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Abstract
Human traveling trajectories play a central role
in characterizing each travelogue, and auto-
matic trajectory extraction from travelogues
is highly desired for tourism services, such
as travel planning and recommendation. This
work addresses the extraction of human trav-
eling trajectories from travelogues. Previous
work treated each trajectory as a sequence of
visited locations, although locations with dif-
ferent granularity levels, e.g., “Kyoto City” and
“Kyoto Station,” should not be lined up in a
sequence. In this work, we propose to repre-
sent the trajectory as a graph that can capture
the hierarchy as well as the visiting order, and
construct a benchmark dataset for the trajectory
extraction. The experiments using this dataset
show that even naive baseline systems can accu-
rately predict visited locations and the visiting
order between them, while it is more challeng-
ing to predict the hierarchical relations.

1 Introduction

The advancement of Web technologies facilitates
people to share their travel experiences on the
Web in the form of textual travelogues (Hao et al.,
2010). Travelogues are vital sources for analyz-
ing human traveling behavior in tourism informat-
ics, geographic information science, and digital
humanities, because of their rich geographical and
thematic content, which gives people, e.g., a simu-
lated experience of trip (Haris and Gan, 2021). In
particular, human traveling trajectories play a cen-
tral role in characterizing each travelogue, and thus,
automatic trajectory extraction from travelogues is
highly desired for tourism services, such as travel
planning and recommendation (Pang et al., 2011).

Some studies have addressed automatic trajec-
tory extraction from text (Ishino et al., 2012; Wag-
ner et al., 2023; Kori et al., 2006). However,

*This work was done while he belonged to NAIST, and he
is currently working at a company.

†Corresponding author.

That day, I headed to Nara City via Kyoto City . I saw Kyoto Tower 

from Kyoto Station , but maybe next time. I got off at Nara Station

and walked a bit to Todaiji Temple from there . 

The Great Buddha Hall was majestic!

Kyoto City
Transition

Nara City

Todaiji TempleNara Station

VisitPlanToVisit See

Visit

VisitVisit

Visit

Coreference

Kyoto Tower

OthersVisit

Nara City, Kyoto City, Kyoto Station, Nara Station,

Todaiji Temple, Great Buddha Hall

Visit Status Prediction (Mention Level)

Visit Status Prediction (Entity Level)

Great Buddha Hall

Inclusion

Visiting Order Prediction

Visit

Kyoto Station

ROOT

Figure 1: Illustration of our proposed tasks: visit status
prediction (VSP) and visiting order prediction (VOP).
VSP assigns visit status labels to mentions for mention
level (top) and to entities for entity level (middle). VOP
outputs a visiting order graph by assigning inclusion
and transition relations to entity pairs (bottom).

these studies suffer from two issues: (i) inadequate
trajectory representation and (ii) the scarcity of
benchmark datasets. First, the previous studies
treated each trajectory as a sequence of visited lo-
cations (Ishino et al., 2012; Wagner et al., 2023;
Kori et al., 2006), but a sequence is inadequate as
a representation of trajectories. This is because a
pair of locations where one geographically includes
the other cannot be lined up in a single sequence,
for example, “Kyoto City” and “Kyoto Station.”
This necessitates more appropriate trajectory rep-
resentations other than sequences, as we discuss
in detail in §4.1. Second, the previous studies con-
structed and used their in-house datasets for eval-
uating their systems, and no public text datasets
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annotated with trajectory information have been
released. However, shared benchmark datasets
are necessary for facilitating fair comparisons with
other studies and accelerating the accumulation of
research findings (Ohsuga and Oyama, 2021).

For the first issue, we propose a visiting order
graph illustrated at the bottom of Figure 1. This
graph has nodes of locations or geo-entities and
edges of relations between geo-entities. It can rep-
resent not only temporal transition relations but
also geographical inclusion relations between vis-
ited locations. For enabling automatic construc-
tion of the graph for each travelogue, we introduce
trajectory extraction subtasks: Visit Status Predic-
tion (VSP) and Visiting Order Prediction (VOP),
as shown in Figure 1. VSP requires to assign visit
status labels to mentions and entities. Then, VOP
requires to identify inclusion and transition rela-
tions between nodes of the “visited” entities.

For the second issue, we have constructed a
dataset for training and evaluating trajectory ex-
traction systems: Arukikata Travelogue Dataset
with Visit Status and Visiting Order Annotation
(ATD-VSO).1 Our dataset comprises 100 travel-
ogue documents annotated with the corresponding
visiting order graphs, totally including 3,354 geo-
entities (nodes) and 3,369 relations (edges).

Using this dataset, we have trained and eval-
uated masked and causal language model-based
systems. Notable findings through the experiments
are (i) that the systems can achieve relatively high
accuracy for predicting visit status labels and tran-
sition relations, and (ii) that the systems failed to
accurately predict inclusion relations. The latter
implies an important future issue, i.e., how to inject
the knowledge of geographic hierarchical structure
into the systems.

Contributions For the purpose of building a
foundation for future studies, we have made two
main contributions: (i) the proposal of visiting or-
der graph and (ii) the construction of a benchmark
dataset for the trajectory extraction.2 We will re-
lease our code and dataset for research purposes.
We expect that our dataset will foster continued
growth in the trajectory extraction research.

1We will release our dataset at https://github.com/
naist-nlp/atd-vso.

2Our contributions are in the data resource direction, not
the technical one such as algorithm and model sophistication.
On top of the resource, we will make technical contributions
in the future.

2 Preliminaries for Data Construction

Our dataset, ATD-VSO, has been constructed on
the basis of Arukikata Travelogue Dataset with ge-
ographic entity Mention, Coreference, and Link an-
notation (ATD-MCL) (Higashiyama et al., 2024).3

ATD-MCL is a Japanese travelogue dataset an-
notated with three types of geo-entity informa-
tion, namely, mentions, coreference relations, and
links to geo-database entries, to a collection of
the original travelogues, the Arukikata Travelogue
Dataset (ATD) (Arukikata. Co., Ltd., 2022; Ouchi
et al., 2023).4

Annotated mentions in ATD-MCL include
proper nouns (e.g., “Nara station”), general noun
phrases (e.g., “the station”), and deictic expressions
(e.g., “there”) that refer to various types of loca-
tions, such as geographic regions, facilities, and
landmarks. Moreover, a set of mentions that refer
to the same location constitutes a coreference clus-
ter or geo-entity. Given such annotated travelogues,
we focus on annotating the visit status and visiting
order of candidate geo-entities.

3 Visit Status Prediction

We propose a task comprising the two subtasks:
Visit Status Prediction (VSP) and Visiting Order
Prediction (VOP). This section describes the task of
VSP, where a visit status is predicted for each loca-
tion. For example, it can be judged that the traveler
visited the station from the description of the real
experience: “Arrived at Kintetsu Nara Station!” In
contrast, the factual statement, “JR Nara Station is
a little far from Kintetsu Nara Station.” does not
indicate that the traveler visited these locations. In
this task, we aim to distinguish such differences
and identify locations visited by travelers.

3.1 Annotation Data Construction
We defined two types of visit status labels in Ta-
ble 1 for entities and six types of visit status labels
in Table 2 for mentions. The mention labels serve
to distinguish detailed status of the mentioned loca-
tion based on the context, i.e., the sentence where
the mention occurs. The entity labels serve to de-
termine whether the traveler eventually visited the
location, considering the entire document. As an-
notation work, native Japanese annotators at a data
annotation company assigned visit status labels to
each mention and entity in ATD-MCL travelogues

3http://github.com/naist-nlp/atd-mcl
4https://www.nii.ac.jp/dsc/idr/arukikata/
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1 Visit A visit to the location is stated or implied.
2 Other Not 1.

Table 1: Visit status labels for entities.

1 Visit The same as the entity label 1.
2 PlanToVisit It mentions a plan to visit the loca-

tion during this trip (described in
the travelogue).

3 See Not any of 1–2, and that the trav-
eler saw the location can be iden-
tified.

4 Visit-Past Not any of 1–3, and it mentions
having visited the location before
this trip.

5 Visit-Future Not any of 1–3, and it mentions
the intention to visit the location
after this trip.

6 UnkOrNotVisit The visit to the locations cannot be
identified from the descriptions, or
the non-visit can be identified.

Table 2: Visit status labels for mentions.

according to the label definitions and annotation
guideline.5

Inter-Annotator Agreement We requested two
annotators to independently annotate five docu-
ments. We then measured the inter-annotator agree-
ment (IAA) using F1-score and Cohen’s Kappa κ.
The obtained scores suggest the high agreement:
F1 score of 0.80 and κ of 0.68 for 180 mentions,
and F1-score of 0.89 and κ of 0.81 for 124 entities.

Data Statistics The annotators annotated addi-
tional 95 documents (one annotator per document);
the total became 100 documents, including the
aforementioned five documents, as shown in Ta-
ble 3 and Table 4.

3.2 Task Definition
Entity-level and mention-level VSP are defined as
follows. Given a set of entities E in an input docu-
ment, entity-level VSP requires a system to assign
an appropriate visit status label y ∈ Le for each
entity eq ∈ E . Similarly, given an entity (or corefer-
ence cluster) eq = {m(q)

1 , . . . ,m
(q)
|eq |}, which con-

sists of one or more mentions, mention-level VSP
requires a system to assign an appropriate visit sta-
tus label y ∈ Lm for each mention m

(q)
i ∈ eq.

3.3 VSP System Framework
As the framework for VSP, we employ a two-
step method that first predicts mention labels and

5The annotators used the brat annotation tool (Stenetorp
et al., 2012) (https://github.com/nlplab/brat).

Set #Doc #Sent #Men #Ent #Inc&Tra

Train 70 4,254 3,782 2,339 2,343
Dev 10 601 505 316 329
Test 20 1,469 1,102 699 697

Total 100 6,324 5,389 3,354 3,369

Table 3: Statistics of the ATD-VSO.

Set Visit Plan See Past Future UN/O

Mention

Train 2,577 358 212 10 6 619
Dev 332 48 46 1 4 74
Test 748 121 59 10 4 160

Entity

Train 1,942 – – – – 397
Dev 252 – – – – 64
Test 575 – – – – 124

Table 4: Numbers of visit status labels for men-
tion level (top) and entity level (bottom). Plan,
Past, and Future indicate PlanToVisit, Visit-Past,
and Visit-Future, respectively. UN/O indicates
UnkOrNotVisit for mention level and Other for en-
tity level.

then predicts entity labels based on the mention
labels. Specific systems under this framework are
described in §5.4. Specifically, we calculate the
label probability distribution P (y|m(q)

i ) for each
mention m

(q)
i ∈ eq, and select the most probable

label ŷ(q)i :

ŷ
(q)
i = arg maxy∈Lm

P (y|m(q)
i ).

Then, we select a label for each entity eq according
to the following mention label aggregation (MLA)
rules.

1. If Visit or PlanToVisit has been assigned
to at least one mention in eq, then Visit is
assigned to eq.

2. Otherwise, Other is assigned to eq.

4 Visiting Order Prediction

This section describes the task of VOP, where ge-
ographical and temporal relations between visited
locations are predicted.

4.1 Visiting Order Graph
We introduce a visiting order graph that can rep-
resent non-linear relations of visited locations. In
a graph, nodes correspond to entities, i.e., loca-
tions, and edges correspond to relations between
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Figure 2: Example of a visiting order graph, the same
example at the bottom of Figure 1.

entities, as shown in the example in Figure 2. A
directed edge (→) of inclusion relation represents
that the starting node geographically includes the
ending node. A directed edge (→) of transition re-
lation indicates that the traveler visited the starting
node entity and then visited the ending node entity,
without visiting any other entities in between. We
describe further details on these relations in the
following paragraphs.

Inclusion Relation Consider the example doc-
ument in Figure 1, which describes that the trav-
eler visited both “Nara City” and “Todaiji Temple.”
Based on the geographical fact that the region of
“Nara City” includes that of “Todaiji Temple,” it
is reasonable to interpret that the traveler visited
the temple and thereby also visited the city simul-
taneously. We introduce inclusion relation ⟨e1, e2⟩,
where an entity e1 geographically includes another
e2. From Figure 2, we describe two examples:

p1 = ⟨Nara City,Todaiji Temple⟩,
p2 = ⟨Todaiji Temple,Great Buddha Hall⟩.

Here, p1 represents “Nara City” includes “Todaiji
Temple”, and p2 represents “Todaiji Temple” in-
cludes “Great Buddha Hall.” Also, these two rela-
tions imply a hierarchical relation: “Nara City” is
a grand parent of “Great Buddha Hall.”

Transition Relation Given a set of entities for
a document and inclusion relations among them,
we assign transition relation to each pair of pre-
ceding and subsequent visited entities. Notably,
we restrict an entity pair with transition rela-
tion to two entities with the same parent en-
tity. In Figure 2, while “Nara Station” and “To-
daiji Temple” have the same parent node, “Ky-
oto Station” and “Nara Station” does not. There-
fore, the transition relation can be assigned to
⟨Nara Station,Todaiji Temple⟩, but cannot be as-
signed to ⟨Kyoto Station,Nara Station⟩. This re-
striction enables determining the order of visits

Set Inclusion Transition

Train 1,302 1,041
Dev 186 143
Test 375 322

Table 5: Statistics for visiting order annotation.

for any entity pairs by traversing transition and
inclusion relations, even if entity pairs are not di-
rectly related to each other. For example, although
“Kyoto Station” does not have transition relation
to “Nara City,” you can interpret “Kyoto Station”
was visited before “Nara City” because the parent
“Kyoto City” has transition relation to “Nara City.”6

4.2 Annotation Data Construction

After the annotation step of visit status, we left
only the entities with the Visit or VisitPossibly
label as the nodes of a visiting order graph. In the
annotation step of the relations, annotators assigned
the visiting relations between the entities.7

Inter-Annotator Agreement We requested two
annotators to independently annotate the same five
documents as those used for visit status annotation.
We then measured the IAA using F1-score. The
obtained F1 scores suggest the moderate or high
agreement: 0.94 for inclusion, 0.74 for transition,
and 0.85 for both.

Data Statistics The 95 documents assigned visit
status were divided among multiple annotators, and
each annotator annotated each document. The total
became 100 documents with 1,856 inclusion rela-
tions and 1,494 transition relations, including the
five aforementioned documents (Table 5).

4.3 Task Definition

The task of VOP can be divided into two subtasks:
Inclusion Relation Prediction (IRP) and Transition
Relation Prediction (TRP).

Inclusion Relation Prediction Given a set of
entities E in a document, IRP requires a system to
determine the parent entity for each entity eq ∈ E
from the set of candidate entities P(q)

cand = E \
6The two relations cover most of trajectories in the dataset,

but not all. We introduce a few other criteria described in
Appendix A.1.

7As the annotation tool for entity relations, we adopted
the online whiteboard service, Miro (https://miro.com/),
and the annotators drew arrows representing relation edges
between boxes representing entity nodes using the graphical
interface.
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{eq} ∪ {ROOT}. In other words, if e ∈ P(q)
cand is

predicted as the parent entity for eq, it represents
that e includes eq. The pseudo parent node ROOT
should be predicted when the entity of interest has
no parent entities.

Transition Relation Prediction Given a set of
entities E in a document, TRP requires a system to
determine the entity subsequently visited for each
entity eq ∈ E from the candidate set S(q)

cand with the
same parent as eq:

S(q)
cand = {ek ∈ E |Par(ek) = Par(eq)} ∪ {EOS}.

Here, Par(e) represents the parent entity of e, and
the pseudo subsequent node EOS represents that the
entity of interest has no subsequent entities.

4.4 VOP System Framework
For the two VOP subtasks, we adopt the following
framework. Specific systems under this framework
are described in §5.4. Specifically, for IRP and
TRP, we select the most probable entity as the par-
ent entity êp or the subsequent entity ês from the
corresponding candidate set based on score func-
tion scorepar or scoresub, respectively:

êp = arg max
e′∈P(q)

cand

scorepar(eq, e
′), (1)

ês = arg max
e′∈S(q)

cand

scoresub(eq, e
′). (2)

Sequence Sorting Decoding In TRP, all nodes
under the same parent node (i.e., in the same hi-
erarchy) should be arranged in a single sequence.
However, Equation 2 does not always generate a
single sequence. To address this issue, we propose
a sequence sorting decoding, which has the con-
straint that all nodes in the same hierarchy result
in a single sequence. We describe the details in
Appendix B.1.

5 Experimental Setup

For the visit status prediction (VSP) task (§3.2)
and the visiting order prediction (VOP) subtasks
(§4.3)—inclusion relation prediction (IRP) and
transition relation prediction (TRP)—we evalu-
ated the performance of three types of systems:
rule-based systems, classification-based Masked
Language Models (MLM), and generation-based
Causal Language Models (CLM).

5.1 Data Split
As shown in Table 3, we split the 100 documents
in ATD-VSO into training, development, and test
sets at a ratio of 7:1:2.

5.2 Task Settings
We adopted the settings where gold standard la-
bels of preceding tasks were given, and evalu-
ated systems for each task independently. That
is, systems take as input gold entities for VSP
and IRP, and gold visited entities (that have Visit
or VisitPossibly labels) and gold inclusion rela-
tions for TRP.

5.3 Evaluation Metrics
For VSP, we measured the accuracy of predicted
labels for input entities. For IRP, we measured
the F1 score for extracting inclusion entity pairs
from input entities. For TRP, we measured the F1
score for extracting transition entity pairs, exclud-
ing pairs where the subsequent entity is EOS, from
input entities.

5.4 System Implementations and Model
Training

We constructed MLM and CLM-based systems un-
der the frameworks described in §3.3 and §4.4.
As the backbones for the MLM-based systems,
we used Japanese LUKE8 (Yamada et al., 2020)
and multilingual LUKE9 (Ri et al., 2022). As the
backbones for the CLM-based systems, we used
two pretrained models—Llama-3-ELYZA-JP-8B
(ELYZA)10 (Hirakawa et al., 2024) and Llama-3-
Swallow-8B-v0.1 (Swallow)11 (Fujii et al., 2024;
Okazaki et al., 2024)—both of which were contin-
ually pretrained from Llama 3 (Grattafiori et al.,
2024).

LUKE We constructed our LUKE-based sys-
tems by fine-tuning a pretrained LUKE model
with each task’s training set, using multilingual
LUKE with LukeForEntityClassification12

for VSP (mention-level) and Japanese LUKE
with LukeForEntityPairClassification for
the VOP subtasks (IRP and TRP). For VSP, the
input comprises a sentence containing a mention of
interest and the mention’s position (character off-
sets). For IRP and TRP, the input comprises, for an
entity of interest and a candidate entity, the context

8https://huggingface.co/studio-ousia/
luke-japanese-base

9https://huggingface.co/studio-ousia/
mluke-large-lite

10https://huggingface.co/elyza/
Llama-3-ELYZA-JP-8B

11https://huggingface.co/tokyotech-llm/
Llama-3-Swallow-8B-v0.1

12https://huggingface.co/docs/transformers/
model_doc/luke
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and the positions of each entity’s representative
mention; the context is formed by concatenating
the sentences containing each of the two represen-
tative mentions and all intervening sentences in
their original order.13 Representative mentions are
selected as follows. For IRP, proper noun men-
tions are prioritized over other mentions. For TRP,
mentions with visit status label of higher confi-
dence (Visit> See> other labels) are prioritized.
Unless otherwise specified, we report the mean
accuracy or F1 score on the test set of five runs
with different random seed values for the baseline
system for each task.

ELYZA and Swallow We constructed our CLM-
based systems by zero-shot in-context learning
(ICL) and Low-Rank Adaptation (LoRA) (Hu et al.,
2021) fine-tuning14 with the training set. Specif-
ically, for each task the system performs either
multi-class classification over mentions or binary
classification over entity pairs. To do that, we de-
signed task-specific prompts. For VSP (mention-
level), a system is prompted to answer whether an
entity was visited. For IRP, a system is prompted
to answer whether a location is within another.
For TRP, a system is prompted to answer whether
one location was visited immediately after another.
We used the same prompt for the zero-shot ICL
and LoRA fine-tuned systems in each task. The
full prompt texts are described in Table 16 in Ap-
pendix B.2. Representative mentions for entities
were selected in the same way as in LUKE. The
fine-tuning was conducted on top of their base mod-
els using the Hugging Face PEFT library with a
QLoRA-style configuration (Dettmers et al., 2023).
We describe more detailed settings, including hy-
perparameters, in Appendix B.2.

6 Experimental Results

6.1 Results for Visit Status Prediction

Systems We evaluated a rule-based system (ML:
Majority Label), an MLM-based system (LUKE),
and two CLM systems (ELYZA and Swallow). For

13For example, when “Nara City” and “Todaiji Temple”
in the Japanese translations of the first three sentences in
Figure 1 are entities of interest, the input text is as follows:
“<s>That day, I headed to <ent>Nara City<ent> via Kyoto
City.</s><s>. . . </s><s>I got off at Nara Station and walked
a bit to <ent2>Todaiji Temple<ent2> from there.</s>”.

14LoRA is a parameter-efficient fine-tuning method that in-
troduces low-rank matrices into selected layers of a pretrained
model, allowing efficient adaptation with a small number of
trainable parameters.

Method Mention Entity

ML rule 0.629 0.790

ELYZA (0-shot ICL) 0.633 0.810
Swallow (0-shot ICL) 0.661 0.828

LUKE (fine-tuned) 0.750 0.838
ELYZA (fine-tuned) 0.813 0.881
Swallow (fine-tuned) 0.823 0.896

Table 6: System performance (accuracy) for visit status
prediction (left: mention-level, right: entity-level).

Tag Mention Entity
P R F1 P R F1

LUKE (fine-tuned)

Vis 0.785 0.924 0.849 0.869 0.950 0.908
Pla 0.706 0.688 0.696 – – –
See 0.655 0.661 0.657 – – –
Pas 0 0 0 – – –
Fut 0 0 0 – – –
U/O 0.611 0.403 0.482 0.650 0.495 0.561

Swallow (fine-tuned)

Vis 0.868 0.919 0.893 0.912 0.942 0.926
Pla 0.814 0.727 0.768 – – –
See 0.672 0.694 0.683 – – –
Pas 0.625 0.500 0.555 – – –
Fut 0 0 0 – – –
U/O 0.639 0.531 0.580 0.666 0.693 0.679

Table 7: Precision (P), recall (R), and F1 scores of
LUKE and Swallow (mention-level) and LUKE+MLA
and Swallow+MLA (entity-level) for each label of
visit status prediction. The tag column indicates the
following labels: Vis (Visit), Pla (PlanToVisit),
See, Pas (Visit-Past), Fut (Visit-Future), and U/O
(UnkOrNotVisit for mention level and Other).

entity-level prediction, MLA (§3.3) was applied to
each system’s mention-level output. The ML rule
always outputs the most frequent label, Visit, for
both mention and entity levels.

Main Results Table 6 shows the performance
of the evaluated systems for mention-level and
entity-level VSP. The ML rule that always outputs
the Visit label for every mention achieved good
accuracy. This indicates the imbalance in label
distribution with a majority of Visit instances,
which aligns with the intuition that visited loca-
tions are often mentioned in travelogues. Un-
der ICL, the CLMs yielded slightly better accu-
racy than the ML rule, but the fine-tuned models
achieved even higher accuracy. In particular, both
fine-tuned CLMs outperformed LUKE, reaching
mention-level accuracy above 0.8 and entity-level
accuracy near 0.9.
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Method All Par=ROOT Par̸=ROOT

Random 0.043 0.057 0.038
Flat 0.244 1 0

ELYZA (0-shot ICL) 0.183 0.443 0.143
Swallow (0-shot ICL) 0.129 0.268 0.119

LUKE (fine-tuned) 0.355 0.058 0.425
ELYZA (fine-tuned) 0.497 0.561 0.454
Swallow (fine-tuned) 0.514 0.547 0.474

Table 8: System performance (F1 score) for inclusion
relation prediction. All indicates the performance for
all entities. “Par=ROOT” and “Par ̸=ROOT” indicate the
performance for entities whose gold parent are or are
not ROOT.

Label-Wise Performance Table 7 shows the per-
formance of the LUKE-based and Swallow-based
systems for each label. The results can be sum-
marized as follows. First, both systems achieved
high performance for the Visit label, with F1
scores ranging from approximately 0.85 to 0.9
at both the mention and entity levels. Second,
both systems showed moderate performance for
the UnkOrNotVisit/Other label. Notably, Swal-
low outperformed LUKE on this label. At the entity
level, Swallow achieved an F1 score of around 0.68.
Nevertheless, there remains room for improvement,
as predicting this label is challenging due to limited
context and the frequent absence of explicit cues
indicating whether a location was visited.

6.2 Results for Inclusion Relation Prediction

Systems We evaluated two rule-based systems
(Random and Flat), an MLM-based system
(LUKE), and two CLM systems (ELYZA and Swal-
low). Random indicates a method that randomly
selects the parent entity from the candidate set for
each entity. Flat indicates a rule-based method
that always selects ROOT as the parent entity for an
arbitrary entity.

Main Results Table 8 shows the performance
(F1 score) of the evaluated systems for IRP. Flat,
which is a rule always predicting ROOT as a par-
ent, exhibited the better performance than Random
(F1 of 0.244 vs 0.043), suggesting that predicting
ROOT can be a reasonable strategy when systems
do not have knowledge for specific entities. The
zero-shot CLMs yielded poor performance, with
F1 scores below 0.2. LUKE outperformed the zero-
shot CLM systems, but its performance was highly
unbalanced: while it performed relatively well for
Par̸=ROOT cases to some extent, it almost failed on

Method All Fwd. Rev.

Random 0.190 0.247 0.061
Occurrence Order (EM) 0.730 0.773 0
Occurrence Order (VS) 0.758 0.794 0.386

ELYZA (0-shot ICL) 0.208 0.275 0.034
Swallow (0-shot ICL) 0.227 0.294 0.079

LUKE (fine-tuned) 0.748 0.796 0.366
ELYZA (fine-tuned) 0.763 0.828 0.346
Swallow (fine-tuned) 0.742 0.811 0.329

Table 9: System performance (F1 score) for transition
relation prediction. All indicates the performance for
all entities. Fwd. and Rev. indicate the performance for
entities whose gold subsequent entities occurred after or
before the entities of interest in documents, respectively,
regarding their earliest mentions.

Par=ROOT cases (F1 of about 0.1). The fine-tuned
CLM systems achieved even higher performance.
These models demonstrated more balanced per-
formance on both Par=ROOT and Par ̸=ROOT cases.
However, the absolute performance remains mod-
est (F1 of around 0.5), highlighting the difficulty
of the task and the need for additional modeling
strategies.

Discussion The current MLM- and CLM-based
systems have a limitation: their absolute overall
performance (maximum F1 of 0.5 at best) has not
yet reached a practical level. Probable reasons are
that (1) the backbone models pretrained on gen-
eral infilling or generation tasks did not learn geo-
graphic relations among specific geo-entities, and
(2) it was difficult to obtain generalized knowl-
edge on geographic relations between entities from
fine-tuning only with text-based features. Possi-
ble solutions include (a) pretraining with geospa-
tial information like GeoLM (Li et al., 2023), (b)
fine-tuning a model with geocoding-based features,
such as coordinates and shapes of entities, or (c) in-
corporating structured knowledge from external re-
sources such as Wikidata.15 Specifically, Wikidata
encodes hierarchical geographic relations—such as
city-district and district-landmark—via properties
like P131 (“located in the administrative territorial
entity”).16 These relations can be leveraged to fur-
ther pretrain models or to provide explicit features
during downstream task fine-tuning or ICL.

15https://www.wikidata.org/
16https://www.wikidata.org/wiki/Property:P131
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6.3 Results for Transition Relation Prediction

Systems We evaluated three rule-based systems
(Random and two variants of Occurrence Order),
an MLM-based system (LUKE), and two CLM
systems (ELYZA and Swallow). Random is a rule-
based system that randomly lines up candidate en-
tities for each set of entities with the same parent
entity. Occurrence Order arranges candidate enti-
ties in the order of occurrence of each representa-
tive mention in their document; whereas the early
mention (EM) strategy uses the earliest occurrence
mention as the representative mention, the visit
status (VS) strategy prioritizes mentions based on
visit status label similarly to LUKE (§5.4).

Main Results Table 9 presents the performance
of the evaluated systems for TRP. The Occurrence
Order variants achieved strong results, with F1
scores of 0.730 (EM) and 0.758 (VS). This aligns
with the intuition that the order of location men-
tions in the text often corresponds to the visiting
order. The zero-shot CLM systems, similar to
their performance in the IRP task, exhibited poor
performance. In contrast, the fine-tuned models,
including ELYZA, LUKE, and Swallow, demon-
strated similar levels of overall performance, with
F1 scores around 0.75. These results were compa-
rable to the Occurrence Order (VS) baseline, which
achieved an F1 of 0.758. Notably, the fine-tuned
systems were able to correctly identify some re-
verse pairs, where the subsequent entity appeared
earlier in the text than the preceding one. How-
ever, their performance on these challenging cases
remained limited, with F1 scores around 0.3, sug-
gesting that there is still room for improvement.

Discussion While the three fine-tuned systems
yielded promising results, they still have room for
improvement. First, entities’ contexts are limited.
For LUKE, the vector representation of an entity is
constructed from a single representative mention
selected by the heuristic rule (§5.4). For CLMs,
any intervening text between the two entities’ rep-
resentative mentions that exceeds the context size
(512 tokens) is truncated. This would be improved
by extending the context to include all mentions
for two entities of interest, although an effective
method may be necessary to grasp complicated
relations among many mentions. Second, the cur-
rent systems uniformly treat all entity pairs without
transition relation as negative instances. However,
entity pairs with indirect transition relations, where

one entity is visited before the other through one or
more intermediate entities, could also be exploited
as positive instances for an additional auxiliary
task. Incorporating such higher-order dependen-
cies, similar to relative event time prediction (Wen
and Ji, 2021), may enable the models to capture
more complex visiting patterns and improve the
overall accuracy of visit order prediction.

7 Qualitative Analysis

We provide a qualitative analysis based on predic-
tions of LUKE-based systems for the three sub-
tasks: VSP, IRP, and TRP.17

7.1 Visit Status Prediction
As Table 7 shows, LUKE tends to fail to correctly
predict the UnkOrNotVisit/Other label. Our anal-
ysis indicates two error tendencies. For the first,
consider the following example.

Matsue Shinjiko Onsen Station G:UnkOrNotVisit
S:Visit is the fi-

nal station.

The gold label for Matsue Shinjiko Onsen Station is
UnkOrNotVisit because this sentence is a factual
statement and does not indicate the traveler visited
the location, but the system assigned Visit. As
this example shows, it is sometimes difficult to dis-
tinguish a factual statement from the one indicating
traveler’s visitation. For the second, consider the
following example.

This time, I skipped Matsue G:UnkOrNotVisit
S:Visit and

Yonago G:UnkOrNotVisit
S:Visit .

This sentence clearly indicates that the traveler did
not visit Masue and Yonago by the verb “skipped,”
but the system assigned Visit. As this example
shows, the system sometimes fails to correctly un-
derstand the meaning of some motion verbs, such
as “skip” and “pass on.”

7.2 Visiting Order Prediction
Inclusion Relation Prediction The results
shown in Table 8 (§6.2) have indicated that IRP
is a challenging task. Our analysis reveals that
LUKE learned the tendency that prefectures and
cities often become parents of some entities, but

17In the camera-ready version, we added experimental re-
sults for fine-tuned CLMs in response to reviewers’ comments;
although the fine-tuned CLMs exhibited strong performance,
the original submission focused its analysis on LUKE, which
was the best-performing model at that time. Qualitative analy-
sis of the CLMs remains future work.

14123



LUKE also sometimes made incorrect predictions,
such as a prefecture/city being the parent of another
prefecture/city. Consider the following example.

I planned to stay one night in Nagoya G:Plan
P:Plan , so I

left Ise G:Vis
P:Vis even though it was still early.

LUKE predicted “Nagoya” as the parent of “Ise,”
although both are cities. This suggests that the
model lacks geographic commonsense.

Transition Relation Prediction The results
shown in Table 9 (§6.3) have indicated difficulty in
predicting reverse-order entity pairs. Consider the
following example.

Here is Daiouji Temple G:Vis
P:Vis with its mausoleum.

I took a taxi because it was far from
the station G:Vis

P:Vis .

While “Daiouji Temple” precedes “the station,”
these sentences describe that the traveler moved
from the station to the temple. Although LUKE
tended to predict the correct order of reverse pairs
when there were some clues, such as temporal
expressions like “before” and “after,” the system
made incorrect predictions for reverse pairs without
salient clues, including the above example.

8 Related Work

8.1 Visit Status Prediction

“Visiting” is one type of human actions or move-
ments, thus our Visiting Status Prediction falls into
the category of the NLP research that analyzes ac-
tions or movements in text. One major stream of
such research is the predicate-centric approach (de-
scribed in detail in Appendix D). Here, we focus
on another stream: the location-centric approach.

Li and Sun (2014) and Matsuda et al. (2018)
specified visit status of location-referring expres-
sions in each tweet. In a similar manner, Peter-
son et al. (2021) specified it in clinical documents.
While they focused on the “mention-level” predic-
tion, we focus on the “entity-level” prediction as
well. In travelogues, multiple expressions referring
to the same location (belonging to the same geo-
entity) appear in a document. Some of the mentions
referring to the same location could appear with
the contexts that indicate the writer actually visited,
and the others not. By aggregating such various
visit status of the different mentions, you can con-
clude the visit status of the location (geo-entity).

8.2 Visiting Order Prediction
Many studies have addressed the extraction of
location-referring expressions, such as toponyms
and place names, and the grounding of them onto a
map (Lieberman et al., 2010; Matsuda et al., 2017;
Kamalloo and Rafiei, 2018; Wallgrün et al., 2018;
Weissenbacher et al., 2019; Gritta et al., 2020; Hi-
gashiyama et al., 2024). However, very few stud-
ies have focused on geographic trajectories, i.e., a
temporal-ordered sequence of multiple locations.

There are three exceptional studies on trajectory
extraction from text. Ishino et al. (2012) proposed
a task to extract the origin, destination and its trans-
portation method, from each disaster-related tweet.
Wagner et al. (2023) proposed a task to extract a
trajectory from each transcribed testimony. Each
one-minute speech was transcribed and categorized
into one of the coarse-grained location categories,
e.g., “cities in Austria” and “ghettos in
Hungary.” Their trajectory is not a detailed move-
ment trajectory of specific locations. Kori et al.
(2006) proposed to extract visiters’ representative
trajectories from blogs. Each trajectory is defined
as a sequence of location-referring mentions. The
visiting order is defined as the one in which the
mentions appear in the text. Beyond the mention-
appearing order, we have adopted the faithful visit-
ing order, which aligns with written intentions.

The crucial difference between the three studies
and ours is the trajectory representation; while the
four studies assumed trajectories as sequences, we
define them as graphs. As discussed in §4.1, be-
cause trajectories often cannot be represented as
sequences, we adopt graphs to appropriately repre-
sent geographic hierarchical relations.

9 Conclusion

In this study, we introduced a visiting order graph
to represent non-linear relations among visited lo-
cations and constructed an annotated travelogue
dataset for extracting graph-structured trajectories.
The experiments on our dataset demonstrated the
performance of current MLM and CLM-based sys-
tems and suggested possible directions for improve-
ment. In the future, we will develop an end-to-end
system that extracts the visiting trajectories from
each source document and grounds them on a map
by linking each location to the corresponding point
or area.
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Limitations

Language Our ATD-VSO dataset was con-
structed from the original ATD, which consists of
Japanese travelogues. Therefore, our experiments
are limited to the Japanese language. We plan to ex-
tend our dataset to other languages through manual
translation. While our annotation scheme is based
on visiting status, visiting order, and geographical
hierarchy and is designed to be language-agnostic,
creating datasets for other languages and regions
may require additional steps. These include col-
lecting travelogues in the target language, adapting
label definitions to reflect cultural differences, and
ensuring access to suitable map databases.

Geographical Coverage Our ATD-VSO dataset
includes locations from all prefectures in Japan, as
it was created using travelogues of domestic travels
within Japan. We plan to extend our dataset to
include locations from various countries and areas
around the world by using travelogues of overseas
travels in the original ATD.

Dataset Size Our ATD-VSO dataset consists of
100 annotated travelogues, which is relatively small
due to the high annotation cost and effort required
to ensure data quality. Despite its size, the dataset
is valuable for its novel graph-based trajectory rep-
resentation and public availability, promoting re-
producibility and fair benchmarking. We plan to
expand the dataset in the future to cover more re-
gions and languages.

Source Diversity and Generalizability Our
dataset was built entirely from travelogues on the
“Arukikata Travelogue” website. While this limits
source diversity, it includes various authors and
covers all prefectures in Japan, offering a range
of narrative styles. Including data from multiple
sources could further enhance diversity, though
copyright and licensing issues present challenges.

Causal Language Models The CLMs used in
our experiments have three limitations: prompt en-
gineering, learning method, and model size. We
used only one prompt per task, leaving a full in-
vestigation of prompt effects for future work. We
focused on zero-shot ICL but plan to explore few-
shot ICL and fine-tuning. Our models had eight
billion parameters, and using larger models could
improve performance. The comprehensive investi-
gation of performance differences among possible
prompts is left for future work.

Optimization of System Performance We per-
formed minimum hyperparameter search for the
models due to time and resource limitations. Thus,
performing optimized experiments has potential for
further performance improvement in these models.

Ethical Considerations

License of Used Resources As for our annotated
dataset ATD-VSO, its intended use is for academic
research purposes related to information science,
similarly to that of the original ATD. The text in our
dataset is a subset of the original ATD, and the orig-
inal data does not contain any information about
the travelogue authors. The Arukikata Travelogue
Dataset is available via the Informatics Research
Data Repository, National Institute of Informat-
ics under specific terms of use.18 The pretrained
mLUKE model is available under the Apache Li-
cense 2.0. The pretrained Japanese BERT model is
available under CC BY-SA 4.0. Llama3-ELYZA
and Llama3-Swallow are both available under Meta
Llama 3 Community License.19

Human Annotation Effort The annotation work
was performed by annotators at a professional data
annotation company, which determined the num-
ber of annotators and payment based on its own
estimates. The work involved three annotators, all
native Japanese speakers, with an annotation man-
ager overseeing the process. We informed the an-
notators that the data would be used for future NLP
research. The visit status annotation involved four
annotators (three men and one woman), and visit-
ing order annotation involved three annotators (two
men and one woman), all supported by the same
manager. All had prior experience with Japanese
text annotation and were in their 30s to 50s. The to-
tal annotation time amounted to approximately 150
hours for visit status annotation and 75 hours for
visiting order annotation. While more annotators
could have been ideal, we followed the company’s
recommendation to balance budget and coordina-
tion effort.

Predicted Results for Real-World Applications
Models trained on our dataset may predict incorrect
visit status and order, which can lead to inaccurate
trajectories. Users should be cautious when apply-
ing these models in real-world applications, as such
errors may impact outcomes.

18https://www.nii.ac.jp/dsc/idr/arukikata/
documents/arukikata-policy.html (in Japanese)

19https://llama.meta.com/llama3/license/
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A Details on Annotation Dataset

A.1 Other Criteria of Visiting Order Graphs

Visiting order graphs defined by the above two
types of relations can represent many trajectories,
but not all. We further introduce the following
criteria.

• Multiple Visits: There may be cases where an
entity is revisited after passing through other
entities. In such cases, the entity should be
split into sub-entities that include the corre-
sponding mentions for each visit, and sub-
entities are regarded as nodes in the visited
order graph instead of the original entity.

• UnknownTime: There may be cases where the
timing of the visit to an entity is not specified.
In such cases, the entity should be assigned the
UnknownTime label, and it is excluded from
nodes in the visited order graph.

• Overlap: There may be cases where two en-
tities are geographically overlapping, but one
does not include the other, e.g., “Tokyo Pre-
fecture” and “Honshu” (the main island of
Japan). In such cases, the two entities should
be assigned the Overlap relation, and either
entity can be selected as a representative node
to be assigned Inclusion and Transition
relations between it and other entities.

A.2 Detailed Dataset Statistics

Detailed statistics for visiting order annotation are
shown in Table 10.

Set Inc Trans Overlap UnkTime MV

Train 1,302 1,041 38 35 95
Dev 186 143 8 8 16
Test 375 322 5 10 32

Table 10: Detailed statistics for visiting order annotation.
Inc (Inclusion), Trans (Transition), and Overlap
indicate the numbers of entity pairs with each relation
type. UnkTime (UnknownTime) indicates the number of
entities with the label. MV indicates the number of
entities with multiple visits.

B Details on Evaluated Systems

B.1 Sequence Sorting Decoding for the
Baseline System

In TRP, all nodes under the same parent node (i.e.,
in the same hierarchy) should be arranged in a
single sequence. However, Equation 2 does not

always generate a single sequence. To address this
issue, we propose a sequence sorting decoding,
which has the constraint that all nodes in the same
hierarchy result in a single sequence, as follows.

1. P is a set of all possible pairs whose nodes
are in the same hierarchy.

2. The highest scoring pair ⟨ea, eb⟩ is selected
from P .

3. From P , we exclude the pairs applicable to
any of the followings: (i) the order-swapped
pair ⟨eb, ea⟩, (ii) the pair ⟨∗, eb⟩, which con-
sists of an arbitrary preceding node and the
subsequent node eb, and (iii) the pair ⟨ea, ∗⟩,
which consists of a preceding node ea and an
arbitrary subsequent node.

4. If transition relations among all the nodes have
been determined, terminate the decoding. Oth-
erwise, return to the procedure 2. above.

B.2 Detailed Settings for CLM Systems
We ran the two CLMs on a single GPU server of
NVIDIA A100 80GB. In the zero-shot ICL setting,
it took less than two hours to complete each task.
In the LoRA tuning setting, it took about 1 hour for
visit status prediction, about 12 hours for inclusion
relation prediction, and about 3 hours for transition
relation prediction, respectively. Table 16 shows
the prompts for the CLM systems in each task.

At inference time, we adopted a logit-based clas-
sification approach, rather than relying on string
generation. In this approach, the model is prompted
to predict the next token following the input prompt,
and we extracted the unnormalized output scores
(logits) z ∈ RV over the vocabulary V for the gen-
erated token. These logits represent the model’s
confidence for each possible output token. We will
explain this approach for each task in more detail.

Visit Status Prediction Let zl denote the logit
corresponding to the predefined token ID for label
l ∈ L, where

L =

{ Visit, PlanToVisit, See,
Visit-Past, Visit-Future,

NotOrUnkVisit }.

The unnormalized score zl is obtained directly from
the model’s logits for the first generated token. The
predicted label ŷ is then determined by selecting
the label with the highest logit:

ŷ = argmax
l∈L

zl
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This logit-based decision procedure avoids ambi-
guity in string decoding.

Inclusion/Transition Relation Prediction Let
zpos and zneg denote the logits corresponding to the
predefined token IDs for the positive and negative
classes, respectively. For example, in IRP, the posi-
tive class means that there exists the inclusion re-
lation between child and parent, and in TRP, the
positive class means that there exists the transition
relation between entity and candidate_entity.
Based on the logits, we computed the score as:

ẑ =

{
1 if zpos > zneg

0 otherwise.

For IRP, based on the score ẑ, we generated the tree
with the highest score as the final result by using
the Maximum Spanning Tree algorithm (Stanojević
and Cohen, 2021)20. For TRP, based on the logit
z_pos, we greedily determined the order from first
to last.

B.3 Hyperparameters
Table 11 shows the hyperparameter values used in
the experiments using LUKE. We specifically se-
lected batch size for each task, but we followed Ya-
mada et al. (2020) and Ri et al. (2022) for the other
hyperparameters. We saved the models at the train-
ing epoch when the models achieved the best scores
on the development sets. The sizes of the models
for visit status prediction (VSP), inclusion relation
prediction (IRP) and transition relation prediction
(TRP) are 253M, 561M and 561M, respectively.
Table 12 shows the hyperparameter values used in
the zero-shot in-context learning experiments with
Llama3-ELYZA and Llama3-Swallow. Table 13
shows the hyperparameter values used in the su-
pervised fine-tuning experiments with LoRA-tuned
Llama3-ELYZA and Llama3-Swallow.

C Additional Experimental Results

C.1 Analysis on LUKE-based System
Variants

To investigate the influence of surface text on
learning and prediction of the baseline model for
mention-level VSP, we evaluated two additional
variants of the LUKE-based system trained with
edited input text. That is, (1) mention masking
model trained with input text where mention tokens

20https://github.com/stanojevic/
Fast-MST-Algorithm

Task Name Value

VSP
Learning rate 5e-6
Batch size 16
Training epochs 10

IRP
Learning rate 5e-6
Batch size 4
Training epochs 10

TRP
Learning rate 5e-6
Batch size 4
Training epochs 10

Table 11: Hyperparameter values for the LUKE models.

Name Value

Max new tokens 10
Batch size 1
Decoding Multinomial Sampling
Temperature 0.6
Top_p 0.9

Table 12: Hyperparameter values for Llama3-ELYZA
and Llama3-Swallow.

are replaced by [MASK] tokens, and (2) mention
only model trained with input text where context
tokens other than mention tokens are removed. Ta-
ble 14 shows the performance of the model variants
on the development set. Compared to the original
baseline, the mention masking model remained
slightly lower in accuracy, and the mention only
model, while even lower in accuracy, was still able
to predict correct labels to some extent. This sug-
gests that the model mainly relied on context infor-
mation and also used mention information together.

C.2 Pipeline Prediction

We performed pipeline prediction on documents
in the development set using the current baseline
systems: LUKE+MLA for VSP, LUKE for IRP,
and LUKE with sequence sorting decoding for TRP
(we simply refer to these systems as “LUKE” in
this section). Figure 3 shows gold and predicted
visiting order graphs for a document (ID: 00019).

For VSP, LUKE correctly assigned Visit or
Other to 10 out of 13 entities, but misclassified
three entities with the gold label Visit as predicted
label Other. These misclassified entities resulted
from predictions for three mentions in sentence 009
in Table 15; the MLA rule determined the entity
label Other according to LUKE’s prediction of the
mention label See for the three mentions. This
suggests that the trained model did not grasp the
nuanced context, which describes a photo of the
facilities (“five-storied pagoda” and “kofukuji Tem-
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Name Value

LoRA rank (r) 8
LoRA alpha 16
LoRA dropout 0.1
Target modules q_proj, k_proj, v_proj
Quantization 4-bit (NF4)
Batch size 4
Learning rate 2e-4
Training epochs 5
Optimizer AdamW
Gradient accumulation steps 2

Table 13: LoRA fine-tuning hyperparameters for
Llama3-ELYZA and Llama3-Swallow.

Method Acc. Macro F1

LUKE 0.750 0.383
LUKE (mention masking) 0.738 0.373
LUKE (mention only) 0.634 0.151

Table 14: Performance of LUKE variants for mention-
level visit status prediction (on the development set).

ple”) taken by the traveler and the nearby location
(“Sarusawaike Pond”).

For IRP, LUKE predicted correct parents for four
out of seven entities with the predicted label Visit
and incorrect parents for the remaining three en-
tities. Two of the failed entities are written with
general noun mentions (“bamboo grove” in sen-
tence 019 and “shop” in sentence 021); it is neces-
sary for correct prediction to understand that the
geographic relations among these and other enti-
ties are not explicitly described, except the context
on the traveler’s trip to Nara. For correct predic-
tion for another failed entity regarding the mention
“Great Buddha” in sentence 005, which refers to
Birushana Buddha at Todaiji Temple, geographic
knowledge that Todaiji Temple is located in Nara
Park is also necessary.

For TRP, LUKE was able to identify no exact
entity pairs with correct transition relation. The
gold transition sequences are those arranged in the
order of occurrence in the document for each hierar-
chy level (except for entities with UnknownTime or
Overlap), and LUKE also arranged entities in the
same manner within the given inclusion hierarchy.
This result indicates that accurate prediction of in-
clusion relation is crucial for accurate prediction of
transition sequences.

D Supplementary Related Work

Predicate-Centric Approach to Visit Status Pre-
diction A line of work on spatial information in

natural language, such as SPACEBANK, seeks to
develop computational models that can recognize,
generate and reason about spatial information in
natural language, including place names, topologi-
cal relations, and human movement (Pustejovsky
et al., 2012; Pustejovsky and Yocum, 2013; Puste-
jovsky et al., 2015). Basically, they regarded verbs
as the expressions that represent movement and de-
fined MOVELINK for encoding movement informa-
tion, such as the mover, the goal location, and the
goal reachability of the movement. Also, previous
work on event and temporal expressions, such as
TIMEML (Pustejovsky et al., 2003), and event fac-
tuality, such as FACTBANK (Saurí and Pustejovsky,
2009), regarded verbs (predicates) as a trigger of
each event and specified attribution information on
verbs. Instead of predicates, we specify visit status
information on location-referring expressions and
geo-entities because it is not rare that movement is
expressed without verbs. Consider the following
example.

Todaiji Temple. In the main hall, I saw the Great
Buddha of Nara. What a majestic statue!

Next, Nara National Museum. I had lunch in the
restaurant and looked around the exhibits.

Here, the geographic movement from Todaiji Tem-
ple to Nara National Museum is expressed as scene
transition by changing paragraphs. Because this
kind of example is not rare in travelogues, we spec-
ify necessary information on geographic entities
and mentions, instead of predicates.
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Figure 3: Gold and predicted visiting order graphs for an actual document. The nodes with dashed frames and edges
with dashed arrows represent prediction errors.

SentID Text English Translation

005 大仏 Visit→Visit様はとっても大きかったなぁ~ The Great Buddha was really huge.

009 写 真 は猿沢池 UnkOrNotVisit→Seeか ら も 見 え

る興福寺 Visit→Seeの五重塔 Visit→Seeです。

It’s a photo of the five-storied pagoda at
Kofukuji Temple visible from Sarusawaike Pond.

017,018 写真だとわかりづらいけど、とっても大きな石が
使われています。古墳 Visit→Visitの中に入ると、さ

らに大きさを感じることができます。

019 竹やぶ Visit→Visitの中にひっそりとあります。

021 「柿の葉寿司」で有名なお店 Visit→Visitです。

Table 15: Actual sentences in a document (ID: 00019) and its English translation. Gold mentions are highlighted
with blue underline.
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Task Prompt English Translation

VSP

指示:
文章読解問題です。次の旅行記の文章を読んで、
「{mention}」についての質問に回答してくださ
い。

文章:
{input_text}

質問:
旅行記の著者は「{mention}」を訪れましたか？
次の選択肢から1つ選んで、選択肢の番号のみを
回答してください。

選択肢:
1訪問した
2訪問予定だ
3その場所を見た
4前に訪問したことがある
5将来的に訪問したい
6その他

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question on
“{mention}.”

Document:
{input_text}

Question:
Did the author of the travelogue visit
“{mention}?” Select one of the following
options and answer only its option number.

Options:
1 The author visited the place
2 The author plans to visit the place
3 The author saw the place
4 The author had visited the place
5 The author will visit the place in the future
6 Other

Answer:

IRP

指示:
文章読解問題です。次の旅行記の文章を読んで、
「{child}」と「{parent}」についての質問に回
答してください。

文章:
{input_text}

質問:
旅行記中の「{child}」は「{parent}」の領域内
にありますか？次の選択肢から1つ選んで、選択
肢の番号のみを回答してください。

選択肢:
1はい、領域内にあります
2いいえ、領域内にはありません

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question on
“{child}” and “{parent}.”

Document:
{input_text}

Question:
Is the location “child” within the area of
“parent” in the travelogue? Select one of the
following options and answer only its option
number.

Options:
1 Yes, it is within the area
2 No, it is not within the area

Answer:

TRP

指示:
文章読解問題です。次の旅行記の文章を読んで、
「{entity}」と「{candidate_entity}」について
の質問に回答してください。

文章:
{input_text}

質問:
旅行記の著者は「{entity}」を訪れ、その次に
「{candidate_entity}」を訪れましたか？次の選
択肢から1つ選んで、選択肢の番号のみを回答し
てください。

選択肢:
1はい、次に訪れました
2いいえ、次に訪れてはいません

回答:

Instruction:
This is a reading comprehension test. Read the
following travelogue and answer the question on
“{entity}” and “{candidate_entity}.”

Document:
{input_text}

Question:
Did the author of the travelogue visit “{entity}”
and then visit “{candidate_entity}” next? Se-
lect one of the following options and answer only
its option number.

Options:
1 Yes, visited next
2 No, did not visit next

Answer:

Table 16: Prompts for the CLM systems. “VSP” stands for visit status prediction, “IRP” stands for inclusion relation
prediction, and “TRP” stands for transition relation prediction. The phrases {xxx} are variables (place holders).
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