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Abstract
Programming languages possess rich semantic
information - such as data flow - that is rep-
resented by graphs and not available from the
surface form of source code. Recent code lan-
guage models have scaled to billions of parame-
ters, but model source code solely as text tokens
while ignoring any other structural information.
Conversely, models that do encode structural
information of code make modifications to the
Transformer architecture, limiting their scale
and compatibility with pretrained LLMs. In
this work, we take the best of both worlds with
GALLa - Graph Aligned Large Language Mod-
els. GALLa utilizes graph neural networks and
cross-modal alignment technologies to inject
the structural information of code into LLMs as
an auxiliary task during finetuning. This frame-
work is both model-agnostic and task-agnostic,
as it can be applied to any code LLM for any
code downstream task, and requires the struc-
tural graph data only at training time from a
corpus unrelated to the finetuning data, while
incurring no cost at inference time over the
baseline LLM. Experiments on five code tasks
with seven different baseline LLMs ranging in
size from 350M to 14B validate the effective-
ness of GALLa, demonstrating consistent im-
provement over the baseline, even for powerful
models such as LLaMA3 and Qwen2.5-Coder.

1 Introduction

In recent years, applying large language models
(LLMs) to processing and generating source code
has been a research topic of special interest in
both natural language processing and software en-
gineering community (Chen et al., 2021). How-
ever, unlike natural languages, programming lan-
guages have rich semantics besides the lexical rep-
resentation of source code, such as the path of ex-
ecution, the flow of data, and the dependency of

*Work done during Ziyin’s internship at Ant Group. The
first two authors contributed equally.

†Corresponding authors.

function calling. These semantics are represented
by graph structures such as Abstract Syntax Tree
(AST), Control Flow Graph (CFG), and Data Flow
Graph (DFG). While enhancing LLMs with lexical
representations of source code has the potential to
boost their performance, the integration of these
richer semantic constructs has yet to be fully real-
ized (Zhang et al., 2024).

The major challenge of injecting code struc-
tures into code language models lies in the in-
compatibility between structural graphs and
large-scale pretrained language models. On
one end, following the scaling laws (Kaplan et al.,
2020; Hoffmann et al., 2022), some works have
tried to improve the capability of language mod-
els in code processing by increasing their model
size and pretraining data size, leading to code
LLMs with tens or even hundreds of billions of
parameters such as Code LLaMA (Rozière et al.,
2024) and DeepSeek-Coder (Guo et al., 2024;
DeepSeek-AI et al., 2024). However, these models
are standard decoder-only Transformer language
models (Vaswani et al., 2017) trained with next to-
ken prediction, and are thus unable to capture the
semantics embedded in the structural graphs of
code.

On the other extreme, another line of research,
represented by GraphCodeBERT (Guo et al., 2021)
and TreeBERT (Jiang et al., 2021), has focused on
injecting graph structures into Transformer-based
code language models. However, these methods
either linearize the graphs into text tokens and are
thus only applicable to simple tree-based graph
structures (Niu et al., 2022; Guo et al., 2022), or
modify the Transformer architecture such as atten-
tion masks (Guo et al., 2021) and positional encod-
ings (Peng et al., 2021) to encode graph informa-
tion. These modifications to the model structure
make them incompatible with the large-scale
pretrained decoder-only LLMs, and thus these
experiments have been limited to a small scale.
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LLM
“# Translate from Python to Java:
def print_message (msg):

print(msg)”

“public static void print_message (String msg){
System.out.println(msg);
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Figure 1: High-level overview of our method. The LLM is simultaneously trained on code downstream task data
(such as code translation, code summarization, and code repair) and graph alignment data (graph-to-code generation,
and question-answer pairs about the graph structures). The same-colored data on the left and right belong to the
same input-output pair. The graph data is only required for the graph alignment tasks, but not the code finetuning
tasks.

Interestingly, insights from the computer vision
community suggest a promising avenue for bridg-
ing the gap between different modalities: by uti-
lizing a light-weight adapter to project the output
features of a non-textual input processing model
(such as an image encoder or a graph encoder)
into the embedding space of language models, they
are able to ground LLMs’ understanding of text
beyond the text modality, while in the meantime
preserving LLMs’ capability acquired during text-
only pretraining (Liu et al., 2023; Bai et al., 2023;
Zhu et al., 2024).

Inspired by these works, we introduce GALLa:
Graph Aligned Large Language Models for code.
We utilize a graph neural network (GNN) to process
ASTs and DFGs extracted from source code, which
are then projected into the language model’s embed-
ding space by a small adapter. The language model
is trained to generate the source code conditioned
on the graph information and to answer questions
about the graph structure. These objectives align
the language model’s representation of code to the
graph structures and impart it with a deeper under-
standing of the source code. As demonstrated in
Figure 1, our method is based on the transfer learn-
ing framework (Raffel et al., 2020) and separates
graph alignment data from task-specific training
data, thus preserving the general capability of the
LLM acquired during pretraining and requiring no
graph information about downstream task training

or test data.
Through extensive experiments on five code un-

derstanding and generation tasks, we validate the
effectiveness of GALLa on seven distinct base
LLMs ranging in size from 350M to 14B. GALLa
brings consistent improvement over all baseline
models, and even demonstrates abilities to gener-
alize structural knowledge acquired during graph
alignment to programming languages that are ab-
sent in the alignment data. All the data used in
our experiments (both graph alignment and down-
stream tasks) are sourced from publicly available
datasets1, and the complete code for reproducing
our results is released in https://github.com/
codefuse-ai/GALLa.

2 Related Work

Existing works that utilize structural graphs to en-
hance code language models can be categorized
into three types: 1) modifying attention masks to
encode graph information, 2) integrating graphs
into the textual input, and 3) enhancing positional
encodings with graph information.

The first category is represented by GraphCode-
BERT (Guo et al., 2021), which finetunes Code-
BERT (Feng et al., 2020) on concatenated source
code and DFGs. Attention masks in the model are

1https://huggingface.co/datasets/codefuse-ai/
GALLa
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modified to reflect the graph structures: a node to-
ken va is allowed to attend another node token vb,
only if there is an edge from vb to va in the graph,
while a node v and a source code token c can attend
to each other only if they correspond to each other.
StructCoder (Tipirneni et al., 2024) also modifies
attention masks similarly to encode the relations
between source code tokens and AST, DFG tokens.

For the second category, TreeBERT (Jiang et al.,
2021) is an encoder-decoder model where each in-
put token to the encoder is a node’s constituent path
in the AST, while the decoder is trained to generate
the source code. Many other works in this category,
including SynCoBERT (Wang et al., 2021), SPT-
Code (Niu et al., 2022), and UniXcoder (Guo et al.,
2022), map ASTs into text sequences (for example,
by depth-first traversing) as model input. However,
this method only applies to simple graph structures
such as AST, but not more complex ones such as
DFG, which may include loops.

In the third category, Peng et al. (2021) proposed
TPTrans, which applies a recurrent sequence en-
coder to encode the relative paths between terminal
nodes in ASTs and uses the results as relative po-
sitional encodings in self-attention modules, while
the absolute paths from terminal nodes to the root
node are similarly used as absolute positional en-
codings. Peng et al. (2022) used a list of 2-d coor-
dinates and an embedding lookup table to describe
the positions of AST nodes instead, and also used
these embeddings to enhance both relative and ab-
solute positional encodings in Transformer.

Despite their contributions, all these ap-
proaches focus primarily on the encoder of the
Transformer and are not fully compatible with
decoder-only LLMs. For instance, in the first
group, the presence of cycles in the graphs means
that the corresponding attention mask cannot retain
a lower-triangular format, as required by LLMs.
Adapting LLMs to these graph-structure-based at-
tention masks would necessitate extensive retrain-
ing due to the mask’s inconsistency with the orig-
inal causal language modeling objectives. In con-
trast, the proposed GALLa method processes graph
information externally, allowing the LLM architec-
ture to remain unmodified.

Apart from these graph-enhanced models, there
is another model TransCoder-IR (Szafraniec et al.,
2023), which utilizes LLVM intermediate represen-
tation (IR) to ground the model’s understanding
of code by generating source code from IR and
vice versa. Like our method, TransCoder-IR only

G a graph
v a node in the graph
e an edge in the graph
nv number of nodes in the graph
ne number of edges in the graph
dnode node feature dimension of the graph data
dgnn GNN hidden and output dimension
dlm LLM hidden and embedding dimension
ng number of graph tokens in LLM’s input
nt number of text tokens in LLM’s input

V
node features (input to GNN, extracted by
a text encoder)

E edge indices (input to GNN)
H contextual node features (output of GNN)
Q query vectors (input to adapter)
X embedding vectors (input to LLM)
Y logits (output of LLM)

Table 1: Notations used in Section 3

uses IR for alignment at training time but does not
need it at test time. However, intermediate repre-
sentations are also text tokens and provide limited
structural information.

3 Method

The objective of GALLa is to align language mod-
els to the implicit structures of code (represented
by AST and DFG - see more details in Appendix A)
when finetuning on code-related tasks, and an
overview of the method is provided in Figure 1.
In this section, we elaborate on two key challenges:
1) how to input graph information into LLMs,
and 2) how to design training tasks so that LLMs
can learn about such graph information. For the
first challenge, we design a model that consists of
three modules: GNN encoder, adapter, and LLM
decoder (Section 3.1). For the second challenge,
we propose a two-stage training scheme: graph en-
coder pretraining and graph-LLM alignment (Sec-
tion 3.2 and Figure 2). The notations used in this
section are presented in Table 1.

3.1 Model Architecture

3.1.1 GNN Encoder
To fully capture the rich information contained in
the structural graphs such as loops, node degrees,
and edge directions, we first process the graphs
with a graph neural network (GNN) to extract node
information. For a graph G with nv nodes and ne

edges, a text encoder is used to extract node fea-
tures from the corresponding source code of each
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node. These features are used to construct the node
feature matrix V ∈ Rnv×dnode , which are fed into
the GNN along with the edge matrix E ∈ Zne×2,
where each element is a node index. The output
of the GNN is the contextual node representations
H ∈ Rnv×dgnn .

In this module, the text encoder can be any code
embedding model such as CodeT5+ (Wang et al.,
2023). The GNN can be any convolution-based
or self-attention-based directed GNN such as Mag-
Net (Zhang et al., 2021) or DUPLEX (Ke et al.,
2024), as DFG is a type of directed graph.

3.1.2 Adapter
The outputs of GNN are projected by an adapter
into the LLM’s embedding space. Following Qwen-
VL (Bai et al., 2023), we use a single layer of
cross-attention as the adapter, where the GNN’s
outputs H serve as keys and values, and the queries
Q ∈ Rng×dlm are ng learnable vectors:

Xg = CrossAttn(q = Q, k = H, v = H). (1)

Alternative to the cross-attention layer, the
adapter may also be a multi-layer perception
(MLP), as used by LLaVA (Liu et al., 2023), which
applies projection independently to each node. The
main difference between cross-attention and MLP
is that cross-attention allows for information ex-
change between the nodes, while MLP is applied
independently to each node. Thus, we choose cross-
attention as the adapter in the main results, and
experiment with MLP in the ablation studies in
Section 4.4.

3.1.3 LLM Decoder
The adapter’s outputs Xg ∈ Rng×dlm are ng embed-
ding vectors, which we dub “graph tokens”. Any
other text in the LLM’s input (as shown at the top
of Figure 1) is first tokenized and passed into the
LLM’s embedding layer to obtain nt text embed-
dings Xt ∈ Rnt×dlm , and then concatenated with
the graph tokens to form the input to the LLM’s
Transformer layers:

X = [Xg, Xt]
2 ∈ R(ng+nt)×dlm . (2)

The LLM’s output logits Y ∈ R(ng+nt)×dlm are
then used to compute cross-entropy loss with next
token prediction (i.e. causal language modeling).
However, the loss is masked on the graph tokens
and only computed on the text tokens.

2Depending on the actual input text, the graph tokens can
also be placed after the text tokens or even inserted in the
middle of text tokens, as illustrated in Figure 1.

3.1.4 Model Choice
Lastly, we emphasize that GALLa is a framework
for bridging the text modality and graph modal-
ity, and each of the three modules in GALLa can
be instantiated with different models. The choice
of GNN - e.g. directed or undirected - depends
on the properties of graph data, while the choice
of LLM depends on application scenarios - e.g.
monolingual or multilingual, general-purposed or
domain-specialized.

3.2 Training Procedure
Motivated by the pretraining + instruction fine-
tuning paradigm in LLMs, we divide the train-
ing of GALLa into two stages. The first stage is
self-supervised (continue) pretraining, where only
AST/DFG data extracted from source code are used.
The second stage is supervised finetuning, where
GraphQA data are collected by designing graph-
related questions and manually crafting question-
answer templates.

3.2.1 Stage 1: Graph Encoder Pretraining
In GALLa, the LLM is initialized from a pretrained
LLM checkpoint such as LLaMA (Dubey et al.,
2024) or StarCoder (Li et al., 2023), while both
the GNN and the adapter are randomly initialized.
Thus, to prevent the newly initialized GNN and
adapter from disrupting the LLM’s pretrained rep-
resentations, we fix the LLM’s weights in stage
1, and update only the GNN and the adapter. In
this stage, the model is trained with graph-to-code
generation (Graph2Code), where the model recon-
structs a graph’s corresponding source code tokens
Xt based on the graph tokens Xg by maximizing
the probability P (Xt|Xg). Similar to visual in-
struction tuning (Liu et al., 2023), this stage can be
understood as training a “graph tokenizer” for the
frozen LLM.

3.2.2 Stage 2: Graph-LLM Alignment
In the second stage, we aim to align the LLM’s pre-
trained representations of source code to the struc-
tural graphs and deepen their understanding of code
structures. In this stage, the LLM is unfrozen, and
all three modules are updated together. The graph
alignment tasks in this stage include Graph2Code
(same as stage 1), and graph question answering
(GraphQA). In GraphQA, the language model an-
swers questions about a graph’s structures, such as
predicting whether there is an edge between two
given nodes, or predicting the children of a given
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Figure 2: Illustration of the two-stage training schemes. In the first stage (left), the LLM’s weights are frozen, and
the GNN and adapter are pretrained on the Graph2Code task. In the second stage (right), the LLM is unfrozen and
trained together with the GNN and adapter on the graph alignment tasks, while also simultaneously trained along
(without the GNN and adapter) on downstream finetuning data. For Graph2Code and GraphQA tasks, the graph in a
data sample goes into GNN, while the texts (including instruction and answer) in the sample go directly into the
LLM.

nodes. Formally, the model is trained to maximize
the probabilities of the answer text tokens Xa con-
ditioned on the graph tokens Xg and the question
text tokens Xq: P (Xa|Xg, Xq).

Since the ultimate goal of aligning LLMs to code
graph structures is to enhance their performance
on related downstream tasks, the model is simul-
taneously trained on the graph alignment data and
downstream task data in this stage. However, we
emphasize that the GNN and adapter are only used
for the graph alignment tasks. No graph informa-
tion is required of the downstream task data, as it
goes directly into the LLM in the form of question-
answer pairs, as shown at the bottom of Figure 1.

3.2.3 Inference

After aligning the source code representation of
LLMs to code graph structures in training stage
2, at inference time the graph encoder and adapter
are discarded, so that the LLM can respond to user
queries using its internal knowledge without any
loss of speed compared with the base LLM. We
choose not to encode the code in user queries with
GNN at inference time because 1) it would require
extracting AST and DFG from the code first, re-
sulting in an unreasonable inference latency; 2)
extracting AST and DFG requires that the input
code is syntactically correct and complete, which
is not true for many downstream tasks such as de-
fect detection and code repair.

4 Experiments

In this section, we first discuss the details of our
experiments (4.1, 4.2), and then provide the results
in 4.3 and 4.4.

4.1 Datasets

4.1.1 Graph Alignment
For graph alignment, we used 240K Python pro-
grams and 75K Java programs from CodeNet (Puri
et al., 2021). For each program, we extracted one
AST and one DFG using Program Structure Inter-
face 3, which resulted in 626K code-graph pairs
after removing empty graphs and source code files
that are longer than 4096 tokens. More details
about these AST and DFG can be found in Ap-
pendix A.

For the Graph2Code task, we removed all
Python programs where no main function can be
found, resulting in 150K Java graph-code pairs and
81K Python graph-code pairs.

For the GraphQA task, we designed three types
of questions:

1) Edge prediction: given the graph tokens and
the source code of two nodes, the model is tasked
to predict where there is an edge between them.
This task is constructed only on DFG data.

2) Parent prediction: given the graph tokens and
the source code of one node, the model is tasked to
predict the node’s parent in the graph. This task is
constructed on both AST and DFG data.

3https://plugins.jetbrains.com/docs/intellij/
psi.html
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Translation Clone Detection Defect Detection Summarization Repair

Language Py→Java/Java→Py Java C Py/Java/JS Java
Train Samples 44K/30K 300K 25K 265K/170K/62K 111K
Test Samples 499/164 10K 3K 3K/3K/3K 12K

Metric pass@1 F1 Accuracy BLEU Exact Match

Table 2: Statistics of the downstream task datasets (Py: Python, JS: JavaScript).

3) Child prediction: given the graph tokens and
the source code of one node, the model is tasked to
predict the node’s children in the graph. This task
is constructed on both AST and DFG data.

We sampled about 75K graph-question-answer
tuples for each (language, graph type, question
type) combination, which resulted in a total of
770K GraphQA data. Further details of these
GraphQA tasks and their prompts are given in Ap-
pendix B.

4.1.2 Downstream Tasks
For downstream code tasks, we consider both dis-
criminative and generative tasks, including code
translation, clone detection, defect detection, code
summarization, and code repair. For code trans-
lation, we use the CodefuseEval (Di et al., 2024)
benchmark; for the other four tasks, we use the
CodeXGLUE (Lu et al., 2021) benchmark. Among
these tasks’ data, we downsampled the original
data of code summarization and clone detection
due to computation constraints, and filtered out
14K Java→Python samples in the training set of
code translation where the target code does not
follow Python coding conventions (e.g. no main
function can be found). A summary of the final
datasets is provided in Table 2. For all tasks we use
the original metric for evaluation.

In the main experiments, we consider the setting
of multi-task finetuning (MFT), where the model
is simultaneously trained on all five downstream
tasks. However, we demonstrate with a small-scale
experiment that GALLa can be also used for single-
task finetuning (SFT).

4.2 Models and Training

4.2.1 Model
We use a DUPLEX (Ke et al., 2024) with 1024
hidden states and 7M parameters as the GNN,
and a cross-attention layer with randomly initial-
ized learnable queries as the adapter. For the
LLM, we consider six distinct models of varying
sizes: CodeGen 350M (Nijkamp et al., 2023), Star-

Coder 1B (Li et al., 2023), Phi-1 1.3B (Gunasekar
et al., 2023), LLaMA2 7B (Touvron et al., 2023)
LLaMA3 8B (Dubey et al., 2024), and Qwen2.5-
Coder 1.5B & 14B (Hui et al., 2024). All of these
models are prerained (partially) on source code
data, and demonstrate strong performance on code-
related downstream tasks.

4.2.2 Training
For the first stage training of GNN and adapter, we
train the model on the graph data for 15 epochs
with learning rate 1e-4, 1K warmup steps, weight
decay 0.1, 240 global batch size, AdamW opti-
mizer (Loshchilov and Hutter, 2019), and ZeRO
stage 2 (Rajbhandari et al., 2020). The training
takes place on two machines, each equipped with 8
A100 80G GPUs.

The second stage of training largely follows the
same setting but with a smaller learning rate (5e-5)
and a smaller global batch size (96). The model
is trained for 5 epochs on the mixture of down-
stream task data and graph alignment data in stage
2, and the checkpoint with the lowest validation
loss on the downstream tasks is chosen for eval-
uation. Among the different LLMs, CodeGen,
StarCoder, Phi-1, and Qwen2.5-Coder 1.5B are
trained in full scale, while LLaMA2, LLaMA3, and
Qwen2.5-Coder 14B are trained using LoRA (Hu
et al., 2022) with rank 64. All training in this stage
takes place on a single machine with 8 A100s.

As a baseline, the LLM is finetuned on only
the downstream task data using the same hyper-
parameters as stage 2 training.

4.3 Results
The results of applying Graph2Code and GraphQA
alignment to the code finetuning process of five
models are presented in Table 3. Graph alignment
brings consistent improvement over the baseline
model, especially on the weaker backbones such as
StarCoder, increasing the average performance on
five tasks by up to 36%.

Notably, while our graph alignment data include
only Python and Java programs, from Table 3 we
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Model Setting Trans (Ja2Py/Py2Ja) Clone Repair Sum (Java/Py/JS) Defect Avg

CodeGen 350M
Baseline 40.2/42.3 94.4 9.0 13.6/8.8/12.5 56.9 34.7
G2C 42.7/43.3 94.6 8.5 13.9/9.5/12.8∗ 56.5 35.2 (+1%)
G2C + GraphQA 50.0/45.3 93.9 8.6 14.0/9.5/12.7∗ 58.7 36.6 (+5%)

StarCoder 1B
Baseline 0.6/0.0 40.3 0.4 7.8/3.2/5.1 54.2 14.0
G2C 6.1/1.2 50.4 0.6 9.4/4.3/6.8 54.8 16.7 (+20%)
G2C + GraphQA 6.1/1.2 65.8 0.3 9.5/4.5/7.4 56.5 18.9 (+36%)

Phi-1 1.3B
Baseline 73.8/53.3 93.5 10.1 14.6/11.3/13.8 61.1 41.4
G2C 67.7/64.3 94.3 10.9 15.1/11.1/13.4∗ 60.4 42.2 (+2%)
G2C + GraphQA 72.0/66.3 94.9 10.2 15.2/11.7/13.6∗ 60.3 43.0 (+4%)

Qwen2.5-Coder 1.5B
Baseline 35.4/73.8 95.2 13.2 14.4/10.8/13.6 58.4 39.3
G2C 64.0/77.4 95.5 15.7 14.7∗/11.5/13.4 60.3 44.1 (+12%)
G2C + GraphQA 65.2/76.0 95.7 15.0 15.0/11.3/14.3 61.3 44.2 (+12%)

LLaMA2 7B
Baseline 59.7/56.1 40.0 0.8 2.0/1.5/1.8 53.4 26.9
G2C 69.5/59.1 41.5 1.0 2.4/1.7/1.9∗ 53.5 28.8 (+7%)
G2C + GraphQA 64.0/53.3 39.0 1.6 2.2/1.6∗/2.0 55.2 27.4 (+2%)

LLaMA3 8B
Baseline 80.5/74.8 94.7 12.1 14.2/11.2/12.3 56.7 44.6
G2C 80.5/77.0 94.9 13.4 14.0∗/11.7/11.8 56.7 45.0 (+1%)
G2C + GraphQA 80.5∗/78.2 94.9 13.6 14.5/11.7/12.9 57.1 45.4 (+2%)

Qwen2.5-Coder 14B
Baseline 38.4/82.1 94.3 12.7 18.0/20.2/14.5 58.5 42.3
G2C 50.0/82.8 95.1 13.1 18.1∗/19.9/15.7 59.1 44.2 (+4%)
G2C + GraphQA 64.0/83.4 94.4 13.8 17.9∗/20.5∗/15.9 58.0 46.0 (+9%)

Table 3: Main results. For each model, the first row is baseline LLM finetuned on downstream task data only; the
second row is GALLa finetuned on downstream task and Graph2Code data; the third row is GALLa finetuned on
downstream tasks, Graph2Code, and GraphQA data. Relative performance increases w.r.t. baseline are given in
parentheses in the last column. All differences from the baseline performance are statistically significant (p < 0.1)
except for those marked with ∗ (the complete results are given in Appendix C).

Trans (Ja2Py/Py2Ja) Clone Repair Sum (Java/Py/JS) Defect Avgall Avgjava,py

Baseline 76.8/66.1 95.5 13.5 15.2/11.3/14.2 65.7 44.8 46.43
G2C 79.3/68.9 95.8 15.1 15.2/11.7/14.1 64.8 45.6+2% 47.67+3%

G2C+GQA 75.6/69.5 95.7 13.6 15.3/11.7/13.9 59.9 44.4−1% 46.90+1%

Table 4: Results of single-task finetuning with Phi-1. Relative performance increases w.r.t. baseline are given in
subscripts in the last two columns. The penultimate column is the average of all tasks, while the last column is the
average of all Java and Python tasks. G2C: Graph2Code. GQA: GraphQA.

observe that they can even improve six of the seven
models’ performance on tasks in other languages -
code summarization in JavaScript, and defect detec-
tion in C. This showcases that the knowledge about
code structures acquired in GALLa can be general-
ized across programming languages, as learning to
align to Python and Java structural graphs improves
the finetuning performance of downstream tasks in
other languages.

In Table 4, we also present the results of single-
task finetuning with Phi-1. In this setting, we find
that Graph2Code still improves the average perfor-
mance on all tasks by 2%, and by 3% on Python
and Java tasks. On the other hand, GraphQA brings
limited improvement, and even a large drop on the
C defect detection task. We hypothesize that this

is because the diverse data in GraphQA serve a
similar role to instruction tuning for LLMs (Sanh
et al., 2022; Chung et al., 2022), where the benefits
of cross-task transfer only start to manifest when
the number of tasks is large. We find that models
trained with single-task finetuning are prone to hal-
lucinations, where they do not follow instructions
in test samples but output answer templates learned
from the GraphQA data instead (see Appendix D
for examples).

4.4 Ablation Studies

Contribution of AST and DFG As an ablation
study, we conducted experiments with Phi-1 and
Graph2Code using either only the AST data or
only the DFG data for graph alignment. The results
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Trans (Ja2Py/Py2Ja) Clone Repair Sum (Java/Py/JS) Defect Avg

Baseline 76.8/66.1 95.5 13.5 15.2/11.3/14.2 65.7 44.8
G2C 79.3/68.9 95.8 15.1 15.2/11.7/14.1 64.8 45.6
G2C (AST only) 76.8/66.9 95.8 13.6 15.1/11.9/13.8 65.2 44.9
G2C (DFG only) 79.3/68.3 95.8 13.7 15.1/11.9/13.8 66.3 45.5
G2C (Code only) 78.7/69.3 95.1 12.4 15.2/12.3/14.0 62.9 45.0

Table 5: Ablation studies on the Graph2Code (G2C) task with Phi-1.

Training Trans (Ja2Py/Py2Ja) Clone Repair Sum (Java/Py/JS) Defect Avg

MLP
G2C 73.2/66.9 95.2 11.7 15.1/11.6/14.1 61.6 43.7
G2C + GQA 76.2/68.9 95.3 12.7 14.9/12.1/13.6 59.9 44.2

MagNet
G2C 75.6/65.3 94.9 11.2 14.5/11.3/13.9 63.1 43.7
G2C + GQA 74.4/65.1 95.0 12.8 15.0/12.4/14.1 63.2 44.0

Table 6: Experiments with Phi-1 using an MLP instead of a cross-attention layer as the adapter (top), and using
MagNet instead of DUPLEX as the graph encoder (bottom).

are shown in Table 5. We find that DFG brings
more improvement compared with AST, which we
contribute to the fact that AST is more closely re-
lated to the surface form of source code and thus
provides the model with less additional structural
information, while DFG includes more complex
structures - such as loops - that are more informa-
tive.

Contribution of the Graph Information Ob-
serving the previous results, one may raise the ques-
tion: are these improvements indeed attributable to
the alignment of code representations to graphs, or
are they simply a result of additional computation
expense during the finetuning of LLMs?

To answer this question, we conducted a control
experiment where we additionally trained a model
on the mixture of downstream tasks and the source
code from the graph alignment data, but did not
provide it with the graph information - in other
words, Graph2Code with only the code but not the
graph, as illustrated in Figure 3, which is similar in
essence to continual pretraining on the source code
data. The results are given in the last row in Table 5,
which suggests that the graph information is indeed
helping the LLM to better understand programs.

Different Adapters and Graph Encoders To
show that the proposed GALLa framework can
be applied to various GNN encoders and adapter
modules, we also conducted another two sets of
experiments in the MFT setting with Phi-1: based
on the settings in the main experiments, we 1) re-

LLM“# Translate…” “public static void…”

“”
“def add(a, b):

…”

downstream task data

source code from 
graph alignment data

“# Summarize…” “Multiply two numbers”
“# fix the bug:
def sub (a, b):

return a + b”

“def sub (a, b):
return a - b”

Figure 3: The setting of control experiment, where the
model is trained on the same source code data as the
Graph2Code task in Figure 1 but the graph information
is not given, i.e. Graph2Code without the graph.

placed the cross-attention adapter with a 3-layer
MLP (which has a similar parameter count to the
cross-attention layer), and 2) replaced the graph
encoder with MagNet (Zhang et al., 2021). For
these two experiments, we repeated the complete
two stages of GALLa training, and the results are
presented in Table 6.

Compared with the results using cross-attention
from Table 3, we surprisingly find that the MLP
adapter leads to a slightly better performance,
which is counter-intuitive as MLP does not allow
for information exchange between the nodes. We
hypothesize that this is because with the same pa-
rameter count, MLP has more layers than cross-
attention (3 vs. 1 in our case), thus having a
stronger expressivity.

Similarly, when using MagNet (which is
convolution-based) instead of DUPLEX (which
is self-attention-based) for finetuning Phi-1, the
model’s performance on downstream tasks is also
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slightly improved. These results of using differ-
ent adapters and graph encoders, together with the
experiments of using different LLMs (Table 3),
confirm that GALLa is indeed a flexible frame-
work where each of the three modules - GNN en-
coder, adapter, and LLM decoder - can be replaced
as more advanced models are proposed in the fu-
ture, leading to better performance on downstream
tasks.

5 Conclusion

In this work, we present the conceptual designs,
implementation details, and experimental results of
GALLa - Graph Aligned Large Language Models
for improved source code understanding. Unlike
previous works that modify code language mod-
els’ internal structures to enhance them with graph
information, GALLa follows the cross-modality
alignment paradigm and leaves the structure of the
language models intact, making it applicable to any
off-the-shelf code LLMs. By integrating GALLa
as an auxiliary task on a separate graph alignment
dataset in the finetuning stage of code LLMs, we
require no graph information of the task-specific
finetuning or evaluation data, thus incurring no ad-
ditional computation cost compared with the base-
line LLM at inference time. Our experiments vali-
date the effectiveness of GALLa on various code
downstream tasks with base LLMs of varying sizes,
paving road for a new paradigm in integrating code
structural graphs into language models and pro-
viding insights for future research in developing
structure-aware code LLMs.

Limitations

As we pointed out in the related work section, all
existing methods that attempt to combine structural
graphs with code language models focus on small,
BERT-style models. Since our work is the first to
utilize structural graphs to enhance decoder-only
LLMs in understanding source code, we are unable
to find any existing methods for fair comparison,
and thus can only fine-tune the LLMs directly on
source code as a baseline. However, our work can
serve as a baseline for any future research in graph-
enhanced (or more generally, structure-aware) code
LLMs.

Due to our limited computational budget, we
mostly focused on LLMs around 1B-10B param-
eters (especially in the ablation studies) and only
verified the effectiveness of GALLa on one 14B

model. We leave the exploration of even larger
structure-aware code LLMs to future work. Also
due to the budget constraint, we mainly focused on
multi-task training in our main experiments and did
not conduct individual hyper-parameter searches
for the five downstream tasks. However, we main-
tained a fair comparison between the baseline and
the proposed methods.
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A Introduction to Structural Graphs

In this work, we refer to Abstract Syntax Trees
(ASTs) and Data Flow Graphs (DFGs) as program
structural graphs. These are graph data structures
(i.e. nodes and edges) that specify the internal logic
of programs. Each node in these graphs is a snippet
of code within the entire program.

A.1 AST

An AST is a tree representation of the syntactic
structures of a program, with the root node being
the entire program, and each leaf node being a
single semantic unit in the program - such as an
identifier (e.g. a variable, a class, a function) or an
operator. Each non-leaf node in the tree is a combi-
nation of its children, indicating the structures of
the code. As the name suggests, AST is an abstract
representation of source code, in the sense that cer-
tain details such as white spaces, parentheses, and
delimiters are omitted. Every node in the tree has
an associated type attribute, such as assignment
expression or for loop. A toy example in Python is
provided below:

def add(a, b):
return a+b

In the AST for this example, the root node is a func-
tion expression including the whole code snippet.
The rest of the nodes are given in Table 7.

A.2 DFG

A DFG is a graph representation of the variable use-
define chains within a program at execution time.
For a given program, its DFG shares the same set
of nodes with its AST, while the edges indicate
the data flow between variable-involved nodes. An
example DFG of the previously shown program is
provided in Table 8.

A.3 Universal AST

Typically, ASTs are specific to the programming
language in question. In other words, different pro-
gramming languages would have different types of
nodes in their ASTs - for example, a for loop node
in Python may have different semantics from a for
loop in C++. However, in the context of our work,
such language-specific specifications may be detri-
mental to the cross-language alignment (e.g. the
code translation task) or generalization capabilities
(i.e. generalizing to languages not present in the
training data) of the models.

idx content type parent idx

1 a, b arguments 0 (root)
2 return a+b return statement 0 (root)
3 a arguments 1
4 b arguments 1
5 a+b binary expression 2
6 a variable 5
6 b variable 5

Table 7: An illustrative example AST for the toy pro-
gram in Appendix A.1. Each row is a node in the graph.

idx from to

1 variable a binary expression a+b
2 variable b binary expression a+b
3 arguments a variable a
4 arguments b variable b

Table 8: An illustrative example DFG for the toy pro-
gram in Appendix A.1. Each row is an edge in the
graph.

Thus, in this work we used a special type of
AST (and DFG, as they share the same set of
nodes): Universal AST (UAST). In UAST, the
specifications of all node types are designed to be
as language-independent as possible. Taking the
nodes in Table 7 as an example, UAST abstracts
language-specific node types into the most basic
concepts shared by most programming languages,
such as variable, binary expression, and return state-
ment. In total, there are 43 node types in our graph
data.

B GraphQA Prompts

In our main experiments, we used three types of
questions for GraphQA: edge prediction, parent
prediction, and child prediction. For each type of
question, we wrote about ten question templates
and ten answer templates, as shown in Figure 4 to 6.
When constructing the data, one question template
and one answer template are randomly chosen for
each sample, as diverse question templates have
been found to improve cross-task generalization ca-
pability in instruction finetuning (Sanh et al., 2022).
The placeholders in the templates are replaced with
the actual node contents and types, and the instanti-
ated prompt is then randomly placed before or after
the graph tokens.

In our preliminary experiments, we found edge
prediction data constructed from AST to bring no
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improvement, as connected nodes in the AST often
have high textual overlap and can be trivially pre-
dicted. Thus we only use DFG data for the edge
prediction task, while both AST and DFT data are
used for the other two tasks. In early trials, we
also experimented with and eventually discarded
several other types of questions, including node
classification (which can be easily done by only
looking at the node’s source code) and some tasks
that involve counting, such as counting the number
of nodes in the graph, the number of edges in the
graph, and the number of node types in the graph,
which prove to be too difficult for the model.

C Statistical Tests

To verify the statistical significance of the main
results, we conducted Chi squared tests on the four
tasks with discrete performance metrics (i.e. code
translation, code repair, clone detection, and de-
fect detection) and Wilcoxon signed-rank test on
the task with continuous performance metrics (i.e.
code summarization). The results are presented
in Table 9. Most of the differences are signifi-
cant, except for CodeGen and Phi-1 on JavaScript
summarization, and LLaMA3 on Java-to-Python
translation and Python summarization.

D Example Outputs with Single-Task
Finetuning

In Figure 7, we provide an example of model hallu-
cination after training on only one downstream task
in the GALLa framework. The model produces an
answer template learned from the GraphQA task
instead of responding to the actual question. This
issue is mitigated in the multitask finetuning set-
ting.
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Question templates:
− In the graph, is there an edge from {node_type1} {node1} to {node_type2} {node2}?
− In the graph, is there an edge pointing from {node_type1} {node1} to {node_type2} {node2}?
− Please tell me if there is an edge pointing from {node_type1} {node1} to {node_type2} {node2} in
this graph.
− Is there an edge from {node_type1} {node1} to {node_type2} {node2} in this graph?
− Does a connection exist from {node_type1} {node1} to {node_type2} {node2} in the graph?
− In this graph, do we have an edge leading from {node_type1} {node1} to {node_type2} {node2}?
− Is it true that {node_type1} {node1} is a predecessor of {node_type2} {node2} in this graph?

Answer templates 1 (positive):
− Yes, that is the case.
− Yes, there is an edge from {node_type1} {node1} to {node_type2} {node2}.
− Yes, there is an edge from {node_type1} {node1} to {node_type2} {node2} in this graph.
− Yes, there is an edge pointing from {node_type1} {node1} to {node_type2} {node2} in this graph.
− Affirmative, there exists an edge from {node_type1} {node1} to {node_type2} {node2}.
− Yes, that is the case. {node1} is directly connected to {node2}.

Answer tempaltes 2 (negative):
− No, that is not the case.
− No, {node_type1} {node1} is not linked to {node_type2} {node2} by any edge in this graph.
− No, there is no edge from {node_type1} {node1} to {node_type2} {node2}.
− No, such an edge is absent from the graph.
− The graph does not show {node_type1} {node1} as a predecessor to {node_type2} {node2}.

Figure 4: Prompts for the edge prediction GraphQA task.

Model Setting Trans (Ja2Py/Py2Ja) Clone Repair Sum (Java/Py/JS) Defect

CodeGen 350M
G2C 0.0862/0.0000 0.0000 0.0000 0.0114/0.0000/0.3684 0.0000
G2C + GQA 0.0000/0.0001 0.0000 0.0000 0.0111/0.0011/0.4332 0.0000

StarCoder 1B
G2C 0.0057/0.0140 0.0000 0.0000 0.0000/0.0000/0.0000 0.0000
G2C + GQA 0.0057/0.0140 0.0000 0.0000 0.0000/0.0000/0.0000 0.0000

Phi-1 1.3B
G2C 0.0000/0.0000 0.0000 0.0000 0.0090/0.0595/0.5485 0.0000
G2C + GQA 0.0009/0.0000 0.0000 0.0000 0.0058/0.0048/0.7818 0.0000

Qwen2.5-Coder 1.5B
G2C 0.0000/0.0000 0.0000 0.0000 0.2176/0.0001/0.0000 0.0000
G2C + GQA 0.0286/0.0000 0.0000 0.0000 0.0008/0.0003/0.0001 0.0000

LLaMA2 7B
G2C 0.0037/0.0000 0.0000 0.0000 0.0195/0.0755/0.5454 0.0000
G2C + GQA 0.0000/0.0000 0.0000 0.0000 0.0468/0.1406/0.0147 0.0000

LLaMA3 8B
G2C 0.0003/0.0000 0.0000 0.0000 0.5029/0.0000/0.0014 0.0000
G2C + GQA 1.0000/0.0000 0.0000 0.0000 0.0019/0.0147/0.0001 0.0000

Qwen2.5-Coder 14B
G2C 0.0000/0.0000 0.0000 0.0000 0.9403/0.0213/0.0000 0.0000
G2C + GQA 0.0509/0.0000 0.0000 0.0000 0.2508/0.6213/0.0000 0.0000

Table 9: Statistical significance (p values) of main results’ differences from the baselines.
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Question templates:
− In the graph, what is the parent node of this {node_type}: {node}.
− What is the parent of {node_type} {node} in this graph?
− What is the parent node of {node_type} {node} in the graph?
− Based on the graph, identify the parent of {node_type} {node}.
− Based on this graph, identify the parent of this {node_type}: {node}.
− Identify the parent of {node_type} {node} in the graph.
− In the graph presented, what is the predecessor of {node_type} {node}?
− What node acts as the parent to {node_type} {node} in the graph displayed?
− Can you determine the parent node of {node_type} {node} in this graph?
− Which node is directly above {node_type} {node} in the hierarchy of the provided graph?
− What is the immediate ancestor of the {node_type} {node} in this graph?
− Regarding the graph, can you point out the parent of {node_type} {node}?
− In terms of graph theory, what is the parent of the {node_type} {node}?
− Who has the parental role for {node_type} {node} in the graph’s topology?
− For {node_type} {node} in the given graph, which node supplies the incoming edge?

Answer templates 1 (has parent):
− In the given graph, the parent of the given {node_type} is {parent}, which is a {parent_type}.
− This {node_type}’s parent is the {parent_type} {parent}.
− The given {node_type}’s parent in the graph is the {parent_type} {parent}.
− The parent of {node_type} {node} in this graph is identified as {parent}, categorized as a {
parent_type}.
− Node {parent}, a {parent_type}, serves as the parent to {node_type} {node} in the graph.
− As per the hierarchy, the {parent_type} node {parent} is the direct predecessor to {node_type} {node
}.
− Upon inspection, it is clear that the parent of {node_type} {node} is the {parent_type} {parent}.
− The {node_type} {node} is immediately descended from {parent}, a {parent_type} in the graph.
− Within the nodal arrangement, {parent} is the progenitor to {node_type} {node}, having the
classification of a {parent_type}.
− Tracing the edges leads to confirming {parent}, a {parent_type}, as the parent of {node_type} {node
}."

Answer tempaltes 2 (no parent):
− This {node_type} has no parent in the graph.
− There is no edge pointing to this {node_type} in the given graph. Therefore it does not have any
parent.
− Within this graph, {node_type} {node} does not have a parent node.
− {node_type} {node} stands without a parent in the graph’s existing structure.
− No parent node is associated with {node_type} {node} in the provided graph.
− A review of the graph establishes that there is no preceding node to {node_type} {node}; it has no
parent.
− In this graph topology, {node_type} {node} is an orphan node with no parent.
− There is no edge incoming to {node_type} {node}, indicating the absence of a parent.
− After analyzing the graph, it becomes evident that {node_type} {node} lacks a directly linked parent
node.
− As depicted in the graph, {node_type} {node} exists without a parent node.

Figure 5: Prompts for the parent prediction GraphQA task.
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Question templates:
− In this graph, what are the children of this {node_type}: {node}.
− Identify all children of {node_type} {node} in this graph.
− Find the child nodes of {node_type} {node} in the graph.
− In the graph, how many children does the {node_type} {node} have? What are they?
− How many children does {node_type} {node} have in this graph? What are they?
− Please find all children of {node_type} {node} in this graph.
− Can you find all children of {node_type} {node} in this graph?
− List all the descendant nodes of {node_type} {node} in this graph.
− What are the direct children of the {node_type} {node}?
− Can you enumerate the offspring of {node_type} {node} within this graph?
− Could you provide the list of child nodes attached to {node_type} {node}?
− Please identify the child nodes emanating from {node_type} {node}.
− Show me the child nodes of {node_type} {node}.
− What nodes are directly connected to {node_type} {node} as its children?
− I need to know all the child elements of {node_type} {node}. Can you provide that?
− Are there any nodes that directly derive from {node_type} {node} in this graph?
− Which nodes act as successors to the node tagged as {node_type} {node}?
− What are the adjacent nodes that are children of {node_type} {node}?
− Identify the nodes that are immediate successors of {node_type} {node} in this graph.
− Detail the nodes branching from {node_type} {node} in this graph structure.
− Reveal all nodes that are directly beneath {node_type} {node} in the hierarchy.

Answer templates 1 (has children):
− The given {node_type} has {child_num} children in the graph, they are: {child_nodes}
− This {node_type} has {child_num} children: {child_nodes}
− {node_type} {node} has a total of {child_num} children in this graph, which are: {child_nodes}
− There are {child_num} child nodes of {node_type} {node}, specifically: {child_nodes}
− As for the children of {node_type} {node}, you will find {child_num} direct descendants: {
child_nodes}
− The count of {node_type} {node}’s children amounts to {child_num}. They include: {child_nodes}
− {node_type} {node} is parent to the following {child_num} nodes: {child_nodes}
− A list of the {child_num} children under {node_type} {node} is as follows: {child_nodes}
− Directly under {node_type} {node}, there are {child_num} children listed as: {child_nodes}
− {child_num} children spring from {node_type} {node}, which are given below: {child_nodes}

Answer tempaltes 2 (no children):
− This {node_type} does not have any child nodes in the graph.
− This {node_type} does not have any children in the graph.
− There are no children of this {node_type} in the given graph.
− The given {node_type} does not have any children in the graph.
− After examining the graph, it’s determined that this {node_type} has no children.
− I’ve checked the {node_type} {node} and found it has no direct descendants.
− There are no child nodes attached to {node_type} {node} in this graph.
− No descendants can be traced from this {node_type}.
− The {node_type} {node} is devoid of child nodes within the current graph structure.
− It appears {node_type} {node} has no children.

Figure 6: Prompts for the child prediction GraphQA task.
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** Prompt **:
# Translate the following Java program to Python

# Java
public Object splitWords(String txt) {

if (txt.contains(" " )) {
return Arrays.asList(txt.split(" " ));

} else if (txt.contains("," )) {
return Arrays.asList(txt.split("[,\s]" ));

} else {
int count = 0;
for (char c : txt.toCharArray()) {

if (Character.isLowerCase(c) && (c − ’a’) % 2 == 1) {
count += 1;

}
}
return count;

}
}

}

# Python
def split_words(txt):

** Expected answer **:
if " " in txt:

return txt.split(" ")
elif "," in txt:

return txt.split(",")
else:

count = 0
for c in txt:

if c.islower() and (ord(c) − ord(’a’)) % 2 == 1:
count += 1

return count

** Model Response **:
There is 1 connected component in the program’s DFG.

Figure 7: An example of hallucination after single-task finetuning.
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