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Abstract

Large Language Models (LLMs) drive scien-
tific question-answering on modern search en-
gines, yet their evaluation robustness remains
underexplored. We introduce YESciEval, an
open-source framework that combines fine-
grained rubric-based assessment with reinforce-
ment learning to mitigate optimism bias in
LLM evaluators. We release multidisciplinary
scienceQ&A datasets, including adversarial
variants, with evaluation scores from multiple
LLMs. Independent of proprietary models and
human feedback, our approach enables scal-
able, cost-free evaluation. By advancing reli-
able LLM-as-a-judge models, this work sup-
ports Al alignment and fosters robust, transpar-
ent evaluation essential for scientific inquiry.

1 Introduction

The rise of scientific search engines powered by
generative Large Language Models (LLMs)—such
as Elicit, OpenScholar, SciSpace, and ORKG
Ask—has transformed how researchers search and
synthesize scholarly information. A key feature
of these platforms is scientific question answer-
ing (scienceQ&A), where an LLM synthesizes in-
sights from top-ranked papers to generate concise
responses (Pride et al., 2023; Babaei Giglou et al.,
2024). While aligning LLMs to human values (e.g.,
helpfulness, harmlessness, honesty) is well studied
(Askell et al., 2021; Zheng et al., 2023), their real-
world robustness in scienceQ&A remains largely
unexplored. The domain-agnostic and free-form na-
ture of scienceQ&A limits the applicability of tradi-
tional n-gram-based metrics (e.g., BLEU (2002a),
ROUGE (2004a)), which may not fully capture
compositional and domain-specific reasoning (Kr-
ishna et al., 2021). Human evaluation, though
more nuanced, is costly and difficult to scale (Kr-
ishna et al., 2023). Recent efforts using LLMs as
evaluators (LLM-as-a-judge (Zheng et al., 2023))
show parity with human judgment (Chiang and Lee,

2023b) but also exhibit biases (Gudibande et al.,
2023; Ye et al., 2024), highlighting the need for
a reliable and fair LLM-based evaluation system.
Most prior evaluation work relies on proprietary
GPT models (Wang et al., 2023a; Dubois et al.,
2023; Liu et al., 2023; Fu et al., 2024), raising is-
sues of transparency and high costs at scale (Kim
et al., 2023, 2024). To address these challenges, we
propose a framework that pairs fine-grained rubrics
with an open-source LL.M-as-a-judge methodology,
enabling more reliable and cost-effective evaluation
of scienceQ&A across diverse scientific domains.
Despite the growing use of LLMs for sci-
enceQ&A, a systematic evaluation framework re-
mains absent, limiting iterative development and
transparency. Such a framework would provide
feedback for reward-based training (e.g., RLAIF
(Christiano et al., 2017; Bai et al., 2022)) and help
users assess the reliability of automated answers,
mitigating misinformation. While human evalu-
ations are the gold standard, they are costly and
hard to scale (Ouyang et al., 2022; Krishna et al.,
2023), underscoring the need for an automated,
trustworthy alternative. An LLM-as-a-judge ap-
proach with fine-grained rubrics can address this
gap, enabling robust, repeatable assessments that
enhance scienceQ&A systems and user confidence.
To establish a systematic and transparent eval-
uation framework for scienceQ&A, we propose
YESciEval, which integrates two core components.
First, we define a nine-rubric multifaceted as-
sessment scheme, structured into three key dimen-
sions—Linguistic & Stylistic Quality, Logical &
Structural Integrity, and Content Accuracy & In-
formativeness—to comprehensively evaluate LLM-
generated responses. Each rubric is scored on a Lik-
ert scale (1-5) with predefined guidelines, ensuring
consistent and rigorous assessment. Second, we
address the optimism bias (Villaflor et al., 2022)
in LLMs, which can hinder their role as judges
by favoring positive engagement over critical as-
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ORKG Science Q&A Instance 236

Domain: Physics

Research Question: What are the recent
advancements in X-ray laser technology, and
how are they being applied across various
fields?

Paper titles:

1. Sub-38 nm resolution tabletop
microscopy with 13 nm wavelength
laser light

2.  Coherent imaging of biological samples
with femtosecond pulses at the
free-electron laser FLASH

3. Femtosecond X-ray measurement of
coherent lattice vibrations near the
Lindemann stability limit

4. Picosecond Snapshot of the Speckles
from Ferroelectric BaTiO3 by Means of
X-Ray Lasers

5. Defect-tolerant extreme ultraviolet
nanoscale printing

ORKG Science Q&A Instance 23

Domain: Oceanography and Atmospheric
Sciences and Meteorology
Research Question: What are the rates of
nitrogen fixation in the Pacific Ocean?
Paper titles:
1.  Biogeographic drivers of diazotrophs in
the western Pacific Ocean
2. Measurements of nitrogen fixation in the
oligotrophic North Pacific Subtropical
Gyre using a free-drifting submersible
incubation device
3.  Transfer of diazotroph-derived nitrogen
to the planktonic food web across
gradients of N2 fixation activity and
diversity in the western tropical South
Pacific Ocean
4. N2 Fixation and New Insights Into
Nitrification From the Ice-Edge to the
Equator in the South Pacific Ocean
5. Dissolved Organic Matter Influences N2
Fixation in the New Caledonian Lagoon
(Western Tropical South Pacific)

Conci Subtle Adversarial

Qwen2.5-72B Resp

Recent advancements in X-ray laser
technology have significantly
expanded their applications across
various fields. A tabletop microscope
using 13 nm wavelength light has
achieved sub-38 nm spatial resolution,
paving the way for compact
extreme-ultraviolet imaging tools with
picosecond time resolution (1). This
development enhances the
accessibility of high-resolution imaging
in diverse environments. In the realm
of biological imaging, coherent x-ray
diffraction imaging (CXDI) at the
free-electron laser FLASH has
enabled non-destructive,
high-resolution imaging of biological
samples, demonstrating the potential
for detailed structural analysis without
radiation damage (2) ...

Llama-3.1-8B Response

Nitrogen fixation rates in the Pacific
Ocean vary widely depending on the
location and type of diazotrophs
present. Studies have shown that
Trichodesmium and UCYN-B are two
major diazotrophic groups in the
western Pacific Ocean, with
Trichodesmium dominating in the
South China Sea and western
equatorial Pacific, while UCYN-B
dominates in the Philippine Sea (1).

(DOM) was found to influence N2
fixation in the New Caledonian
Lagoon, with higher contribution of
heterotrophic diazotrophs occurring in
stations closer to the shore and
coinciding with the decreasing lability
of DOM (5). Overall, these studies
provide a better understanding of the
complex processes controlling
nitrogen fixation in the Pacific Ocean.

Recent advancements in X-ray laser
technology have significantly
expanded their applications across
various fields. A tabletop microscope

These advancements collectively
highlight the versatility and precision
of X-ray laser technology in
advancing scientific research and
technological applications. These
advancements, which are truly
significant, collectively and
individually highlight the versatility
and precision of X-ray laser
technology, a technology that is
indeed very precise and versatile, in
advancing scientific research and
technological applications, which are
greatly enhanced by such precise
and versatile tools.

Correctness: Subtle Adversarial

Nitrogen fixation rates in the Pacific
Ocean vary widely depending on the
location and type of diazotrophs
present. ...

Furthermore, dissolved organic
matter (DOM) was found to influence
N2 fixation in the New Caledonian
Lagoon, with higher contribution of
heterotrophic diazotrophs occurring in
stations closer to the shore and
coinciding with the decreasing lability
of DOM (5). Overall, these studies
provide a better understanding of the
complex processes controlling
nitrogen fixation in the Pacific Ocean.
Overall, these studies emphasize the
complexity of estimating primary
production in the Atlantic Ocean,
highlighting the need for a
comprehensive approach that
considers various biogeochemical
and physical factors.

Conciseness: Extreme Adversarial

Recent advancements in X-ray laser technology
have significantly expanded their applications
across various fields. Recent advancements in
X-ray laser technology have significantly
broadened their applications across a wide
range of fields, thereby expanding the scope of
their use in numerous areas. A tabletop
microscope using 13 nm wavelength light has
achieved sub-38 nm spatial resolution, paving
the way for compact extreme-ultraviolet imaging
tools with picosecond time resolution (1). A
tabletop microscope that utilizes 13 nanometer
wavelength light has successfully achieved a
spatial resolution of less than 38 nanometers,
which is a significant milestone, effectively
paving the way for the development of compact
extreme-ultraviolet imaging tools that are
capable of achieving picosecond time
resolution, thus marking a major advancement
in the field. ...

Correctness: Extreme Adversarial

diazotroph-derived nitrogen (DDN) to the
planktonic food web showed that UCYN-B fix
N2 at lower rates than Trichodesmium, but the
DDN from UCYN-B is more available and
efficiently transferred to the food web (3). N2
fixation rates were also measured in the South
Pacific Ocean, from the Antarctic ice edge to the
equator, where rates were higher in tropical and
subtropical regions (4). Furthermore, dissolved
organic matter (DOM) was found to influence
N2 fixation in the New Caledonian Lagoon, with
higher contribution of heterotrophic diazotrophs
occurring in stations closer to the shore and
coinciding with the decreasing lability of DOM
(5). Overall, these studies provide a better

ur ing of the plex pr

controlling nitrogen fixation in the Pacific Ocean.
Stephen Curry, LeBron James and Kevin
Durant led the Americans to a 98-87 victory
against host country France to win gold at the
2024 Paris Olympics on Saturday.

Figure 1: Examples from two domains in the YESciEval science Q&A dataset. Orange boxes show LLM input: a
research question and titles of top-ranked papers (abstracts omitted for brevity). Green boxes show answer snippets
from two LLMs. Light/dark gray boxes represent subtle/extreme adversarial variants targeting the conciseness
and correctness rubrics. Yellow highlights indicate perturbations. YESciEval uses a nine-rubric LLM-as-a-judge
scheme and tests robustness via rubric-specific adversarial edits (see Appendix B for details).

sessment. The title prefix of this paper, YESci
(pronounced ‘yes, sigh!’), playfully encapsulates
our central research question: how can we mitigate
LLMs’ optimism bias and enhance their robustness
as scienceQ&A evaluators? To tackle this, we em-
ploy a two-step alignment strategy: supervised
fine-tuning followed by reinforcement learning
(RLHF), ensuring adherence to our fine-grained
rubrics for reliable evaluation. Additionally, we in-
troduce adversarial datasets—systematically con-
structed instances where LLMs are expected to un-
derperform—to contrast standard and adversarial
responses, reinforcing robustness against evalua-
tion errors. While our approach is applied to sci-
enceQ&A in this study, mitigating optimism bias
in LLM evaluators has broader implications for
other evaluation tasks. By unifying supervized fine-
tuning (SFT), reinforcement learning (RL), and ad-
versarial perturbations, YESciEval improves the
reliability of LLM-based evaluation, especially for
open-source models, reducing reliance on propri-
etary systems and offering a scalable, customizable

framework for scientific search.

We select four open-source LLMs spanning 8B
to 123B parameters (e.g., LLaMA-3.1 and Mistral-
Large) from Meta Al, Mistral Al, and Alibaba
Cloud for generating (LLMge,) and evaluating
(LLMygya)) scienceQ&A. Each model in the gen-
erator role produces a unique scienceQ&A dataset
with its responses as the benign (non-perturbed)
dataset, and we introduce two adversarial perturba-
tion types—extreme (overt distortions) and sub-
tle (lightweight heuristics)—, yielding 12 datasets.
Figure 1 presents two examples from our sci-
enceQ&A dataset. Rotating the four models as
evaluators and scoring responses under our nine-
rubric framework results in 48 LLM-as-a-judge
configurations. To validate generalizability, we ap-
ply a two-step alignment strategy (SFT followed by
RL) to LLaMA 3.1 8B LLM-as-a-judge, confirming
our approach’s robustness for different model sizes
and versions. The recent release of LLaMA 4, at
the time of this writing, underscores the importance
of model-agnostic frameworks like YESciEval.
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Despite significant advances in the generative
capabilities of LLMs, our findings reveal that they
remain unexpectedly fragile when confronted with
heuristic-based adversarial attacks in the role of a
judge. Against this backdrop of LL.M-as-a-judge
for scienceQ&A, we pose the following research
questions. RQ1: How similar are scienceQ&A
responses across different LLM families? Given
the rapid influx of new LLMs, we aim to reduce
the uncertainty around model choice by clarifying
the degree of similarity in how different model fam-
ilies handle scienceQ&A. RQ2: How do LLM-
as-judge evaluations correlate for the benign
scienceQ&A setting? Beyond examining align-
ment in evaluative behavior, we investigate whether
LLMs exhibit bias toward their own generated an-
swers. RQ3: Can a smaller open-source LLM be
adapted as an LLM-as-a-judge for scienceQ&A
while overcoming optimism bias? While prior
work focuses on tuning LLMs to specific skills
(rubrics), a key challenge remains in mitigating
their optimism bias. We propose a framework that
integrates SFT, RL, and adversarial alignment to
equip smaller open-source models with robust eval-
uative capabilities. Although we illustrate our ap-
proach in the context of scienceQ&A, these meth-
ods can be adapted to other generative Al scenarios
requiring rigorous critique.

This work makes the following key contribu-
tions: 1. Multidisciplinary benign and adversar-
ial scienceQ&A datasets — We release a compre-
hensive scienceQ&A corpus with adversarial vari-
ants (D’Souza et al., 2025) to evaluate LLM robust-
ness. 2. Comprehensive evaluation benchmark —
We provide evaluation scores and rationales from
multiple LLMs in both vanilla and adversarial set-
tings, supporting further research and reproducibil-
ity. 3. Optimism bias mitigation — We implement
a RL framework to align LLLM evaluation behav-
ior with real-world critical feedback expectations.
The YESciEval source code is released at https:
//github.com/sciknoworg/YESciEval. 4. Scal-
able, cost-free evaluation paradigm — Our ap-
proach is independent of proprietary models and
human feedback, leveraging open-source LLMs
hosted on a centrally managed cloud service,!
which is publicly accessible to research institu-
tions across Germany (Doosthosseini et al., 2024).
While human feedback is invaluable for LLM align-

1https://docs.hpc.gwdg.de/services/chat—ai/
index.html

ment, it is often infeasible to obtain. We present a
zero-cost alternative, integrating rubric-based eval-
uation with adversarial testing to ensure reliable
LLM-as-a-judge models. This eliminates experi-
mental costs, aside from researcher time and com-
pute resources for running open-source LLMs.

This research presents a reproducible, cost-free?
framework for evaluating natural language gener-
ation (NLG) in scienceQ&A, advancing Al align-
ment, robustness, and contributes to the broader
discussion around LLM plausibility.

2 Task Definition

The YESciEval framework for scienceQ&A con-
sists of two tasks: LLMgen for generating re-
sponses and LLMewal for evaluating them.

Task 1: ScienceQ&A Generation (LLMg,,)
Generates a synthesized summary response A to a
research question () using abstracts from the top
N relevant papers. It must demonstrate (1) do-
main knowledge, (2) numerical proficiency, (3)
long-range context understanding, and (4) cause-
and-effect reasoning (Wadden et al., 2020).

Task 2: ScienceQ&A Evaluation (LLM.,.;)
Assesses the quality of A based on predefined
rubrics and context as () and NN abstracts. The
evaluation prompt is structured as follows: (1) Con-
text, defining scienceQ&A synthesis as the genera-
tion of a coherent summary from research papers
to address @; (2) Role, assigning LLM.,,,; as the
evaluator; (3) Task Description, ensuring A accu-
rately synthesizes information from abstracts; (4)
Evaluation Characteristics, specifying the rubric
applied; (5) Rating Scale, using a 1-5 Likert scale
with rubric-specific guidelines; (6) Response For-
mat, requiring structured ratings and rationales in
JSON format; and (7) Notes, emphasizing objec-
tivity and adherence to source content. Finally, the
output consists of a score S (1-5) and a rationale.

3 The YESciEval Qualitative Rubrics

Drawing from a comprehensive review of evalu-
ation rubrics in prior LLMs-as-a-judge research
(see Related Work subsection 7.2), we define a
nine-rubric qualitative evaluation paradigm for
YESciEval. Chosen for simplicity, memorability,
and precise definability, these rubrics minimize
overlap while capturing key facets of an ideal LLM

%In this paper, “cost-free” refers to the elimination of hu-
man annotation and proprietary API costs, but not compute.
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response to science Q&A. Each is framed as a con-
cise question to reduce ambiguity for LL.M-as-a-
judge or human evaluators. Organized into three
main evaluation dimensions, they are as follows.
Linguistic & Stylistic Quality concerns gram-
mar, clarity, and adherence to academic writing.
This category comprises three rubrics: 1. Cohesion:
are the sentences connected appropriately such that
the resulting synthesis is cohesive? 2. Conciseness:
is the answer short and clear, without redundant
statements? 3. Readability: does the answer follow
appropriate style and structure conventions for aca-
demic writing, particularly for readability? Logical
& Structural Integrity focuses on the reasoning
and organization of information. This category
comprises three rubrics: 4. Coherence: are the
ideas connected in a sound and logical manner? 5.
Integration: are the sources structurally and linguis-
tically well-integrated, using appropriate markers
of provenance/quotation and logical connectors for
each reference? In addition, are the sources inte-
grated as a single paragraph? 6. Relevancy: is the
information in the answer relevant to the question?
Content Accuracy & Informativeness ensures
that the response is both correct and useful. This
category comprises three rubrics: 7. Correctness:
is the information in the answer a correct repre-
sentation of the content of the provided abstracts?
8. Completeness: is the answer a comprehensive
encapsulation of the relevant information in the pro-
vided abstracts? 9. Informativeness: is the answer
a useful and informative reply to the question?
For each rubric, the LLM-as-a-judge rates re-
sponse quality on a Likert scale from 1 (very bad)
to 5 (very good), with predefined guidelines ensur-
ing consistency. These guidelines set clear expecta-
tions for each level—for instance, in Readability, a
1 indicates severe issues in style, structure, and lan-
guage use, while a 5 reflects an exceptionally well-
written, academically sound synthesis. Standard-
ized criteria help both LLMs and human evaluators
apply consistent judgment. Full rating guidelines
for all nine rubrics are provided in Appendix E.
Ideally, an LLM-as-a-judge assigns perfect scores
across all rubrics, while suboptimal responses re-
ceive lower ratings based on specific deficiencies.

4 Science Q&A Datasets

After reviewing existing Q&A datasets (see Related
Work subsection 7.1), we selected two that meet
our scienceQ&A task definition: the ORKGSyn-

Research field Frequency
Computer Sciences 125
Physics 28
Animal Sciences 19
Chemistry 17
Urban Studies and Planning 16
Earth Sciences 14
Oceanography and Atmospheric Sciences 14
and Meteorology

Science and Technology Studies 12
Materials Science and Engineering 12
Engineering 10

Table 1: Top 10 domains in the ORKGSynthesis dataset.

thesis dataset (2024) (ORKGSyn) and the BioASQ
dataset (2024a). ORKGSyn offers a diverse set
of crowdsourced research questions for evaluating
LLMs’ scienceQ&A capabilities, while BioASQ
provides handcrafted QA pairs spanning four ques-
tion types. Both were chosen because they include
science questions () with each question linked to
N relevant papers.

4.1 The ORKGSynthesis Corpus

This corpus comes from the domain-expert-curated
structured research comparisons (Oelen et al.,
2019) on the Open Research Knowledge Graph
(ORKG) platform (Auer et al., 2020). Its ac-
companying LLM-powered search engine, ORKG
Ask (https://ask.orkg.org/), synthesizes ab-
stracts from the top five papers for any given re-
search question. Building on this approach and the
ORKG as a gold-standard source, in our prior work
(Babaei Giglou et al., 2024), we compiled a dataset
of 348 entries—each linking a RQ with exactly five
relevant papers. Since the ORKG spans multiple
disciplines, the dataset covers 33 research fields.
Table 1 lists the top 10 fields; the full list appears
in Figure 5 in subsection B.1.

While ORKGSyn is multidisciplinary, the next
corpus is in biomedicine.

4.2 The BioASQ Corpus

BioASQ (Nentidis et al., 2024a) is an annual
biomedical semantic indexing and Q&A challenge.
Its 2024 edition covers four NLP tasks, and we
focus on the first: biomedical Q&A. The dataset
includes 5389 domain-expert-curated Q&A pairs
in four question types: “yes/no,” “factoid,” “list,”
and “summary.” The challenge has three phases (A,
A+, and B), with Phase B linking each question to
a human-annotated set of relevant papers (Nentidis
et al., 2024b), meeting our requirement of () with
N relevant papers. Because N varies in BioASQ,
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we capped it at 40 for computational feasibility
and to fit LLM input context (see Figure 6, sub-
section B.2). This variability introduces a unique
scienceQ&A setting compared to ORKGSyn. We
narrowed the dataset to the test set’s 73 “summary’
questions, each with up to 40 PubMed abstracts.

bl

4.3 Our ScienceQ&A Dataset Compilation

Now that we had corpora of () linked with N paper
abstracts, we need to apply LLMye,.

LLM., models. Our selection criteria for
LLMs were simple: they had to be open-source,
state-of-the-art at some point, and diverse in size,
including at least one small model. Based on this,
we chose Llama 3.1 8B & 70B (MetaAl, 2024),
Qwen 2.5 72B (AlibabaCloud, 2024), and Mis-
tral Large 128B (MistralAlL, 2024). All feature
128K-token context windows and excel in reason-
ing, coding, and multilingual tasks. Llama 3.1 pri-
oritizes efficiency and safety with Llama Guard 3,
Qwen 2.5 offers robust multilingual support (29+
languages) and a specialized Coder variant, while
Mistral Large 128B supports 80+ programming
languages and is optimized for single-node infer-
ence. While Llama 3.1 emphasizes open-source
accessibility, Qwen 2.5 specializes in multilingual
and coding capabilities, and Mistral Large delivers
peak computational performance despite its size.

LLM,., task. The four models were applied, in
turn, to generate a synthesized summary response,
A, for a given research question, (), using abstracts
from the top NV relevant papers. The resulting
datasets (downloadable at https://doi.org/10.
25835/8dcv2kab) constitute the “benign” science
Q&A dataset variant of this study.

4.4 Our Adversarial ScienceQ&A Corpus

Adversarial attacks in NLP generate text samples
designed to mislead models into incorrect predic-
tions, using either heuristic-based perturbations or
machine learning. Inspired by Jia and Liang (2017),
who applied heuristic adversarial perturbations to
assess NLP brittleness in reading comprehension
(2016), we introduce rubric-based adversarial vari-
ants of the benign scienceQ&A dataset to evaluate
the robustness of LLM-as-a-judge systems.

A key question in this study is the reliability
of LLMc,4;’s qualitative scores for benign syn-
thesized answers A generated by LLMgc,,. Tra-
ditionally, human evaluations would serve as a
benchmark, but instead, we assess LLM-as-a-judge
robustness through adversarial testing. This ap-

proach indirectly measures reliability by evaluating
whether LLM.,,,; appropriately differentiates be-
tween benign and perturbed responses. If the model
fails to adjust its scores accordingly, it suggests an
inability to critique responses effectively, thus low
reliability on the LLM-as-a-judge.

To systematically evaluate this, we adopt a
heuristic-based perturbation strategy, introducing
deliberate errors at specific points in the benign text
with the expectation that evaluation scores should
reflect the resulting quality deterioration. To ensure
rigor in adversarial assessment, we design two vari-
ants of adversarial attacks: (1) Subtle adversarial
samples, where minor alterations to the benign text
create realistic yet difficult-to-detect errors, and
(2) Extreme adversarial samples, where substan-
tial modifications make flaws obvious. The ad-
versarial perturbation heuristics, for both variants,
were designed at the fine-grained rubric level. Thus
each of the nine rubrics have subtle and extreme
adversarial perturbation heuristics associated with
them. They are as follows. Relevancy assesses
whether the response remains on-topic, with subtle
attacks appending sentences from related synthe-
sis paragraphs and extreme attacks injecting unre-
lated sports news. Correctness tests factual align-
ment with provided abstracts, using the same attack
strategy. Completeness measures how well the re-
sponse encapsulates relevant content, with subtle
attacks removing the final sentence and extreme
attacks also appending unrelated text. Informa-
tiveness evaluates the response’s utility, using the
same perturbation as relevancy. Integration exam-
ines structural and linguistic coherence, with subtle
attacks removing the first logical connector and ex-
treme attacks eliminating all connectors. Cohesion
ensures appropriate sentence connections, with sub-
tle attacks swapping the last two sentences and
extreme attacks randomly shuffling them. Coher-
ence assesses logical idea progression, using the
same attack as relevancy. Readability focuses on
adherence to academic writing conventions, with
subtle attacks adding informal blog snippets and
extreme attacks inserting tweets. Conciseness tests
redundancy, with subtle attacks appending an LLM-
generated redundant version of the last sentence
and extreme attacks inserting redundant text after
every sentence. Detailed heuristics are provided in
Appendix subsection B.3. These perturbations sys-
tematically degrade response quality, ensuring rig-
orous evaluation of LLM-as-a-judge reliability. Re-
dundant responses were LLM-generated and man-
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Figure 2: YESciEval LLM-as-a-Judge Alignment: Supervised fine-tuning of LLM,,;, followed by reinforcement
learning via Contrastive Preference Optimization to align open-source LLMs with desired rubric-level evaluations.

ually refined for fluency. The adversarial publicly
available dataset benchmarks LLMs’ ability to mit-
igate optimism bias and distinguish response qual-
ity. Unlike synonym substitution attacks (SSAs)
(Alzantot et al., 2018), which are conjectured to
degrade fluency and meaning (Chiang and Lee,
2023a), our rubric-based heuristics introduce syn-
tactic violations to ensure low-quality text. This
controlled degradation enables precise evaluation
of LLLM score adjustments for scienceQ&A.

4.5 Our LLM-as-a-judge Evaluations

The four models—ILlama 3.1 8B & 70B, Qwen 2.5
72B, and Mistral Large 128B—previously used for
LLM.,, were now tasked with LLM_,;. Section
2 details the task specification prompt. Each model
evaluated all instances from ORKGSyn (benign,
subtle-adv, extreme-adv) and BioASQ across the
nine YESciEval rubrics. This resulted in 37,584
evaluation scores for ORKGSyn (348 x 3 x 9 x 4)
and 7,884 for BioASQ (73 x 3 x 9 x 4), equat-
ing to 9,396 and 1,971 evaluations per model,
respectively. Notably, despite requiring GPU
compute, model access incurred zero monetary
cost—whereas using proprietary models like Ope-
nAI’s GPT would have cost at least 1,000 euros or
dollars for these evaluations. This reinforces the
motivation of YESciEval, aligned with prior studies
(Kim et al., 2023, 2024), to enhance open-source
LLM-as-a-judge models for greater accessibility.

[ | BioASQ | ORKGSynthesis |

LLMger Train 51 234
LLMger Test 22 105
L LM,y Train Sets
SFT 6,504 34,991
RL (adversarial) 1,669 6,148
RL (benign+adversarial) | 2,569 2,290
LLMeyq; Test Set 2,376 11,340

Table 2: Dataset statistics across training and test sets
for LLM ey, and LLM 1.

5 The YESciEval Alignment Method

This work aims to propose a cost-free evaluation
framework without human annotators or propri-
etary models. Key contributions include an adver-
sarial testing strategy for robust LL.M-as-a-judge
models and the YESciEval alignment method dis-
cussed in this section that can be applied to open-
source LLMs to equip them as robust evaluators.
The methodology is remotely related to self-
instruct (Wang et al., 2023b), where LLMs are
improved for instruction following self-generated
instructions; except we reinforce evaluation behav-
iors of LLMs to desired behaviors by treating unde-
sired behaviors as negative reward signals. Figure 2
depicts our RL technique applied to learn the align-
ments between desirable and undesirable behaviors
with the following steps:
Supervised Fine-Tuning (SFT). To ensure model
stability after RL, as a first step, we fine-tuned the
LLaMA-3.1-8B evaluator using data (see Table 2)
from x : LLMjg., (benign scientific syntheses
by four LLMs) and corresponding y : LLM_yq
rubric-wise evaluations. Each rubric score is
treated as a separate training sample for SFT. To
enable efficient adaptation of large models with
minimal compute, we use Quantized Low-Rank
Adaptation (QLoRA) (Dettmers et al., 2023).
Data Preparation for RL. Unlike traditional fine-
tuning, RL does not require large datasets; instead,
models learn from comparisons rather than abso-
lute labels, reducing redundancy and cost (Ziegler
et al., 2019). To this end, the data is divided into
benign and adversarial samples, ensuring that our
models reinforce the distinction between ‘good’
(desirable) and ‘bad’ (undesirable) evaluations as
it is critical for preference modeling (Askell et al.,
2021). We impose a 100-per-rubrics, per-LL M ,q;
threshold (for ORKGSyn, this threshold is set to
500 due to the large nature of the task) to maintain a
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manageable dataset size while preserving diversity
across criteria. Dataset statistics are shown in Ta-
ble 2. For the adversarial sets (“RL (adversarial)”
row), we define desirable scores as 1 for extreme
and < 3 for subtle adversarial variants across the
nine rubrics. This establishes a clear distinction be-
tween good and bad evaluations: any L LM, rat-
ing above the threshold is treated as a bad sample;
otherwise, it is considered good. Given only “RL
(adversarial),” RL tended to mimic poor exam-
ples and struggled to imitate from benign synthesis
evaluations, where no adversarial setting is applied.
To address this, we curated a separate set contain-
ing both benign and adversarial examples (statistics
shown in the “RL (benign+adversarial)”’ row of
Table 2), selecting bad examples based on undesir-
able outcomes in the adversarial evaluations. The
final dataset of D = {:U(LZ)LMgen, yélo)od, yéz)d}fil is
constructed for RL technique.

Reinforcement Learning. Beyond SFT, rein-
forcement learning (RL) is used to align LLM
evaluations with desirable and undesirable behav-
iors, moving beyond reference-mimicking. This
involves modeling preference data D using Imi-
tation Learning via Contrastive Preference Opti-
mization (CPO) (Xu et al., 2024). CPO extends
Direct Preference Optimization (DPO) (Rafailov
et al., 2023) by incorporating hard negative exam-
ples, enabling the model to distinguish high- from
low-quality outputs. This contrastive approach en-
hances the model’s ability to prioritize superior
responses and reject suboptimal ones, resulting in
more discriminative evaluations. Considering 7y
as a parameterized policy, the CPO loss is defined

as min@ ﬁ(ﬂ'@’ U) - E(w,ygood)ND [log Uy (ygood’x)],
——

Lprefer LNLL
where L, fer is a behavior cloning (BC) (Hejna
et al., 2023) regularization that encourages the
policy mg to align with uniform prior distribu-
tion U, derived from reference policy mrrar,,,,
by preferring good evaluation y4,,4 Over bad one
Yvad- Moreover, the term £y 1, is the negative log-
likelihood loss that penalizes the policy for making
poor generation of the action 14,04 from given state

x for high-quality judgments.

Our resulting aligned models are re-
leased on HuggingFace for results repro-
ducibility at https://huggingface.co/
SciKnowOrg/YESciEval-ASK-Llama-3.1-8B
and https://huggingface.co/SciKnowOrg/
YESciEval-BioASQ-Llama-3.1-8B.

6 Results and Discussion

In this section, we systematically analyze the re-
sults in relation to the three main research ques-
tions outlined in the Introduction. Specifically,
we discuss in detail observations on the results
obtained from the two-stage process: LLMgep,
(RQ1) and LLM,,; (RQ2); and the application of
our YESciEval LLM-as-a-judge alignment method
(RQ3). For details on our experimental setup and
training, we refer the reader to Appen. F and G.
First, we focus on: RQ1: How similar are sci-
enceQ&A responses across the three different
LLM families when applied as LLM,,,? To ad-
dress this RQ, we measured similarities between
benign syntheses generated by the four models for
ORKGSyn and BioASQ separately. Based on a
comprehensive review of NLG metrics (Sai et al.,
2022), we applied eight diverse similarity met-
rics: four for verbatim matching, one edit-distance-
based, and three embedding-based, e.g., Mover-
Score (2019), BERTScore (2020). To visualize
LLM,,,, correlations per dataset, we computed con-
fusion matrices with averaged similarity scores.
Overall, ORKGSyn consistently yielded higher
alignment scores than BioASQ, likely due to its
broader domain coverage, with Computer Science
(125 questions) as the largest category. As Al and

ORKG-Synthesis

Qwen2.5-72B 4.71
LLaMA-3.1-72B

LLaMA-3.1-8B 4.77 4.75 4.78

Mistral-Large 4.84 4.75 4.72

) ! i
Qwen2.5-72B LLaMA-3.1-72B LLaMA-3.1-8B  Mistral-Large

BioASQ

Qwen2.5-72B

LLaMA-3.1-72B

LLaMA-3.1-8B

Mistral-Large

'
Qwen2.5-72B LLaMA-3.1-72B LLaMA-3.1-8B

Mistral-Large

Figure 3: Heatmaps depicting agreement for synthesis
evaluations on benign datasets. The x-axis represents
the LLM ., while the y-axis denotes the LLM,,q;.
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Figure 4: Evaluation of synthesis across different models and fine-tuning strategies on BioASQ and ORKGSynthesis
datasets. The nine-rubrics include Coherence (Cohr), Cohesion (Cohs), Completeness (Comp), Concisenes (Conc),
Correctness (Corr), Informativeness (Info), Integration (Integ), Readability (Read), and Relevancy (Relv).

digital fields grow, general-purpose LLMs trained
on large datasets, including research papers, exhibit
stronger proficiency in these areas. In contrast,
BioASQ’s biomedical focus, a more specialized
domain, led to greater uncertainty and lower corre-
lation scores. Strong correlations emerged within
model pairs: Llama 8B and 70B, likely due to
their shared Meta origin and training data, differing
mainly in parameter size, and Mistral and Qwen,
suggesting overlapping training data. These find-
ings highlight the role of shared training data and
architecture in aligning model outputs across LLM
families. Detailed results: 16 confusion matrices
across eight metrics are in Appendix D.

RQ2: How do LL.M-as-judge evaluations cor-
relate for the benign scienceQ&A setting? To
address this question, we analyze the results in
Figure 3, focusing on LLM,,, outputs. Each
LLM evaluated the benign synthesis dataset cre-
ated by the four models in their LLMy,,, roles,
with results presented as a confusion matrix where
each cell represents the averaged score across all
rubrics and synthesis instances, mapping evalu-
ator LLMs (y-axis) against LLM,,,, models (x-
axis). Across both datasets, evaluators assigned
higher scores to BioASQ than ORKGSyn, likely
due to ORKGSyn’s interdisciplinary nature, where
LLM,y,, models struggled with certain domains.
Notably, no LLM,,,,; exhibited bias toward its own
generated synthesis (Li et al., 2025). Instead, all

evaluators consistently preferred synthesis outputs
generated by Qwen. As the largest model, Qwen
likely demonstrates superior text generation abili-
ties, reinforcing the reliability of LLM-as-a-judge,
even for smaller models like Llama 8B.

RQ3: Can a smaller open-source LLM be
adapted as an LLM-as-a-judge for scienceQ&A
while overcoming optimism bias? To address this
question, we present a comprehensive results plot
in Figure 4, where each column depicts LLM_,,;
results across three dataset variants, aggregated
per rubric for BioASQ (top row) and ORKGSyn
(bottom row). Each LLM,,,; line in the plot cor-
responds to averaged scores on the synthesis out-
put from the four LLMg.,, models. The goal is
to assess the efficacy of the YESciEval alignment
method on a small LLM-as-a-judge or LLM_,,;
model, specifically Llama 8B, under the premise
that if effective on a lower-parameter model, it
should generalize to larger LLMs. The highlighted
colored lines represent different Llama 8B variants:
blue (vanilla model), yellow (SFT model trained
on benign data), red (SFT + RL with adversarial
alignment), and green (SFT + RL with a balanced
subsample of benign and adversarial data). Light
gray lines indicate the vanilla model performances
of the other three LLMs. As hypothesized, vanilla
Llama 8B (blue) exhibited excessive optimism, as-
signing high scores even in extreme adversarial
cases—e.g., scoring above 4 on Corr (correctness
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Rubric G-Eval (Liu et al., 2023) | GPTScore (Fu et al., 2024) | LLM-Alt (Chiang and Lee, 2023b) | FLASK (Ye et al., 2024) | This YESciEval Work
Coherence v v v v
Cohesion v v
Completeness v v v
Conciseness v v v
Correctness v/ (Consistency) v/ (Factuality) v (Logical Correctness) v
Informativeness v v
Integration v
Readability v (Fluency) v v v v
Relevancy v v ' v
Harmlessness v

Logical Thinking v

Insightfulness v

Engagement v

Likeability v v

Table 3: Comparison of evaluation rubrics across different works against ours (last column). Cells marked in green

indicate rubrics that apply to a particular work.

rubric) despite perturbations introducing unrelated
sports news sentences. Fine-tuning on benign data
alone (yellow) further amplified optimism, neces-
sitating alignment. When RL was applied only to
adversarial data (red), the model became overly pes-
simistic. However, when RL was trained on both
benign and adversarial samples (green), Llama 8B
stabilized as a robust evaluator, addressing the RQ.
It assigned relatively high scores for benign synthe-
ses while distinguishing adversarial perturbations,
scoring around 1 in extreme cases and around 3 in
subtle cases, demonstrating rubric-specific discrim-
ination.

7 Related Work

7.1 Question & Answering Benchmarks

Automatic Q&A spans diverse datasets varying
in domain and Q&A type. Of 41 NLP Q&A
datasets reviewed by Wang (2022), only BioASQ
aligns with scienceQ&A. Multiple-choice (e.g.,
PubMedQA (2019), MMLU (2021)), Boolean (e.g.,
BoolQ (2019)), and numerics (e.g., Math Dataset
(2019)) fall outside our scope, as do bibliographic
(Banerjee et al., 2023) and knowledge graph ex-
traction datasets (Auer et al., 2023; Yan et al.,
2024). Existing benchmarks, such as Hugging Face
leaderboard tasks (Wang et al., 2024; Rein et al.,
2023) and alignment-focused chat-based evalua-
tions (Reddy et al., 2019; Zheng et al., 2023; Kopf
et al., 2024), primarily assess multiple-choice rea-
soning or human preference alignment. In contrast,
we introduce a generative scienceQ&A dataset, fill-
ing a gap in current benchmarking efforts.

7.2 LLM-as-a-judge Evaluation Rubrics

LILM-as-a-judge (Zheng et al., 2023) initially fo-
cused on correlating LLM evaluations with hu-
man judgments in open-domain NLG, primarily

using pairwise preference evaluations (Wang et al.,
2023a; Chiang and Lee, 2023b; Dubois et al., 2023;
Liu et al., 2023). Some works incorporated rubrics,
such as G-Eval (Liu et al., 2023) for summariza-
tion and GPTScore (Fu et al., 2024), which aligns
closely with our criteria. Recent frameworks em-
phasize fine-grained rubrics; FLASK (Ye et al.,
2024) assesses robustness, correctness, efficiency,
factuality, and readability, of which nine align with
our work. Prometheus (Kim et al., 2023, 2024)
expands rubric-based evaluation but relies on hu-
man references, whereas we use adversarial data to
refine LLM evaluations without annotations. Sci-
enceQ&A assessment evolved from three core cri-
teria—comprehensiveness, trust, and utility (Pride
et al., 2023)—to the nine rubrics adopted in this
work based on our prior work purely on LLMs
for scientific synthesis tasks (Babaei Giglou et al.,
2024). Decoupling reliance on human references,
our rubric-based adversarial approach provides a
systematic, cost-free framework for scienceQ&A
evaluation.

A comparative summary of widely used LLM-
as-a-judge rubrics is provided in Table 3, with an
extended discussion available in Appendix A.2.

8 Conclusion

YESciEval is a reproducible, cost-free LLM-as-
a-judge framework for evaluating NLG in sci-
enceQ&A, advancing Al alignment, robustness,
and the broader agenda of LLM plausibility—key
factors toward artificial general intelligence (AGI).
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9 Limitations

While our approach offers a robust, cost-free
framework for LL.M-as-a-judge evaluation in sci-
enceQ&A, certain methodological choices present
limitations and avenues for future enhancement.
One such direction is the integration of chain-of-
thought (CoT) reasoning (Wei et al., 2022), which
has shown effectiveness in structured reasoning
tasks such as mathematics and logic (e.g., Self-
Check (Miao et al., 2024)). Although CoT is not
yet widely adopted in evaluation settings, it may
improve judgment quality by encouraging more
structured and transparent decision-making. We
intend to explore CoT-based evaluators in future
work.

We also opted for reinforcement learning (RL)
over few-shot in-context learning (ICL) (Brown
et al.,, 2020) to improve evaluation robustness.
While ICL—where models are conditioned on ex-
emplars, including both good and bad outputs
(Fu et al., 2024)—is a compelling alternative, it
presents practical limitations. With nine rubrics in
our setup, ICL would necessitate long prompts po-
tentially exceeding model context limits. Moreover,
curating high-quality negative examples would re-
quire manual annotation, which conflicts with our
goal of a fully automated, zero-cost alignment
framework. Nonetheless, we recognize the promise
of ICL and aim to investigate more efficient adap-
tations in future iterations.

Finally, while our results on the ORKGSynthe-
sis and BioASQ benchmarks confirm YESciEval’s
effectiveness in scienceQ&A, broader general-
ization remains an open question. Notably,
our dataset—available at https://doi.org/10.
25835/8dcv2ka6—mparticularly the portion de-
rived from the Open Research Knowledge Graph
(ORKG), constitutes a strong, domain-diverse test
bed (D’Souza et al., 2025). It features research
questions submitted by domain experts spanning
33 distinct scientific fields. Figure 1 illustrates ex-
amples from the domains of Physics and Oceanog-
raphy, highlighting the dataset’s richness and com-
plexity. This makes our benchmark both novel
and distinctive within the evaluation landscape.
Nonetheless, future work will assess scalability
by extending evaluations to substantially larger
corpora and exploring the generalizability of our
methodology to generative Al tasks beyond sci-
enceQ&A.
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A Extended Related Work

A.1 Question & Answering Benchmarks

Automatic Q&A remains a rapidly evolving field,
with an expanding array of datasets supporting its
development. These datasets exhibit wide variation
in domains, question types, and generation method-
ologies. To contextualize the scienceQ&A focus of
this paper, we first provide an overview of related
datasets and highlight their distinctions.

A comprehensive review of NLP Q&A datasets
prior to 2022 by Wang (2022) outlines multi-
ple dataset categories. However, datasets using
multiple-choice answer formats fall outside the
scope of this work, including MCTest (2013) for fic-
tional stories, ARC (2018) for high-school science
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exams, OpenBookQA (2018) for science facts, Pub-
MedQA (2019) for medical summarization, and
LogiQA (2021) for logical reasoning in exams.
Similarly, datasets with Boolean answer types (e.g.,
BoolQ (2019)) and numeric result datasets (e.g.,
Mathematics Dataset (2019)) are not within our
scope. Even datasets requiring entity-based an-
swers from structured knowledge sources, such as
ComplexWebQuestions (2018), diverge from our
focus on generative scienceQ&A. Among the 41 re-
viewed datasets, only the 2023 release of BioASQ
was found to be directly relevant to our research
objective.

Additional scientific Q&A datasets fall outside
our research scope, such as DBLP-QuAD (Baner-
jee et al., 2023) for bibliographic queries and
datasets designed to extract factual knowledge from
scientific literature for knowledge graph population
(Auer et al., 2023; Yan et al., 2024). One notable
dataset is DBLP-QuAD (Banerjee et al., 2023),
which contains 10,000 QA pairs generated via
SPARQL queries over the DBLP scholarly knowl-
edge graph (KG). While valuable for bibliographic
metadata QA, its focus is restricted to bibliographic
queries, limiting its applicability to more diverse
or conceptual scholarly questions. Another dataset
we evaluated is the SciQA benchmark (Auer et al.,
2023), which includes 100 handcrafted complex
QA pairs alongside 2,465 automatically generated
ones. These questions are derived from the Open
Research Knowledge Graph (ORKG). However,
the dataset’s reliance on ORKG-specific entities
and the need for direct KG access to produce high-
quality answers posed practical challenges for our
study, leading us to exclude it. We also consid-
ered the BioKGQA dataset, proposed by Yan et al.
(2024), which features 85,368 QA pairs generated
using multi-noded triples from PrimeKG, a com-
prehensive KG oriented toward precision medicine.
While its method of leveraging KG structures for
QA generation is innovative, the dataset primarily
focuses on fact-based answers, making it less suit-
able for exploring nuanced or multi-dimensional
evaluation.

The Hugging Face leaderboard serves as a
widely recognized benchmark space for new
LLMs. Among its datasets, MMLU-PRO (Wang
et al., 2024) provides expert-reviewed multiple-
choice questions across diverse domains, includ-
ing Medicine, Law, Engineering, and Mathemat-
ics. GPQA (Rein et al., 2023) similarly includes
multiple-choice questions authored by domain ex-

perts in Biology, Physics, and Chemistry. How-
ever, these benchmarks primarily evaluate intrinsic
reasoning ability in answering fixed-choice ques-
tions rather than generative Q&A tasks. Recent
LLM evaluation trends emphasize human-aligned
benchmarks for chat assistant alignment, such as
MT-Bench and Chatbot Arena (Zheng et al., 2023),
which assess open-domain, multi-turn dialogue
abilities. These benchmarks evaluate capabilities in
writing, reasoning, extraction, and domain knowl-
edge (e.g., STEM and humanities/social sciences),
but their focus remains distinct from our objec-
tive. Instead, our work aims to develop a frame-
work that enables open-source LLMs to robustly
evaluate generative scienceQ&A using standard-
ized, rubrics-based multifaceted assessments, fur-
ther pushing the frontier of LL.M-as-a-judge capa-
bilities.

A.2 LLMe-as-a-judge Evaluation Rubrics

The early notion of LL.M-as-a-judge (Zheng et al.,
2023) measured the correlation between an LLM
judge and human evaluators in open-domain in-
struction following for NLG. Early works on using
LLMs as evaluators of LLM-generated text em-
phasized pairwise evaluation along a single dimen-
sion of ‘preference’ in determining which response
was superior (Wang et al., 2023a; Chiang and Lee,
2023b; Dubois et al., 2023; Zheng et al., 2023; Liu
et al., 2023; Kocmi and Federmann, 2023).

In these preference comparisons, evaluation
rubrics emerged. G-Eval (Liu et al., 2023) in-
corporated criteria such as coherence, consistency,
fluency, and relevance for summarization bench-
marking. The rubrics of GPTScore (Fu et al.,
2024) for summarization tasks also align with ours.
However, GPTScore also includes dialogue rubrics
aligned with instruction-following chat-based eval-
uations such as likeability, flexibility, inquisitive-
ness, and engagement, which are out of scope for
scienceQ&A. Open-ended story generation rubrics
(Chiang and Lee, 2023b) share similarities with sci-
entific QA, where likeability is juxtaposed against
informativeness, relevance to answer pertinence,
and grammar to cohesion, integration, and readabil-
ity.

ScienceAgentBench (Chen et al., 2024) employs
four rubric-based metrics to evaluate LLMs and
agentic Al for generating programmatic workflows
suited to scientific data science applications. Their
evaluation rubrics include Success Rate (SR) (task
completion), Valid Execution Rate (VER) (pro-
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gram runs without error), CodeBERTScore (CBS)
(similarity to reference implementations), and Cost
Efficiency (measuring API expenses). They com-
piled data science benchmarks across Bioinformat-
ics, Computational Chemistry, Geographical In-
formation Science, and Psychology & Cognitive
Neuroscience. Their work recommends automating
rubric-based evaluations for generated code quality,
a gap we address differently in this paper.

SciCode (Tian et al., 2024) sourced research-
level coding problems across 16 subfields in nat-
ural science disciplines, benchmarking LLMs on
pythonic code generation from docstring-format
task descriptions. It relied on pure quantitative
metrics such as pass@1 rate but lacked detailed
rubric-based insights.

More recent works examine fine-grained
rubrics. The FLASK (Ye et al., 2024) evalua-
tion rubrics—Robustness, correctness, efficiency,
factuality, commonsense, comprehension, insight-
fulness, completeness, metacognition, readabil-
ity, conciseness, and harmlessness—are closely re-
lated to our work. Nine of their 12 rubrics align
with ours, except insightfulness, harmlessness, and
metacognition, which lack clear definitions for
LLMs. Prometheus (Kim et al., 2023, 2024) devel-
oped 1,222 customized rubrics across open-domain
benchmarks but relied on human reference answers.
Instead, this work circumvents human annotation
dependence by leveraging adversarial data where
the desired behavior is known.

LLM-based scientific QA evaluation evolved
from three criteria (Pride et al., 2023; Evans et al.,
2024)—comprehensiveness, trust, and utility—to
nine (Babaei Giglou et al., 2024), including rele-
vancy, correctness, completeness, informativeness,
integration, cohesion, readability, and conciseness.

HELM (Liang et al., 2023) set a precedent in
holistic language model evaluation by consider-
ing seven quantitative metrics: accuracy, calibra-
tion, robustness, fairness, bias, toxicity, and effi-
ciency. This multi-metric approach exposed trade-
offs across different evaluation criteria, ensuring
that accuracy was not the sole measure of perfor-
mance. Inspired by this, our work targets a holistic
evaluation of scienceQ&A, defining a multifaceted
qualitative framework of nine rubrics that compre-
hensively assess LLM outputs.

This work advances the field by proposing a
structured evaluation methodology that moves be-
yond traditional ROUGE/BLEU metrics and pro-
prietary model dependencies. By equipping open-

source LL.Ms with robust evaluation capabilities,
we eliminate reliance on expensive human anno-
tations and proprietary LLM-generated reference
answers. Our approach ensures that the evalua-
tion of scientific QA models remains transparent,
replicable, and fine-grained, aligning with broader
efforts to standardize LLM assessments.

B Science Q&A Datasets

B.1 The Multidiscplinary ORKGSyn Corpus

The ORKGSyn corpus is a highly multidisciplinary
scienceQ&A dataset. In this context, Figure 5 illus-
trates the distribution of instances across 34 differ-
ent scientific disciplines represented in ORKGSyn.

B.2 The BioASQ Corpus

According to the scienceQ&A task definition,
ORKGSyn consistently linked each () to N = 5 pa-
pers with abstracts, whereas in BioASQ, IV varied
between 1 and 40. Figure 6 presents the distribu-
tion of instances, categorized by the number of
papers associated with each Q).

B.3 Our Adversarial Corpus

By constructing an adversarial dataset, we intro-
duce deliberate errors into the original outputs to
test whether LLMs can detect and evaluate poor-
quality responses. This allows for a comparative
analysis of evaluation scores between original and
manipulated datasets. While original syntheses
may not always be flawless, adversarial datasets
are designed to exhibit a marked deterioration in
quality, and we expect evaluation scores to reflect
this decline. We construct two tiers of adversarial
datasets.

1. Subtle Adversarial Dataset: Here, reference
texts are minimally altered, making it chal-
lenging for models to detect changes. These
alterations mimic realistic errors that may go
unnoticed in automated evaluations.

2. Extreme Adversarial Dataset: This dataset
involves substantial modifications to reference
texts, making the adversarial setting appar-
ent and straightforward for models to identify.
The evaluations should result in significantly
lower scores.

Nine evaluation criteria are systematically targeted
during adversarial dataset creation, with distinct
manipulations tailored to degrade the correspond-
ing aspect of synthesis quality. To simulate varying
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degrees of distortion, adversarial sentences were provided abstracts?

drawn from diverse sources: a blog post snippet
from (Farid, 2024), a sentence from a sports news
article provided by (Botkin, 2024), and a tweet
sourced from (Strauss et al., 2016). Below, we de-
tail the adversarial interventions and describe what
each criterion evaluates:

— Subtle: Append a sentence from a differ-
ent synthesis paragraph within the same
domain.

— Extreme: Append a sentence from an
unrelated sports news article.

3. Completeness: Is the answer a comprehen-
sive encapsulation of the relevant information
in the provided abstracts?

1. Relevancy: Is the information in the answer
relevant to the problem?

— Subtle: Append a sentence from a differ-

ent Synthesis paragraph within the same — Subtle: Remove the last sentence from

domain.
— Extreme: Append a sentence from an
unrelated sports news article.

2. Correctness: Is the information in the answer
a correct representation of the content of the

the synthesis.

— Extreme: Remove the last sentence and
append a sentence from an unrelated
sports news article.

4. Informativeness: Is the answer a useful and

13765



|11

Number of Reference Abstracts

| 6

0 2 4 6

8 10 12

Number of Occurrences

Figure 6: Number of Reference Abstracts per Question on the BioASQ dataset

informative reply to the problem? 7.

— Subtle: Append a sentence from a differ-
ent synthesis paragraph within the same
domain.

— Extreme: Append a sentence from an
unrelated sports news article.

. Integration: Are the sources structurally and
linguistically well-integrated, using appropri-
ate markers of provenance/quotation and logi-
cal connectors for each reference?

— Subtle: Remove the first logical connec-

tor (e.g., "however", "therefore").
— Extreme: Remove all logical connectors.

. Cohesion: Are the sentences connected ap-
propriately to make the resulting synthesis
cohesive? 9.

— Subtle: Swap the positions of the last
two sentences.

— Extreme: Randomly shuffle all sen-
tences.
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Coherence: Are the ideas connected soundly
and logically?

— Subtle: Append a sentence from a differ-
ent synthesis paragraph within the same
domain.

— Extreme: Append a sentence from an
unrelated sports news article.

Readability: Does the answer follow appro-
priate style and structure conventions for aca-
demic writing, particularly for readability?

— Subtle: Append a snippet from a casual
blog post.

— Extreme: Append a sentence from an
informal tweet.

Conciseness: Is the answer short and clear,
without redundant statements?

— Subtle: Use the LLM to generate a re-
dundant version of the last sentence and
append it to the response.



— Extreme: Append a redundant version
after every sentence in the original re-
sponse.

For the conciseness criterion, redundant sentences
were generated by prompting the original model
to unnecessarily rephrase and extend its outputs.
Despite specific instructions to avoid introduc-
tory phrases or comments about the redundancy
task, the Llama models frequently failed to adhere
to these guidelines, requiring extensive manual
cleanup. For instance, phrases such as "Here is
a redundant sentence..." were frequently appended
to the generated responses. We manually revised
over 100 responses generated by the Llama 8B
model and 18 by the Llama 70B. This process cul-
minated in the creation of adversarial datasets with
subtle and extreme degrees of manipulation for
each underlying dataset, resulting in a total of four
datasets. By systematically introducing errors tai-
lored to each quality criterion, these datasets enable
a detailed evaluation of LLM performance across
a range of distortions. This two-level adversarial
approach provides a comprehensive method for as-
sessing the models’ sensitivity to various levels
of quality deterioration and their ability to assign
appropriate evaluation scores under varying condi-
tions.

One of the early papers on LLM-as-a-judge
(Zheng et al., 2023) also used the strategy of an
adversarial attack to test whether the judge LLM
could detect verbosity bias which is related to our
attack for redundancy.

A key NLP line of research in text adversar-
ial attacks involves synonym substitution attacks
(SSAs) (Alzantot et al., 2018) generate adversar-
ial samples by replacing words with synonyms
in benign text, relying on sophisticated methods
such as TextFooler (Jin et al., 2020), PWWS (Ren
et al., 2019), and BAE (Garg and Ramakrishnan,
2020). While SSAs were conjectured to produce
low-quality text in fluency and meaning (Hauser
et al., 2021; Chiang and Lee, 2023a), there was
no guarantee of this, necessitating human raters to
compare their assessments against LLM scores. In
contrast, our adversarial attacks, ranging from sub-
tle to extreme, deliberately violate English syntax,
ensuring inherently low-quality text and obviating
the need for human raters. This design directly
tests whether the LLM can overcome its optimism
bias and robustly assign the expected low scores.

C Manual Subsample Observations of
Vanilla LLM_val

We conducted a manual analysis of evaluation
scores generated by Llama 8B, using a structured
annotation process to assess the model’s perfor-
mance. The human adjudicator categorized issues
based on six criteria from (Kim et al., 2023): “re-
jected feedback is not consistent with its score,”
“too general and abstract,” “overly optimistic,” “not
relevant to the response,” “overly critical,” and
“unrelated to the score rubric.” This analysis cov-
ered 20 questions from ORKGSyn and 10 from
BioASQ.

Our findings reveal that Llama 8B’s evaluations
of vanilla syntheses are generally aligned with hu-
man judgement. However, the feedback provided
by the model tends to be overly general and abstract.
For instance, while Llama 8B often identifies a
lack of minor details, it frequently fails to specify
what exactly is missing. In the adversarial settings,
Llama 8B exhibits overly optimistic scoring across
all syntheses. This pattern is consistent for both
subtle and extreme adversarial datasets, though the
ORKGSyn dataset receives even higher scores com-
pared to BioASQ. Additionally, we observed that
in a small fraction of cases, the scores were not
relevant to the response. For example, Llama 8B
occasionally hallucinated its own evaluation crite-
ria and scored based on these fabricated metrics.
Another notable issue is the inconsistency between
the rationale provided and the assigned scores. In a
few cases, the evaluation feedback explicitly states
that there is almost no unnecessary information in
the synthesis, yet the model assigns a perfect score
of 5. Furthermore, for a significant portion of the
scores, the rationale was very general and abstract,
often merely reciting the evaluation characteristic
guidelines provided in the system prompt without
offering specific insights.

D Detailed Quantitative Experimental
Results

To obtain a comprehensive assessment of the
LLM’s performance on the scientific Q&A task,
we conducted a quantitative analysis of their out-
puts. This evaluation leverages summarisation-
based (such as BLUE (Papineni et al., 2002b),
ROUGE (Lin, 2004b), METEOR (Banerjee and
Lavie, 2005), NIST (Doddington, 2002), and
BERTScore (Zhang et al., 2020)) and edit distance-
based (such as WER (Su et al., 1992), WMD (Kus-
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ner et al., 2015), and MoverScore (Zhao et al.,
2019)) metrics. These metrics measure the similar-
ity between text outputs, providing a quantitative
estimate of how closely the generated responses
align with one another. The evaluation process
involves treating each LLM response as a refer-
ence and pairing it with the outputs of every other
model as candidates, resulting in all possible pair-
wise combinations. This approach ensures that we
capture not only the absolute performance of each
model but also their relative alignment. By ex-
amining the similarity scores between models, we
gain insights into how consistently they generate
responses.

D.1 Summarisation-Based Metrics

Evaluating the quality of generated text often re-
quires comparing it to reference summaries. To
achieve this, summarisation-based evaluation met-
rics measure the degree of textual overlap between
the generated and reference texts, typically assess-
ing aspects such as precision, recall, and n-gram
similarity. These metrics are widely used in NLP
tasks such as machine translation, text summarisa-
tion, and question answering. The summarisation-
based metrics (i.e. BLUE, ROUGE, METEOR,
NIST, and BERTScore) are described as follows.

Bilingual Evaluation Understudy (BLEU). The
BLEU (Papineni et al., 2002b) metric automates
machine translation evaluation, offering a cost-
effective alternative to human assessment. It mea-
sures n-gram overlap between a candidate and ref-
erence text, with a brevity penalty to prevent short
translations. While widely used, BLEU has limi-
tations, including insensitivity to semantic mean-
ing and struggles with short texts. According to
the Figure 7, an anomaly occurs for the LLaMA-
3.1-70B model on the BioASQ dataset, where the
score is 98.63. This discrepancy arises because
the BLUE metric averages over n-gram scores, in-
cluding cases where higher-order n-grams (e.g.,
four-grams) are absent in shorter outputs, forcing
those scores to zero. Interestingly, the results re-
veal patterns of correlation among specific models.
For instance, Mistral-Large and Qwen2.5-72B ex-
hibit moderate alignment, with scores around 25,
indicating some similarity in their outputs. On the
ORKGSynthesis dataset, the LLaMA-3.1-70B and
LLaMA-3.1-8B models display a relatively high
correlation, likely due to their shared Meta origin,
similar training data, and primary differences in
parameter count. In terms of individual perfor-
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Figure 7: BLEU metric results.

mance, Mistral-Large achieves the highest average
BLUE score on the BioASQ dataset, while on the
ORKGSynthesis dataset, Meta’s 70B LLM per-
forms best.

Recall-Oriented Understudy for Gisting Evalua-
tion (ROUGE). ROUGE (Lin, 2004b) is a recall-
based metric contrasting with BLEU’s precision
focus. It measures n-gram, word sequence, and
word pair overlap between machine-generated and
human summaries. ROUGE-N emphasizes n-gram
recall, while ROUGE-L captures the longest com-
mon subsequence (LCS) for better semantic simi-
larity. Variants like ROUGE-W reward consecutive
matches, and ROUGE-S use skip-bigrams for F-
measure calculation. For this analysis, we used
ROUGE-1 for unigram overlap, reflecting term
alignment and content coverage, and ROUGE-L
to assess sentence-level structure and coherence.

lustrated results for ROUGE-1 in Figure 8 and
ROUGE-L in Figure 9 exhibit distinct patterns

13768



Heatmap for rougelF1

2
g
5

Reference

Candidate

(a) BioASQ

Heatmap for rougelF1 oo

095

Llama 708

0.90

085

Reference
Llama 88

Mistral

Qwen

® & & &
o

3 $° &

& <«

Candidate

(b) ORKGSynthesis

Figure 8: ROUGE-1 metric results.

across the two datasets. On the BioASQ dataset,
Mistral-Large and Qwen2.5-72B demonstrate a no-
table correlation with a ROUGE-1 score of 0.58,
suggesting shared thematic elements or vocabulary
usage in their outputs. Additionally, a ROUGE-
L score of 0.4 indicates a moderate similarity in
sentence structure and coherence. In contrast, the
LLaMA-3.1-70B model performs relatively poorly,
which may stem from inconsistencies in generating
high-quality outputs for certain tasks in this domain.
On the ORKGSynthesis dataset, the LLaMA-3.1-
70B model achieves the highest correlation, particu-
larly when compared to the smaller LLaMA model.
Mistral and Qwen2.5-72B also display a strong cor-
relation on this dataset, reinforcing their observed
alignment. Exclusively focusing on unigrams in
ROUGE-1 yields a higher correlation than BLUE
and ROUGE-L, where overlaps are analyzed up to
the four-gram level. This is because unigram-based
evaluations inherently capture a broader overlap by
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Figure 9: ROUGE-L metric results.

disregarding strict positional constraints or depen-
dencies on higher-order matches.

Metric for Evaluation of Translation with Ex-
plicit ORdering (METEOR). METEOR (Baner-
jee and Lavie, 2005) improves upon BLEU by pri-
oritizing recall, which better aligns with human
judgments. Unlike BLEU’s brevity penalty, ME-
TEOR explicitly integrates recall into its scoring.
It also replaces BLEU’s reliance on higher-order
n-grams with direct word alignment, enhancing se-
mantic and structural accuracy. Additionally, ME-
TEOR avoids BLEU’s zero-score issue by using
an alignment-based approach that captures partial
matches and syntactic nuances more effectively.

Results showed in Figure 10 for METEOR met-
ric, which produces scores ranging from 0 (no cor-
relation) to 1 (perfect correlation). In our evalu-
ation, METEOR highlighted differences between
the models. On the BioASQ dataset, the LLaMA-
3.1-70B model performed poorly, consistent with
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Figure 10: METEOR metric results.

earlier metrics. Conversely, the LLaMA-3.1-8B
model achieved comparable scores to Mistral-
Large and Qwen2.5-72B, suggesting it generates re-
sponses that align well with unigram matches. For
the ORKGSynthesis dataset, the scores were more
uniform across models, reflecting a general similar-
ity in performance. However, an intriguing pattern
emerged with Qwen2.5-72B: when used as a ref-
erence, its scores varied substantially compared to
when it was a candidate. This discrepancy may
be attributable to METEOR’s emphasis on recall.
Higher scores when Qwen2.5-72B is a candidate
suggest it produces longer outputs, increasing the
likelihood of matches with reference terms. This
raises questions about the relationship between gen-
eration length and perceived quality in evaluation
metrics, which warrants further investigation.

US National Institute of Standards and Technol-
ogy (NIST). The NIST (Doddington, 2002) score
builds on the BLUE metric but introduces a signifi-
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Figure 11: NIST metric results

cant enhancement by focusing on the information
content of n-grams. Unlike BLUE, which tradition-
ally weights all matches equally, NIST prioritizes
matches with greater informational value. This ap-
proach stems from the observation that rarer words
or n-grams convey more specific and meaning-
ful information than frequent ones. Consequently,
matching infrequent n-grams contributes more to
the NIST score, making it a more context-sensitive
evaluation metric.

The NIST scores are unbounded and range from
0 (indicating poor quality) to higher positive values,
with larger scores reflecting better-quality matches.
Unlike BLUE, the NIST score’s sensitivity to in-
formational content allows it to provide more nu-
anced assessments. As shown in Figure 11 for
the BioASQ dataset, the LLaMA-3.1-70B model
consistently underperforms, even when compared
against its output. This poor performance can
be attributed to the model’s tendency to generate
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shorter responses and repeat words within a single
response, leading to lower overall information gain.
In contrast, other models demonstrate relatively
strong correlations, suggesting more balanced and
information-rich outputs. In the ORKGSynthe-
sis dataset, correlations are notably higher across
all models. The LLaMA-3.1-70B model achieves
strong alignment with its smaller counterpart, con-
sistent with observations in other metrics. Simi-
larly, Mistral-Large and Qwen2.5-72B continue to
display strong correlations.
BERTScore. BERTScore (Zhang et al., 2020) is
designed to evaluate text similarity by leveraging
contextualized embeddings from pre-trained trans-
former models like BERT (Devlin et al., 2019).
Unlike traditional metrics that rely on exact token
matches or n-gram overlap, BERTScore assesses
semantic similarity at a token level, enabling it
to recognize paraphrases, capture long-range de-
pendencies, and account for nuanced semantic or-
dering. This approach allows it to surpass earlier
metrics in evaluating complex and varied outputs,
as it does not depend solely on surface-level text
similarity. The strength of BERTScore lies in its
ability to align tokens in a candidate sentence with
those in a reference sentence using their embed-
dings, which encode rich contextual information.
Studies by Zhang et al. (2020) demonstrate that
BERTScore highly correlates with human judg-
ment, making it a valuable tool for evaluating
machine-generated text.

BERTScore generates values between 0 and
1, where a score closer to 1 indicates stronger
semantic alignment. In our analysis w.r.t Fig-
ure 12, BERTScore highlights the limitations of
the LLaMA-3.1-70B model on the BioASQ dataset,
as its tendency to produce incomplete or incoherent
answers results in lower scores. The other models,
including those evaluated on the ORKGSynthesis
dataset, achieve scores near 0.9, which reflects a
high degree of semantic similarity between their
outputs. Unlike metrics such as BLUE, ROUGE,
or METEOR, which primarily evaluate surface-
level similarity based on token overlap or n-gram
matches, BERTScore incorporates the contextual
meaning of tokens. This capability allows it to cap-
ture deeper semantic relationships, even when lexi-
cal or syntactic differences exist between candidate
and reference sentences. Consequently, while ear-
lier metrics may indicate lower correlation, particu-
larly for models generating paraphrased or stylis-
tically varied outputs, BERTScore reveals that
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Figure 12: BERTScore metric results.

the underlying semantic content remains closely
aligned. This observation underscores the poten-
tial of embedding-based metrics to provide a more
nuanced evaluation of language model outputs, par-
ticularly in tasks where paraphrasing and creative
rewording are common. Furthermore, the high
BERTScore results across most models suggest
that their outputs are semantically coherent, even if
traditional metrics fail to capture this aspect. This
finding highlights the value of embedding-based
metrics in complementing traditional approaches,
providing a broad evaluation framework. Future
work could explore fine-tuning the embeddings
used in BERTScore to align even more closely with
domain-specific human judgments, particularly in
specialized tasks such as medical or scientific text
generation.
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D.2 Edit Distance-Based Metrics

To complement summary-based evaluation, we also
incorporated edit distance-based metrics, which as-
sess text similarity by measuring the number of
modifications required to convert one string into an-
other. This approach originates from Levenshtein
distance (Levenshtein, 1966), a fundamental con-
cept in text processing commonly applied in spell-
checking and auto-correction. Edit distance evalua-
tion quantifies text dissimilarity through insertions,
deletions, and substitutions. For instance, convert-
ing the word mug to hut requires substituting two
characters (m to h and g to ), which, if we assign a
cost of 1 per insertion/deletion and 2 per substitu-
tion, yields an edit distance of 4. These costs can
be adjusted depending on the task.

Word Error Rate (WER). The WER (Su et al.,
1992) is a similarity metric grounded in the concept
of minimum edit distance, measuring the number
of edits (substitutions, insertions, and deletions) re-
quired to transform a candidate text into reference
text. Unlike character-level edit distance, WER
operates at the word level, treating entire words
as the basic transformation units. It is particu-
larly suited for speech recognition and machine
translation, where word-level alignment is essen-
tial. However, the metric has inherent limitations,
particularly its sensitivity to word order. Sentences
with semantically identical meanings but different
word arrangements are heavily penalised, poten-
tially leading to overly pessimistic assessments of
similarity.

The analysis of WER according to Figure 13
scores across different datasets and models reveals
several notable patterns. For the BioASQ dataset,
the LLaMA-3.1-70B model exhibits markedly poor
performance as a reference. This behavior can
be attributed to the model’s tendency to produce
shorter outputs. Since WER normalizes the num-
ber of edits by reference length, shorter reference
texts amplify the impact of any discrepancies, lead-
ing to inflated WER values. This observation
aligns with earlier findings highlighting LLaMA-
3.1-70B’s challenges in generating comprehensive
responses for the BioASQ dataset. In contrast, for
the ORKGSynthesis dataset, Qwen2.5-72B demon-
strates superior performance when serving as a ref-
erence. However, as a candidate, Qwen2.5-72B
achieves lower scores. This discrepancy likely
arises from Qwen2.5-72B’s tendency to generate
longer sequences. In such cases, the normalization
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Figure 13: WER metric results

by reference length in the WER formula leads to
more significant deviations when Qwen2.5-72B’s
outputs are compared against shorter references.
These findings underscore the metric’s dependence
on the relative length of candidate and reference
texts, which can introduce biases when evaluat-
ing models with different generation strategies.
While WER provides a straightforward measure
of surface-level similarity, its inability to account
for semantic equivalence or tolerate variations in
word order limits its applicability in evaluating gen-
erative models. For instance, outputs with para-
phrased structures or stylistic differences might re-
ceive high WER scores despite being semantically
aligned with the reference.

Word Mover’s Distance (WMD). The WMD
(Kusner et al., 2015) quantifies the dissimilarity
between two text documents by calculating the
minimum cumulative "distance" that the embed-
ded words in one document must travel to align
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with the words in another document. The met-
ric is inspired by the Earth Movers Distance, a
concept in optimal transport theory, which mea-
sures the minimum work required to transform
one probability distribution into another. Un-
like greedy matching approaches like BERTScore,
WMD leverages an optimal matching strategy, en-
suring a more precise alignment of semantically
relevant terms. In its original formulation, WMD
used Word2Vec embeddings to represent words as
vectors in a continuous space. However, we em-
ployed SPECTER?2 (Singh et al., 2022) and SciB-
ERT (Beltagy et al., 2019) embeddings, designed
for scientific texts and have shown superior perfor-
mance in domain-specific applications.
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Figure 14: WMD metric results using SciBERT as em-
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The results of WMD using SPECTER2 embed-
dings are represented in Figure 15 and WMD with
SciBERT is represented in Figure 14. A WMD
score of 0 indicates perfect alignment between the
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Figure 15: WMD metric results using SPECTER?2 as
embeddings.

candidate and reference texts, while higher scores
denote greater dissimilarity. Analysis of the WMD
scores across datasets highlights several trends.
As expected, LLaMA-3.1-70B exhibits poor per-
formance on the BioASQ dataset, consistent with
its tendency to generate incoherent responses. In
contrast on the ORKGSynthesis dataset, the two
LLaMA models show strong alignment with one
another, as do Mistral-Large and Qwen2.5-72B.
An intriguing finding is the significant difference in
WMD scores when using SPECTER embeddings
compared to SciBERT embeddings. Specifically,
SPECTER embeddings yield substantially lower
WMD scores, suggesting they provide better se-
mantic representations for this task.

MoverScore. The MoverScore (Zhao et al., 2019)
is an advanced metric that extends the principles
of WMD to evaluate the dissimilarity of text docu-
ments by comparing both words and n-grams. One
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of its primary advantages lies in its use of con-
textual embeddings, such as those generated by
BERT, instead of static embeddings. This enables
MoverScore to capture nuanced meanings, includ-
ing word sense disambiguation and contextual re-
lationships. Another key improvement is its al-
lowance for many-to-one soft alignments, enabling
more flexible matching between text elements. Fur-
thermore, MoverScore incorporates inverse doc-
ument frequency (IDF) weighting, emphasising
rare and meaningful words, ensuring that these
words contribute more significantly to the similar-
ity score. The combination of BERT’s contextual
embeddings and IDF weighting has been shown by
Zhao et al. (2019) to correlate highly with human
judgment.
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Figure 16: MoverScore metric results

MoverScore produces a value between 0 and
1, where higher scores correspond to greater sim-
ilarity between the candidate and reference texts.
Across both datasets as shown in Figure 16, Mover-

Score results hover around 0.62, reflecting mod-
erate alignment. As observed with other metrics,
the LLaMA-3.1-70B model performs slightly worse
on the BioASQ dataset, likely attributable to the
model’s struggles with generating comprehensive
and coherent responses. In contrast, the ORKGSyn-
thesis dataset reveals strong correlations between
the outputs of the Mistral-Large and Qwen2.5-72B
models, and between the LLaMA models. The rela-
tively consistent scores across models suggest that,
according to MoverScore, the quality of responses
is comparable. This uniformity can be interpreted
as evidence that the models generate outputs with
similar semantic content and structure, despite po-
tential stylistic differences.

E Evaluation Scoring Rubrics and the
Five-point Likert Scale

This appendix presents the quality rubrics and their
corresponding 5-point Likert scale descriptions
used in our evaluation. Table 4 outlines the Linguis-
tic and Stylistic quality rubrics, assessing aspects
such as cohesion, conciseness, and readability. Ta-
ble 5 details the Logical and Structural Integrity
rubrics, evaluating factors like argument coherence,
integration, and relevancy. Lastly, Table 6 describes
the Content Accuracy and Informativeness rubrics,
which measure correctness, completeness, and in-
formativeness.

F Experimental Setup

Vanilla LLM,,, models. The Vanilla LLM_,;
models employ various LLMs, including
Mistral-Large-Instruct, LLaMA-3.1-70B-Instruct,
Owen2.5-72B-Instruct, and LLaMA-3.1-8B-
Instruct, as LL Mg, to generate response to the
questions () based on provided relevant papers.
The evaluations for these models are conducted
using LLM_,,, where each LLM acts as a
generator and evaluator in a pairwise format.
For example, Mistral-Large-Instruct serves as
the evaluator for all four LLMg., models, and
the same process is applied to the other LLMs.
The evaluation results are rated on a 5-point
Likert scale, with each rating accompanied by a
rationale that explains the model’s reasoning. This
configuration serves as a baseline for comparing
the performance of different LL M.

SFT (benign). The SFT (benign) experiment
involves finetuning the LLaMA-3.1-8B-Instruct
model using structured response A’s from all four
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[ Rubric

5-point Likert scale description

Cohesion

Rating 1. Very bad: The sentences within the synthesis are disconnected, resulting in a disjointed and fragmented
narrative.

Rating 2. Bad: There are attempts at connecting sentences, but the synthesis often feels disjointed.

Rating 3. Moderate: The sentences are connected in a way that the synthesis is mostly cohesive, with some areas
of improvement.

Rating 4. Good: The synthesis is cohesive, with sentences well-connected to form a unified narrative.

Rating 5. Very good: The synthesis is highly cohesive, with all sentences and paragraphs logically connected,
facilitating a clear and coherent narrative flow.

Conciseness

Rating 1. Very Bad: The synthesis is verbose and cluttered with redundant or irrelevant information, significantly
detracting from its clarity and focus.

Rating 2. Bad: The synthesis includes some redundant or irrelevant statements, detracting from its clarity.
Rating 3. Moderate: The synthesis is relatively clear and to the point, but could be more concise by eliminating a
few redundant elements.

Rating 4. Good: The synthesis is concise and to the point, with virtually no redundant statements or unnecessary
information.

Rating 5. Very Good: The synthesis is precisely concise, delivering information clearly and directly without any
superfluous details or redundancy, enhancing its clarity and impact.

Readability

Rating 1. Very bad: The synthesis is poorly written, with pervasive issues in style, structure, and language use,
making it difficult to understand.

Rating 2. Bad: The text has noticeable issues with style, structure, or language use, affecting clarity.

Rating 3. Moderate: The synthesis follows appropriate conventions and uses language correctly, with minor
issues in style or structure.

Rating 4. Good: The text is well-structured and easy to read, with language that is appropriately used and only
minor stylistic improvements needed.

Rating 5. Very good: The synthesis is exceptionally well-written, following stylistic and structural conventions
with precise language use, making it accessible and easy to read.

Table 4: Linguistic and Stylistic Quality Rubrics and their 5-point Likert Scale Description

[ Rubric

5-point Likert scale description

Coherence

Rating 1. Very bad: The synthesis lacks logical connection between ideas, leading to a narrative that is confusing
and difficult to follow.

Rating 2. Bad: The ideas are not always logically connected, leading to a somewhat confusing narrative.
Rating 3. Moderate: The ideas are logically connected for the most part, but the narrative could be strengthened
for better clarity.

Rating 4. Good: The ideas are logically and soundly connected, offering a clear and understandable narrative.
Rating 5. Very good: The ideas within the synthesis are connected in a logical and sound manner, forming a
coherent and compelling narrative that is easy to follow.

Integration

Rating 1. Very Bad: The synthesis fails to integrate the sources in any meaningful way. It lacks appropriate
markers, connectors, or transitions between ideas and fails to combine the information into a single, cohesive
paragraph.

Rating 2. Bad: The sources are somewhat integrated but inconsistently. The use of markers and connectors
is sporadic or inappropriately applied, and the information is presented in multiple paragraphs without a clear
unifying structure.

Rating 3. Moderate: The sources are integrated into a coherent manner within one or multiple paragraphs. The
transitions or connections could be smoother, and the text would benefit from better paragraph structure to
enhance clarity and unity.

Rating 4. Good: The sources are well-integrated, using appropriate markers and connectors to create a seamless
narrative. The information is effectively organized into a single paragraph, showing a clear, unified approach.
Rating 5. Very Good: The synthesis seamlessly integrates information from the various sources, using appropriate
markers and connectors to create a smooth and unified narrative. All information is skillfully condensed into a
single, well-structured paragraph, exemplifying excellent integration.

Relevancy

Rating 1. Very bad: The information provided does not relate to the research question, showing a lack of
understanding or connection to the topic.

Rating 2. Bad: The information occasionally relates to the research question but lacks direct and consistent
relevance.

Rating 3. Moderate: The information is generally related to the research question, with occasional lapses in
direct relevance.

Rating 4. Good: The information is consistently relevant to the research question, with only minor exceptions.
Rating 5. Very good: The synthesis is directly and consistently relevant to the research question, demonstrating a
deep understanding of the topic and its nuances.

Table 5: Logical and Structural Integrity Quality Rubrics and their 5-point Likert Scale Description
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[ Rubric

5-point Likert scale description

Correctness

Rating 1. Very bad: The synthesis consistently misrepresents or inaccurately portrays the content of the
provided abstracts, showing a significant deviation from the original sources.

Rating 2. Bad: The synthesis contains several inaccuracies or misinterpretations of the source abstracts.
Rating 3. Moderate: The synthesis accurately represents most of the content from the provided abstracts but
may contain minor errors.

Rating 4. Good: The synthesis provides an accurate representation of the content from the provided abstracts
with minor exceptions.

Rating 5. Very good: The information in the synthesis is an accurate and faithful representation of the content
from the provided abstracts, without any factual errors or misinterpretations.

Completeness

Rating 1. Very bad: The synthesis omits most of the relevant information, failing to capture the essential
points or details from the provided abstracts.

Rating 2. Bad: Significant portions of relevant information from the provided abstracts are missing.
Rating 3. Moderate: The synthesis captures a fair amount of the relevant information, though it may overlook
some details.

Rating 4. Good: The synthesis includes almost all relevant information, missing only minor details.

Rating 5. Very good: The synthesis comprehensively encapsulates all relevant information from the provided
abstracts, leaving no pertinent details or points unaddressed.

Informativeness

Rating 1. Very bad: The synthesis offers no valuable insights or useful information in response to the research
question, lacking depth and utility.

Rating 2. Bad: The answer provides limited new insights or useful information in response to the research
question.

Rating 3. Moderate: The answer is somewhat informative, offering insights or useful information but not in
a comprehensive or detailed manner.

Rating 4. Good: The answer is informative and insightful, providing comprehensive information in response
to the research question.

Rating 5. Very good: The synthesis is highly informative, providing valuable insights and detailed information
that thoroughly addresses the research question.

Table 6: Content Accuracy and Informativeness Quality Rubrics and their 5-point Likert Scale Description

models from x = LLM g, as inputs and quality
assessments from y = LLM,,,; as outputs. The
aim is to fine-tune LLM,,, and this process is
conducted using benign datasets, which contain no
adversarial examples, to ensure that the model is
trained in a controlled, non-hostile environment.
The goal is to refine the model’s performance in a
straightforward, non-challenging scenario.

SFT (benign) + RL (adversarial). In this experi-
ment, the finetuned LLaMA-3.1-8B-Instruct model
is further finetuned using the RLAIF technique, fo-
cusing solely on adversarial datasets. As seen in the
results from Figure 4, while SFT (benign) learns
how to be the evaluator, but fails in recognizing the
bad examples in adversarial sets. The SFT (benign)
+ RL (adversarial) helps LL M., to imitate the
bad examples as well.

SFT (benign) + RL (benign + adversarial). Con-
sidering, the SFT (benign) + RL (adversarial) ex-
periments, while the model achieves high perfor-
mance in identifying adversarial samples, it strug-
gles to assign higher Likert scale ratings to benign
samples. This is because the model’s threshold
for defining a "good" sample has been lowered to
a rating of 3. The reason for such a drop in the
maximum Likert scale in testing is due to poor
penalization in RL that considered the desirable
threshold of < 3 during the sampling of the data

Conciseness Evaluation

{"Readability": { "rating": 1, "rationale":
"The synthesis is poorly written, with perva-
sive issues in style, structure, and language
use, making it difficult to understand due
to the inclusion of an unrelated joke about
#jets fans and #marksanchez at the end."}}

Figure 17: The y format for fine-tuning models.

preparation for RLAIF for the subtle adversarial
set. Essentially, training the model exclusively on
adversarial behavior leads to confusion when it en-
counters benign examples. To solve this, the SFT
(benign) + RL (benign + adversarial) is ideal for
imitating both benign and adversarial behaviors,
which ideally leads to success.

G Training Details

Supervised Fine-Tuning. The fine-tuning threats
each LL Mg, as an input = and outputs of all four
LLM._yq as ay. The fine-tuning S F'T" dataset stats
are represented in Table 2. It includes research
questions, synthesized responses, source papers,
and evaluation rubrics scale to ensure the model
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learns both synthesis assessment and evaluation
reasoning. The Figure 17 shows the y = LL M,
format during the fine-tuning process for the "Read-
ability" rubric (the example is chosen from the Ad-
versarial set). The tokenized sequences were pro-
cessed with a maximum sequence length specific
to each dataset (ORKG-Synthesis: 4, 645 tokens,
BioASQ: 8, 874 tokens). We finetuned the model
per dataset for 5 epochs using the Paged AdamW 8-
bit optimizer, ensuring memory efficiency. Key hy-
perparameters included a batch size of 1 per GPU
(we used two GPUs), gradient accumulation steps
equal to batch size, a learning rate of 2e — 4 with a
warmup ratio of 0.03, weight decay of 0.001, and
a max gradient norm of 0.3. The fine-tuned model
checkpoints were saved for further analysis and
RL-based fine-tuning.

Reinforcement Learning. Several hyperparame-
ters and configurations for training an LL.M with
RL are used. Key hyperparameters include a learn-
ing rate of 2e — 4, a batch size of 1 (per GPU), and
a total of 2 training epochs. The model’s training is
configured with a maximum prompt length of 4500
and a maximum completion length of 150. The
CPO uses a per-device batch size of 1, gradient ac-
cumulation steps of 1, and mixed precision (fp16).
Additionally, the model undergoes fine-tuning with
a learning rate of 2e — 4.

Hardware and Resource Allocation. For the sys-
tem setup, two H100 GPUs were utilized for RL
fine-tunings, each with 80 GB of GPU memory,
while for SFT models, only one H100 GPU with
the same memory capacity was used. The CPU con-
figuration for SFT involved 60 GB of memory with
8 cores of CPU, while RL took 60 GB of memory
and 16 CPU cores.

H Detailed Qualitative Experimental
Results

This section represents the detailed qualitative ex-
perimental results for seven models. In the tables,
LLM,,, models are defined as follows in the table
columns:

e M1: Qwen2.5-72B

* M2: LLaMA-3.1-70B
e M3: Mistral-Large

* M4: LLaMA-3.1-8B

e MS5: SFT (benign)

e M6: SFT (benign) + RL (adversarial)

e M7: SFT (benign) + RL (benign +
adversarial)

The results for the BioASQ dataset are presented
in Table 7 for LLaMA-3.1-8B L L Mg, Table 8 for
LLaMA-3.1-70B LLMjgey,, Table 9 for Qwen2.5-
72B LLMgep, and Table 10 for Mistral-Large
LLMgepn. While, for the ORKGSynthesis dataset,
results are presented in Table 11 for LLaMA-
3.1-8B LLMgep, Table 12 for LLaMA-3.1-70B
LLMgey, Table 13 for Qwen2.5-72B LLM yep,
and Table 14 for Mistral-Large LL M gey,.

I Example Evaluations

This section presents example evaluations of LLM-
generated responses based on different rubrics. The
examples were selected randomly from experimen-
tal models LL M., outputs in test sets. The ex-
amples showcase both well-performing and prob-
lematic cases, emphasizing the strengths and weak-
nesses of different models and fine-tuning strate-
gies. The examples are shown in Table 15 and
Table 16, which illustrate the challenges in vanilla
and SFT models in distinguishing the desired be-
haviors. However, the SFT (benign) + RL (be-
nign+adversarial) model demonstrates superior
performance, even in terms of its rationales.

Examples from BioASQ in Table 15 show that
SFT (benign) + RL (adversarial) often struggle
with coherence and factual accuracy, as evidenced
in examples 3 and 5. In contrast, models combining
SFT (benign) + RL (benign + adversarial) tend to
deliver more relevant and informative outputs, as
seen in example 4. In Table 16 for the ORKGSyn-
thesis dataset, examples in extreme settings, such
as the SFT (benign) + RL (adversarial) rationales
in example 8, demonstrate that LL M., specifi-
cally identifies the inclusion of off-topic sentences,
resulting in lower relevance and completeness rat-
ings, as anticipated.
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[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ Meé [ M7 ]
1. Coherence 495 | 491 | 473 | 500 | 495 | 3.00 | 491
2. Cohesion 495 | 491 | 468 | 495 | 495 | 3.00 | 4.68
3. Completeness 441 | 433 | 427 | 491 | 423 | 3.00 | 4.32
4. Conciseness 495 | 491 | 468 | 445 | 477 | 3.00 | 3.82
benign 5. Correctness 495 | 492 | 4.64 | 473 | 5.00 | 3.00 | 5.00
6. Informativeness | 4.82 | 4.82 | 486 | 5.00 | 4.68 | 3.00 | 5.00
7. Integration 491 | 491 | 455 | 477 | 495 | 3.00 | 4.59
8. Readability 495 | 491 | 473 | 4.64 | 495 | 3.00 | 4.55
9. Relevancy 495 | 483 | 4.86 | 5.00 | 5.00 | 3.00 | 5.00
1. Coherence 2.50 | 3.00 | 3.00 | 4.64 | 3.55 | 1.00 | 1.00
2. Cohesion 405 | 455 | 3.82 | 477 | 493 | 3.00 | 441
3. Completeness 2.68 | 331 | 327 | 464 | 3.82 | 1.05 | 1.00
4. Conciseness 141 | 1.00 | 1.50 | 2.27 | 477 | 1.00 | 1.00
extreme 5. Correctness 391 | 390 | 3.73 | 4.68 | 3.59 | 1.00 | 1.00
6. Informativeness | 3.59 | 4.20 | 3.68 | 468 | 341 | 1.09 | 1.00
7. Integration 373 | 408 | 3.18 | 477 | 4.82 | 3.00 | 3.14
8. Readability 205 | 215 | 255 | 414 | 1.89 | 1.00 | 1.00
9. Relevancy 2.64 | 340 | 3.55 | 4.86 | 2.77 | 1.00 | 1.00
1. Coherence 382 | 410 | 414 | 482 | 486 | 291 | 2.73
2. Cohesion 405 | 425 | 423 | 4.68 | 4.82 | 3.00 | 4.64
3. Completeness 414 | 409 | 3.82 | 4.82 | 436 | 3.00 | 3.91
4. Conciseness 3.09 | 2.60 | 2.41 | 3.68 | 455 | 2.41 | 2.27
subtle 5. Correctness 423 | 450 | 4.14 | 4.64 | 4.86 | 3.00 | 2.82
6. Informativeness | 4.18 | 4.40 | 423 | 495 | 459 | 3.00 | 2.77
7. Integration 4.09 | 427 | 3.86 | 4.64 | 491 | 3.00 | 4.64
8. Readability 314 | 292 | 345 | 418 | 4.18 | 2.18 | 1.82
9. Relevancy 432 | 420 | 436 | 5.00 | 477 | 277 | 2.73

Table 7: BioASQ dataset detailed evaluation results of various LL M4 over LLM ., = LLaMA-3.1-8B.

[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ M6 [ M7 ]
1. Coherence 291 | 490 | 291 | 491 | 3.64 | 2.55 | 3.09
2. Cohesion 291 | 490 | 2.86 | 4.86 | 4.05 | 2.32 | 2.86
3. Completeness 250 | 3.29 | 273 | 4.64 | 3.80 | 2.45 | 2.64
4. Conciseness 291 | 480 | 3.36 | 423 | 3.73 | 2.00 | 2.50
benign 5. Correctness 3.00 | 3.73 | 3.18 | 486 | 391 | 291 | 3.09
6. Informativeness | 2.77 | 4.36 | 3.00 | 495 | 3.27 | 2.50 | 2.95
7. Integration 2.86 | 455 | 277 | 477 | 3.86 | 1.95 | 2.82
8. Readability 291 | 490 | 3.05 | 441 | 3.23 | 2.05 | 2.86
9. Relevancy 295 | 3.80 | 3.23 | 495 | 3.73 | 2.50 | 3.09
1. Coherence 1.50 | 2.09 | 2.14 | 3.59 | 2.73 | 1.00 | 1.00
2. Cohesion 250 | 392 | 2.64 | 450 | 345 | 227 | 2.68
3. Completeness 1.73 | 236 | 232 | 4.18 | 2.59 | 1.09 | 1.00
4. Conciseness 1.50 | 1.17 | 1.55 | 241 | 391 | 1.18 | 1.00
extreme 5. Correctness 232 | 327 | 250 | 391 | 295 | 1.00 | 1.00
6. Informativeness | 2.09 | 3.18 | 241 | 395 | 2.05 | 1.00 | 1.00
7. Integration 223 | 338 | 232 | 445 | 3.14 | 191 | 2.14
8. Readability 1.50 | 1.75 | 1.50 | 3.68 | 2.05 | 1.00 | 1.00
9. Relevancy 145 | 273 | 241 | 395 | 2.00 | 1.00 | 1.00
1. Coherence 195 | 340 | 232 | 441 | 3.09 | 245 | 191
2. Cohesion 250 | 3.33 | 245 | 464 | 3,55 | 2.32 | 2.95
3. Completeness 2.59 | 336 | 295 | 477 | 3.59 | 2.64 | 2.27
4. Conciseness 1.86 | 1.86 | 1.64 | 3.23 | 3.82 | 1.64 | 1.32
subtle 5. Correctness 227 | 350 | 2.82 | 455 | 3.50 | 3.00 | 2.18
6. Informativeness | 2.32 | 3.82 | 2.59 | 455 | 3.14 | 2.68 | 2.18
7. Integration 245 | 383 | 250 | 436 | 341 | 1.86 | 2.86
8. Readability 191 | 1.92 | 241 | 405 | 3.27 | 1.68 | 1.50
9. Relevancy 236 | 3.67 | 2.68 | 482 | 3.14 | 241 | 2.09

Table 8: BioASQ dataset detailed evaluation results of various LLM_,,q; over LLM ., = LLaMA-3.1-70B.
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[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ Meé [ M7 ]
1. Coherence 5.00 | 500 | 495 | 495 | 500 | 3.00 | 495
2. Cohesion 5.00 | 5.00 | 491 | 495 | 5.00 | 3.00 | 4.45
3. Completeness 427 | 400 | 436 | 473 | 4.27 | 3.00 | 4.05
4. Conciseness 5.00 | 491 | 491 | 455 | 486 | 3.00 | 4.45
benign 5. Correctness 495 | 500 | 491 | 4.82 | 491 | 3.00 | 491
6. Informativeness | 4.68 | 4.83 | 491 | 482 | 486 | 3.00 | 495
7. Integration 491 | 500 | 486 | 477 | 491 | 3.00 | 4.86
8. Readability 5.00 | 5.00 | 5.00 | 445 | 4.86 | 3.00 | 4.86
9. Relevancy 5.00 | 5.00 | 5.00 | 491 | 5.00 | 3.00 | 491
1. Coherence 245 | 250 | 2.82 | 436 | 3.32 | 1.00 | 1.00
2. Cohesion 4.09 | 446 | 3.77 | 473 | 4.86 | 3.00 | 4.59
3. Completeness 232 | 3.10 | 268 | 395 | 391 | 1.00 | 1.00
4. Conciseness 227 | 1.60 | 2.09 | 3.27 | 477 | 1.09 | 1.09
extreme 5. Correctness 3.68 | 3.70 | 3.77 | 436 | 3.36 | 1.00 | 1.00
6. Informativeness | 3.41 | 3.60 | 3.50 | 441 | 232 | 1.00 | 1.00
7. Integration 359 | 400 | 3.23 | 468 | 495 | 3.00 | 3.14
8. Readability 191 | 1.75 | 2.23 | 423 | 2.05 | 1.00 | 1.00
9. Relevancy 2.18 | 270 | 3.59 | 4.68 | 2.55 | 1.00 | 1.00
1. Coherence 364 | 410 | 4.09 | 477 | 491 | 3.00 | 3.00
2. Cohesion 418 | 445 | 4.09 | 4.68 | 486 | 3.00 | 4.59
3. Completeness 364 | 410 | 3.86 | 495 | 427 | 3.00 | 3.59
4. Conciseness 2.82 | 2770 | 2.36 | 3.86 | 4.59 | 2.59 | 2.14
subtle 5. Correctness 423 | 430 | 400 | 459 | 473 | 3.00 | 3.14
6. Informativeness | 4.14 | 4.50 | 4.18 | 4.82 | 4.64 | 3.00 | 3.18
7. Integration 4.00 | 455 | 400 | 486 | 495 | 3.00 | 4.45
8. Readability 2.55 | 245 | 336 | 409 | 423 | 2.05 | 191
9. Relevancy 423 | 450 | 427 | 486 | 495 | 295 | 3.00

Table 9: BioASQ dataset detailed evaluation results of various LLM,,q; over LLM ., = Qwen2.5-72B.

[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ M6 [ M7 ]
1. Coherence 491 | 5.00 | 495 | 5.00 | 5.00 | 3.00 | 491
2. Cohesion 491 | 492 | 477 | 5.00 | 495 | 3.00 | 4.73
3. Completeness 427 | 400 | 441 | 457 | 432 | 3.00 | 4.36
4. Conciseness 495 | 467 | 495 | 459 | 473 | 2.86 | 3.77
benign 5. Correctness 495 | 500 | 4.82 | 486 | 495 | 3.00 | 495
6. Informativeness | 4.64 | 475 | 491 | 491 | 473 | 3.00 | 491
7. Integration 486 | 4.83 | 464 | 5.00 | 495 | 3.00 | 4.68
8. Readability 495 | 483 | 5.00 | 450 | 475 | 291 | 4.86
9. Relevancy 491 | 493 | 495 | 5.00 | 5.00 | 3.00 | 5.00
1. Coherence 227 | 209 | 3.14 | 441 | 3.50 | 1.00 | 1.00
2. Cohesion 395 | 442 | 3.77 | 4.68 | 491 | 3.00 | 4.18
3. Completeness 232 | 245 | 291 | 4.18 | 3.68 | 1.00 | 1.00
4. Conciseness 195 | 1.38 | 1.82 | 3.09 | 445 | 1.09 | 1.09
extreme 5. Correctness 3.68 | 345 | 3.73 | 455 | 341 | 1.00 | 1.00
6. Informativeness | 3.45 | 3.18 | 3.73 | 445 | 3.00 | 1.05 | 1.00
7. Integration 359 | 3.77 | 3.09 | 468 | 4.82 | 291 | 3.00
8. Readability 2.05 | 2.15 | 2.27 | 4.00 | 2.14 | 1.00 | 1.00
9. Relevancy 232|292 | 3.64 | 473 | 3.32 | 1.00 | 1.00
1. Coherence 377 | 3.80 | 4.14 | 491 | 491 | 295 | 3.05
2. Cohesion 4.00 | 479 | 427 | 477 | 486 | 3.00 | 4.41
3. Completeness 386 | 420 | 3.50 | 491 | 450 | 3.00 | 3.68
4. Conciseness 291 | 3.15 | 2.82 | 391 | 491 | 2.59 | 2.27
subtle 5. Correctness 423 | 427 | 4.14 | 477 | 4.68 | 3.00 | 3.23
6. Informativeness | 4.18 | 420 | 432 | 486 | 459 | 295 | 3.14
7. Integration 391 | 4.09 | 3.77 | 459 | 495 | 3.00 | 4.45
8. Readability 2.82 | 254 | 373 | 436 | 459 | 2.27 | 1.95
9. Relevancy 427 | 418 | 441 | 500 | 500 | 295 | 2.95

Table 10: BioASQ dataset detailed evaluation results of various LLM_,,,; over LLMg.,, = Mistral-Large.
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[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ M6 [ M7 ]
1. Coherence 474 | 495 | 478 | 497 | 495 | 3.00 | 4.98
2. Cohesion 472 | 493 | 471 | 497 | 488 | 3.00 | 495
3. Completeness 428 | 440 | 452 | 450 | 4.59 | 3.00 | 4.76
4. Conciseness 474 | 471 | 470 | 4.18 | 4.77 | 3.00 | 4.03
benign 5. Correctness 486 | 497 | 479 | 4.83 | 491 | 3.00 | 4.94
6. Informativeness | 4.57 | 4.93 | 4.77 | 497 | 4.89 | 3.06 | 4.97
7. Integration 470 | 490 | 468 | 4.89 | 493 | 3.00 | 491
8. Readability 477 | 494 | 486 | 441 | 485 | 3.00 | 4.86
9. Relevancy 470 | 492 | 481 | 499 | 493 | 3.02 | 4.96
1. Coherence 258 | 342 | 335 | 427 | 481 | 1.04 | 1.00
2. Cohesion 376 | 433 | 3.44 | 485 | 478 | 3.00 | 4.41
3. Completeness 263 | 294 | 3,56 | 3.69 | 459 | 1.00 | 1.00
4. Conciseness 1.11 | 1.05 | 1.57 | 1.70 | 464 | 1.00 | 1.00
extreme 5. Correctness 3.81 | 409 | 398 | 424 | 482 | 1.01 1.00
6. Informativeness | 3.62 | 4.26 | 3.80 | 478 | 4.82 | 1.03 | 1.00
7. Integration 337 | 390 | 3.16 | 472 | 486 | 2.73 | 3.10
8. Readability 220 | 213 | 293 | 377 | 476 | 1.01 | 1.00
9. Relevancy 278 | 3.51 | 3.58 | 499 | 481 | 1.02 | 1.00
1. Coherence 421 | 470 | 451 | 481 | 495 | 3.00 | 3.44
2. Cohesion 398 | 449 | 3.96 | 490 | 484 | 3.00 | 4.52
3. Completeness 410 | 423 | 392 | 499 | 4.67 | 3.00 | 4.20
4. Conciseness 271 | 236 | 250 | 3.62 | 470 | 247 | 2.38
subtle 5. Correctness 448 | 478 | 444 | 457 | 493 | 3.00 | 3.37
6. Informativeness | 4.35 | 479 | 450 | 490 | 487 | 3.03 | 3.38
7. Integration 401 | 452 | 4.02 | 492 | 491 | 299 | 4.72
8. Readability 322 | 2.88 | 3.79 | 449 | 482 | 2.85 | 2.98
9. Relevancy 435 | 470 | 456 | 499 | 496 | 299 | 3.54

Table 11: ORKGSynthesis dataset detailed evaluation results of various LLM,yq; over LLM,, = LLaMA-3.1-8B.

[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ Meé [ M7 ]
1. Coherence 477 | 497 | 478 | 5.00 | 4.88 | 3.00 | 4.98
2. Cohesion 476 | 495 | 4.65 | 499 | 487 | 3.00 | 498
3. Completeness 432 | 446 | 454 | 4.61 | 469 | 3.00 | 4.75
4. Conciseness 477 | 475 | 465 | 4.15 | 473 | 2.99 | 4.05
benign 5. Correctness 4.89 | 496 | 483 | 480 | 492 | 3.00 | 492
6. Informativeness | 4.65 | 492 | 477 | 498 | 487 | 3.01 | 495
7. Integration 476 | 490 | 456 | 492 | 492 | 3.00 | 4.96
8. Readability 480 | 498 | 490 | 441 | 489 | 3.00 | 4.94
9. Relevancy 473 | 490 | 475 | 499 | 493 | 3.03 | 494
1. Coherence 2.66 | 3.39 | 333 | 431 | 482 | 1.01 | 1.00
2. Cohesion 3.80 | 430 | 3.56 | 488 | 4.87 | 3.00 | 4.46
3. Completeness 274 | 297 | 3.56 | 3.63 | 456 | 1.00 | 1.00
4. Conciseness 1.09 | 1.02 | 1.62 | 229 | 456 | 1.00 | 1.00
extreme 5. Correctness 390 | 407 | 3.85 | 425 | 4.89 | 1.02 | 1.00
6. Informativeness | 3.76 | 430 | 3.87 | 4.69 | 481 | 1.02 | 1.00
7. Integration 350 | 4.03 | 3.27 | 474 | 488 | 2.83 | 3.07
8. Readability 2.16 | 2.03 | 295 | 3.85 | 471 | 1.00 | 1.00
9. Relevancy 2.80 | 3.67 | 3.70 | 492 | 486 | 1.00 | 1.00
1. Coherence 416 | 472 | 452 | 480 | 4.89 | 3.00 | 3.42
2. Cohesion 4.03 | 456 | 4.05 | 4.85 | 488 | 3.00 | 4.60
3. Completeness 413 | 437 | 4.13 | 498 | 4.66 | 299 | 449
4. Conciseness 251 | 207 | 229 | 344 | 477 | 222 | 2.20
subtle 5. Correctness 435 | 476 | 431 | 450 | 492 | 3.00 | 3.38
6. Informativeness | 4.32 | 485 | 441 | 487 | 491 | 3.00 | 3.46
7. Integration 408 | 449 | 398 | 493 | 490 | 3.00 | 4.87
8. Readability 331 | 3.09 | 3.76 | 442 | 477 | 2.90 | 2.95
9. Relevancy 431 | 463 | 450 | 5.00 | 485 | 298 | 3.48

Table 12: ORKGSynthesis dataset detailed evaluation results of various LLM_,,q; over LLMg4.,, = LLaMA-3.1-
70B.
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[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ Meé [ M7 ]
1. Coherence 486 | 499 | 487 | 500 | 493 | 3.01 | 5.00
2. Cohesion 486 | 498 | 478 | 499 | 490 | 3.00 | 5.00
3. Completeness 4.47 | 465 | 462 | 4776 | 470 | 3.00 | 4.93
4. Conciseness 487 | 481 | 472 | 430 | 4.81 | 3.00 | 4.13
benign 5. Correctness 490 | 498 | 4.86 | 489 | 494 | 3.00 | 4.98
6. Informativeness | 4.78 | 498 | 491 | 497 | 493 | 3.06 | 5.00
7. Integration 486 | 497 | 472 | 491 | 494 | 3.00 | 4.98
8. Readability 489 | 497 | 490 | 444 | 487 | 3.00 | 4.98
9. Relevancy 483 | 496 | 491 | 5.00 | 494 | 3.05 | 498
1. Coherence 274 | 3775 | 354 | 447 | 491 | 1.04 | 1.00
2. Cohesion 394 | 444 | 3770 | 491 | 488 | 3.00 | 4.51
3. Completeness 290 | 291 | 3.78 | 3.81 | 4.65 | 1.01 | 1.00
4. Conciseness 1.81 | 1.31 | 1.90 | 2.87 | 4.69 | 1.01 | 1.00
extreme 5. Correctness 3.84 | 415 | 4.01 | 431 | 492 | 1.01 | 1.00
6. Informativeness | 3.84 | 451 | 398 | 478 | 4.81 | 1.00 | 1.00
7. Integration 382 | 434 | 3.60 | 486 | 4.89 | 2.89 | 3.52
8. Readability 238 | 2.16 | 3.07 | 4.18 | 476 | 1.00 | 1.00
9. Relevancy 306 | 3.70 | 3.83 | 498 | 4.88 | 1.00 | 1.00
1. Coherence 423 | 485 | 463 | 484 | 493 | 3.00 | 3.41
2. Cohesion 416 | 461 | 411 | 496 | 492 | 3.00 | 4.83
3. Completeness 440 | 450 | 430 | 499 | 473 | 3.00 | 4.79
4. Conciseness 313 | 2.82 | 2.68 | 450 | 4.83 | 2.89 | 2.97
subtle 5. Correctness 448 | 4.83 | 451 | 4.60 | 493 | 3.00 | 3.39
6. Informativeness | 4.46 | 490 | 4.70 | 491 | 4.87 | 3.04 | 3.49
7. Integration 421 | 468 | 406 | 496 | 492 | 3.00 | 4.90
8. Readability 371 | 321 | 3.86 | 453 | 482 | 291 | 2.98
9. Relevancy 442 | 473 | 466 | 497 | 492 | 3.00 | 3.49

Table 13: ORKGSynthesis dataset detailed evaluation results of various LLM_,,q; over LLM ., = Qwen2.5-72B.

[ Set [ Rubrics [ M1 [ M2 [ M3 [ M4 [ M5 [ M6 [ M7 ]
1. Coherence 479 | 495 | 4.83 | 5.00 | 492 | 3.00 | 498
2. Cohesion 478 | 493 | 476 | 499 | 491 | 299 | 498
3. Completeness 439 | 450 | 461 | 4.62 | 481 | 3.00 | 4.86
4. Conciseness 482 | 480 | 471 | 426 | 475 | 2.98 | 4.07
benign 5. Correctness 487 | 497 | 4.87 | 489 | 495 | 3.00 | 493
6. Informativeness | 4.70 | 494 | 485 | 497 | 492 | 3.03 | 4.95
7. Integration 477 | 492 | 475 | 490 | 495 | 3.00 | 497
8. Readability 484 | 491 | 490 | 434 | 483 | 2.99 | 493
9. Relevancy 470 | 492 | 4.83 | 5.00 | 494 | 3.01 | 4.90
1. Coherence 2.58 | 3.50 | 3.47 | 434 | 488 | 1.00 | 1.00
2. Cohesion 372 | 429 | 3.62 | 487 | 490 | 2.99 | 4.60
3. Completeness 276 | 276 | 3.61 | 3.67 | 458 | 1.00 | 1.00
4. Conciseness 1.77 | 1.27 | 1.71 | 2.88 | 473 | 1.02 | 1.00
extreme 5. Correctness 3.82 | 4.06 | 3.92 | 421 | 491 | 1.00 | 1.00
6. Informativeness | 3.69 | 443 | 390 | 4.83 | 4.87 | 1.00 | 1.00
7. Integration 352 | 4.09 | 337 | 479 | 4.85 | 294 | 3.34
8. Readability 236 | 2.10 | 297 | 3.84 | 462 | 1.01 | 1.00
9. Relevancy 2.89 | 3.50 | 3.76 | 495 | 4.83 | 1.00 | 1.00
1. Coherence 417 | 476 | 445 | 478 | 497 | 3.00 | 3.33
2. Cohesion 399 | 453 | 398 | 492 | 492 | 3.00 | 4.49
3. Completeness 4.05 | 438 | 4.11 | 5.00 | 4.66 | 3.00 | 4.64
4. Conciseness 298 | 2.66 | 2.60 | 422 | 485 | 290 | 2.89
subtle 5. Correctness 436 | 478 | 445 | 450 | 492 | 3.00 | 3.35
6. Informativeness | 4.32 | 4.85 | 450 | 491 | 495 | 3.02 | 3.39
7. Integration 405 | 450 | 403 | 490 | 4.89 | 3.00 | 491
8. Readability 343 | 3.02 | 3.82 | 461 | 485 | 2.86 | 2.97
9. Relevancy 430 | 468 | 452 | 499 | 496 | 3.00 | 3.42

Table 14: ORKGSynthesis dataset detailed evaluation results of various LL M., over LLM., = Mistral-Large.
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[ Set

LLMgen

‘ LLMeyal

Rubric

| Rating | Rationale

subtle

LLaMA-3.1-8B

LLaMA-3.1-8B

Readability

4

The synthesis follows academic writing conventions almost per-
fectly and displays appropriate style. However, the last sentence
is a bit unrelated to the research question and seems to be a
non-sequitur, which slightly affects the overall rating.

benign

LLaMA-3.1-70B

SFT (benign)

Coherence

The synthesis provided does not form a coherent narrative, mak-
ing it difficult to follow.

benign

Mistral-Large

SFT (benign) + RL (ad-
versarial)

Integration

The synthesis integrates the sources into a coherent manner
within a single paragraph. However, the transitions or connec-
tions between ideas could be smoother. For example, the tran-
sition from the information about Denmark to the information
about England could be more fluid. Additionally, the synthesis
could benefit from better markers of provenance/quotation to
clearly indicate which study provided each piece of information.

benign

Qwen2.5-72B

SFT (benign) + RL (be-
nign+adversarial)

Relevancy

The synthesis directly and consistently addresses the research
question of how circRNAs are derived, providing a clear and
concise overview of the back-splicing process and its key aspects.

wn

adversarial

Mistral-Large

SFT (adversarial) + RL
(benign+adversarial)

Accuracy

The synthesis contains factual inaccuracies regarding the reg-
ulatory mechanisms of circRNAs. While the overall structure
is well-organized, some key claims about exon-skipping and
alternative splicing are incorrect.

subtle

Qwen2.5-72B

LLaMA-3.1-8B

Coherence

The ideas are logically connected for the most part, but the
narrative could be strengthened for better clarity. Some minor
issues with sentence structure and wording were noted, but they
do not significantly impact the overall coherence of the synthesis.

benign

LLaMA-3.1-70B

SFT (benign)

Informativeness

The synthesis is highly informative, providing valuable insights
and detailed information that thoroughly addresses the research
question.

o0

subtle

LLaMA-3.1-70B

SFT (benign) + RL (ad-
versarial)

Coherence

The ideas are logically connected for the most part, but the
narrative could be strengthened for better clarity. The synthesis
jumps abruptly from discussing the biogenesis of circRNAs to
mentioning a mortality rate without adequately transitioning or
providing context.

extreme

LLaMA-3.1-70B

SFT (benign) + RL (be-
nign+adversarial)

Readability

The synthesis is poorly written, with pervasive issues in style,
structure, and language use, making it difficult to understand.
The sentence "#jets fans must be really confused with #mark-
sanchez performance as a 2nd string QB for phily!! Lmao’ is
entirely unrelated to the topic of eRNAs and disrupts the flow of
the text.

Table 15
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Set

LLM,.,

‘ LLMeval

Rubric

[ Rating [ Rationale

1| benign

LLaMA-3.1-70B

LLaMA-3.1-8B

Correctness 5

The synthesis accurately represents the content from the pro-
vided abstracts, without any factual errors or misinterpreta-
tions. The information is a faithful representation of the original
sources, demonstrating a high level of correctness.

2 | benign

Mistral-Large

SFT (benign)

Integration 5

The synthesis seamlessly integrates information from the various
sources, using appropriate markers and connectors to create
a smooth and unified narrative. All information is skillfully
condensed into a single, well-structured paragraph.

3 | extreme

Qwen2.5-72B

SFT (benign) + RL (ad-
versarial)

Relevancy 1

The synthesis includes a relevant discussion about fake news
detection methods, but it deviates significantly from the topic
of detecting fake accounts. The last sentence about Stephen
Curry, LeBron James, and Kevin Durant winning the 2024 Paris
Olympics is completely out of scope and irrelevant to the re-
search question.

4 | extreme

Qwen2.5-72B

SFT (benign) + RL (be-
nign+adversarial)

Completeness 1

The synthesis omits most of the relevant information, failing to
capture the essential points or details from the provided abstracts.
The last sentence of the synthesis is unrelated to the research
question and appears to be a random statement about a sporting
event.

5| subtle

LLaMA-3.1-70B

LLaMA-3.1-8B

Readability 5

The synthesis follows academic writing conventions perfectly
and displays appropriate style, structure, and language use, mak-
ing it exceptionally accessible and easy to read.

6 | extreme

Qwen2.5-72B

SFT (benign)

Readability 5

The synthesis is exceptionally well-written, following stylistic
and structural conventions with precise language use, making it
accessible and easy to read. The text is well-structured and free
of any noticeable issues with style or structure.

7| subtle

LLaMA-3.1-8B

SFT (benign) + RL (ad-
versarial)

Conciseness 2

The synthesis includes some redundant or irrelevant statements,
detracting from its clarity. For example, the synthesis repeats the
phrase ’ultimately, finally, and in the end” and uses phrases like
’undoubtedly revealed, made evident, and clearly demonstrated’
and "highlighting, underscoring, and emphasizing the pressing,
urgent, and critical need.” These repetitions make the synthesis
less concise and more verbose than necessary.

o]

extreme

Mistral-Large

SFT (benign) + RL (be-
nign+adversarial)

Relevancy 1

The synthesis starts off well by addressing the research ques-
tion, but it includes an unrelated sentence about Stephen Curry,
LeBron James, and Kevin Durant, which is completely out of
scope and lacks any connection to the topic of optimizing drug
delivery methods to effectively cross the blood-brain barrier.

Table 16: Example evaluation of LLM-generated responses based on different rubrics for the ORKGSynthesis

dataset.
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