the
FOL-AM𝐹𝑇 .
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Model ACTC ARI ARTC Avg
Joint-ILP 82.6 58.5 - -
Joint-PN 84.9 60.8 - -
BERT-Trans 88.4 70.6 - -
LSTM+dist 85.7 67.8 54.3 69.3
BART 82.7 62.9 53.4 66.3
ST 86.8 69.3 57.1 71.1
PITA 88.3 73.5 59.2 73.7
FOL-AM (our) 89.3 75.7 64.0 76.3 (+2.6)

Table 1: Performance comparison on the PE dataset.
Avg indicates the average value across all metrics. Our
improvements over baselines are statistically significant
with p < 0.05.

Model ACTC ARI ARTC Avg
SSVM-strict 73.2 26.7 - -
TSP-PLBA 78.9 34.0 - -
BERT-Trans 82.5 37.3 - -
DR-LG 65.3 29.3 15.0 36.5
BART 81.4 32.9 16.7 43.7
ST 82.3 40.2 20.4 47.6
PITA 83.6 44.9 23.8 50.8
FOL-AM (our) 85.3 47.7 28.7 53.9 (+3.1)

Table 2: Performance comparison on CDCP dataset.
Avg indicates the average value across all metrics. Our
improvements over baselines are statistically significant
with p < 0.05.

for label prediction. Specifically, the LLM is di-
rected to select the most relevant rule body and
apply logical reasoning within the FOL framework
to determine the final label for the AC pair in the
head atom for ACTC (ARC). The details of the
prompt template are provided in Appendix A.7.

4 Experiments

4.1 Experimental Settings

We evaluate our approach on two AM benchmark
datasets: PE (Stab and Gurevych, 2017b) and
CDCP (Park and Cardie, 2018). The statistical
details of these datasets are in Appendix A.1. For
evaluation, we report the macro-averaged F1 score
(Macro) for ACTC. Following prior work (Morio
et al., 2022b; Sun et al., 2024), we adopt a hierar-
chical evaluation protocol for ARC, decomposing
it into two metrics: ARI, which measures the F1
score for identifying whether an argumentative re-
lation exists between a pair of ACs; and ARTC,
which measures the Macro score for correctly clas-
sifying the type of relation (e.g., Support and At-
tack for PE; Reason and Evidence for CDCP) for
AC pairs where a relation is present.

For optimization, we use AdaW (Loshchilov
and Hutter, 2017) with a learning rate of 3𝑒−5
and weight decay of 1𝑒−2 for both PE and CDCP

datasets. The reasoning hops 𝐿 is set to 2 for both
datasets. The number of predicates 𝑀 is set to 40
for PE and 30 for CDCP, while the number of in-
stantiations 𝐾 of bridging argument is set to 5 for
PE and 4 for CDCP. To reduce randomness, we
repeat the experiments three times with different
seeds and report the average results. More imple-
mentation details are in Appendix A.3. Our code
is available at https://github.com/syiswell/
logic-AM.

4.2 Baselines
We select strong AM models from recent years
as baselines, following previous work (Morio
et al., 2022b). For the PE dataset, we com-
pare our FOL-AM model with seven baselines:
Joint-ILP (Stab and Gurevych, 2017b), Joint-
PN (Potash et al., 2017b), LSTM+dist (Kurib-
ayashi et al., 2019b), BERT-Trans (Bao et al.,
2021a), BART (Lewis et al., 2019), ST (Morio
et al., 2022b), and PITA (Sun et al., 2024). For
the CDCP dataset, we compare with seven base-
lines: DR-LG (Galassi et al., 2018), SSVM-
strict (Niculae et al., 2017), TSP-PLBA (Morio
et al., 2020b), BERT-Trans (Bao et al., 2021a),
BART (Lewis et al., 2019), ST (Morio et al.,
2022b), and PITA (Sun et al., 2024).

Additionally, we apply our prompt-based FOL-
AM framework to two large language models
(LLMs): GPT-4o-mini (OpenAI, 2024) and Llama-
3.1-8B (Dubey et al., 2024). We compare our
prompt-based FOL-AM𝑃𝑇 with two baselines: (i)
Standard LLMs, which predict argumentation la-
bels directly without reasoning, and (ii) Chain-of-
Thought (CoT) (Wei et al., 2022), which generates
intermediate explanations before making final pre-
dictions. The experiments are conducted under
both zero-shot and few-shot settings.

4.3 Overall Performance
The experimental results for both the PE and CDCP
datasets are summarized in Table 1 and Table 2,
respectively. We observe that FOL-AM consis-
tently achieves superior performance across both
datasets. Specifically, on the PE dataset, our FOL-
AM model outperforms the state-of-the-art (SOTA)
model PITA by 4.8% in ARC and 2.6% in Avg.
A similar trend is observed for the CDCP dataset,
where FOL-AM surpasses PITA by 4.9% in ARC
and 3.1% in Avg.

Additionally, all models exhibit a consistent per-
formance gap between ARI and ARTC scores (e.g.,
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Data LLM Method Zero-Shot Few-Shot
ACTC ARI ARTC Avg ACTC ARI ARTC Avg

PE

LLaMA-3.1-8B
Standard 28.7 49.0 24.9 34.2 35.8 49.5 25.1 36.8
CoT 36.0 49.3 30.5 38.6 47.1 49.4 30.3 42.3
FOL-AM𝑃𝑇 35.6 50.7 31.2 39.2 44.4 51.0 32.2 42.5

GPT-4o-mini
Standard 37.4 53.7 31.4 40.8 53.9 54.4 38.6 49.0
CoT 45.8 51.9 33.3 43.7 56.9 52.3 39.1 49.4
FOL-AM𝑃𝑇 48.6 54.6 36.2 47.1 (+3.4) 58.2 56.0 41.4 51.9 (+2.5)

CDCP

LLaMA-3.1-8B
Standard 44.9 13.6 7.5 22.0 42.0 13.7 8.9 21.5
CoT 50.2 15.9 8.2 24.8 50.7 14.5 8.0 24.4
FOL-AM𝑃𝑇 53.5 15.4 9.1 26.0 54.3 14.4 8.4 25.7

GPT-4o-mini
Standard 50.8 23.9 12.7 29.1 62.7 21.2 12.9 32.2
CoT 56.0 23.4 13.4 31.0 57.2 23.8 13.3 31.4
FOL-AM𝑃𝑇 63.1 24.8 14.3 34.1 (+3.1) 65.2 25.1 14.8 35.0 (+2.8)

Table 3: Performance comparison of LLMs on PE and CDCP datasets under zero-shot/few-shot settings, presenting
the 𝐹1 for ARI and Macro for ACTC and ARC. Avg indicates the average value across all metrics.

11.7 points for FOL-AM and 14.3 points for PITA
on the PE dataset), underscoring the greater dif-
ficulty of fine-grained relation classification (i.e.,
ARTC) compared to binary relation identification
(i.e., ARI). Notably, FOL-AM shows a smaller drop
between ARI and ARTC scores than baseline mod-
els, suggesting that it more effectively preserves
argumentative semantics—likely due to the explicit
logical constraints imposed during relation classi-
fication. These consistent improvements highlight
the effectiveness of integrating FOL rules to explic-
itly capture reasoning patterns in AM.

4.4 Adaptability Experiment

Table 3 shows the results of LLM-based methods
for AM. We observe that CoT-based methods con-
sistently outperform standard methods, emphasiz-
ing the crucial role of reasoning ability in AM.
Our prompt-based FOL-AM𝑃𝑇 methods signifi-
cantly surpass both baselines (i.e., standard and
CoT) across all metrics on PE and CDCP, demon-
strating the effectiveness of our framework in en-
hancing model reasoning capabilities. Moreover,
few-shot methods generally outperform zero-shot
methods, and our FOL-AM𝑃𝑇 methods improve
performance in both settings, further underscor-
ing its universality. Notably, our fine-tuned FOL-
AM𝐹𝑇 model in Table 1 and 2 significantly out-
performs all zero-shot and few-shot methods. This
improvement stems from its ability to learn logic
rules directly from the dataset, thereby enhancing
its reasoning capacity. In contrast, zero-shot and
few-shot methods rely on the model’s inherent rea-
soning ability and a limited number of examples,
leading to lower performance. Given the strong
performance of our fine-tuned FOL-AM𝐹𝑇 model,
we conduct further experiments based on it in the

Model PE CDCP
ACTC ARI ARTC ACTC ARI ARTC

FOL-AM 89.3 75.7 64.0 85.3 47.7 28.7
w/o PG 85.4 71.4 50.2 73.1 45.4 23.4
w/o PAL 77.3 60.3 41.1 66.2 29.8 14.3
w/o RN 79.7 65.9 43.8 72.6 44.3 22.5
w/o AAL 88.4 74.6 61.1 84.8 47.5 24.3

Table 4: The impact of various components presenting
the 𝐹1 for ARI and Macro for ACTC and ARC.
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Figure 3: The impact of the number of AC instantiations
on PE and CDCP.

following sections.

4.5 Ablation Study

Table 4 compares our FOL-AM method with sev-
eral variants where different components are re-
moved: w/o predicate generation (w/o PG), which
eliminates predicate generation and instead com-
putes only binary relations to determine whether
two ACs are related; w/o predicate autoregression
learning (w/o PAL), which disregards the sequential
dependencies among predicates; and w/o relational
network (w/o RN), which removes the relational
network and computes the value of a body atom
by simply multiplying the similarity of the AC pair
with the predicate probability distribution. w/o AC
autoregression learning (w/o AAL), which selects
all ACs as bridging arguments. The results show
that predicate generation is crucial for reasoning, as
its removal causes a significant performance drop.
Similarly, removing predicate autoregression learn-
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Argumentation Text:

... For instance, [after studying and sitting in the classroom for the whole morning, it is better for students to do some outdoor activities, such as 

stretching, jogging and playing ball games, in order to improve their learning ability during the afternoon classes]AC1 . [Removing physical 

classes from school education will not only be harmful to young people’s health, it will also decrease their learning capability]AC2 .

1

Example 1

Relation Query: ?(AC2,Text) FOL Rule: Claim(AC2,Text) ← 𝑟2 
(AC2,AC1) ∧ 𝑟8 

(AC1,Text)

Ground Truth: Claim(AC2,Text) 𝑟2 
: Further elaboration of viewpoints 𝑟8 

: Exemplification using suggestions

Argumentation Text:

Admittedly, to some extent, [technology may make people's life more complicated]AC1… In addition, [games on their phone exert a tremendous 

fascination on teenagers, leading to a large problem that they got addicted to their phones]AC4. Consequently, [making their life more complicated 

and tired]AC5.

1

Example 2

Relation Query: ?(AC1,AC4) FOL Rule: Support(AC1,AC4) ← 𝑟3 
(AC1,AC5) ∧ 𝑟6 

(AC5,AC4)

Ground Truth: Support(AC1,AC4) 𝑟3 
: Elaboration 𝑟6 

: Explanation for life's complexity

Figure 4: Examples of interpretability of our method for ACTC and ARC.

ing harms performance, highlighting the impor-
tance of sequential dependencies among predicates.
Omitting the relational network also reduces perfor-
mance by losing the correlation between predicates
and ACs. Lastly, the w/o AAL variant suffers from
degraded performance, confirming precise AC se-
lection is vital for reasoning rule modeling.

4.6 Impact of AC Instantiation
Figure 3 examines the effect of varying the number
of instantiations 𝐾 of bridging argument in AC au-
toregression learning on the PE and CDCP datasets.
The value of 𝐾 determines the number of probable
rule bodies. The results indicate that performance
remains relatively stable across both datasets as
𝐾 varies. However, when 𝐾 = 1, performance is
consistently the lowest, reinforcing our assumption
that AC autoregression learning struggles to find
the global optimum in this scenario. Additionally,
when we randomly select 𝐾 ACs as bridging argu-
ments (denoted as Random) rather than employing
the AC autoregression learning (AAL) mechanism,
the performance of the Random variant is consis-
tently worse than that of the model with AAL. This
suggests that similarity-based AC selection through
AAL enables the model to more effectively capture
and utilize logical dependencies among ACs, ulti-
mately leading to improved performance.

4.7 Impact of Reasoning Hops in FOL Rules
Table 5 analyzes the impact of reasoning hops in
FOL rules. The Strict setting enforces an exact 𝐿-
hop reasoning approach, while the Adaptive setting
allows for a maximum of 𝐿 reasoning hops, select-
ing the prediction with the highest score adaptively.
Notably, the 1-hop setting remains identical in both
Strict and Adaptive configurations.

The results indicate that the Strict setting leads
to suboptimal performance, whereas the Adaptive
setting achieves significantly better results. Fur-

Setting L PE CDCP
ACTC ARI ARTC ACTC ARI ARTC

Strict

One 73.5 70.1 49.9 59.3 35.8 17.7
Two 78.6 66.3 44.4 69.5 28.7 15.2

Three 76.9 63.2 40.3 66.9 25.2 13.9
Four 74.1 61.8 39.6 59.9 22.4 12.1

Adaptive
Two 89.3 75.7 64.0 85.3 47.7 28.7

Three 86.8 73.9 60.6 83.4 44.1 23.0
Four 83.2 69.5 49.2 79.2 39.2 20.3

Table 5: The impact of varying FOL rule’s lengths in dif-
ferent FOL settings. The "Strict" setting refers to precise
adoption with fixed hop counts, while the "Adaptive"
setting allows up to 𝐿-hop, with "one hop" indicating
no bridging AC.

thermore, the 1-hop FOL rule performs poorly, sug-
gesting that relation queries in AM benefit more
from multi-hop reasoning patterns.

4.8 Interpretability and Case Study
Figure 4 examines the interpretability of our
method through a case study for ACTC and ARC.
The results demonstrate that FOL-AM effectively
generates FOL rules with selected bridging ACs
and predicates to infer the relation query. In the
first example, the type of AC2 is determined by
leveraging bridging AC1, with 𝑟2 interpreted as
elaboration and 𝑟8 as exemplification. The second
case highlights the ability of FOL-AM to inter-
pret multi-hop reasoning in identifying relations
between distant AC pairs. Here, 𝑟3 serves as a sum-
mary connecting two similar viewpoints, while 𝑟6
explains why "life is complicated." Although AC1
and AC4 appear to describe different topics at the
surface semantic level, a Support relation between
them can be inferred through the bridging AC5.

5 Related Works

5.1 Argumentation Mining
Argumentation Mining (AM) is a computational
task that aims to automatically identify and

14140



extract argument structures from argumentative
texts (Lawrence and Reed, 2020). With the ad-
vent of deep learning, Laha and Raykar (2016)
introduced the first neural model for AM. Later,
studies incorporated linguistic features and dis-
course relations for AM (Kuribayashi et al.,
2019b; Chakrabarty et al., 2019). Recent mod-
els used advanced architectures like biaffine atten-
tion (Morio et al., 2020a, 2022b), transition-based
network (Bao et al., 2021a) and Graph Convolu-
tional Networks (Sun et al., 2024). Additionally,
some studies explored integrating knowledge bases
for logical reasoning. (Moens, 2018) enhanced AM
with world knowledge, while (Paul et al., 2020)
used unsupervised graph methods for multi-hop
reasoning. In contrast, our approach employs FOL
rules to model reasoning directly without relying
on predefined rules or external knowledge bases.

5.2 FOL Rule

First-order logic (FOL) rules provide a rigorous
foundation for formal reasoning, enabling pre-
cise knowledge representation and logical deduc-
tion (Hughes, 1996). In the deep learning era, sev-
eral studies explored integrating FOL rules with
neural networks for tasks, such as knowledge base
inference (Qu et al., 2020), text entailment (Li and
Srikumar, 2019), question answering (Wang and
Pan, 2022), and event argument extraction (Liu
et al., 2023). With the rise of LLMs, integrating
FOL reasoning into LLMs has gained attention (Ye
et al., 2023; Pan et al., 2023; Olausson et al., 2023;
Xu et al., 2024). However, these approaches are
not directly applicable to AM due to differences
in task structure and the reasoning required. AM
involves identifying and classifying complex ar-
guments and relations in textual contexts, which
existing methods may not capture effectively. Our
work is inspired by knowledge base inference but
addresses the unique challenges of AM. To the best
of our knowledge, FOL-AM is the first attempt
to unify multiple AM tasks into a relation query
framework while incorporating FOL reasoning.

6 Conclusion

In conclusion, we introduce the FOL-AM frame-
work, which enhances argumentative structure ex-
traction by explicitly capturing logical reasoning
paths through FOL rules. The framework, imple-
mented with both fine-tuning and LLM prompt-
based methods, achieves superiority performance

and offers enhanced explainability on AM bench-
marks, demonstrating its effectiveness for AM.

Limitation

To outline potential future research directions for
AM, we conduct a detailed error analysis on 100
cases where FOL-AM made incorrect predictions.
Our findings highlight two main challenges.

First, FOL-AM struggles with classifying in-
stances that rely on finer-grained bridging units for
ACTC. For example, expressions such as “Thus, it
is apparent that. . . ” and “I strongly believe that. . . ”
typically indicate a Claim. However, since ACs
are defined as FOL terms, these expressions may
not constitute an entire AC or may only form a
small segment within a longer AC. As a result, the
model tends to overlook these fine-grained features
during classification. To address this limitation,
we suggest that future research explore multi-hop
reasoning in AM by incorporating finer-grained
bridging units, such as elementary discourse units.

Second, despite our adaptive multi-hop reason-
ing mechanism, FOL-AM tends to overconstruct
long reasoning paths for irrelevant AC pairs. This
issue becomes particularly pronounced as the rule
length increases, likely due to inaccuracies or error
propagation in the intermediate steps of multi-hop
reasoning. To mitigate this problem, we propose de-
signing a loss function that penalizes excessive rule
length, encouraging the model to generate more
effective and concise FOL reasoning chains. Such
an approach would help capture AC relationships
more accurately while reducing the risk of error
propagation.

By addressing these challenges, future work can
further enhance the interpretability and robustness
of FOL-based reasoning in AM.
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A Appendix

Type PE CDCP
Paragraphs 1833 731
Train 1464 581
Test 369 150
Components 6089 4779
Relations 3832 1353
Components Per Sample 3.5 6.5

Table 6: The statistics of the PE and CDCP datasets.

A.1 Data statistics
We evaluate our approach on two popular bench-
marks. Table 6 provides detailed dataset statistics.

• PE (Stab and Gurevych, 2017b): Compris-
ing 420 essays totaling 1,833 paragraphs, this
corpus categorizes argumentation components
(ACs) into three classes (MajorClaim, Claim,
Premise) and argumentative relations (ARs)
into two types (Support, Attack). The dataset’s
structural constraint allows each AC to pos-
sess a maximum of one outgoing AR, form-
ing directed tree/forest graphs. We main-
tain consistent data partitioning with prior
works (Kuribayashi et al., 2019a; Bao et al.,
2021b): 1,464 ACs for training (10% as vali-
dation) and 369 ACs for testing.

• CDCP (Park and Cardie, 2018): This col-
lection contains 731 paragraphs with finer-
grained AC categorization (Value, Policy, Tes-
timony, Fact, Reference) and AR types (Rea-
son, Evidence). Unlike PE’s tree structure,
CDCP permits multiple AR connections from
a single AC, enabling non-tree graph con-
figurations. Following recent implementa-
tions (Bao et al., 2021a; Morio et al., 2022b),
we adopt the standard split: 581 ACs for train-
ing (10% as validation) and 150 ACs for test-
ing.
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A.2 Baselines
PE Dataset: Our experimental evaluation com-
pares against seven competitive baselines following
previous works (Morio et al., 2022b):

• Joint-ILP (Stab and Gurevych, 2017b): Uti-
lizes Integer Linear Programming for simulta-
neous optimization of argumentation compo-
nent type classification (ACTC) and argumen-
tative relation identification (ARI).

• Joint-PN (Potash et al., 2017b): Implements
a Pointer Network architecture with attention
mechanisms for joint ACTC-ARI learning.

• BERT-Trans (Bao et al., 2021a): Neural
transition-based approach employing action
sequence generation for argument analysis.

• LSTM+dist (Kuribayashi et al., 2019b): Pio-
neers LSTM-minus span representations com-
bined with ELMo embeddings for argument
mining.

• BART (Lewis et al., 2019): Sequence-to-
sequence formulation using BART with target
structures.

• ST (Morio et al., 2022b): Longformer-based
architecture with biaffine scoring for struc-
tural prediction.

• PITA (Sun et al., 2024): A generation frame-
work with dynamic prompt templates and het-
erogeneous graph modeling is proposed to ex-
plicitly coordinate the interaction of different
subtasks.

CDCP Dataset: We evaluate against seven com-
petitive baselines:

• SSVM-strict (Niculae et al., 2017): Struc-
tured SVM variant with constrained factor
graphs for dual-task learning.

• TSP-PLBA (Morio et al., 2020b): Fea-
tures task-specific parameterization and
proposition-level biaffine attention.

• BERT-Trans (Bao et al., 2021a): Neural
transition-based approach employing action
sequence generation for argument analysis.

• DR-LG (Galassi et al., 2018): Residual
networks with link-guided training for joint
ACTC, ARI, and ARTC.

• BART (Lewis et al., 2019): Sequence-to-
sequence formulation using BART with target
structures.

• ST (Morio et al., 2022b): Longformer-based
architecture with biaffine scoring for struc-
tural prediction.

• PITA (Sun et al., 2024): A generation frame-
work with dynamic prompt templates and het-
erogeneous graph modeling is proposed to ex-
plicitly coordinate the interaction of different
subtasks.

A.3 More Implementation Details

We implement the proposed framework using the
Transformers library (Wolf et al., 2020) in PyTorch
and conduct experiments on a GPU. The model
is optimized with AdaW (Loshchilov and Hut-
ter, 2017), utilizing a learning rate of 3𝑒−5 and
a weight decay of 1𝑒−2 for both the PE and CDCP
datasets. The batch size is set to 4 for both datasets.
For both datasets, we adopt dropout with a dropout
rate of 0.1 to avoid overfitting. We set the reasoning
hop of 𝐿 to 2 for both datasets. We set the number
of predicates 𝑀 to 40 for PE and 30 for CDCP,
while the number of instantiations 𝐾 for bridging
argument is set to 5 and 4, respectively. To mitigate
randomness, we repeat our approach three times
with different random seeds and report the average
results.

A.4 Overall Performance Supplement

The experimental results for both the PE and CDCP
datasets are summarized in Table 1 and Table 2,
respectively. We observe that FOL-AM consis-
tently achieves superior performance across both
datasets. Specifically, on the PE dataset, our FOL-
AM model outperforms the state-of-the-art (SOTA)
model PITA by 4.8% in ARC and 2.6% in Avg.
A similar trend is observed for the CDCP dataset,
where FOL-AM surpasses PITA by 4.9% in ARC
and 3.1% in Avg. These consistent improvements
highlight the effectiveness of integrating FOL rules
to explicitly capture reasoning patterns in AM.

Further analysis reveals three key trends: (i)
Traditional feature-engineered models (Joint-ILP,
SSVM-strict) exhibit limited competitiveness due
to constraints imposed by manual feature engi-
neering; (ii) Pretrained language model-based ap-
proaches (BERT-Trans, ST, and PITA) significantly
outperform sequential architectures (LSTM+dist,
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Figure 5: The impact of the number of predicates. Avg
indicates the average value across all metrics.

TSP-PLBA), suggesting that PLMs’ ability to lever-
age extensive linguistic knowledge benefits argu-
ment structure modeling; (iii) Our logic-enhanced
framework consistently surpasses all baselines.
This improvement aligns with our design objec-
tive, demonstrating that explicit integration of logi-
cal rules aids in disentangling complex argumenta-
tive dependencies that pure representation-learning-
based methods may overlook.

A.5 Impact of different number of predicates

Figure 5 analyzes the effect of the number of pred-
icates on the performance of the PE and CDCP
datasets. The results indicate that performance
improves initially but declines as the number of
predicates increases, with the optimal performance
observed at 40 predicates for PE and 30 for CDCP.
This finding suggests that a moderate number of
predicates achieves a balance between capturing
multi-hop reasoning paths and mitigating overfit-
ting. An excessive number of predicates may in-
troduce redundant rules, leading to conflicts with
essential reasoning steps and diminishing overall
model performance.

Data Model TT (min) IT (sec)

PE

BART 1.17 15.00
ST 1.23 4.08
PITA 1.27 2.54
FOL-AM 1.42 9.16

CDCP

BART 0.63 18.63
ST 0.81 1.75
PITA 0.73 1.26
FOL-AM 0.68 4.83

Table 7: Computational cost in terms of Training Time
(TT) per epoch (minutes) and Inference Time (IT) in the
test set (second).

A.6 Computational Cost

We evaluate the computational cost of baseline
methods and our FOL-AM model during both train-
ing and inference. For a fair comparison, all models
use a batch size of 4 for both training and inference.

Table 7 presents the training and inference times on
the PE and CDCP datasets. FOL-AM demonstrates
competitive efficiency compared to baselines in
training and inference. For instance, FOL-AM in-
creases inference time by 6.62 seconds and 3.57
seconds for all samples in PE and CDCP, respec-
tively, compared to PITA. These datasets contain
369 and 150 samples, respectively. The average
increase in time per sample is 0.018 seconds for
PE and 0.023 seconds for CDCP. Given these small
overheads, the computational cost remains accept-
able for practical applications.

A.7 Prompt Templates for LLM
The prompt templates of LLM-based FOL-AM are
shown in Figure 6, 7, 8 and 9.
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Given an argumentative text, a pair of argumentative components within the paragraph, please identify the predicates between the
argumentative component pair based on the definition of labels. Several words or phrases can represent predicates.

<Definiton of Each Label>
{label definition}
</Definiton of Each Label >

<Examples>
{examples}
</Examples>

Based on the above definitions, you can extract according to the following steps: Observe the definition of each label in turn, and 
then identify the predicates in the argumentative component pair that have commonalities with these definitions. 

Use the following JSON format to output the extracted properties:
{ 

"The identified predicates": [ no more than 10 predicates ]
}

< Argumentative Text >
{argumentative text}
</Argumentative Text >

<The Argumentative Component Pair>
{argumentative component pair}
</The Argumentative Component Pair>

Let's think step by step.

Prompt 1: FOL Term Construction.

Figure 6: The format of natural language prompts for FOL term construction.

Given an argumentative text, all argumentative components within the paragraph, for a specific argumentative component,  
please identify the three other argumentative components that are most relevant to it within that paragraph.

<Examples>
{examples}
</Examples>

Use <Answer> and </Answer> to enclose your answer, now please identify the three relevant argumentative components:

<Argumentative Text >
{argumentative text}
</Argumentative Text>

<All Argumentation Components>
{all argumentation components}
</All Argumentation Components>

<The Specific Argumentation Component>
{argumentation component}
</The Specific Argumentation Component>

Let's think step by step.

Prompt 2: Generation of Bridging Arguments. 

Figure 7: The format of natural language prompts for the generation of bridging arguments.
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Given an argumentative text, a pair of argumentative components within the paragraph, and a relation graph between the 
argumentative components, please generate several FOL reasoning chains based on the relation graph.

<Examples>
{examples}
</Examples>

Use the following JSON format to output the inference chains:
{

“Chain1”: “…”,
“Chain2": “…”,
…

}

<Argumentative Text >
{argumentative text}
</Argumentative Text>

<All Argumentation Components>
{all argumentation components}
</All Argumentation Components>

<The Specific Argumentation Component>
{argumentation component}
</The Specific Argumentation Component>

< Relation Graph>
…
</Relation Graph>

Let's think step by step.

Prompt 3: FOL Rule Generation. 

Figure 8: The format of natural language prompts for FOL rule generation.

Given a argumentation text, a pair of argumentative components within the paragraph, and several FOL reasoning chains, please choose 
the correct reasoning chain to determine the relation label of the argumentative component pair.

<Definiton of Each Label>
{label definition}
</Definiton of Each Label >

<Examples>
{examples}
</Examples>

Using <Answer> and </Answer> to enclose your answer, now please determine the relation label of the argumentative component pair:

<Argumentative Text >
{argumentative text}
</Argumentative Text>

<All Argumentation Components>
{all argumentation components}
</All Argumentation Components>

<The Specific Argumentation Component>
{argumentation component}
</The Specific Argumentation Component>

< Reasoning Chains>
…
</ Reasoning Chains >

Let's think step by step.

Prompt 4: FOL Rule Ranking. 

Figure 9: The format of natural language prompts for FOL rule ranking.
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