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Abstract

Despite the remarkable success of attention-
based large language models (LLMs), the pre-
cise interaction mechanisms between attention
heads remain poorly understood. In contrast to
prevalent methods that focus on individual head
contributions, we rigorously analyze the intri-
cate interplay among attention heads through
a novel framework based on the Harsanyi div-
idend, a concept from cooperative game the-
ory. Our analysis reveals that significant posi-
tive Harsanyi dividends are sparsely distributed
across head combinations, indicating that most
heads do not contribute cooperatively. More-
over, certain head combinations exhibit nega-
tive dividends, indicating implicit competitive
relationships. To further optimize the inter-
actions among attention heads, we propose a
training-free Game-theoretic Attention Calibra-
tion (GAC) method. Specifically, GAC selec-
tively retains heads demonstrating significant
cooperative gains and applies fine-grained dis-
tributional adjustments to the remaining heads.
Comprehensive experiments across 17 bench-
marks demonstrate the effectiveness of our pro-
posed GAC and its superior generalization ca-
pabilities across diverse model families, scales,
and modalities. The source code is available at:
https://github.com/queng12322/GAC.

1 Introduction

Recently, Large language models (LLMs) (Achiam
et al., 2023; Bai et al., 2023; Dubey et al., 2024)
have gained considerable attention for their impres-
sive performance across diverse tasks. A critical
component enabling this performance is the atten-
tion mechanism (Vaswani et al., 2017), which ef-
fectively captures relationships between tokens.

Previous works mainly focus on studying the
role of each individual attention head. As shown in
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Figure 1: (a) Previous works study the contribution of
each single attention head in isolation. (b) We model
attention heads as players in a cooperative game process,
utilizing the Harsanyi dividend to capture the benefits
of collaborations among multiple attention heads.

Figure 1(a), these works (Voita et al., 2019; Behnke
and Heafield, 2020; Wang et al., 2021; Zayed et al.,
2024; Zhou et al., 2024; Jin et al., 2024) assess the
contribution of a single attention head via pruning
it. Nevertheless, the inference process for specific
tasks relies on the collective operation of multiple
heads. It raises the fundamental question: What
is the interplay among attention heads? Coopera-
tive or competitive? A thorough understanding of
the interaction among attention heads is crucial for
both optimizing model performance and demysti-
fying the black-box nature of LLMs.

We investigate this problem from the perspec-
tive of game theory. As shown in Figure 1(b), we
consider the prediction process of the LLM as a
game and attention heads as players. Then, we
utilize the Harsanyi dividend (Harsanyi, 1982) to
quantify the interactions for each attention head
coalition. Harsanyi dividend was originally pro-
posed in game theory to measure the interactions
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between different players, which makes itself a nat-
ural metric to dissect the compositional capability
of attention heads. Besides, it theoretically satis-
fies the efficiency, linearity, dummy, and symmetry
axioms, which ensures the trustworthiness of the
interpretations for our analysis. Conceptually, let
p1, p2, and p3 be the gain of the game with only
head 1, only head 2, and both, respectively. The
Harsanyi dividend (p3 - p1 - p2) denotes the added
gain from combining two heads. Here a positive
dividend suggests that cooperation exists among
these heads, while a negative value indicates im-
plicit competition.

Through an in-depth analysis of the Harsanyi
distribution, we reveal its sparsity, where only a
small fraction of attention head coalitions yield
substantial dividends. A large number of coali-
tions demonstrate near-zero dividends, implying a
lack of cooperative effect. Furthermore, negative
dividends observed in specific coalitions highlight
inherent conflicts among alliance members. These
observations naturally lead to the question: Can we
optimize these interactions among attention heads
to improve the capability of attention layers?

To this end, we develop a training-free Game-
theoretic Attention Calibration (GAC). Specifically,
we first identify the salient group of attention heads
that exhibit significant positive Harsanyi dividends.
Subsequently, to alleviate the competition between
attention heads that results in negative Harsanyi div-
idends, we smooth the excessive attention weight
allocations in attention heads outside the salient
group by applying fine-grained distributional ad-
justments. This approach yields a significant im-
provement in the overall Harsanyi dividend.

To comprehensively evaluate the effectiveness
and generalization of our GAC, we conduct exper-
iments across both LLM and MLLM, utilizing a
diverse set of 17 benchmark datasets. Our proposed
GAC can achieve up to a 10% higher accuracy than
the vanilla inference across eight text classification
benchmarks. Moreover, our method effectively pro-
motes inter-head collaboration with an increased
overall Harsanyi dividend.

To sum up, we make the following contributions:

• To the best of our knowledge, we are the
first to model attention heads with a multi-
variate cooperative game process and adopt
the Harsanyi dividend to investigate the coop-
erative mechanisms among them.

• From the perspective of the game theory, we

propose a training-free Game-theoretic Atten-
tion Calibration (GAC) for optimizing the in-
teractions between attention heads.

• Extensive experiments on 17 benchmark
datasets, encompassing both LLMs and
MLLMs, validate the efficacy and general-
izability of our proposed GAC method across
diverse model families, scales, and modalities.

2 Related Work

Game Theory. The fundamental principle of
game theory is to allocate payoffs to participants
in a fair and reasonable manner. It is formally
constituted by a set of players and a characteristic
function (Chalkiadakis et al., 2022). The character-
istic function assigns to each coalition of players
a real-valued quantity representing the collective
payoff achievable by those players when collabo-
rating to accomplish a given task. Game theory has
found many applications in the field of model inter-
pretability (Jin et al., 2023; Liu et al., 2023a; Wang
et al., 2024; Fang et al., 2024), but there is little
exploration of the attention mechanisms. Harsanyi
dividend (Harsanyi, 1982) is first proposed in game
theory to measure the interplay between different
players. This paper adopts it to analyze the interac-
tions between attention heads as it satisfies many
mathematical axioms as described in Appendix A.

Pruning Attention Head. Michel et al. (2019)
evaluates the importance of each individual head by
pruning it. They observe that a large percentage of
attention heads can be removed at test time without
significantly impacting performance. Studies have
further shown that certain heads play specialized
roles (Clark et al., 2019b; Qu et al., 2020; Zhou
et al., 2024; Zayed et al., 2024; Qu et al., 2024b).
In this paper, instead of investigating the contribu-
tion of a single attention head, we make the first
attempt to study the interaction between attention
heads. Furthermore, we propose a training-free
optimization method for these interactions that im-
proves overall model capability. This contrasts
with previous pruning methods, which primarily
focused on performance preservation.

Attention Sink. StreamLLM (Xiao et al., 2023)
first identifies the presence of the attention sink
phenomenon, which refers to a token that receives
disproportionately high attention scores but con-
tributes limited semantic information. StreamLLM
notes that attention sink is typically found only in
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Figure 2: (a) We first mask partial attention heads to form different coalitions. Subsequently, we compute the
Harsanyi dividend for each coalition to investigate the interaction among attention heads. (b) The distribution of
the Harsanyi dividend for each coalition on each layer. For clarity, we sort the strength of interaction effects in
descending order. More layers are demonstrated in Figure 7 of the Appendix.

the initial token. Subsequently, ACT (Yu et al.,
2024) discovers that attention sinks occur not only
at the start of sequences but also within later to-
kens. This attention sink is then used for KV cache
optimization (Wan et al., 2024; Wu and Tu, 2024),
efficient inference (Zhang et al., 2024), and other
applications (Liu et al., 2024b,a,c, 2022; Zhu et al.,
2023; Tao et al., 2023; Qu et al., 2024a, 2025,
2024c, 2023; Guo et al., 2024; Dong et al., 2022,
2024). In this paper, we smooth the excessive atten-
tion weights to alleviate the inter-head competition.

3 Analyzing Interactions

In this paper, we analyze the intricate interplay
between attention heads with the Harsanyi dividend.
We first briefly introduce the attention mechanism
in Section 3.1 and the Harsany dividend in Section
3.2. Then, we use the Harsany dividend to quantify
the interaction among different combinations of
attention heads (Section 3.3).

3.1 Attention Mechanism

LLMs typically consist of L transformer blocks,
each comprising a feed-forward network (FFN)
and a multi-head attention (MHA) module that cap-
tures the pairwise relationships among all N input
tokens in an input sequence. Specifically, for a
given input X ∈ RN×d to the l-th block (here we
omit layer notations), the output feature of MHA
can be represented as:

MHA(X) = HWo, H = (h1 ⊕ h2 ⊕ · · · ⊕ hn)

hi = AiW
i
v, Ai = Softmax

(
W i

qW
iT
k√

d/n

)

(1)

where W i
q = f i

q(X), W i
k = f i

k(X), W i
v = f i

v(X),
f i
q, f i

k, and f i
v are projection layers. Ai ∈ RN×N

is the attention map generated at head hi. ⊕ repre-
sents concatenation.

3.2 The Harsanyi dividend

The Harsanyi dividend (Harsanyi, 1982) is a clas-
sical concept in game theory used to measure the
interactions among players. Given a set of play-
ers N = {1, 2, . . . , n} participating in a game v,
certain rewards can be achieved. The function v(·)
maps any subset of players S ⊆ N to a real number,
representing the reward obtained by that subset.

During a game of Harsanyi dividend, it is impor-
tant to note that players typically do not contribute
to the reward independently, instead, they inter-
act with one another, forming various coalitions or
patterns that collectively affect the outcome.

Definition 1. Harsany Dividend: Given a set of
participants N = {1, 2, ..., n}, and a value func-
tion v(S), the Harsanyi dividend w(S|N) for a
specific coalition S ⊆ N is defined as:

w(S|N ) =
∑

S′⊆S

(−1)|S
′|−|S| · v(S′). (2)

It quantifies the marginal contribution of the ele-
ments in S to all possible coalitions that can be
formed within S. v(S′) is the characteristic func-
tion, representing the value achieved by the subset
S′ when its members cooperate.

3.3 Analyzing the Interactions of Attention
Heads with Harsanyi dividend

To analyze the interaction between attention heads,
we take attention heads as players and adopt the
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Harsanyi dividend to analyze the interactions be-
tween them. Formally, we represent the characteris-
tic function v(·) as the normalized prediction logits
of classifying the sample x to the ground-truth cat-
egory following (Liu et al., 2023a). Notably, using
accuracy or logits directly as the characteristic func-
tion leads to poor discriminability.

v(x) = log

(
p(y = ytruth|x)

1− p(y = ytruth|x)

)
(3)

To construct combinations of different attention
heads, as shown in Figure 2(a), we propose to mask
the specific attention head in Eq. 1 with the undif-
ferentiated attention (Zhou et al., 2024):

ĥi = Softmax(
ϵW i

qW
iT
k√

d/n
)W i

v (4)

where a very small coefficient ϵ (1e−5) is multi-
plied with the parameter matrix. It hinders the head
from extracting the critical information from the in-
put sequence and degenerates the attention weight
to the mean value. We have explored other methods
for ablating attention heads and compared them in
Table 7 of the Appendix.

Subsequently, we mask partial attention heads
to form a coalition Ĥ and exploit the Harsanyi
dividend to quantitatively measure the interaction
on the characteristic function in Eq. 3:

Ĥ = (h1 ⊕ ĥi ⊕ ĥj ⊕ hn)

w(H|Ĥ) =
∑

H⊆Ĥ

(−1)|H|−|Ĥ| · v(Ĥ) (5)

As shown in Figure 2(b), we sort the strength
of interaction effects in descending order for each
layer, we can observe: (1) Only a small num-
ber of coalitions have significant positive effects
w(Ĥ|H), whose Harsanyi dividend is significantly
larger than 0. These interactions are sparse through-
out the distribution. (2) Most coalitions have al-
most zero effect, i.e, w(Ĥ|H) ≈ 0. It means that
most combinations do not contribute cooperatively.
(3) Intriguingly, some coalitions lead to negative
Harsanyi values, demonstrating specific attention
heads exhibit implicit competition with each other.
This new observation may help explain phenomena
like knowledge conflict (Su et al., 2024) or catas-
trophic forgetting (Luo et al., 2023) in the LLM.

It is intriguing that the sparse Harsanyi distri-
bution of attention heads in Figure 2(b) is similar

to the concept-emergence phenomenon (Ren et al.,
2024, 2023; Liu et al., 2023a) proposed in explain-
ing DNN, where only a small number of subsets
Ωsalient make salient interaction effects on the net-
work output, and can be considered as interactive
concepts. For these interactive concepts in DNNs,
there are the below theorem:

Theorem 1. Given an input sample x ∈ Rn with
n variables indexed by N = {1, ..., n}, there are
2n different masked samples xT , for specific set H,
H ⊆ N , Ren et al. (2024) has proven:

∀T ⊆ N, v(xT ) =
∑

H⊆T

w(H|x)

≈
∑

H∈Ωsalient&H⊆T

w(H|x) (6)

The first part of the equation adheres to the ef-
ficiency axiom of Harsanyi dividend (Harsanyi,
1982), introduced in Appendix A. The second part
means that the interactive concepts in Ωsalient can
well approximate network outputs on anyone xT
of the 2n masked samples. Therefore, the sub-
sets leading to salient interactions are most impor-
tant for the predictive capability of the model as
v(x) ≈∑H∈Ωsalient

w(H|x).

4 Game-theoretic Attention Calibration

Following our above analysis, which reveals the
sparsely distributed significant Harsanyi dividends
and the presence of negative dividends, we seek
to optimize the interactions to promote inter-head
collaboration and improve model capability.

To this end, we propose a training-free Game-
theoretic Attention Calibration (GAC) method. In-
spired by the principles outlined in Theorem 1, we
propose to selectively retain heads demonstrating
salient cooperative gains. Moreover, to alleviate the
competition between attention heads that results in
negative Harsanyi dividends, we apply fine-grained
distributional adjustments to the remaining heads.

4.1 Identify Salient Group
In this section, we aim to identify the attention
heads that create salient interactions and preserve
these heads. Notably, it is challenging to identify a
combination in which all possible interactions are
salient. Therefore, we propose two approximation
methods and will compare them in the ablation
study. In the first method, we simply adopt the
maximum Harsanyi to identify a salient group h
containing multiple heads hi:
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G(h) = argmax(w(Ĥ|H)) (7)

Besides using a single maximum Harsany value,
in the second method, we select all combinations
whose Harsanyi values are positive and then iden-
tify the maximum common subset within this set.

G′(h) = argmax
w(Hi|Ĥ)>0

∣∣∣
⋂

Ĥi

∣∣∣ (8)

4.2 Calibrate Attention Distribution
After identifying the salient group, we redistribute
attention scores among the heads outside of the
salient group, aiming to alleviate competition be-
tween attention heads within and outside the salient
group. Specifically, we first identify focused tokens
with excessive attention scores. Subsequently, the
attention scores of these focused tokens will be
diminished and the attention weights of the remain-
ing tokens will accordingly increase.

Formally, for the attention map of the i-th head
Ai in Eq. 1, Ai[m,n] denotes the relationship
between the m-th and n-th tokens. We define the
average attention score as below:

ai = [

m∑

n=1

Ai[m,n]/m, ∀m ∈ {2, ..., N}] (9)

Here, ai[m] denotes the average attention score
of the m-th token at i-th head. We do not adjust
the first token considering its importance (Xiao
et al., 2023). We then adjust the m-th token with
significantly high average scores:

Si = {t ∈ {2, ..., N}|ai[t] > α} (10)

where α is a threshold hyperparameter deciding
the focused tokens. Subsequently, we diminish the
attention score in i-th head for all s ∈ Si for each
row k in attention map Ai:

Âi[k, s] = Ai[k, s]× β (11)

where β is a hyperparameter controlling how much
we diminish the excessive attention scores. Finally,
we slightly increase the attention scores of each
other tokens s /∈ Si and ensures that the sum of
each row k remains one:

Âi[k, t] = Ai[k, t] +
∑

s∈Si

(Ai[k, s]− Âi[k, s])

× Ai[k, t]∑
i∈{1,...,N}−Si

Ai[k, i]

(12)

Algorithm 1 Game-theoretic Attention Calibration (GAC)
Input: A = {A1, A2, . . . , An} for n attention heads
Parameter: α, β
Output: Calibrated attention maps Â
1: for all attention heads Ai ∈ A do
2: Mask partial attention heads using Eq. (4)
3: Form coalition Ĥ using Eq. (5)
4: Compute Harsanyi dividend for Ĥ using Eq. (5)
5: end for
6: Identify salient group G(h) using Eq. (7)
7: for each attention head Ai ∈ A do
8: if Ai /∈ G(h) then
9: for each token m ∈ {1, . . . , N} do

10: Compute average attention score using Eq. (9)
11: Identify focused tokens Si using Eq. (10)
12: end for
13: for focused tokens s ∈ Si do
14: Diminish attention score using Eq. (11)
15: end for
16: Distribute additional score using Eq. (12)
17: end if
18: end for

With this method, we allocate the additional atten-
tion score proportionally based on the weights of
the tokens. We also investigate the uniform distri-
bution in Table 8 of the Appendix.

After describing our proposed training-free
Game-theoretic Attention Calibration (GAC), we
summarize the process into below Algorithm 1.

5 Experiment

5.1 Experimental Settings

Models. We evaluate our method on four LLMs,
including Llama3.1-8B-chat (Dubey et al., 2024),
Qwen2.5-7B-Instruct, Qwen2.5-14B-Instruct, and
Qwen2.5-32B-Instruct (Team, 2024).
Datasets: We evaluate three types of LLM
tasks with 16 different benchmark datasets: ❶

Text Classification: SST2 (Socher et al., 2013),
SST5 (Socher et al., 2013), MR (Pang and
Lee, 2005), AGNews (Zhang et al., 2015),
TREC (Voorhees and Tice, 2000), CB (De Marn-
effe et al., 2019), and BoolQ (Clark et al., 2019a).
❷ Multiple choice: Hellaswag (Zellers et al.,
2019), ARCE (Clark et al., 2018), PIQA (Bisk
et al., 2020), OB (Mihaylov et al., 2018),
ARCC (Clark et al., 2018), COPA (Wang et al.,
2019), CQA (Talmor et al., 2018). ❸ Open-ended
question answering: SQuAD v1 (Rajpurkar et al.,
2016) and SQuAD v2 (Rajpurkar et al., 2018).

In addition, we construct an evaluation set to
compute the Harsanyi dividend for each combina-
tion and describe it in Appendix D.
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Model Method SST2 SST5 MR SUBJ AGNews TREC CB BoolQ Average

Llama-3.1-8B-Instruct

Vanilla 92.09 48.32 91.74 68.70 73.16 11.60 64.29 81.99 66.49
ACT 93.12 49.23 92.40 71.55 74.13 14.40 67.86 83.67 68.30

Sahara 92.89 49.41 92.57 72.60 73.76 13.00 67.86 83.21 68.16
GAC 94.15 51.86 92.78 76.85 88.34 43.80 82.14 86.27 77.02

Qwen2.5-7B-Instruct

Vanilla 92.89 49.14 90.43 49.60 81.68 18.20 83.93 85.41 68.91
ACT 92.55 49.86 90.99 66.90 83.34 19.00 89.29 85.90 77.23

Sahara 94.50 49.68 90.90 53.50 82.28 22.40 91.07 87.36 71.46
GAC 94.84 54.22 93.71 81.15 87.47 31.80 94.64 88.65 78.31

Qwen2.5-14B-Instruct

Vanilla 92.55 49.23 91.28 65.60 85.86 25.4 83.93 83.98 72.23
ACT 93.46 50.14 92.03 68.40 86.13 27.60 87.50 85.23 73.81

Sahara 93.23 50.23 92.03 69.45 86.18 27.00 87.50 85.09 73.84
GAC 95.76 51.32 93.15 80.55 86.32 49.60 98.21 86.09 80.13

Qwen2.5-32B-Instruct
Vanilla 94.38 51.59 91.46 81.2 85.82 22.4 83.93 87.86 74.83
ACT 94.72 52.04 91.84 82.15 85.99 26.40 85.71 88.32 75.90

Sahara 94.72 52.40 91.74 84.10 86.00 26.60 85.71 88.17 76.18
GAC 97.13 54.95 93.62 95.60 88.96 30.40 92.86 88.71 80.28

Table 1: Accuracy comparison of our GAC and recent methods on text classification datasets across four LLMs.
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Figure 3: Ablation of identifying salient groups.

Baselines: We compare our GAC with vanilla
inference and two recent methods ACT (Yu et al.,
2024) and Sahara (Zhou et al., 2024). ACT in-
dividually considers each head and modifies the
attention map for each single attention head. Sa-
hara is first proposed to identify the most important
head for model safety. We adapt it to our paper
by identifying the most substantial performance
improvements when omitting the specific heads.

Implementation details In all our experiments,
we adopt the maximum Harsanyi to identify salient
groups and set α to 0.1 and β to 0.1 in our GAC
method. Considering the number of coalitions (2n)
is large when there are numerous heads, similar to
game theory in explaining DNN (Liu et al., 2023a;
Shen et al., 2021), we group the attention heads cor-
responding to the same key/value head as a player
and then analyze the interactions between these
players in our paper. In this way, there are eight
players in each layer for our evaluated models.

5.2 Main Results

Text classification. As shown in Table 1, we val-
idate GAC on diverse text classification datasets.
The results demonstrate that GAC consistently im-
proves accuracy compared to the vanilla inference
baseline. Concretely, GAC delivers average accu-
racy gains of 10.53%, 9.40%, 8.08%, and 5.45%
for Llama3.1-8B, Qwen2.5-7B, Qwen2.5-14B, and
Qwen2.5-32B, respectively. Notably, on challeng-
ing benchmarks, such as TREC and CB, GAC ob-
tains significant improvement. Furthermore, our
GAC also significantly surpasses ACT and Sahara.
These experiments further validate the robustness
of our GAC in improving the model capability.

Domain-specific multiple choice. Moreover, we
evaluate GAC on domain-specific multiple-choice
datasets in Table 2. On average, GAC yields ac-
curacy gains ranging from 1.67% to 2.93% across
various models. Notably, we observe a peak accu-
racy improvement of 5.2% on a single dataset OB.
Moreover, our GAC also surpasses the previous
method ACT and Sahara. Especially on Qwen2.5-
32B-Instruct, our GAC obtains significantly better
performance than them. These experiments vali-
date the generalization of our GAC across different
model families and sizes.

Open-ended question-answering. To further as-
sess the generalization of our GAC, we evaluate it
on open-ended question-answering with the estab-
lished SQuAD v1 and SQuAD v2 datasets. In this
context, we employ the F1 score as the characteris-
tic function. For more complex open-ended tasks,
GPT evaluation can be adopted as the characteristic
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Model Method Hellaswag ARCE PIQA ARCC OB CQA Average

Llama-3.1-8B-Instruct

Vanilla 70.85 92.98 80.69 84.95 84.40 76.82 81.78
ACT 71.51 93.51 82.64 85.95 86.00 77.23 82.81

Sahara 71.72 93.33 82.32 86.29 85.40 77.07 82.69
GAC 72.29 94.21 83.19 87.29 86.40 77.81 83.53

Qwen2.5-7B-Instruct

Vanilla 85.56 95.79 84.93 88.63 82.20 83.13 86.71
ACT 86.08 96.67 85.80 90.64 84.40 83.62 87.87

Sahara 86.02 96.67 85.85 89.97 84.20 83.37 87.68
GAC 85.95 96.84 86.18 91.30 85.80 84.19 88.38

Qwen2.5-14B-Instruct

Vanilla 89.75 97.02 85.13 92.98 84.60 84.03 88.92
ACT 89.84 97.72 89.21 93.31 86.00 84.44 90.87

Sahara 89.87 97.89 91.28 93.65 86.20 84.52 90.57
GAC 91.02 99.13 87.27 94.31 88.32 85.67 90.95

Qwen2.5-32B-Instruct

Vanilla 88.14 96.84 85.53 92.64 83.00 84.52 88.45
ACT 88.35 97.19 87.15 92.97 85.40 86.90 89.66

Sahara 89.67 97.54 86.61 92.97 85.40 86.57 89.79
GAC 90.56 98.59 89.53 95.41 88.20 85.99 91.38

Table 2: Accuracy comparison of our GAC and recent methods on multiple choice datasets across four LLMs.

Model Method SQuAD v1 SQuAD v2

Llama-3.1-8B-Instruct
Vanilla 84.98/72.00 36.11/24.80
GAC 88.16/79.64 40.16/32.47

Improv. 3.18/7.64 4.05/7.67

Table 3: Our proposed GAC on open-ended question
answering datasets. Each result for SQuADv1/v2 is
presented as the exact match score/F1 score.

α Hellaswag ARCE PIQA ARCC OB CQA

Vanilla 70.85 92.98 80.69 84.95 84.40 76.82
0.05 72.13 94.21 82.64 86.96 86.40 77.48
0.10 72.29 94.21 83.19 87.29 86.40 77.81
0.15 72.16 93.86 82.97 86.62 85.80 77.64
0.20 72.04 93.51 81.66 86.29 86.40 77.64

Table 4: Ablation study on α selection.

function. We leave it for future study. Considering
these datasets are significantly large, we only con-
duct experiments on the LLaMA3.1-8B model. As
shown in Table 3, GAC consistently outperforms
vanilla inference across all metrics on SQuAD v1
and SQuAD v2. Specifically, GAC demonstrates a
3.18% increase in exact match score, and a 7.64%
gain in F1 score over the baseline in SQuAD v1.
Similarly, our proposed GAC achieves obvious im-
provement on SQuAD v2. These results further
demonstrate the generalization of our GAC.

6 Ablation Study

6.1 Ways to Identify Salient Group
In this section, we compare two methods in Section
4.1 to identify the salient group. Our experiments
are performed on challenging multi-choice datasets.

β Hellaswag ARCE PIQA ARCC OB CQA

Vanilla 70.85 92.98 80.69 84.95 84.40 76.82
0.7 71.64 93.68 82.54 86.96 85.40 77.40
0.5 71.45 93.86 83.03 87.29 86.20 77.48
0.3 71.52 93.86 82.64 86.96 85.80 77.64
0.1 72.29 94.21 83.19 87.29 86.40 77.81

Table 5: Ablation study on β selection.

As shown in Figure 3, using the simple maximum
Harsanyi dividend achieves better results than iden-
tifying the maximum subset. Notably, without iden-
tifying the salient group and performing attention
distribution calibration for all heads leads to poorer
performance than the vanilla as the distribution of
all heads is forced to be smooth. Therefore, we
adopt the maximum Harsanyi due to its simplicity
and better performance.

6.2 Ablation of Attention Calibration

Here we analyze the hyper-parameters α and β in
Section 4.2 for attention calibration. Specifically, α
defines the threshold for identifying tokens with ex-
cessive attention weight. To assess the robustness
of our GAC to varying α values, we conduct exper-
iments using Llama3.1-8B-chat across a range of α
values. As shown in Table 4, GAC consistently sur-
passes the vanilla inference, and the selection of α
has a minimal impact on the performance, meaning
excessive attention has a significantly larger weight.
In this study, we empirically set α to 0.1.

Moreover, β governs the decrease degree. Sim-
ilar to the above experiment, we conduct experi-
ments with various β values. As shown in Table
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Figure 4: The distribution of the Harsanyi dividend on each layer before (first row) and after (second row) applying
GAC. Each cell represents a relative Harsanyi dividend score for better reference. Higher values indicate stronger
cooperation. In addition, the total sum of the Harsanyi dividend for all coalitions obtains a significant increase.

Dataset Model Method Accuracy Precision Recall F1

MSCOCO

Random
Vanilla 90.58 96.94 83.60 89.78
GAC 92.32 96.16 88.16 91.99

Popular
Vanilla 89.30 93.64 83.60 88.33
GAC 90.00 93.85 85.60 89.54

Aversarial
Vanilla 86.56 88.86 83.60 86.15
GAC 87.64 91.31 83.20 87.07

A-OKVQA

Random
Vanilla 92.24 92.30 92.15 92.23
GAC 93.36 92.13 94.36 93.67

Popular
Vanilla 89.00 86.67 92.15 89.33
GAC 90.00 88.01 92.63 90.16

Adversarial
Vanilla 80.56 74.84 92.16 82.61
GAC 83.04 78.88 90.24 84.18

GQA

Random
Vanilla 91.72 91.02 92.55 91.78
GAC 92.94 92.12 92.48 92.47

Popular
Vanilla 84.76 80.00 92.55 85.82
GAC 86.64 84.32 89.99 87.06

Adversarial
Vanilla 81.56 75.82 92.56 83.36
GAC 84.08 80.69 89.60 84.91

Table 6: The performance of vanilla and our GAC on
the MLLM benchmark POPE. The best performances of
accuracy and F1 score within each setting are bolded.

5, a strong smooth coefficient 0.1 leads to better
performance. Therefore, we set β to 0.1.

6.3 Generalization Study on MLLM Model

In this section, we demonstrate the generalization
of our GAC method on the Multimodal Large Lan-
guage Model (MLLM) llava-v1.6-mistral-7b (Liu
et al., 2023b). Specifically, we conduct experi-
ments on POPE benchmark (Li et al., 2023) for a
comprehensive study that consists of three subsets.
The results in Table 6 show that our proposed GAC
can produce consistency gains than the vanilla in-
ference across different splits of the POPE bench-
mark. We further compare our GAC with two re-
cent training-free methods VCD (Leng et al., 2024)
and CODE (Kim et al., 2024) in Table 9 of the
Appendix. However, these two powerful methods
do not improve upon this robust MLLM, further
demonstrating the effectiveness of our GAC.

Before Calibration After Calibration

0.00

0.02

0.04

0.06

0.08

0.10

Figure 5: Visualization of the attention distribution be-
fore and after calibration. After calibration, the columns
with excessive attention are smoothed.

7 Visualization of Harsanyi Distribution
and Attention Distribution

In this section, we provide two visualizations to
help understand our study. Firstly, we demonstrate
the Harsany dividend before and after applying
GAC. Figure 4 shows that the Harsanyi dividend
for each layer generally increases, as indicated by
the progressively darkening color. Furthermore, we
compute the total Harsanyi dividends for all coali-
tions and observe a significant increase in the total
sum after applying GAC, namely most coalitions
present synergistic effects. More visualizations are
depicted in Figure 8 and Figure 9. Notably, the sub-
stantial reduction in negative Harsanyi dividends
verifies the efficacy of our calibration method.

Moreover, to understand the distribution calibra-
tion in Section 4.2, we visualize the Llama3.1-8B-
Instruct attention maps before and after calibration.
As depicted in Figure 5, the original excessive at-
tention weight is substantially diminished, while
the attention distribution across the first token and
other tokens remains largely unchanged.

8 Conclusion

In this paper, we present a novel framework,
grounded in the Harsanyi dividend from game the-
ory, to dissect the intricate interplay among atten-
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tion heads. Our analysis reveals that significant
Harsanyi dividends are sparse and the existence
of negative Harsanyi dividends. To further opti-
mize the interactions among attention heads, we
propose a training-free Game-theoretic Attention
Calibration (GAC) method. Comprehensive experi-
ments across 17 benchmarks demonstrate that GAC
effectively promotes inter-head collaboration and
improves model capabilities across diverse model
families, scales, and modalities. Moreover, the dis-
covered interaction offers a path toward a deeper
understanding of the behaviors of LLMs.

Limitation

The limitations of this paper include:

• In this paper, we make the first attempt to un-
cover the interactions among attention heads.
Limited by computational resources, we do
not conduct experiments on highly complex
datasets, such as the math dataset GSM8K
(Cobbe et al., 2021), as they typically require
generating lengthy responses.

• In this paper, we focus on unveiling the poten-
tial of game theory in analyzing the attention
and leaving the efficiency improvement for
future study. Our GAC needs to compute the
Harsanyi dividend for each coalition, there-
fore the computation cost is larger than in
previous works. However, these costs can be
reduced by sampling methods, such as impor-
tance sampling or Monte Carlo sampling.

Acknowledgments

This work was supported in part by the National
Natural Science Foundation of China under Grant
No.62276110, No.62172039, and in part by the
fund of the Joint Laboratory of HUST and Pingan
Property & Casualty Research (HPL). The authors
would also like to thank reviewers for their com-
ments on improving the quality of this paper.

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Maximiliana Behnke and Kenneth Heafield. 2020. Los-
ing heads in the lottery: Pruning transformer. In The
2020 Conference on Empirical Methods in Natural
Language Processing, pages 2664–2674. Association
for Computational Linguistics (ACL).

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 7432–7439.

Georgios Chalkiadakis, Edith Elkind, and Michael
Wooldridge. 2022. Computational aspects of cooper-
ative game theory. Springer Nature.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019a. Boolq: Exploring the surprising
difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044.

Kevin Clark, Urvashi Khandelwal, Omer Levy, and
Christopher D Manning. 2019b. What does bert look
at? an analysis of bert’s attention. arXiv preprint
arXiv:1906.04341.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107–124.

Jianfeng Dong, Xianke Chen, Minsong Zhang, Xun
Yang, Shujie Chen, Xirong Li, and Xun Wang. 2022.
Partially relevant video retrieval. In Proceedings of
the 30th ACM International Conference on Multime-
dia, pages 246–257.

Jianfeng Dong, Xiaoman Peng, Daizong Liu, Xiaoye
Qu, Xun Yang, Cuizhu Bao, and Meng Wang. 2024.
Temporal sentence grounding with relevance feed-
back in videos. Advances in Neural Information
Processing Systems, 37:43107–43132.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

14087



Xiang Fang, Zeyu Xiong, Wanlong Fang, Xiaoye Qu,
Chen Chen, Jianfeng Dong, Keke Tang, Pan Zhou,
Yu Cheng, and Daizong Liu. 2024. Rethinking
weakly-supervised video temporal grounding from a
game perspective. In European Conference on Com-
puter Vision, pages 290–311. Springer.

Dan Guo, Kun Li, Bin Hu, Yan Zhang, and Meng
Wang. 2024. Benchmarking micro-action recogni-
tion: Dataset, method, and application. IEEE Trans-
actions on Circuits and Systems for Video Technology,
34(7):6238–6252.

John C Harsanyi. 1982. A simplified bargaining model
for the n-person cooperative game. Papers in game
theory, pages 44–70.

Peng Jin, Jinfa Huang, Pengfei Xiong, Shangxuan Tian,
Chang Liu, Xiangyang Ji, Li Yuan, and Jie Chen.
2023. Video-text as game players: Hierarchical
banzhaf interaction for cross-modal representation
learning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition,
pages 2472–2482.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen,
Jiexin Xu, Huaijun Li, Xiaojian Jiang, Kang Liu,
and Jun Zhao. 2024. Cutting off the head ends the
conflict: A mechanism for interpreting and mitigat-
ing knowledge conflicts in language models. arXiv
preprint arXiv:2402.18154.

Junho Kim, Hyunjun Kim, Yeonju Kim, and Yong Man
Ro. 2024. Code: Contrasting self-generated descrip-
tion to combat hallucination in large multi-modal
models. arXiv preprint arXiv:2406.01920.

Sicong Leng, Hang Zhang, Guanzheng Chen, Xin
Li, Shijian Lu, Chunyan Miao, and Lidong Bing.
2024. Mitigating object hallucinations in large vision-
language models through visual contrastive decod-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13872–13882.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang,
Wayne Xin Zhao, and Ji-Rong Wen. 2023. Eval-
uating object hallucination in large vision-language
models. arXiv preprint arXiv:2305.10355.

Daizong Liu, Yang Liu, Wencan Huang, and Wei Hu.
2024a. A survey on text-guided 3d visual ground-
ing: Elements, recent advances, and future directions.
arXiv preprint arXiv:2406.05785.

Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou,
Yu Cheng, and Wei Hu. 2024b. A survey of
attacks on large vision-language models: Re-
sources, advances, and future trends. arXiv preprint
arXiv:2407.07403.

Daizong Liu, Mingyu Yang, Xiaoye Qu, Pan Zhou, Xi-
ang Fang, Keke Tang, Yao Wan, and Lichao Sun.
2024c. Pandora’s box: Towards building universal
attackers against real-world large vision-language
models. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems.

Daizong Liu, Pan Zhou, Zichuan Xu, Haozhao Wang,
and Ruixuan Li. 2022. Few-shot temporal sentence
grounding via memory-guided semantic learning.
IEEE Transactions on Circuits and Systems for Video
Technology, 33(5):2491–2505.

Dongrui Liu, Huiqi Deng, Xu Cheng, Qihan Ren, Kan-
grui Wang, and Quanshi Zhang. 2023a. Towards
the difficulty for a deep neural network to learn con-
cepts of different complexities. Advances in Neural
Information Processing Systems, 36:41283–41304.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2023b. Visual instruction tuning. In NeurIPS.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie
Zhou, and Yue Zhang. 2023. An empirical study
of catastrophic forgetting in large language mod-
els during continual fine-tuning. arXiv preprint
arXiv:2308.08747.

Paul Michel, Omer Levy, and Graham Neubig. 2019.
Are sixteen heads really better than one? Advances
in neural information processing systems, 32.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish
Sabharwal. 2018. Can a suit of armor conduct elec-
tricity? a new dataset for open book question answer-
ing. arXiv preprint arXiv:1809.02789.

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting
class relationships for sentiment categorization with
respect to rating scales. arXiv preprint cs/0506075.

Xiaoye Qu, Qiyuan Chen, Wei Wei, Jishuo Sun, and
Jianfeng Dong. 2024a. Alleviating hallucination in
large vision-language models with active retrieval
augmentation. arXiv preprint arXiv:2408.00555.

Xiaoye Qu, Daize Dong, Xuyang Hu, Tong Zhu,
Weigao Sun, and Yu Cheng. 2024b. Llama-moe
v2: Exploring sparsity of llama from perspective of
mixture-of-experts with post-training. arXiv preprint
arXiv:2411.15708.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao
Yan, Dongrui Liu, Ganqu Cui, Daizong Liu, Shux-
ian Liang, Junxian He, et al. 2025. A survey of
efficient reasoning for large reasoning models: Lan-
guage, multimodality, and beyond. arXiv preprint
arXiv:2503.21614.

Xiaoye Qu, Jiashuo Sun, Wei Wei, and Yu Cheng. 2024c.
Look, compare, decide: Alleviating hallucination in
large vision-language models via multi-view multi-
path reasoning. arXiv preprint arXiv:2408.17150.

Xiaoye Qu, Pengwei Tang, Zhikang Zou, Yu Cheng,
Jianfeng Dong, Pan Zhou, and Zichuan Xu. 2020.
Fine-grained iterative attention network for temporal
language localization in videos. In Proceedings of
the 28th ACM International Conference on Multime-
dia, pages 4280–4288.

14088



Xiaoye Qu, Jun Zeng, Daizong Liu, Zhefeng Wang,
Baoxing Huai, and Pan Zhou. 2023. Distantly-
supervised named entity recognition with adaptive
teacher learning and fine-grained student ensemble.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 37, pages 13501–13509.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable questions
for squad. arXiv preprint arXiv:1806.03822.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint
arXiv:1606.05250.

Jie Ren, Mingjie Li, Qirui Chen, Huiqi Deng, and Quan-
shi Zhang. 2023. Defining and quantifying the emer-
gence of sparse concepts in dnns. In Proceedings of
the IEEE/CVF conference on computer vision and
pattern recognition, pages 20280–20289.

Qihan Ren, Yang Xu, Junpeng Zhang, Yue Xin, Dongrui
Liu, and Quanshi Zhang. 2024. Towards the dynam-
ics of a dnn learning symbolic interactions. arXiv
preprint arXiv:2407.19198.

Wen Shen, Qihan Ren, Dongrui Liu, and Quanshi Zhang.
2021. Interpreting representation quality of dnns
for 3d point cloud processing. Advances in Neural
Information Processing Systems, 34:8857–8870.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631–1642.

Zhaochen Su, Jun Zhang, Xiaoye Qu, Tong Zhu, Yanshu
Li, Jiashuo Sun, Juntao Li, Min Zhang, and Yu Cheng.
2024. Conflictbank: A benchmark for evaluating
the influence of knowledge conflicts in llm. arXiv
preprint arXiv:2408.12076.

Mukund Sundararajan, Kedar Dhamdhere, and Ashish
Agarwal. 2020. The shapley taylor interaction in-
dex. In International conference on machine learn-
ing, pages 9259–9268. PMLR.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2018. Commonsenseqa: A question
answering challenge targeting commonsense knowl-
edge. arXiv preprint arXiv:1811.00937.

Yunbo Tao, Daizong Liu, Pan Zhou, Yulai Xie, Wei
Du, and Wei Hu. 2023. 3dhacker: Spectrum-based
decision boundary generation for hard-label 3d point
cloud attack. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages
14340–14350.

Qwen Team. 2024. Qwen2.5: A party of foundation
models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing
systems, 30.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Ellen M Voorhees and Dawn M Tice. 2000. Building a
question answering test collection. In Proceedings
of the 23rd annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 200–207.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhi-
hong Zhu, Peng Jin, Longyue Wang, and Li Yuan.
2024. Look-m: Look-once optimization in kv
cache for efficient multimodal long-context inference.
arXiv preprint arXiv:2406.18139.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. Advances in neural information
processing systems, 32.

Hanrui Wang, Zhekai Zhang, and Song Han. 2021. Spat-
ten: Efficient sparse attention architecture with cas-
cade token and head pruning. In 2021 IEEE Interna-
tional Symposium on High-Performance Computer
Architecture (HPCA), pages 97–110. IEEE.

Jin Wang, Shichao Dong, Yapeng Zhu, Kelu Yao, Wei-
dong Zhao, Chao Li, and Ping Luo. 2024. Diagnos-
ing the compositional knowledge of vision language
models from a game-theoretic view. arXiv preprint
arXiv:2405.17201.

Haoyi Wu and Kewei Tu. 2024. Layer-condensed kv
cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Zhongzhi Yu, Zheng Wang, Yonggan Fu, Huihong
Shi, Khalid Shaikh, and Yingyan Celine Lin. 2024.
Unveiling and harnessing hidden attention sinks:
Enhancing large language models without training
through attention calibration. In International Con-
ference on Machine Learning.

Abdelrahman Zayed, Gonçalo Mordido, Samira Sha-
banian, Ioana Baldini, and Sarath Chandar. 2024.
Fairness-aware structured pruning in transformers.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 22484–22492.

14089

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/


Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a
machine really finish your sentence? arXiv preprint
arXiv:1905.07830.

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.
Character-level convolutional networks for text classi-
fication. Advances in neural information processing
systems, 28.

Zhenyu Zhang, Shiwei Liu, Runjin Chen, Bhavya
Kailkhura, Beidi Chen, and Atlas Wang. 2024. Q-
hitter: A better token oracle for efficient llm inference
via sparse-quantized kv cache. Proceedings of Ma-
chine Learning and Systems, 6:381–394.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu
Xu, Fei Huang, Kun Wang, Yang Liu, and Yongbin
Fang, Junfeng andxiao2023efficient Li. 2024. On the
role of attention heads in large language model safety.
arXiv preprint arXiv:2410.13708.

Jiahao Zhu, Daizong Liu, Pan Zhou, Xing Di, Yu Cheng,
Song Yang, Wenzheng Xu, Zichuan Xu, Yao Wan,
Lichao Sun, et al. 2023. Rethinking the video sam-
pling and reasoning strategies for temporal sentence
grounding. arXiv preprint arXiv:2301.00514.

A Axioms of the Harsanyi dividend

In this paper, we adopt the Harsanyi dividend
(Harsanyi, 1982) to quantify the interactions for
each attention head coalition as it satisfies many ax-
ioms, which provide solid theoretical foundations
for our explanations. Specifically, the Harsanyi
dividend wS in Eq. 2 satisfies seven desirable ax-
ioms, including the efficiency, linearity, dummy,
symmetry, anonymity, recursive and interaction dis-
tribution axioms:

(1) Efficiency axiom. The output score of a
model can be decomposed into effects of differ-
ent causal patterns, i.e. v(x) =

∑
S⊆N wS .

(2) Linearity axiom. If we merge the output
scores of the two models t(·) and u(·) into the
output of model v(·), i.e. ∀S ⊆ N , v(xS) = t(xS) +

u(xS), the corresponding causal effects wt
S and wu

S

can also be merged as ∀S ⊆ N , wv
S = wt

S + wu
S .

(3) Dummy axiom. If a variable i ∈ N is a
dummy variable, i.e. ∀S ⊆ N\{i}, v(xS∪{i}) =

v(xS) + v(x{i}), it has no causal effect with other
variables, ∀S ⊆ N\{i}, wS∪{i} = 0.

(4) Symmetry axiom. If the input variables
i, j ∈ N cooperate with other variables in the same
manner, ∀S ⊆ N\{i, j}, v(xS∪{i}) = v(xS∪{j}), then
they have the same causal effects with other vari-
ables, ∀S ⊆ N\{i, j}, wS∪{i} = wS∪{j}.

(5) Anonymity axiom. For any permutations π on
N , we have ∀S ⊆N , wv

S =wπv
πS , where πS≜{π(i)|i∈

S}, and the new model πv is defined by (πv)(xπS)=

v(xS). This indicates that causal effects are not
changed by the permutation.

(6) Recursive axiom. The causal effects can be
computed recursively. For i ∈ N and S ⊆ N\{i},
the causal effect of the pattern S ∪ {i} is equal
to the causal effect of S in the presence of i mi-
nus the causal effect of S in the absence of i, i.e.
∀S ⊆ N \{i}, wS∪{i} = wS|i present − wS . wS|i present de-
notes the causal effect when the variable i is al-
ways present as a constant context, i.e. wS|i present =∑

S′⊆S(−1)|S|−|S′| · v(xS′∪{i}).
(7) Interaction distribution axiom. This axiom

characterizes how causal effects are distributed for
a class of “interaction functions” (Sundararajan
et al., 2020). The interaction function vT param-
eterized by a subset of variables T is defined as
follows. ∀S ⊆ N , if T ⊆ S, vT (xS) = c; otherwise,
vT (xS) = 0. The function vT models the causal
effect of the pattern T , because only if all variables
in T are present, will the output value be increased
by c. The causal effects encoded in the function vT

satisfy wT = c, and ∀S ≠ T , wS = 0.

B Undifferentiated Attention

In Section 3.3, we use undifferentiated attention
(Zhou et al., 2024) to mask specific attention heads.
In this section, we provide a detailed derivation of
this attention. Let denote the unscaled attention
weights as z, i.e.:

z =
W i

qW
i
k
T

√
dk/n

(13)

Therefore, the softmax function for the input
vector zi scaled by the small coefficient ϵ can be
rewritten as:

Softmax(zi) =
ezi∑
j e

zj
(14)

For the scaled input ϵzi, when ϵ is very small,
the term ϵzi approaches zero. Using the first-order
approximation of the exponential function around
zero: eϵzi ≈ 1 + ϵzi, we get:

Softmax(ϵzi) ≈
1 + ϵzi

Σj(1 + ϵzi)
=

1 + ϵzi
N + ϵΣjzj

(15)
where N is the number of elements in z. As ϵ

approaches zero, the numerator and denominator
respectively converge to 1 and N . Thus, the output
simplifies to:
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Dataset Undifferentiated Attention Dropping Head

HellaSwag 72.29 72.04
ARCE 94.21 93.86
PIQA 83.19 83.19
ARCC 87.29 87.29

OB 86.40 86.40
CQA 77.81 77.64

Table 7: Different methods for masking attention heads
across multiple-choice tasks.

Softmax(ϵzi) ≈
1

N
(16)

Finally, the output hi of the attention head degen-
erates to 1

NW i
v, which holds exactly when ϵ = 0.

C Methods for masking heads

In our proposed GAC method, we use undiffer-
entiated attention to mask attention heads. In this
section, we compare undifferentiated attention with
a simple dropping strategy (Michel et al., 2019),
namely ĥi = 0 instead of using Eq. 4.

In theory, undifferentiated attention can achieve
a finer degree of control over the influence that a
particular attention head exerts on the output. To
further demonstrate the effectiveness of undifferen-
tiated attention, we compare these two methods in
Table 7 and we can observe that undifferentiated
attention achieves slightly better performance than
the simple dropping strategy.

D Validation Set Description

In our proposed GAC method, we first compute
the Harsanyi dividend for each coalition and then
identify the salient group. In this way, the attention
heads in the salient group do not undergo any at-
tention calibration during inference. To compute
the Harsanyi dividend, we need a validation set.
Specifically, following (Yu et al., 2024), for each
task T = {D1, . . . , DQ}, consisting of Q differ-
ent datasets, we initially create a small held-out
dataset C by uniformly sampling M data samples
from each dataset, i.e., each dataset Dq in T has
M samples in C. In this paper, we sample 300
samples (i.e. M = 300) from each dataset to form
the validation set. In our preliminary experiments,
we found that more validation data will not lead
to significant performance improvement. It means
that the current data volume of the validation set
is sufficient to identify the salient group. Notably,
our validation set is constructed with significantly

Method Vanilla Uniform Distribution Ours

ARCE 92.98 93.68 94.21
PIQA 80.69 82.37 83.19
ARCC 84.95 87.29 87.29

OB 84.40 86.00 86.40
CQA 76.82 77.31 77.81

Table 8: Ablation of distributing the additional attention.

fewer samples than the overall dataset, comprising
less than 10% of the total data.

E Methods for distributing attention

After smoothing the excessive attention in Section
4.2, the following question is how to redistribute
this reduced attention across other tokens. In this
section, we evaluate another redistribution strat-
egy, where the additional attention is uniformly
distributed across all tokens. As shown in Table
8, the results demonstrate that allocating the addi-
tional attention score proportionally based on the
weights of tokens leads to better performance.

14091



Dataset Model Method Accuracy Precision Recall F1

MSCOCO

Random

Vanilla 90.58 96.94 83.60 89.78
VCD 87.32 97.07 76.96 85.85

CODE 89.42 97.14 82.32 89.12
GAC 92.32 96.16 88.16 91.99

Popular

Vanilla 89.30 93.64 83.60 88.34
VCD 85.68 93.22 76.96 84.31

CODE 88.56 93.62 82.32 87.61
GAC 90.00 93.85 85.60 89.54

Aversarial

Vanilla 86.56 88.86 83.60 86.15
VCD 82.24 86.11 76.88 81.23

CODE 86.60 89.35 84.24 86.72
GAC 87.64 91.31 83.20 87.07

A-OKVQA

Random

Vanilla 92.24 92.30 92.15 92.22
VCD 89.12 91.65 86.07 88.77

CODE 91.76 91.94 91.95 91.95
GAC 93.36 92.13 94.36 93.23

Popular

Vanilla 89.00 86.67 92.15 89.33
VCD 86.64 87.04 86.07 86.55

CODE 88.64 87.90 91.95 89.88
GAC 90.00 88.01 92.63 90.26

Adversarial

Vanilla 80.56 74.84 92.16 82.60
VCD 78.20 74.81 85.04 79.60

CODE 80.40 75.36 88.40 81.36
GAC 83.04 78.88 90.24 84.18

GQA

Random

Vanilla 91.72 91.02 92.55 91.78
VCD 88.36 90.80 85.35 87.99

CODE 91.20 90.97 91.97 91.47
GAC 92.94 92.12 92.48 92.30

Popular

Vanilla 84.76 80.00 92.55 85.82
VCD 82.64 80.94 85.35 83.09

CODE 84.00 82.39 89.91 85.99
GAC 86.64 84.32 89.99 87.06

Adversarial

Vanilla 81.56 75.82 92.56 83.36
VCD 79.00 75.87 85.04 80.20

CODE 80.96 76.50 90.60 82.96
GAC 84.08 80.69 89.60 84.91

Table 9: The performance of our proposed GAC on the MLLM benchmark POPE. We compare our method with two
recent training-free methods VCD and CODE. The best performances of accuracy and F1 score within each setting
are bolded. When applied to a strong base model llava-v1.6-mistral-7b, VCD and CODE fail to yield performance
improvements. Conversely, our proposed GAC method demonstrates a substantial performance boost.
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Figure 6: Harsanyi dividend distribution of each layer, using classification datasets.
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Figure 7: Harsanyi dividend distribution of each layer, using multiple choice datasets.
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Layer 0
Total Sum: -3.93

Layer 4
Total Sum: -2.70

Layer 8
Total Sum: -2.06

Layer 12
Total Sum: -2.46

Layer 0
Total Sum: 371.50

Layer 4
Total Sum: 206.01

Layer 8
Total Sum: 381.93

Layer 12
Total Sum: 248.04

Layer 1
Total Sum: -4.24

Layer 5
Total Sum: -3.69

Layer 9
Total Sum: -2.93

Layer 13
Total Sum: -2.12

Layer 1
Total Sum: 332.78

Layer 5
Total Sum: 46.59

Layer 9
Total Sum: 254.33

Layer 13
Total Sum: 137.47

Layer 2
Total Sum: -4.71

Layer 6
Total Sum: -2.39

Layer 10
Total Sum: -3.01

Layer 14
Total Sum: -2.46

Layer 2
Total Sum: 42.93

Layer 6
Total Sum: 120.04

Layer 10
Total Sum: 183.58

Layer 14
Total Sum: 236.23

Layer 3
Total Sum: -2.20

Layer 7
Total Sum: -1.08

Layer 11
Total Sum: -1.82

Layer 15
Total Sum: -3.35

Layer 3
Total Sum: 425.78

Layer 7
Total Sum: 76.53

Layer 11
Total Sum: 78.02

Layer 15
Total Sum: 177.58

Figure 8: The distribution of the Harsanyi dividend on each layer before (odd-numbered rows) and after (even-
numbered rows) applying GAC.
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Layer 16
Total Sum: -0.65

Layer 20
Total Sum: -3.41

Layer 24
Total Sum: -3.69

Layer 28
Total Sum: -3.31

Layer 16
Total Sum: 194.61

Layer 20
Total Sum: 337.33

Layer 24
Total Sum: 278.12

Layer 28
Total Sum: 293.97

Layer 17
Total Sum: -1.52

Layer 21
Total Sum: -3.38

Layer 25
Total Sum: -3.12

Layer 29
Total Sum: -3.18

Layer 17
Total Sum: 231.67

Layer 21
Total Sum: 291.17

Layer 25
Total Sum: 361.82

Layer 29
Total Sum: 292.40

Layer 18
Total Sum: -3.20

Layer 22
Total Sum: -3.38

Layer 26
Total Sum: -3.39

Layer 30
Total Sum: -3.69

Layer 18
Total Sum: 311.49

Layer 22
Total Sum: 285.27

Layer 26
Total Sum: 323.61

Layer 30
Total Sum: 304.13

Layer 19
Total Sum: -3.45

Layer 23
Total Sum: -3.44

Layer 27
Total Sum: -2.45

Layer 31
Total Sum: -3.34

Layer 19
Total Sum: 178.17

Layer 23
Total Sum: 280.87

Layer 27
Total Sum: 330.70

Layer 31
Total Sum: 275.33

Figure 9: The distribution of the Harsanyi dividend on each layer before (odd-numbered rows) and after (even-
numbered rows) applying GAC.
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Prompt for classification tasks

• SST2:

– "Classify the sentiment of the user’s message into one of the following cate-
gories:‘positive’ or ‘negative’.
-
Sentence: <sentence>
Sentiment: "

• SST5:

– "Classify the sentiment of the user’s message into one of the following cate-
gories:‘terrible’, ‘negative’, ‘neutral’, ‘positive’, or ‘great’.
-
Sentence: <sentence>
Sentiment: "

• MR:

– “Classify the sentiment of the movie’s review into one of the following cate-
gories:‘positive’ or ‘negative’.
-
Review: <sentence>
Sentiment: "

• AGNews:

– "Classify the news articles into the categories of ‘World’, ‘Sports’, ‘Business’, or
‘Technology’.
-
Article: <sentence>
Category: "

• TREC:

– "Classify the given questions into the following categories of ‘Description’, ‘Entity’,
‘Expression’, ‘Person’, ‘Number’, or ‘Location’.
-
Question: <sentence>
Type: "

• CB:

– "Read the following paragraph and determine if the hypothesis is true.
-
Premise: <premise> Hypothesis: <hypothesis>. Answer: "

• BoolQ:

– "Read the text and answer the question by True or False.
-
Text: <passage> Question: <question>?
Answer: "
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Prompt for multi-choice tasks

• Hellaswag:

– "Complete the following sentence with an appropriate ending."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"

• ARCE:

– "Generate the correct answer to the following question."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"

• ARCC:

– "Generate the correct answer to the following question."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"

• PIQA:

– "Generate the correct solution to accomplish the following goal."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"

• OB:

– "Generate the most appropriate answer to the following question."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"
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Prompt for multi-choice tasks

• CQA:

– "Generate the correct answer to the following question."
<Question>
<choice 1>
<choice 2>
<choice 3>
...
Answer:"

Prompt for open-ended question answering

For open-ended question answering, we use the following prompt:

• SQuAD v1

– Based on the given context, provide only one accurate answer to the question. Follow
these rules:

* Do not include multiple options or explanations.

* Answer in a single sentence, and do not add any extra text after the answer.
Title: [title]
Background: [background]
Q: [first question]
A: [first answer]
Q: [final question]
A: [completion]

• SQuAD v2

– Based on the given context, provide only one accurate answer to the question. Follow
these rules:

* Do not include multiple options or explanations.

* Answer in a single sentence, and do not add any extra text after the answer. If the
question cannot be answered based on the context, please reply with ‘unanswerable’.

Title: [title]
Background: [background]
Q: [first question]
A: [first answer]
Q: [final question]
A: [completion]
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