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Abstract
While Parameter-Efficient Fine-Tuning (PEFT)
methods like Low-Rank Adaptation (LoRA) ef-
fectively address resource constraints during
fine-tuning, their performance often falls short,
especially in multidimensional task scenarios.
To address this issue, one straightforward so-
lution is to introduce task-specific LoRA as
domain experts, leveraging the modeling of
multiple capabilities of experts and thus en-
hancing the general capability of multi-task
learning. Although promising, these additional
components often add complexity to the train-
ing and inference process, contravening the ef-
ficiency that PEFT is designed to deliver. Con-
sidering this, we introduce an innovative PEFT
method, TeamLoRA, consisting of a collabo-
ration and competition module for LoRA ex-
perts, thus achieving the right balance of effec-
tiveness and efficiency: (i) For collaboration,
we introduce a novel knowledge sharing and
organization mechanism designed to optimize
hierarchical learning while enhancing the effi-
ciency of model training and inference. (ii) For
competition, we propose leveraging a game-
theoretic interaction mechanism for experts,
encouraging experts to transfer their domain-
specific knowledge while facing diverse down-
stream tasks, thus enhancing the performance.
By doing so, TeamLoRA elegantly connects
the experts as a “Team” with internal collabo-
ration and competition, enabling a faster and
more accurate PEFT paradigm. Meanwhile, we
curate a Comprehensive Multi-Task Evalua-
tion (CME) benchmark to thoroughly assess
the capability of multi-task learning. Experi-
ments conducted on our CME and other bench-
marks indicate the effectiveness and efficiency
of TeamLoRA. Our project is available at
https://github.com/DCDmllm/TeamLoRA.

1 Introduction

Instruction fine-tuning of Large Language Models
(LLMs) (Achiam et al., 2023a; Reid et al., 2024;
Cai et al., 2024; Yang et al., 2024) and Multimodal

Figure 1: Visualization of various PEFT methods in
terms of speed and performance on the CME benchmark
— where the area indicates the proportion of trainable
parameters — reveals that TeamLoRA not only achieves
superior performance but also demonstrates higher
efficiency compared to multi-LoRA methods.

Large Language Models (MLLMs) (Li et al., 2022,
2023c; Huang et al., 2023; Achiam et al., 2023b;
Zhang et al., 2024a; Yuan et al., 2024; Zhang et al.,
2025; Bai et al., 2025) has achieved impressive pro-
ficiency in NLP and multimodal tasks by effectively
adapting task-agnostic foundations to task-specific
domains. However, full fine-tuning billions of pa-
rameters poses significant challenges in resource-
constrained scenarios, thereby limiting the appli-
cation of LLMs across various downstream tasks.
Therefore, Parameter-Efficient Fine-Tuning (PEFT)
techniques (Han et al., 2024) emerge with the aim
of reducing the cost by fine-tuning a small subset
of parameters, offering a streamlined approach for
domain adaptation. Among these methods, Low-
Rank Adaptation (LoRA) (Hu et al., 2022), a pop-
ular PEFT approach, fine-tunes models by adapt-
ing lightweight auxiliary modules {A,B} on top
of pre-trained weights W0, where A and B are
low-rank matrices. LoRA offers performance com-
parable to full fine-tuning when focusing on the
one-dimensional domain or task with less compu-
tational effort. Nonetheless, qualitative research
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highlights limitations of LoRA in handling multidi-
mensional task scenarios, mainly due to the catas-
trophic forgetting and interference (Kalajdzievski,
2024; Zhang et al., 2024b) between tasks in the
training stage.

One straightforward solution is to adaptively
integrate the knowledge diversity of multiple
LoRA experts to handle different task character-
istics, a method known as multi-LoRA architec-
ture (MoELoRA). Specifically, this method adds
multiple LoRA experts to the pre-trained linear
layer (Gao et al., 2024) and dynamically allo-
cates expert weights through a gating mechanism,
thereby enhancing the performance of multi-task
learning. Currently, multi-LoRA architecture (Dou
et al., 2023; Luo et al., 2024; Li et al., 2024) effec-
tively captures and integrates multi-domain knowl-
edge from multidimensional task scenarios, leading
to performance improvements in complex down-
stream applications.

Despite its promise, MoELoRA may not effec-
tively adapt the multi-task scenario, which can be
distilled into two principal aspects: (i) Training
and Inference Efficiency. Our observations show
that MoELoRA fails to effectively balance perfor-
mance against computational costs, contradicting
the efficient characterization of PEFT, as illustrated
in Figure 1 (training time is nearly 62% slower
compared to LoRA). Additionally, multiplying the
number of LoRA experts means introducing a pro-
portional increase in matrix operations, which esca-
lates training costs and inference latency. (ii) Effec-
tiveness of Expert Combination. While advanced
multi-LoRA architecture-based PEFT methods fo-
cus on adaptively selecting a subset of experts for
updating, qualitative analysis (Zuo et al., 2021) re-
veals that commonly-adopted mechanisms suffer
from the notorious load imbalance and overcon-
fidence. Gating mechanisms may not effectively
learn task patterns and could lead to weight col-
lapse, causing some experts to consistently dom-
inate. In addition, the uniformity of the structure
raises concerns about the homogenization of LoRA
experts’ knowledge, which may lead to diminishing
marginal returns in expert collaboration, hindering
the ability to differentiate specific tasks and make
precise decisions (Jiang et al., 2024). Summing
up, these limitations necessitate a reevaluation of
MoELoRA and its solutions for handling multidi-
mensional tasks, with the objective of achieving the
right balance between effectiveness and efficiency.

To address the aforementioned limitations, we

propose TeamLoRA, treating multiple LoRA ex-
perts as a “Team” that enhances efficiency and ef-
fectiveness through internal collaboration and com-
petition. TeamLoRA comprises two key compo-
nents: (i) Efficient Collaboration Module: We
design an asymmetric architecture for knowledge
sharing among experts, leveraging the hierarchical
relationship between matrices A and B (Hayou
et al., 2024) to capture diverse features. Matrix
A is a domain-agnostic network that encodes gen-
eral knowledge to capture cross-task shared fea-
tures; matrix B, on the other hand, focuses on task-
specific features, enhancing performance through
enriched domain knowledge transfer. This struc-
ture allows different B matrices to complement A,
forming a plug-in method for knowledge organiza-
tion, and improves computational efficiency by re-
ducing matrix operations, making it more advanta-
geous compared to MoELoRA. (ii) Effective Com-
petition Module: We propose that the knowledge
transfer among experts involves a game-theoretic
relationship, leading to the introduction of a com-
petitive interaction mechanism. This mechanism
adaptively coordinates the participation confidence
of experts based on the task, influencing the distri-
bution of expert weights within the gating mecha-
nism. Its aim is to address the problem of overcon-
fident routing in mixture of experts (MoE) (Fedus
et al., 2022). We apply the concept of fuzzy shapley
values to promote finer-grained interactive com-
petition among experts, encouraging the effective
transfer of domain-specific knowledge to the cor-
responding tasks. In summary, TeamLoRA aims
to enhance the overall performance of multi-task
learning through the integration of collaboration
and competition.

To evaluate TeamLoRA in multi-task learning,
we introduce a comprehensive multi-task eval-
uation (CME) benchmark, which comprises 2.5
million samples spanning diverse domains and task
types. Beyond single-modal fine-tuning, we also in-
vestigate the application of our approach for visual
instruction tuning in multi-modal architectures (Liu
et al., 2024b). The experimental results demon-
strate that TeamLoRA achieves an optimal balance
between effectiveness and efficiency. Our contribu-
tions are as follows:

(i) A collaborative mechanism is designed to
facilitate plug-in knowledge sharing, significantly
reducing computational costs.

(ii) A competition module is proposed that
adaptively adjusts expert participation, enhancing
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Figure 2: TeamLoRA employs an asymmetric structure consisting of a general module and multiple expert modules,
which enhances interactions between experts using a collaboration module and competition module.

domain-specific knowledge transfer.
(iii) The integration of a CME benchmark pro-

vides a comprehensive framework for evaluating
PEFT methods across a diverse set of tasks and
domains, ensuring a thorough assessment of their
performance in real-world applications.

2 Related Work

Mixture of Experts. MoE integrates the outputs of
multiple experts through a dynamic routing mech-
anism (Shazeer et al., 2017). Fedus et al. (Fe-
dus et al., 2022) introduced a sparse gating top-k
mechanism that activates a subset of experts by the
router for each input token, significantly enhanc-
ing training and inference speed. To balance the
load among experts, GShard (Lepikhin et al., 2020)
and OpenMoE (Xue et al., 2024) implemented im-
portance and load losses to ensure a fair distribu-
tion among experts, alleviating issues related to
tail loss and early routing learning. Additionally,
the z-loss from the router improves training sta-
bility (Zoph et al., 2022) and addresses the expert
balancing problem in multi-task models by maxi-
mizing the mutual information between tasks and
experts (Chen et al., 2023). Furthermore, certain
approaches distinguish between shared and task-
specific experts to meet the supplementary knowl-
edge requirements of different tasks, yielding sig-
nificant results (Liu et al., 2024a).
Parameter-Efficient Fine-Tuning. PEFT (He
et al., 2021) reduces the computational cost de-
pendence on fine-tuning large language models
(LLMs) by introducing additional modules, thereby
replacing the need to update large-scale pre-trained
weights. Adapters (Houlsby et al., 2019) intro-
duce extra feature transformations between mod-

ules, while prefix tuning (Li and Liang, 2021;
Liu et al., 2021) updates parameters through pre-
inserted learnable embeddings, and operations on
pre-trained weights (Liu et al., 2022) offer a vi-
able solution. Prompt Tuning (Lester et al., 2021;
Li et al., 2023b) provides a soft prompt mech-
anism to condition pre-trained LLMs, enabling
efficient adaptation with only a small number
of learnable parameters. Low-Rank Adaptation
(LoRA) (Hu et al., 2022) and its variants (Yeh
et al., 2024; Wu et al., 2024) deliver exceptional
performance through low-rank matrix factorization,
while AdaLoRA (Zhang et al., 2023) seeks to fur-
ther optimize the embedding dimensions. Addi-
tionally, DoRA (Liu et al., 2024d) decomposes ma-
trices into direction and magnitude to refine learn-
able parameters, whereas LoHa (Hyeon-Woo et al.,
2021) enhances the model’s representational capac-
ity using low-rank Hadamard products. In parallel,
reasoning-oriented techniques such as Chain-of-
Thought prompting (Wei et al., 2022; Yao et al.,
2023; Besta et al., 2024; Liu et al., 2024c) provide
complementary improvements by guiding multi-
step inference, and have been combined with PEFT
in recent efforts to boost complex task performance
with minimal overhead.

Multi-LoRA Architectures. Multi-LoRA archi-
tectures garners widespread attention. Methods
based on categorical assignments (Zhao et al.,
2024; Feng et al., 2024; Wu et al., 2024) train mul-
tiple dedicated LoRAs that dynamically combine
when handling complex tasks, providing robust per-
formance. For general scenarios, researchers aim
to introduce the dynamic capabilities of MoE, adap-
tively learning and combining multiple domain ex-
perts (Luo et al., 2024; Tian et al., 2024; Gao et al.,
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2024; Li et al., 2024; Lin et al., 2025). In this work,
we propose TeamLoRA, designed to mitigate the
efficiency limitations of multi-LoRA architectures,
offering enhanced performance and faster response
times.

3 Methods

3.1 Problem Formulation
In multi-task learning scenarios, PEFT methods
adapt to various applications through a lightweight
auxiliary module shared among tasks. This multi-
task PEFT approach enables the model to remain
compact while fulfilling the requirements of multi-
ple tasks. Specifically, PEFT organizes the shared
auxiliary module Caux into a pre-trained layer Cpre
to handle input token sequences x = (xi)

N
i=1 of

different task types, as illustrated below:

Cmix(x; θpre, θaux) = Cpre(x; θpre)⊕Caux(x; θaux) ,

where θpre and θaux denote the parameters of the
pre-trained layer and the auxiliary module, respec-
tively. ⊕ represents combination strategies based
on the method being used.

During training, only the parameters of the aux-
iliary module are updated, which maintains knowl-
edge stability and reduces computational overhead:

θpre ← θpre, θaux ← θaux − η∇θauxL(y,ygt) ,

where η represents the learning rate and target opti-
mization function L assesses the deviation between
the predicted output y and the ground truth ygt.

3.2 Preliminaries
Low-Rank Adaptation. LoRA (Hu et al., 2022)
captures downstream data features by introducing a
pair of low-rank matrices as auxiliary modules. The
core idea of LoRA is to decompose the auxiliary
weight matrix ∆W ∈ Rdin×dout of the linear layer
into two matrices, A ∈ Rdin×r and B ∈ Rr×dout

with r≪ min{din, dout}, reducing the number of
learnable parameters. Assuming the origin input to
pre-trained weights is x ∈ RN×din and the output
h ∈ RN×dout with LoRA can be represented as:

h = xW0 + x∆W = xW0 + xAB ,

where matrix A is initialized with a random Gaus-
sian distribution and matrix B as a zero matrix
to ensure that LoRA does not affect the original
output at the start of training. Typically, ∆W is
scaled by α/r, using a scaling factor α to adjust
the impact of the LoRA module.

Mixture of Experts. MoE (Fedus et al., 2022)
greatly expands the model scale while activating
only a small number of parameters. In LLMs,
MoE duplicates the Feed-Forward Network (FFN)
to create a collection of experts, facilitating the
transfer of specific knowledge to downstream tasks,
thereby enhancing model performance without sig-
nificantly increasing training time and inference
latency. Specifically, MoE constructs a set of k
experts, {Ei}ki=1, and utilizes a linear router R
to dynamically allocate a set of weights ω =
Softmax(R(x; θR)) for token participation. The
output of the FFN layer can be represented as
y = Cffn(x; θffn). Correspondingly, the output
with MoE is as follows:

y = CMoE(x; θR, {θiffn}ki=1) =
k∑

i=1

ωiEi(x; θ
i
ffn) ,

where Ei represents i-th extended FFN expert, and
θiffn denotes the parameters of the corresponding
expert.

3.3 TeamLoRA
TeamLoRA facilitates efficient collaboration and
effective competition among experts (See Figure 2),
optimizing the mechanisms for knowledge sharing
and transfer to boost performance:

Cmix(x;W0, θcol, θcop) = xW0+Caux(x; θcol, θcop) ,

where θcol represents parameters of efficient collab-
oration moduleMcol and θcop represents parame-
ters of effective competition moduleMcop.

Efficient Collaboration among Experts.
We first analyze the multi-LoRA architecture,
which employs gate mechanism to dynamically
combine the knowledge of LoRA experts {E}ki=1.
Specifically, MoELoRA constructs multiple identi-
cal experts to output features for {Ai,Bi}ki=1:

Caux(x; θR, {Ai,Bi}ki=1) =

k∑

i=1

ωixAiBi ,

where ω is the same as MoE.
In fact, we have two key observations: (i) The

stacking of multiple LoRA experts introduces ap-
proximately O(2k) multiplications and other op-
erations, significantly impairing the parallel pro-
cessing capability of GPUs. For instance, in
the CME benchmark, when k is 2, 4, and 8,
MoELoRA incurs an additional training time of
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19%,62%, and 138%, respectively, compared to
LoRA. (ii) In experiments, MoELoRA employs
a homogeneous LoRA stacking design that can
somewhat cover the complete features of diverse
data (performing better than LoRA in the CME
benchmark), but it also exhibits issues of overcon-
fidence; when dynamic routing retains only the
best-performing expert, the overall model ensem-
ble performance in the CME benchmark reaches
98.0%. This design simultaneously exposes inher-
ent redundancy among the experts (as the perfor-
mance of a single static expert is comparable), as
they often capture similar knowledge rather than
unique expertise, which may limit the overall ex-
pressive capability of the expert ensemble (See Ap-
pendix D.1 for details). To address this issue, our
goal is to optimize the diversity of the knowledge
captured by different experts, enabling the model
to make more accurate and specialized decisions in
a multi-task environment.

In light of the above challenges, TeamLoRA is
designed with a hierarchical collaboration mod-
ule that employs an expert post-assignment ap-
proach to guide a single matrix A and multiple
matrices B towards differentiated feature learn-
ing, thereby enhancing overall expressive capabil-
ity. The general module (matrix A) is utilized to
capture general features across tasks and subdivides
them into fine-grained features across multiple di-
mensions, while the expert module (matrix B) acts
as a domain-specific plug-in, facilitating the effec-
tive supplementation of specialized knowledge to
general knowledge. Together, they collaborate to
facilitate the transfer of domain knowledge to spe-
cific downstream tasks .

TeamLoRA defines matrix A ∈ Rdin×rA and k
matrices Bi ∈ RrB×dout , where rA = krB . The
input x is processed through matrix A to compute
an intermediate state z = xA ∈ RN×rA . Then z
is evenly split into k segments along its last dimen-
sion, a process we refer to as split:

zi = split(z)i = z[(i− 1)[rB+1:irB ] .

Subsequently, each segment zi undergoes a linear
transformation through its corresponding matrix
Bi. The partial output hi ∈ RN×dout as below:

hi =Mcol(x;A,Bi) = split(xA)iBi .

Unlike the homogeneous multi-LoRA structure of
MoELoRA, the direct use of expert weights may
implicitly weaken the expectations of TeamLoRA

regarding the scaling factor (from α/r to α/(rk)),
consequently diminishing the influence of LoRA
experts on the frozen weights. Moreover, prior
studies (Kalajdzievski, 2023a) show that the per-
formance of LoRA is sensitive to the choice of
scaling factor. A reduced scaling factor may lead
to slower convergence or degraded optimization
efficiency. To address this, preserving the expected
contribution of each expert becomes crucial for
maintaining training stability and ensuring effec-
tive integration. Therefore, we ensure invariance of
expectation to maintain this stability property. Let
the expert weights be represented as ω, the final
output of the collaboration module added to LLMs
can then be expressed as

h =
k∑

i=1

kωihi .

This operation is regarded as an organization and
effective transfer of knowledge conducted by a
“Team” of LoRA experts.

Through the aforementioned design, the Effi-
cient Collaboration Module enables the general
module and expert module to adaptively organize
team knowledge, effectively addressing multi-task
scenarios. Furthermore, the collaboration mod-
ule significantly reduces computational costs by
minimizing matrix operations. When k is set to
2, 4, 8, and 16, the required training times are
only 87%, 70%, 63%, and 58% of that required
by MoELoRA using the same number of experts,
thereby successfully achieving the efficiency objec-
tives.

Effective Competition among Experts.
Common routing mechanisms have key flaws such
as inefficiency in allocation and knowledge si-
los (Zuo et al., 2021), which contradict the de-
sign philosophy. To address this, we introduce
a shapley-based mechanism (Shapley et al., 1953)
that actively shapes expert competition based on
adaptive interactions. This approach prevents cen-
tralized decision-making and promotes the effec-
tive transfer of expertise to specific downstream
tasks. By dynamically adjusting input distribution
and expert responsibilities, the competition module
ensures more effective and equitable knowledge
transfer across tasks.

We first introduce the concept of fuzzy Shapley
values to offer a perspective on how routers as-
sess the marginal contributions of experts. Unlike
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Method MoE Rank Time Params% OAI-Sum IMDB ANLI QQP RTE WinG ARC WQA NQ TQA MMLU Avg.

Prompt-Tuning ✗ - 23h 0.02 25.3 91.1 44.2 77.0 65.4 59.7 54.8 38.7 16.2 19.4 31.2 47.55
IA3 ✗ - 24h 0.03 26.4 92.0 48.7 78.3 68.1 61.5 55.1 37.7 18.8 19.5 34.9 49.18
LoRA ✗ 128 26h 2.68 27.3 95.6 56.8 87.4 85.7 71.6 70.8 47.2 25.2 36.8 42.5 58.81
DoRA* ✗ 64 46h 2.73 27.4 95.7 57.4 86.9 86.3 73.5 70.6 49.1 25.4 37.9 42.9 59.37
AdaLoRA ✗ 128 30h 2.56 27.4 95.5 57.2 87.0 86.3 72.1 71.1 46.8 25.5 35.2 42.9 58.82
MoSLoRA ✗ 128 28h 2.70 27.3 95.6 58.3 86.8 86.6 73.2 71.9 47.4 25.8 38.4 41.4 59.34

HydraLoRA ✓ 32 34h 1.84 27.6 95.9 57.8 86.5 87.2 70.1 70.2 50.6 24.6 37.0 42.2 59.06
MoELoRA ✓ 32 42h 2.71 27.4 95.5 59.3 87.2 86.1 72.9 71.8 50.1 25.1 38.4 42.8 59.69
DSLoRA ✓ 32 44h 3.38 27.6 95.6 59.2 87.6 86.9 72.7 72.2 51.1 25.6 38.7 43.0 60.02

TeamLoRA(Ours) ✓ 16 28h 1.35 27.4 95.9 59.2 86.6 87.0 73.1 73.1 51.3 25.9 37.1 42.8 59.95
TeamLoRA(Ours) ✓ 32 29h 2.71 27.6 95.7 58.9 87.5 87.1 73.8 72.3 51.8 26.4 38.8 43.3 60.29

Table 1: Performance comparison of TeamLoRA and other PEFT methods on the CME benchmark. MoE indicates
whether the MoE architecture is used, Rank represents the dimension of the expert modules (rB for TeamLoRA and
r for other methods), Time denotes the training time of the model on 8×A800 GPUs, and Params% represents the
number of learnable parameters. The best results are marked in bold, while the second-best results are underlined.

Rank Method OAI-Sum IMDB QQP WinG NQ TQA Rank Method OAI-Sum IMDB QQP WinG NQ TQA
32 LoRA 27.2 95.6 84.9 65.8 23.3 34.7 64 LoRA 27.4 95.7 86.4 70.2 25.6 35.5

8
MoELoRA 27.3 95.5 86.3 67.8 21.9 33.7

16
MoELoRA 27.7 95.6 86.3 69.5 24.3 36.4

TeamLoRA 27.9 96.1 86.3 68.7 24.0 35.7 TeamLoRA 27.4 95.9 86.6 73.1 25.9 37.1
128 LoRA 27.3 95.6 87.4 71.6 25.2 36.8 256 LoRA 26.3 96.0 87.8 71.7 17.5 23.8

32
MoELoRA 27.4 95.5 87.2 72.9 25.1 38.4

64
MoELoRA 26.9 96.2 87.3 71.8 21.8 35.1

TeamLoRA 27.6 95.7 87.5 73.8 26.4 38.8 TeamLoRA 26.9 95.4 88.1 71.9 21.9 35.5

Table 2: Performance of different methods across various tasks with different ranks.

the traditional binary participation (participation
or absence), fuzzy Shapley values permit participa-
tion degrees to range from 0 to 1. The following
equation is the marginal contribution of experts:

ϕi(x;ωi) =

∫

s
(vi(x, wi, s)− vi(x, 0, s)) ds ,

where ϕi(x;ωi) represents the marginal contribu-
tion of expert i with participation degree ωi, and
s denotes the space of possible participation de-
grees for the remaining experts, satisfying

∑
j sj =

1 − ωi and j ̸= i. vi(x, ωi, s) represents the total
payoff from the combined participation {ωi}+ s.

From the perspective of shapley values, the
mechanism of the router can be understood as as-
sessing the average marginal contributions of each
expert across all possible combinations of experts.
This provides a theoretical basis for the allocation
of activation weights and highlights the importance
of considering synergistic effects among experts.
Although calculating shapley values is an NP-hard
problem in practical applications, we can use an
MLP as an approximation module for fuzzy Shap-
ley values, estimating the marginal contributions:

ϕi(x; θS)← Softmax(S(x; θS))i ,

where ϕi represents the fuzzy Shapley value of the
i-th expert and S calculates Shapley value.

To fully capture the competitive dynamics
among experts, we introduce an interaction matrix
that evaluates and adjusts their interactions. This
matrix captures the mutual influences among ex-
perts and adjusts their participation based on Shap-
ley interactions. Specifically, the interaction matrix
M is designed to adaptively adjust each expert’s
participation based on their competitive relation-
ships, as detailed below:

ωi =Mcop(x; θS ,M) =
k∑

j=1

kMijϕj(x; θS) ,

where ωi represents the adjusted optimal degree
of participation, and Mij denotes the element in
the interaction matrix reflecting the influence of
expert j on expert i. The interaction matrix M is
initialized as a learnable unit diagonal matrix to
ensure self-influence during the initial stages, tak-
ing into full account the synergistic effects among
experts while adequately capturing the competitive
relationships. And k is utilized to correct the scal-
ing factor degradation introduced by multi-LoRA
architecture. Ultimately, the output of TeamLoRA
is represented as:

h = xW0 +Mcol(x;A, {Bi}ki=1)⊙Mcop(x; θS ,M),

where ⊙ represents the element-wise product.
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Cop Col Avgr=8 Avgr=16 Avgr=32 Avgr=64

- - 57.65 59.08 59.69 58.88

 - 58.18 59.25 59.77 59.07
-  58.27 59.77 60.24 58.87

  58.31 59.95 60.29 58.94

Table 3: Ablation analysis for collaboration and compe-
tition modules.

4 Experiments

4.1 Benchmark and Setting

Benchmark. All PEFT methods use the 2.5M
training set from 22 datasets effectively organized
by CME (refer to Appendix A) and are compre-
hensively evaluated on tasks across 11 different
tasks: OpenAI-Summarize-TLDR (Stiennon et al.,
2020), IMDB (Maas et al., 2011), ANLI (Nie
et al., 2020), QQP (Wang et al., 2017), RTE (Wang
et al., 2019), WinoGrande (Sakaguchi et al., 2021),
ARC (Clark et al., 2018), WebQA (Li et al., 2016),
NQ (Kwiatkowski et al., 2019), TriviaQA (Joshi
et al., 2017), and MMLU (Hendrycks et al., 2021).
Training Details. We select the LLaMA-2
7B (Touvron et al., 2023) as the base model and
continue pre-training it on the expanded Chinese
LLaMA-2-7B corpus (Cui et al., 2023a) to en-
hances the model’s knowledge capacity and multi-
lingual capability by expanding the vocabulary and
incorporating general corpora. To ensure fairness,
for all LoRA-based PEFT methods, we add param-
eters only to the FFN module and maintain nearly
identical parameter increments within the same ex-
perimental setup to minimize the potential impact
of parameter size on performance. All experiments
are conducted on 8×A800 GPUs, using the same
hyperparameter settings listed in Appendix B.
Comparison of Methods. To evaluate the superi-
ority of TeamLoRA, we select several prominent
PEFT methods, including Prompt-Tuning (Lester
et al., 2021), IA3 (Liu et al., 2022), LoRA (Hu et al.,
2022), DoRA (Liu et al., 2024d), AdaLoRA (Zhang
et al., 2023) and MoSLoRA (Wu et al., 2024).
We also compare methods based on MoE, in-
cluding MoELoRA (Luo et al., 2024) and Hy-
draLoRA (Tian et al., 2024), which encompass
different structural and routing mechanisms. Addi-
tionally, we analyze the state-of-the-art MoE archi-
tectures employed in LLMs, where the design of
DeepSeek-V3(Liu et al., 2024a) integrates a shared
expert with multiple specialized experts, referred

Figure 3: Comparison of different rank setting.

Figure 4: Comparison of different data scales.

to as DSLoRA.
We also conduct evaluations on Llama-3

8B (Dubey et al., 2024) and LLaVA-1.5 7B (Liu
et al., 2024b) to further explore the generalization
ability of the proposed method across different base
models and modality settings.

4.2 Overall Performance

We evaluate the performance of TeamLoRA in a
multi-task learning scenarios using the CME bench-
mark, compared to other PEFT methods as shown
in Table 1. Our observations are summarized as
follows: (i) TeamLoRA (Rank=32) shows the best
or second-best performance across multiple tasks,
with an average score of 60.29, significantly
higher than other PEFT methods. Particularly, it
achieves the best performance on MMLU, demon-
strating TeamLoRA’s strong capability in handling
multi-domain tasks. (ii) Despite a training time
of 28 hours for TeamLoRA (Rank=16), slightly
longer than baseline methods like LoRA, Prompt-
Tuning, and IA3, it achieves competitive average
scores of 59.95 with half the parameter count,
highlighting its efficient parameter utilization. (iii)
Compared to other multi-LoRA architectures, our
approach shows significant performance improve-
ments with less training costs significantly, approxi-
mately 70% of MoELoRA, 76% of MixLoRA, and
66% of DSLoRA. This results demonstrate effec-
tive balance of TeamLoRA between efficiency and
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Figure 5: Deep analysis of router. (a) Forward path of expert. (b) Router load visualization.

Method OAI-Sum IMDB ANLI QQP RTE WinG ARC WQA NQ TQA MMLU Avg.

Llama-3-8B +
LoRAr=32 24.3 95.1 47.2 78.9 80.1 58.3 70.6 34.6 19.3 37.1 52.2 54.34

MoELoRAr=8 24.8 94.9 47.6 79.0 81.0 58.2 69.8 35.1 20.2 40.4 49.2 54.56
TeamLoRAr=8 25.2 94.2 49.7 79.0 81.4 58.3 70.1 36.1 22.2 41.3 52.1 55.42

Table 4: Performance analysis based on different LLM Model.

Method MME MMB MMB-CN SEED POPE SQA-I VQA-T MM-Vet VizWiz Avg.

LLaVA-1.5-7B +
LoRAr=32 1505.2 62.8 53.7 60.2 84.8 67.8 56.9 30.2 48.4 60.01

MoELoRAr=8 1472.7 62.3 53.8 59.5 84.4 68.7 57.1 30.1 48.7 59.80
TeamLoRAr=8 1513.5 62.6 54.0 60.0 85.3 68.7 57.1 31.2 49.4 60.44

Table 5: Performance analysis of MLLM on diverse multimodal benchmarks.

effectiveness.

4.3 Quantitative Analysis

Analysis of Parameter Scales. We explore per-
formance of our approach in multi-task learning
across different parameter scales as shown in Ta-
ble 2. Experiments demonstrate that TeamLoRA
performs exceptionally well across various parame-
ter configurations, indicating that our approach con-
sistently exhibits superior performance compared
to MoELoRA. Notably, with an increase in param-
eter size, LoRA encounters catastrophic forgetting,
as evidenced by a sharp decline in scores for TQA
(close book QA). In contrast, both MoELoRA and
TeamLoRA alleviate this knowledge collapse, re-
flecting the stability of their adaptive mechanisms.
Ablation Analysis. We conduct a study on the
collaborative and competitive modules. As shown
in Table 3, the individual modules and their combi-
nations significantly enhance TeamLoRA’s adapt-
ability in multi-task scenarios. The collaborative
module is based on the “Team” architecture of
knowledge sharing, which facilitates overall ex-
pression among experts, thereby achieving plug-in
knowledge integration. In contrast, the compet-
itive module focuses on the interactions among
experts, adaptively adjusting the model’s prefer-
ence for specific knowledge transfer to downstream
tasks. It is noteworthy that when the number of ex-
perts is 64, the collaborative module exhibited a
slight negative optimization compared to the multi-

LoRA architecture (from 58.88 to 58.87), which
we attribute to the extreme rank settings leading
to gradient norm vanishing (Kalajdzievski, 2023b),
while MoELoRA did not reach this bottleneck due
to its split specialists. This limitation can be fur-
ther mitigated by adjusting the scaling factor —
for example, rsLoRA adopts a scaling strategy of
α/
√
r to maintain consistency between parameter

efficiency and performance, which can be seam-
lessly integrated with TeamLoRA. Under standard
settings, the collaborative and competitive mod-
ules are generally capable of finding near-optimal
configurations, as extreme parameter choices (e.g.,
rank = 64× 4) are rarely selected in practice.

4.4 In-Depth Analysis

Stability Analysis. We explore performance across
varying configurations of expert numbers, as il-
lustrated in Figure 3. Results show a progressive
improvement when increasing the number of ex-
perts from 1 to 4; however, performance declines
when expanding to 8 experts. This indicates that
performance does not always scale positively with
the number of experts — an appropriate number
of experts is essential for balancing efficiency and
effectiveness. In addition, as shown in Figure 4,
TeamLoRA consistently outperforms across differ-
ent data scales, ranging from as little as 10% to the
full dataset. This consistent advantage highlights
the broad adaptability of our proposed method in
multi-task learning scenarios.
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Expert Load Analysis. We observe the expert
paths of MoELoRA across four tasks. The features
exhibit overconfidence (Figure 5a.1) in the model’s
forward path. In contrast, TeamLoRA effectively
learns task-specific models by assigning different
expert modules as plug-in for knowledge combina-
tions (Figure 5a.2). Furthermore, we conduct bal-
anced load testing on 57 tasks in MMLU showed
in Figure 5b.1 (MoELoRA) and Figure 5b.2 (Team-
LoRA). Our approach demonstrate better load bal-
ancing, ensuring greater model stability.
Different Base Models Comparison. To explore
the performance of TeamLoRA on other models,
we replace the base model with the more power-
ful Llama-3 8B (Dubey et al., 2024) and conduct a
comprehensive comparison of the CME benchmark.
Table 4 shows the results of this experiment, where
TeamLoRA consistently displays the best perfor-
mance. This indicates that our approach maintains
its advantages across different base models.
Performance Analysis of MLLM. We further ex-
pand the applicability of our approach by extending
the model from single-modal to multimodal. We
fine-tune the LLaVA-1.5 7B (Liu et al., 2024b)
model and evaluated it on nine benchmark tests,
including MME (Fu et al., 2023), MMB and MMB-
CN (Liu et al., 2023), SEED (Li et al., 2023a),
POPE (Li et al., 2023d), SQA-I (Lu et al., 2022),
VQA-T (Singh et al., 2019), MM-Vet (Yu et al.,
2023), and VizWiz (Gurari et al., 2018). As seen,
TeamLoRA achieves the best performance on the
majority of benchmarks (see Table 5), indicating
that our approach demonstrates strong generaliz-
ability in multimodal scenarios.

5 Conclusion

TeamLoRA introduces an innovative PEFT frame-
work that integrates collaborative and competitive
modules to address the limitations of existing meth-
ods in multi-task learning. While traditional PEFT
approaches like LoRA are resource-efficient, they
often underperform in complex task scenarios. By
treating task-specific LoRA modules as domain ex-
perts, TeamLoRA enables structured collaboration
for efficient knowledge sharing and competition to
encourage specialization and generalization.

This design achieves a balance between effective-
ness and efficiency. On the proposed CME bench-
mark and other standard tasks, TeamLoRA demon-
strates faster inference and superior performance
compared to existing PEFT methods. These re-

sults underscore its potential as a generalizable and
scalable solution for multi-task adaptation. Future
work will further explore game-theoretic strategies
to deepen the collaborative–competitive dynamic.

Limitations

Our limitations and potential risks are as follows:
An excessive number of expert modules. Al-
though TeamLoRA significantly reduces the com-
putational costs associated with multiple LoRA
architectures, having too many expert modules still
leads to an unacceptably high training complexity.
More model Architecture. We have validated the
superiority of TeamLoRA with Transformer-based
autoregressive models, and this advantage can be
further verified with other network architectures.
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Appendix
This section is the appendix for “TeamLoRA:
Boosting Low-Rank Adaptation with Expert Col-
laboration and Competition”, providing additional
technical details.

A CME Benchmark

A.1 Data Organization and Categorization

To evaluate the performance of PEFT in multidi-
mensional task understanding and sensitivity to
domain conflicts, we constructe a large and diverse
composite dataset. The dataset encompasses vari-
ous domains and scenarios and has undergone de-
tailed formatting and content alignment. As shown
in Table 7, the training set organized by CME in-
cludes the following task scenarios: (1) Formal-
ized Closed-Book QA. (2) Closed-Book QA. (3)
Coreference Resolution. (4) Text Generation. (5)
Code Generation. (6) Mathematical Generation.
(7) Question Answering. (8) Complex Language
Modelling. (9) Natural Language Inference. (10)
Sentiment Analysis. (11) Summarization.

Given the significant impact of data mixing ra-
tios on model generation quality, we conducte ex-
periments with small sample data to assess how
different ratios affect generation quality. These
findings are then extrapolated to a training set with
2.5M samples to ensure diversity.

A.2 Data Format

Our dataset is organized in a triplet format, com-
prising the following three components:

• Task Instruction: Instructions for the task,
including objectives and format requirements.
Note that some task scenarios may not have
explicit Task Instructions; in such cases, the
Task Question encompasses all necessary in-
formation.

• Task Question: A complete and standardized
description of the question.

• Response: The standard answer based on the
Task Instruction and Task Question.

For data originally not formatted as QA, manual
rewriting is performed to meet the triplet structure
requirements.

A.3 Evaluation

We extracte 11 different task types from the dataset
as benchmark for evaluation. Detailed descriptions

and classification information for each task are pro-
vided in Table 8. These tasks cover a variety of
response formats and scenarios to thoroughly test
the performance and adaptability of models.

B Training Settings

For all LLaMA series fine-tuning, TeamLoRA uses
a unified set of hyperparameters:

Hyperparameter Value
Learning Rate 0.0001

Batch Size 64
Number of Epochs 1

Optimizer AdamW
Weight Decay 0.0
Dropout Rate 0.05

Warm-up Ratio 0.03
Max Sequence Length 2048

α 4 ∗ rB
Target Module up, gate, down

Table 6: Basic Training Hyperparameters of LLaMA

Multimodal Large Language Models (Huang
et al., 2023; Achiam et al., 2023b; Zhang et al.,
2024a, 2025; Bai et al., 2025) have demonstrated
remarkable potential in tasks such as visual ground-
ing, image understanding, and caption genera-
tion (Zhang et al., 2021; Li et al., 2022, 2023c;
Yuan et al., 2024). In LLaVA-1.5, we skipp the fea-
ture alignment stage and directly tested the perfor-
mance of TeamLoRA during the visual instruction
tuning stage. The only difference from LLaMA
is that we assigned Lr1 = 0.00002 to the projec-
tor, allocated Lr2 = 0.0002 to the LoRA part of
TeamLoRA, and increased B = 128 to maintain
consistency with the official implementation.

C Compared Methods

To evaluate the superiority of TeamLoRA, we se-
lect several prominent PEFT methods, including
Prompt-Tuning (Lester et al., 2021), IA3 (Liu
et al., 2022), LoRA (Hu et al., 2022), DoRA (Liu
et al., 2024d), AdaLoRA (Zhang et al., 2023) and
MoSLoRA (Wu et al., 2024). We also compare
methods based on MoE, including MoELoRA (Luo
et al., 2024) and HydraLoRA (Tian et al., 2024),
which encompass different structural and routing
mechanisms. Additionally, we analyze the state-
of-the-art MoE architectures employed in LLMs,
where the design of DeepSeek-V3(Liu et al., 2024a)
integrates a shared expert with multiple specialized
experts, referred to as DSLoRA.

13635



Task Name #Train Task Type
ARC (Clark et al., 2018) 4239 Formalized Closed-Book QA

Natural Questions (Kwiatkowski et al., 2019) 79168 Closed-Book QA
TriviaQA (Joshi et al., 2017) 61688 Closed-Book QA
WebQA (Chang et al., 2022) 36174 Formalized Closed-Book QA

WinoGrande (Sakaguchi et al., 2021) 40398 Coreference Resolution
Alpaca-GPT4-data (Peng et al., 2023) 90000 Text Generation

BELLE (BELLEGroup, 2023) 514062 Text Generation
Code-Alpaca-20K (Chaudhary, 2023) 18019 Code Generation

LIMA-sft (Zhou et al., 2024) 1330 Question Answering
MathInstruct (Xiang Yue, 2023) 259418 Mathematical Generation

ruozhiba (Cui et al., 2023b) 4408 Question Answering
stem-zh-instruction (Cui et al., 2023b) 230567 Question Answering

databricks-dolly-15K (Conover et al., 2023) 15011 Complex Language Modelling
Open-Platypus (Lee et al., 2023) 24926 Complex Language Modelling

OpenOrca (Mukherjee et al., 2023) 331632 Complex Language Modelling
SlimOrca (Lian et al., 2023) 484065 Complex Language Modelling

ANLI (Nie et al., 2020) 81433 Natural Language Inference
QQP (Wang et al., 2018) 72770 Natural Language Inference
RTE (Dagan et al., 2005) 2490 Natural Language Inference

Emotion (Saravia et al., 2018) 18000 Sentiment Analysis
IMDB (Maas et al., 2011) 45000 Sentiment Analysis

OpenAI-Summarize-TLDR (Stiennon et al., 2020) 116722 Summarization

Table 7: Detailed description of the training set in the CME benchmark

Prompt-Tuning introduces a novel method for
improving the performance and stability of pre-
trained LLM adaptation. It combines continuous
prompt embeddings to the input with standard dis-
crete prompts. These continuous prompts are all
learned through backpropagation, allowing them
to dynamically adjust and compensate for minor
variations in the discrete prompts, thus enhancing
training stability.

IA3 is a PEFT method for pre-trained LLMs. By
injecting learned vectors into the internal activa-
tion of the network’s layers,it enables the model
with minimal additional parameters. The method
is accomplished by applying these vectors to the
keys and values in the self-attention and encoder-
decoder attention mechanism, as well as the in-
ternal activation to the position-wise feedforward
network.

AdaLoRA expands on the idea behind LoRA by
introducing an element: adaptive budget allocation.
It adapts the rank of every incremental matrix by
modulating its importance, instead of sharing pa-
rameter budget evenly among all weight matrices.
This is achieved through Singular Value Decompo-
sition (SVD) parameterization and an importance

score that considers the contribution of each triplet
to the model performance. AdaLoRA is able to
learn from data of low-budget and it enhances the
performance effectively by proposing a component
scheduling mechanism that prevents overfitting.

LoRA presents a way to fine-tune LLMs effi-
ciently for various tasks. Of updating all the pre-
trained parameters, LoRA integrates trainable low
rank matrices into each layer of the Transformer ar-
chitecture , which effectively fine-tunes the model
without adding extra inference delay. This method
reduces memory requirement significantly than the
full fine-tuning, making it suitable for use in real
world applications.

DoRA. Based on weight decomposition anal-
ysis, DoRA propose Weight-Decomposed Low-
Rank Adaptation method that enhances learning
efficiency by decomposing pre-trained weights and
fine-tuning the magnitude and direction compo-
nents separately.

MoSLoRA. MoSLoRA draws inspiration from
the subspace structure seen in LoRA, introduces
a mixer matrix that can be fine-tuned to enhance
its effectiveness. By dividing the low rank seg-
ment into subspaces and merging them through a
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Task Name #Test Evaluation Method
ARC (Clark et al., 2018) 887 Accuracy

Natural Questions (Kwiatkowski et al., 2019) 1751 Jaccard
TriviaQA (Joshi et al., 2017) 1557 Jaccard
WebQA (Chang et al., 2022) 1800 Accuracy

WinoGrande (Sakaguchi et al., 2021) 1200 Accuracy
MMLU (Hendrycks et al., 2021) 13985 Accuracy

ANLI (Nie et al., 2020) 1200 Accuracy
QQP (Wang et al., 2018) 1200 Accuracy
RTE (Dagan et al., 2005) 231 Accuracy
IMDB (Maas et al., 2011) 1000 Accuracy

OpenAI-Summarize-TLDR (Stiennon et al., 2020) 215 Rouge-L

Table 8: Detailed description of the evaluation dataset

mixer, MoSLoRA captures more nuanced infor-
mation, leading to improved performance across
various tasks. Its compatibility with quantization
methods and minimal additional parameters make
it a feasible and versatile approach.

HydraLoRA. HydraLoRA proposes a PEFT
method which breaks the symmetry of traditional
LoRA. In HydraLoRA, instead of a single A and B
matrix for every pair, HydraLoRA share the same A
but multiple Bs based on each task or sub-domain.
Meanwhile, HydraLoRA exploits MoE framework
to route inputs in a dynamic manner into the right
B matrix during training and inference. This does
not require domain expertise or no-interference be-
tween tasks and this results in better performance
on complex domains.

MoELoRA. MoELoRA innovates with a new
PEFT method for LLMs, relying on the Mixture
of Experts (MoE) architecture. It achieves more
flexibility in matching the requirements of down-
stream tasks by viewing different LoRA modules
as experts and dynamically combining them using
a gating network.

DSLoRA. Represented by DeepSeek-V3 (Liu
et al., 2024a), the MoE framework exhibits remark-
able performance. We explore this structure, char-
acterized by the coexistence of shared and special-
ized experts, within the multi-LoRA architecture
and named it DSLoRA.

D Additional experiments and analysis

D.1 Knowledge overlap in MoELoRA
We analyze the expert behavior of MoELoRA and
make the following observations: (i) Under condi-
tions of load balancing loss and non-sparse gating,
inference can still achieve scores close to the per-
formance ceiling through sparse gating. This result

is consistent with Table 9, indicating the presence
of a certain degree of overconfidence in MoELoRA.
(ii) The performance using a single static expert
suggests that there may not be significant differ-
ences between experts, which contradicts the antic-
ipated behavior of the MoE architecture and could
potentially serve as a bottleneck affecting the per-
formance of MoELoRA.

Expert ID 1 2 3 4 Top-1 All

Perf↑ 41.69 47.14 44.37 39.83 58.78 59.96

Table 9: Expert redundancy analysis of MoELoRA.

D.2 Computational Costs and Loss
Convergence

Figure 6 illustrates the advantages of TeamLoRA
over MoELoRA in terms of training and inference
times. Specifically, TeamLoRA reduces training
time by 30% and increases inference speed by
40%, as shown in Figure 6(a). Additionally, the
loss convergence curve in Figure 6(b) demonstrates
that TeamLoRA achieves lower loss values more
quickly, highlighting its optimization in training
efficiency.

Lo
ss

(a) (b)

Figure 6: Visualization of Efficiency and Loss. (a)
describes the relative training and inference latency of
TeamLoRA and MoELoRA compared to LoRA. (b)
displays the loss convergence.
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