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Abstract

Due to the presence of the natural gap be-
tween Knowledge Graph (KG) structures and
the natural language, the effective integration
of holistic structural information of KGs with
Large Language Models (LLMs) has emerged
as a significant question. To this end, we pro-
pose a two-stage framework to learn and ap-
ply quantized codes for each entity, aiming for
the seamless integration of KGs with LLMs.
Firstly, a self-supervised quantized representa-
tion (SSQR) method is proposed to compress
both KG structural and semantic knowledge
into discrete codes (i.e., tokens) that align the
format of language sentences. We further de-
sign KG instruction-following data by view-
ing these learned codes as features to directly
input to LLMs, thereby achieving seamless
integration. The experiment results demon-
strate that SSQR outperforms existing unsu-
pervised quantized methods, producing more
distinguishable codes. Further, the fine-tuned
LLaMA2 and LLaMA3.1 also have superior
performance on KG link prediction and triple
classification tasks, utilizing only 16 tokens
per entity instead of thousands in conventional
prompting methods1.

1 Introduction

Large Language Models (LLMs), such as
LLaMA (Touvron et al., 2023a,b) and GPT-4 (Ope-
nAI, 2023), are initiating considerable transforma-
tions within the fields of artificial intelligence (AI)
and natural language processing (NLP). They have
achieved substantial success (Peng et al., 2023;
Wang et al., 2024; Xu et al., 2024b; Luo et al.,
2025), and thus, have been regarded as potential
pathways towards achieving the ultimate goal of
artificial general intelligence (Yang et al., 2024a).
However, the specific training strategies employed

∗Corresponding author.
1The source codes are available at: https://github.

com/DeepReasoning/SSQR

Figure 1: Illustration of different strategies to integrate
KGs with LLMs. (a) The direct method utilizes (sam-
pled) graph structures and semantic text as inputs. (b)
Our method for seamlessly integrating KGs with LLMs
using learned quantized and discrete codes.

by LLMs render them black-box models and strug-
gle to retrieve the relevant facts necessary for the
correct answer (Pan et al., 2024), resulting in low
performance in complex reasoning scenarios (Xu
et al., 2025, 2024a). Furthermore, knowledge hal-
lucination becomes a serious issue, which may
generate wrong statements that conflict with re-
ality (Bang et al., 2023; Ji et al., 2023). It presents
considerable risks, particularly in specialized fields
like law (Cui et al., 2023) and healthcare (Lin et al.,
2025; He et al., 2025).

Knowledge Graphs (KGs), also known as knowl-
edge bases, organizes massive amounts of factual
knowledge in a structured and interpretable man-
ner by the triple form of (subject, relation, object).
They can serve as a vital supplement to LLMs (Pan
et al., 2024), providing an alternative way to ad-
dress hallucinations and generate more precise an-
swers using continual fine-tuning (Zhang et al.,
2024b; Hron et al., 2024) or retrieve-based rea-
soning (Sun et al., 2024; Tan et al., 2024; Zhang
et al., 2024a). However, the KGs’ structure is in a
graph form, which markedly differs from the dis-
crete token format of the natural language in LLMs.
Thus, due to the presence of this natural represen-
tation gap, the effective integration of comprehen-
sive structural information of KGs with LLMs has
emerged as a significant question.

As shown in Figure 1 (a), one straightforward
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Figure 2: The statistics of 2-hop sampled neighbors and
needed tokens (by LLaMA2) for entities in FB15k-237.

method involves converting relevant triples into
textual prompts and then feeding them into LLMs,
combined with semantic text. This simple strategy
would necessitate a substantial number of tokens,
causing an enormous resource burden. Supposing
the average degree of an entity is d, the number of
its neighbors grows exponentially and reaches dh in
the h-hop. While certain sampling strategies, such
as random walk (Ko et al., 2024) and path prun-
ing (Tan et al., 2024) have been introduced, a con-
siderable computational load also exists. As shown
in Figure 2, when only sample 20% 2-hop neigh-
bors in FB15k-237 (Toutanova and Chen, 2015)
dataset, the median and mean number of neighbors
for entities are about 10 and 107, which requires
median and mean tokens of about 300 and 3K, re-
spectively. When with 30% sampling, even the
median needed tokens reach about 2.5K per entity.
Considering that KG tasks may involve multiple en-
tities, even the most advanced long-context LLMs
may face challenges in handling them. Meanwhile,
employing KGs’ substructures through sampling
could disrupt the holistic modeling of the entire
graph, potentially resulting in information loss and
sub-optimal performance for downstream tasks.

Another alternate strategy involves integrating
continuous KG embedding with LLMs by a learn-
able adapter (Zhang et al., 2024b), introducing new
networks in the framework. It requires additional
precise alignment between the different latent rep-
resentation spaces of KG embeddings and LLMs.
Considering the above context, we aim to explore
the potential to bridge the natural gap between KG
structure and natural language and then integrate
KGs with LLMs. Inspired by the early fusion strat-
egy in multimodal LLMs (Team, 2024), the general
idea of this study is to learn compressed and dis-
crete entity codes (i.e., tokens), rather than continu-
ous embeddings, by quantized techniques to repre-
sent holistic structural and semantic information of

entities in KGs. They have the same discrete form
of natural language, e.g., the quantized codes in
Figure 1 (b) align the format of language sentences.
Thus, seamlessly integrating KGs with LLMs can
be realized by directly inputting the learned codes
into LLMs, merely requiring an expansion of the
LLMs’ tokenizer vocabulary and eliminating the
need for any other framework modifications.

Although several studies have conducted quan-
tized representations on KGs (Galkin et al., 2022;
Chen et al., 2023; Li et al., 2023), they universally
employ an unsupervised approach to select anchors
to represent entities, failing to the holistic struc-
tural and semantic modeling. In this study, we first
introduce a self-supervised quantized representa-
tion for KGs, aiming to learn discrete codes for
each entity that can reconstruct KG structures and
align with semantic texts. A graph convolutional
network (GCN) is used as an encoder to model
neighbor structures of KGs, and vector quantiza-
tion (Van Den Oord et al., 2017) is implemented for
the KG quantized representation learning. Further,
based on learned entity codes, we construct specific
instructions for KG tasks, which can be seamlessly
integrated with LLMs, presenting a new paradigm
to employ LLMs in KG applications. In summary,
our contributions lie in the following three folds:
• We propose a self-supervised quantized repre-

sentation (SSQR) method that is capable of acquir-
ing both KG structural and semantic knowledge.
To our knowledge, this is the first study for KG
quantization learning in a self-supervised manner.
• We propose the first study that utilizes the

derived codes to seamlessly integrate KGs with
LLMs, which is achieved by viewing codes as input
features and designing KG instruction-following
data. It has extensive potential applications, e.g.,
KG link prediction and triple classification.
• From the experiment view, SSQR exhibits su-

perior performance compared to current unsuper-
vised quantized methods and the learned codes
are more distinguishable. Besides, using only 16
codes for each entity, the fine-tuned LLaMA2 and
LLaMA3.1 have superior performance on KG link
prediction and triple classification tasks.

2 Quantized Representation for KGs

Formally, a KG can be represented as G =
{E ,R,F}, which is the combination of entities
E , relations R, and triples F ⊆ E ×R× E . Each
triple is in the form of (h, r, t). For each entity
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Figure 3: The overall architecture of our study. (a) is for SSQR learning. (b) is for instruction tuning for KG tasks,
where the learned quantized representations serve as features. Icons and represent the status of the module
during training, indicating if it is frozen or being updated, respectively.

e, it has the structural and semantic information,
where we utilize the entity neighbors N (e) and its
textual description Te to describe, respectively. Al-
though here we only use one-order neighbors N (e)
for demonstration, our model is capable of captur-
ing high-order structure information by multi-layer
GCNs. In the following contents, we will detailedly
describe the structural and semantic modeling, as
well as the quantized representation for KGs.
Structural Modeling. Here, we utilize simple but
effective GCNs (Lin et al., 2022) to embed the
structural information of KGs, which follows the
iterative message-passing strategy to update the
entity embeddings from l-th layer to (l+1)-th:

el+1
j = Wl

1ej +
∑

(ei,r)∈N (ej)

Wl
2m

l
ei,r,ej , (1)

where e is the embedding of the entity and the
W denotes the transformation matrix. m is the
message information of the specific edge. Here, we
follow the composition operation (Vashishth et al.,
2020) for calculation:

ml
ei,r,ej = eli ∗ vl

r, (2)

where v is the relation embedding and ∗ is element-
wise multiplication for two vectors. Between dif-
ferent layers, relation representation is updated by
linear transformation: vl+1 = Wl

relv
l. After L

GCN layers, the entity representation eL and rela-
tion representation vL are all obtained.
Quantized Representation. Here, we introduce
the quantized representation for discrete KG rep-
resentation. For its implementation, inspired by
VQ-VAE (Van Den Oord et al., 2017) and VQ-
GAN (Esser et al., 2021), we first maintain a dis-
crete cookbook X = [x1,x2, · · · ,xM ], where

each xm ∈ Rd is a learnable vector to represent
code m. Using this, a d-dimensional vector e can
be quantized by matching the nearest code:

Q(e) = xi, where i = argmin
m

∥e− xm∥22, (3)

where Q is quantized function. In this way, each
vector can be assigned to only one code, which
may lack representation capacity and distinguisha-
bility for KG embedding. So we first transform the
learned entity embedding eL to multiple times of
dimension d, i.e., FFN(eL) ∈ RN×d. In this way,
each entity can be assigned to a code sequence with
the length of N . Thus, each entity can be repre-
sented to [q1, q2, · · · , qN ] by Eq. (3), where qn is
the code index in the codebook. The quantized
representation vector can be:

qe = WqQ(eL),Q(eL) = [xq1 ,xq2 · · ·xqN ]. (4)

Based on this, the whole model can be optimized
in an end-to-end manner by the straight-through
gradient estimator (Van Den Oord et al., 2017):

Lq =
∥∥sg[eL]− qe

∥∥2
2
+ β

∥∥eL − sg[qe]
∥∥2
2
, (5)

where sg stands for stop gradient, which is char-
acterized by its identity function during forward
computation and has zero partial derivatives for
backpropagation. ∥sg[eL]− qe

∥∥2
2

is codebook loss
assuring the codes are close to encoder’s outputs
and ∥eL− sg[qe]

∥∥2
2

is commit loss encouraging the
encoder generating outputs close to codes. β is a
hyper-parameter to trade off the two terms.
Structure Reconstruction. To inject the holistic
structure information into the quantized represen-
tations, we hope the learned entity codes can re-
construct KG structures. But directly predicting
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adjacency matrix as is done in research for homo-
geneous graphs (Yang et al., 2024b) is inappropri-
ate, because KGs’ structures are more heteroge-
neous and sparse. Thus, based on quantized em-
beddings, we verify the validity of each triplet (h,
r, t) and implicitly reflect the holistic KG, where
ConvE (Dettmers et al., 2018) is implemented:

s(h, r, t) =
[
Flat(Conv(q̄h∥v̄L

r ))
]⊤

Wcqt. (6)

Flat and Conv are the flatten and 2D convolution
operations, respectively. q̄ and v̄ are transforma-
tion matrices for embeddings q and v. The final
score of triple (h, r, t) can be regularized by the
sigmoid function σ: ỹ = σ(s(h, r, t)). Finally,
compared with actual label y, the structure model-
ing can be learned by binary cross-entropy loss:

Lst=− 1

|F|
∑

i

[yi log ỹi+(1−yi) log(1−ỹi)]. (7)

Semantic Distilling. For semantic modeling, our
goal is to ensure that the learned codes for each
entity can imply the information of its correspond-
ing text descriptions. Considering the substantial
success of LLMs, we introduce a simple yet effec-
tive distilling strategy to learn from them. Specif-
ically, we first obtain text embeddings of KG en-
tities by LLMs: te = LLM(Te). Here, we utilize
the text-embedding-3-large as the LLM by Ope-
nAI API 2 considering its strong ability for text
embeddings. It embeds each text sequence into a
3072-dimension vector. Based on this, we make the
model have the ability to align its semantic embed-
ding through the learned quantized output, where
the loss of mean square error is utilized:

Lse = − 1

|E|
∑

i

∥∥Wsqei − tei
∥∥2
2
. (8)

In this way, we distil the semantic knowledge from
the LLMs to our discrete codes of GCN outputs.

On the whole, the entire quantized representa-
tion model can be updated by the combination of
quantized, structural, and semantic loss:

L = Lq + Lst + Lse. (9)

3 Tuning LLMs with SSQR

Employing the quantized representation, each en-
tity in KGs can be illustrated by codes of length N .

2https://platform.openai.com/docs/guides/embeddings

Instruction: This is a knowledge graph completion
task, which needs to predict the tail entity for an
incomplete query triplet.
Input: The query triplet is (h, r, ?).
The quantized representation of entity h is: [Code(h)]
The answer candidates and corresponding quantized
representations are as follows:
entity 1, [Code(entity 1)]
· · ·
entity 20, [Code(entity 20)]
Please generate quantized representations of the top-
3 potential answers, ranked from highest to lowest:
Output: 1. [Code(candidate 1)]
2. [Code(candidate 2)]
3. [Code(candidate 3)]

Table 1: Instruction format for link prediction, where
learned codes serve as entity features to help ranking.

This can be perceived as the same form of natural
language, thereby facilitating its seamless integra-
tion with LLMs. Every learned code can serve as a
new token, necessitating only an expansion of the
token vocabulary within the LLM’s tokenizer.

This paradigm can be applied to various KG
tasks, by constructing corresponding instruction
data, where the learned entity codes could act as
features. For example, the KG link prediction task
can be done using the instruction form as shown
in Table 1. Specifically, the code sequence of en-
tity e can be Code(e): “[CODEq1] [CODEq2] · · ·
[CODEqN ]”. For each query (h, r, ?), we pro-
vide the codes Code(h) for query head h. Besides,
we give several answer candidates along with their
associated codes for LLM ranking. Candidates
can be obtained by conventional KG embedding
models, e.g., TransE (Bordes et al., 2013) and
CompGCN (Vashishth et al., 2020). The goal is
to predict the actual ranking list of candidates us-
ing their discrete codes. The detailed instructions
for triple classification are described in Section C
of the Appendix. For the LLM fine-tuning, the
next token prediction is carried out based on the
instruction I and previously generated text tokens:

Lllm = −
N∑

n=1

log
(
xn|x<n, I

)
. (10)

4 Experiments and Analysis

To verify the effectiveness of the proposed SSQR
and its ability to integrate with LLMs, We carry out
experiments on the KG link prediction and triple
classification tasks, where the popular datasets
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(a) Original text embedding.
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(b) SSQR.
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(c) SSQR w/o GCN.
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(d) SSQR w/o semantics.

Figure 4: The cosine similarity of quantized representations on the WN18RR dataset (sampled 8 entities).

Table 2: The results of baselines are from Li et al. (2023).
† means the improvement of SSQR compared to the best
performance in each metric. ‡ means the ablation results
compared to the results of SSQR.

Model
WN18RR FB15k-237

MRR Hits@10 MRR Hits@10

NodePiece 0.403 0.515 0.256 0.420
+RandomEQ 0.425 0.522 0.263 0.425

EARL 0.440 0.527 0.310 0.501
+RandomEQ 0.442 0.536 0.308 0.502

SSQR 0.483 0.578 0.361 0.545
∆ (↑)† 9.28% 7.84% 16.45% 8.57%

w/o GCN 0.479 0.577 0.309 0.482
∆ (↓)‡ 0.83% 0.17% 14.40% 11.56%
w/o sem 0.447 0.521 0.347 0.528
∆ (↓)‡ 7.45% 9.86% 3.88% 3.12%

WN18RR (Dettmers et al., 2018) and FB15k-
237 (Toutanova and Chen, 2015) as well as FB15k-
237N (Lv et al., 2022) are utilized. For SSQR, a
2-layer GCN is utilized as the encoder. β is set to
0.25 in the experiment. The embedding dimension
is set to 200 as default. The number of codebook
M and codes for each entity N is set to 2048 and
32. The maximum number of training epochs is
800. For LLM fine-tuning, LLaMA2 (7B) and
LLaMA3.1 (8B) are utilized using M as 2048 and
N as 16 for computation efficiency. The query for
head prediction (?, r, t) is transformed to the tail
prediction by adding reverse relation of r. The
mean reciprocal rank (MRR) and Hits@k values
are set as evaluation metrics for model performance.
Moreover, the triple classification task employs ac-
curacy, precision, recall and F1-score as metrics.
More detailed settings are shown in the Appendix.

4.1 SSQR Results

We compare the performance of our SSQR
with three unsupervised methods, i.e., Node-
Piece (Galkin et al., 2022), EARL (Chen et al.,
2023), and random entity quantization (RandomEQ

for short) (Li et al., 2023), for KG quantized repre-
sentations. The results are given in Table 2.

As can be observed, SSQR achieves signifi-
cant performance improvement against baselines,
which has 9.28% and 7.84% improvements com-
pared with the previous optimal performance on the
WN18RR dataset. When at the FB15k-237 dataset,
the improvements are even better, i.e., 16.45% and
8.57%. Although these unsupervised methods are
simple and efficient for implementation, they fail
to capture the structures of KGs. In contrast, our
proposed self-supervised strategies would provide
an effective way for quantized representations for
KG structure learning.

4.2 SSQR Result Analysis

Ablation Studies. We carry out the ablation studies
to verify the effectiveness of each module in SSQR
as the bottom part of Table 2. Generally, the per-
formance of link prediction degrades when GCN
or semantic distilling is removed, but the extent of
degradation varies across different datasets. It can
be seen that the GCN encoder is more important
for the FB15k-237 dataset (14.40% and 11.56%
decline), while semantic information has more im-
pact on WN18RR (7.45% and 9.86%). This may
be due to the fact that FB15k-237 contains a rich
KG structure which requires GCN to capture, while
the semantic text is more important for WN18RR
to make up for the defects caused by the lack of
rich structural information.
Relevance among Entity Codes. We also calcu-
late the cosine similarity of quantized representa-
tion in Figure 4, including the original text em-
bedding, SSQR, SSQR w/o GCN, and SSQR w/o
semantics. When using only text embeddings, the
similarities are all small positive values. SSQR w/o
GCN has similarities that are all close to 1. These
phenomena indicate that entity representations are
in a small corner of the space (i.e., anisotropic),
where the representation space is not fully utilized
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(a) WN18RR dataset. (b) FB15k-237 dataset.

Figure 5: The effects of codebook length (M ) and se-
quence length (N ) for each entity.

for efficient representation. SSQR solves this prob-
lem to a certain extent, with a greater range and
variety of similarities. Removing semantic infor-
mation would diminish that advantage.
Impacts of M and N . The number of codebooks
and sequence lengths for codes, i.e., M and N , are
vital hyper-parameters for SSQR. We explore their
impacts in Figure 5. Generally, larger M and N
would lead to better performance as they increase
the modeling ability of SSQR. In the WN8RR
dataset, N has a greater impact on M , indicating
the necessity of a large N for holistic and distin-
guishable representations. It may be caused by the
sparser structure and more entities in the WN18RR.
Distinguishability of SSQR. Following Ran-
domEQ, we calculate the general entropy and Jac-
card distance to show codes-level and codewords-
level distinguishability, respectively. For general
entropy, SSQR has 16.76 and 15.27 on WN18RR
and FB15k-237 datasets, similar to RandomEQ
(16.75/15.27) and higher than that of NodePiece
(15.94/15.26) and EARL (8.20/14.50). It shows
that our method has more diverse entity codes and
better entity differentiation ability than other quan-
tization methods. The Jaccard distances of each
model are shown in Figure 6. RandomEQ and
SSQR have high values that are far better than those
of NodePiece and EARL. RandomEQ is superior
on the FB15k-237 dataset but SSQR performs bet-
ter on the WN18RR dataset. In summary, SSQR
exhibits a robust capacity to distinguish different
entities and effectively represent KGs.

4.3 Quantized Representations with LLMs

Link Prediction. For fine-tuning, we utilize
the pre-trained AdaProp (Zhang et al., 2023) to
generate 20 candidates for each query as it has
strong and balanced performance on most KG
tasks. For comparison, we selected the current
advanced embedding models, like TransE (Bordes
et al., 2013), CompGCN (Vashishth et al., 2020),
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(a) WN18RR dataset.
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(b) FB15k-237 dataset.

Figure 6: The mean Jaccard distance between codes of
a specific entity and its k nearest ones.

AdaProp (Zhang et al., 2023), MA-GNN (Xu
et al., 2023), TCRA (Guo et al., 2024a), and Dif-
fusionE (Cao et al., 2024). Besides, we include
five advanced LLM-based methods for more direct
comparison, including KICGPT (Wei et al., 2023),
CSProm-KG-CD (Li et al., 2024), ARR (Chen
et al., 2024), KG-FIT (Jiang et al., 2024), and
MKGL (Guo et al., 2024b).

The results of link prediction are shown in Ta-
ble 3. It can be observed that SSQR with LLaMA2
or LLaMA3.1 is obviously superior in KG link pre-
diction against general embedding methods. Com-
pared with the previous state-of-the-art MA-GNN,
SSQR with LLaMA2 achieves about 4.60%, 8.09%,
4.39%, -0.88% and 18.47%, 32.62%, 18.31%,
4.92% improvement in two datasets, respectively.

Compared with LLM-based methods, SSQR-
LLaMA2 also shows competitive performance. It
is better than KICGPT, CSProm-KG-CD, and Chat-
GPT. Even KICGPT achieves good results on the
FB15k-237 dataset, it can also be raised by 8.98%,
14.37%, 9.60%, and 7.76%. For the KG-FIT
(HAKE), it also has 6.87%, 12.30%, 3.87%, and
-3.16% improvements on the WN18RR dataset.
Although there is a slight deficiency in terms
of Hits@10, improvements on other metrics are
high. Meanwhile, SSQR-LLaMA3.1 is better than
SSQR-LLaMA2, demonstrating that learned quan-
tized representations can be used for a more pow-
erful LLM to get better performance. From all the
results, our methods generally achieve a greater im-
provement in the Hits@1 metric, which is caused
by the candidate selection and ranking strategies we
used in LLM fine-tuning. The candidate selection
model may have limited ability, but our method has
a strong ability to select the correct answer from
all candidates. This demonstrates that our method
has good scalability and can be further improved
with more accurate candidate selection models.
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Table 3: The experiment results of general embedding methods and LLM-based methods for KG link prediction.

Model WN18RR FB15k237

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10

General Embedding Methods
TransE (Bordes et al., 2013) 0.223 0.014 0.401 0.529 0.330 0.231 0.369 0.528
CompGCN (Vashishth et al., 2020) 0.479 0.443 0.494 0.546 0.355 0.264 0.390 0.535
AdaProp (Zhang et al., 2023) 0.562 0.499 – 0.671 0.417 0.331 – 0.585
MA-GNN (Xu et al., 2023) 0.565 0.507 0.592 0.679 0.379 0.282 0.415 0.569
TCRA (Guo et al., 2024a) 0.496 0.457 0.511 0.574 0.367 0.275 0.403 0.554
DiffusionE (Cao et al., 2024) 0.557 0.504 – 0.658 0.376 0.294 – 0.539

LLM-based Methods
KICGPT (Wei et al., 2023) 0.549 0.474 0.585 0.641 0.412 0.327 0.448 0.554
CSProm-KG-CD (Li et al., 2024) 0.559 0.508 0.578 0.660 – – – –
ARR (Chen et al., 2024) 0.521 – 0.607 – 0.398 – 0.436 –
KG-FIT (Jiang et al., 2024) 0.553 0.488 0.595 0.695 0.362 0.275 0.485 0.572
MKGL (Guo et al., 2024b) 0.552 0.500 0.577 0.656 0.415 0.325 0.454 0.591

SSQR-LLaMA2 0.591 0.548 0.618 0.673 0.449 0.374 0.491 0.597
SSQR-LLaMA3.1 0.598 0.559 0.618 0.675 0.459 0.393 0.491 0.597

Table 4: The experiment results of the triple classifica-
tion on FB15k-237N dataset. The results of baselines
are taken from Zhang et al. (2024b).

Model Acc P R F1

TransE (Bordes et al., 2013) 0.697 0.708 0.671 0.689
DistMult (Yang et al., 2015) 0.587 0.590 0.568 0.579
RotatE (Sun et al., 2019) 0.684 0.692 0.664 0.678

Alpacazero-shot 0.561 0.533 0.974 0.689
GPT-3.5zero-shot 0.602 0.866 0.240 0.376
KG-LLaMA (Yao et al., 2023) 0.748 0.674 0.962 0.793
KG-Alpaca (Yao et al., 2023) 0.699 0.627 0.983 0.766
KoPA (Zhang et al., 2024b) 0.777 0.708 0.941 0.808

SSQR-LLaMA2 0.794 0.757 0.867 0.808
w/o SSQR 0.754 0.699 0.891 0.783
∆ -5.13% -7.71% +2.85% -3.07%

SSQR-LLaMA3.1 0.798 0.759 0.872 0.811
w/o SSQR 0.767 0.711 0.901 0.795
∆ -3.77% -6.34% +3.41% -2.03%

Triple Classification. Beyond the link prediction
task, we conduct experiments on triple classifica-
tion on the FB15k-237N dataset. The results are
shown in Table 4, where our method outperforms
general embedding methods and other LLM-based
baselines. For the advanced KoPA (Zhang et al.,
2024b) model, the performance in the F1-score
metric is comparable to that of SSQR. However,
the accuracies of SSQR show a significant improve-
ment, i.e., 0.794/0.798 vs. 0.777, demonstrating
the effectiveness of integrating SSQR with LLMs.

4.4 Insights of LLM Fune-tuning

Ablation Studies. We carry out ablation studies
to verify the effectiveness of quantized represen-
tations for LLM tuning. The results are shown

Table 5: The ablation results for the link prediction task.

Model MRR Hits@1 Hits@3 Hits@10

WN18RR
SSQR-LLaMA2 0.591 0.548 0.618 0.673

w/o SSQR 0.541 0.495 0.603 0.668
∆ (↓) 8.46% 9.67% 2.43% 0.74%

FB15k-237
SSQR-LLaMA2 0.449 0.374 0.491 0.597

w/o SSQR 0.401 0.322 0.441 0.589
∆ (↓) 10.69% 13.90% 10.18% 1.34%

in Table 5 and the bottom part of Table 4, where
w/o SSQR means only utilizing the entity’s name
for fine-tuning and removing learned entity codes.
For the link prediction task, there is a large perfor-
mance drop, especially in the MRR, Hits@1, and
Hits@3 metrics. A similar pattern is also present in
the triple classification task. We observe that when
under the w/o SSQR setting, LLMs have overfitting
issues, where their performance on training sets is
very high but fails to generalize to valid and test
sets. This demonstrates that the learned discrete
codes are distinguishable and representative for dif-
ferent entities, thereby allowing their utilization as
features to assist KG tasks in LLMs.
Impacts of M and N for LLM Tuning. We ex-
plore the impacts of M and N for LLM tuning, the
results are shown in Figure 7. First, we present
the results of Original, which are the original re-
sults of AdaProp. It is shown that all other results
are better than those of AdaProp, showing it is
effective for LLM fine-tuning with quantized repre-
sentations. The settings with N=16 and M=2048
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Figure 7: The impacts of quantized representation for
KG link prediction task using LLMs on FB15k-237.

have better results compared to 16-512 and 8-2048,
indicating large values are needed to represent en-
tity structural and semantic information, serving
better features for LLMs. N is more important than
M , which drops more performance, especially on
the FB15k-237 dataset (16-512 even not dropping
a lot), indicating the long quantized feature is ben-
eficial for LLMs to distinguish entities.
Token Embeddings in LLMs. To view the repre-
sentation of codewords and actual language tokens
in LLMs, we display all 2048 codewords and cor-
respondingly sample an equal number of language
tokens. Further, we reduce the embeddings to 2-
dimensional space using t-SNE (Van der Maaten
and Hinton, 2008) and plot the results in Figure 8.
It is shown that these two types of tokens are gen-
erally divided into two categories, indicating they
have different representation zones. It is consistent
with the intuition and indicates LLM can perceive
that they are different types of tokens, showing po-
tential for further exploration of LLM on KG tasks
using SSQR.

5 Related Work

For parameter-efficient embeddings on large KGs,
NodePiece (Galkin et al., 2022) introduces an
anchor-based method to learn a fixed-size entity
vocabulary, where unsupervised strategies of Per-
sonalized PageRank (Page, 1999), node degree, and
random are used for anchor selection. Each entity
can be represented through k closest anchors and
their respective distances. Further, EARL (Chen
et al., 2023) randomly samples 10% entities as
anchors and introduces connected relation informa-
tion to match anchors’ counterparts. To simplify
the whole process, Li et al. (2023) introduces ran-
dom entity quantization (RandomEQ) to randomly
set anchor entities and randomly select relations
for matching. The results show that RandomEQ

Figure 8: Token embedding virtualization in LLMs
(WN18RR dataset), where red and blue dots are real
word tokens and code tokens, respectively.

achieves similar results compared to previous cu-
rated strategies and has more distinguishable ability.
In general, these methods are all in an unsupervised
learning manner, which could be efficient for large
KG embedding but fails to model comprehensive
structural and semantic information.

Currently, numerous research studies are ded-
icated to incorporating KGs with LLMs to max-
imize and exploit their respective strengths (Pan
et al., 2024). On one hand, using prompt engineer-
ing or retrieve strategies (Wei et al., 2023; Sun et al.,
2024; Kau et al., 2024), the information of KGs
be sampled and instantiated as tokens like natural
language to input LLMs. On the other hand, the
triple-level or sub-graph structures of KG can be
inputted to the LLMs to inject knowledge (Hron
et al., 2024). However, because of the natural gap
between the graph structure of KGs and the natural
language, how to seamlessly and effectively inte-
grate the whole structural and semantic information
of KGs with LLMs is an open problem.

6 Conclusion and Potential Impacts

For seamlessly integrating KGs with LLMs, we
introduce a self-supervised quantized representa-
tion method (SSQR). It compresses the structural
and semantic information of entities in KGs to a
discrete permutation of codewords, which has a
similar format as the natural language and can be di-
rectly inputted to the LLMs. By specific instruction
data and fine-tuning, LLMs can seamlessly learn
KG’s knowledge, which can be used in KG applica-
tions. To verify the effectiveness of our method, we
implement experiments on KG link prediction and
triple classification tasks, which demonstrate the su-
periority of our method. This innovative paradigm
promises to usher in transformative techniques for
KGs in the era of LLMs. In the future, we will ex-
plore more applications and make progress towards
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unified frameworks for multiple KG tasks, e.g.,
KG-based QA (Luo et al., 2024a), KG-based rec-
ommendation (Huang et al., 2023), and language
modeling (Luo et al., 2024b).

Limitations

Despite our SSQR method’s capacity to facilitate
the seamless integration of KGs with LLMs, our
study encounters the generalization limitation due
to the substantial computational burden associated
with LLMs. In most recent and our studies, LLMs
are fine-tuned for a specific KG and the correspond-
ing task, which can not be applied to various KG
tasks and largely limits the model’s generalization
ability. In the future, we will try to construct uni-
fied LLMs for KGs by implementing quantization
within the same discrete space.
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A Statistics of WN18RR Dataset

Besides the statistic analysis of FB15k-237 in Fig-
ure 2, we also conduct the statistic analysis of
WN18RR, which is shown in Figure 9. Specifically,
we sample 200 entities from the whole KG and
there are two settings (50% neighbor sampling and
100% neighbors). In the first setting of 50%, the
median and mean of neighbors are 4.0 and 10.37,
while the median and mean number of needed to-
kens are 61.5 and 185.84, respectively. For the set-
ting of 100%, the median and mean of neighbors
are 33.5 and 79.05, while the median and mean
number of needed tokens are 623.5 and 1492.74,
respectively. Compared to our SSQR, which only
requires 16 tokens to represent each entity, both
50% and 100% settings demand a considerably
higher number of tokens.

Figure 9: The statistics of 2-hop sampled neighbors and
needed tokens (by LLaMA2) for entities in WN18RR.

B Baselines

In this section, we give detailed descriptions of
various baselines utilized in the paper.

B.1 Quantized Representations for KGs
• NodePiece (Galkin et al., 2022): The selec-

tion of quantized anchors relies on unsupervised
strategies, including Personalized PageRank, node
degree, and random approaches.
• EARL (Chen et al., 2023): It randomly sam-

ples 10% entities as quantized anchors and intro-
duces connected relation information to match an-
chors’ counterparts.
• Random entity quantization (RandomEQ for

short) (Li et al., 2023): It randomly sets anchor en-
tities and randomly selects relations for matching.

B.2 KG Link Prediction
• TransE (Bordes et al., 2013): The strategy of

incorporating translational distance is utilized for
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learning representations of entities and relations.

• CompGCN (Vashishth et al., 2020): Sev-
eral entity-relation composition operations are pro-
posed to combine the semantic information of
neighbor entity-relation pairs in GNNs.

• AdaProp (Zhang et al., 2023): An adaptive
propagation path is learned to filter out irrelevant
entities while preserving promising targets in the
GNN framework.

• MA-GNN (Xu et al., 2023): A dual-branch,
multi-attention-based GNN model is employed to
develop expressive entity representations.

• TCRA (Guo et al., 2024a): A neuro-symbolic
method that combines topological context learning
with rule augmentation.

• DiffusionE (Cao et al., 2024): Introducing dif-
fusion process to KG embedding method.

• KICGPT (Wei et al., 2023): The method uti-
lizes a model based on embeddings as the retriever,
which generates a ranked list of potential entities.
An in-context learning strategy is then designed to
guide ChatGPT in re-ranking these entities through
multi-round interactions.

• CSProm-KG-CD (Li et al., 2024): It converts
compact and structured triples into segments en-
riched with context by LLMs. Following this, two
custom auxiliary tasks (reconstruction and contex-
tualization) are presented, which enable compact
KGC models to incorporate insights derived from
these enhanced triples.

• ARR (Chen et al., 2024): A three-step (align-
ment, reasoning, and reranking) process designed
to support and amplify conventional KG embed-
ding models, without necessitating fine-tuning.
The results are taken from the setting of LLAMA3-
70B and RotatE (Sun et al., 2019) model.

• KG-FIT (Jiang et al., 2024): It involves the
automatic construction of a semantically consis-
tent entity hierarchy through clustering and LLM-
guided refinement. It also details a fine-tuning tech-
nique that incorporates knowledge from the hierar-
chical structure and pre-trained text embeddings of
entities, thereby improving KG embeddings. The
results are from the HAKE model setting.

• MKGL (Guo et al., 2024b): A context retriever
is introduced to help LLMs be aware of the tex-
tual and relational context of KGs. A score re-
triever is also used to provide the score information.
LLaMA2 (7B) is utilized as the base LLM.

B.3 KG Triple Classification

• TransE (Bordes et al., 2013): The strategy of
incorporating translational distance is utilized for
learning representations of entities and relations.
• DistMult (Yang et al., 2015): It utilizes the

semantic matching strategy, where the validity of
a fact is depicted as the matching degree between
the representation of entity and relation.
• RotatE (Sun et al., 2019): It defines each re-

lation as a rotation from the source entity to the
target entity in a complex vector space.
• Alpacazero-shot: It carries out zero-shot reason-

ing with Alpaca (Taori et al., 2023) with textual
sequences for predicting the validity of a triple.
• GPT-3.5zero-shot: It carries out zero-shot rea-

soning with GPT-3.5 3 with textual sequences for
predicting the validity of a triple.
• KG-LLaMA (Yao et al., 2023): It carries out

instruction tuning with LLaMA with textual se-
quences for predicting the validity of a triple.
• KG-Alpaca (Yao et al., 2023): It carries out in-

struction tuning with Alpaca with textual sequences
for predicting the validity of a triple.
• KoPA (Zhang et al., 2024b): It proposes a

knowledge prefix adapter to effectively integrate
pre-trained KG structural embeddings with LLMs.
Alpaca-7B is utilized as the LLM backbone.

C Experimental Details

Table 6: The statistics of WN18RR, FB15k-237, and
FB15k-237N datasets. The former two are for link pre-
diction. FB15k-237N dataset is for triple classification,
where ‘/’ splits the positive and negative samples.

Dataset Ent Rel Train Valid Test

WN18RR 40943 11 86835 3034 3134
FB15k-237 14541 237 272115 17535 20466

FB15k-237N 13104 93 87282 7041/7041 8226/8226

The statistics of utilized datasets are shown in
Table 6. For the SSQR learning, the default embed-
ding dimension is set to 200. The GCN layer and
dropout rate are 2 and 0.2. The training batch is
1024. For optimization, the learning rate is 0.0005
and the L2 regularization weight is 1e-8. For LLM
tuning, we utilize 4 NVIDIA H100 GPUs and the
learning rate is set to 2e-5 with 3% warmup ra-
tio. In the link prediction experiment, we first tune

3https://openai.com/index/gpt-3-5-turbo-fine-tuning-and-
api-updates/
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LLMs on the instruction data of CompGCN’s train-
ing split to initialize. Then, inspired by Wei et al.
(2023) and Liu et al. (2024), we divide the valid
set into two segments in a 9:1 ratio. The larger
part is utilized to finetune LLMs to learn the rank-
ing preference, while the smaller part is used for
validation. In the triple classification experiment,
we only update the embedding layer and the last
four Transformer layers of LLMs for tuning effi-
ciency. Meanwhile, M and N are set to 1024 and
16. In the training instruction data, we randomly se-
lect negative samples at a rate 16 times of positive
ones. The instruction format of triple classification
is shown in Table 7.

Instruction: Given a triple in the knowledge graph,
you need to predict its validity based on the triple
itself and entities’ quantized representations.
Input: The triple is: (h, r, t)
The quantized representation of entity h is: [Code(h)]
The quantized representation of entity t is: [Code(t)]
Please determine the validity of the triple and re-
spond True or False.
Output: True/False

Table 7: Instruction format for triple classification.

D Entropy and Jaccard Distance

As presented by Li et al. (2023), it is significant
for the ability to distinguish different entities for
quantized representations. We follow this study to
calculate the entropy at the overall representation
level and the Jaccard distance at the codeword-
selection level. The greater entropy and Jaccard
distance values denote the greater distinguishable
ability. The entropy is calculated as:

H = −
∑

p
(
Code(e)

)
· log p

(
Code(e)

)
. (11)

p
(
Code(e)

)
is the relative frequency of quantized

representation of entity e. Moreover, the Jaccard
distance is given by:

J =
1

|E| · k
∑

ei∈E

∑

ej∈kNN(ei)

d
(
Code(ei),Code(ej)

)
, (12)

d
(
Code(ei),Code(ej)

)

=
|CSet(ei) ∪ CSet(ej)| − |CSet(ei) ∩ CSet(ej)|

|CSet(ei) ∪ CSet(ej)|
,

(13)

where kNN(ei) retrieves k entities. Each possesses
codes that exhibit the nearest Jaccard distance to
the codes of ei. CSet(e) is the set of Code(e) by
removing the order information of codewords of
the entity representations.

Figure 10: The training process of SSQR, where the
Hits@1 metric is used to show the model performance.

E Additional Experimental Analysis

E.1 Training Process of SSQR
We display the training process SSQR in Figure 10,
where w/o GCN and w/o sem denote ablations for
the structural embedding and semantic distilling,
respectively. The findings indicate that both struc-
tural embedding and semantic distilling contribute
positively to the overall learning of quantized rep-
resentation. The influence of semantic information
on the FB15k-237 dataset is less significant when
compared to its effect on GCN. Differently, seman-
tic information is more important on the WN18RR
dataset. This could be attributed to the varying
levels of KGs’ sparsity.

E.2 Relevance among Entity Codes on
FB15k-237 Dataset

We also calculate the cosine similarity of quan-
tized representation on the FB15k-237 dataset in
Figure 11, which has the same setting as Figure 4.
The contents presented in these two figures are also
similar. When utilizing solely text embeddings, the
corresponding similarities yield positive yet modest
values. Moreover, the similarities associated with
SSQR without the use of GCN are typically close
to 1. These observations suggest that entity repre-
sentations occupy a limited portion of the existing
space, thus failing to maximize the efficiency of
representation. SSQR addresses this issue to some
degree by providing a broader range and diversity
of similarities.

E.3 Impacts of M and N for LLM Tuning on
FB15k-237 Dataset

We also explore the impacts of M and N for LLM
tuning on the FB15k-237 dataset, the results are
shown in Figure 12. It can lead to conclusions
similar to Figure 7.
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(d) SSQR w/o semantics.

Figure 11: The cosine similarity of quantized representations on the FB15k-237 dataset (sampled 10 entities).

Figure 12: The impacts of quantized representation for
KG link prediction task using LLMs on WN18RR.

E.4 Token Embeddings in LLMs on
FB15k-237 Dataset

Similar to Figure 8, we display the real word tokens
and learned code tokens using t-SNE in Figure 13.
The evidence also suggests that these two types
of tokens typically fall into distinct categories, im-
plying they each have unique representation areas.

Figure 13: Token embedding virtualization in LLMs
(FB15k-237 dataset), where red and blue dots are real
word tokens and code tokens, respectively.

E.5 Case Studies
To intuitively show the seamlessly integrating KG
tasks with LLMs, we carry out case studies in Ta-
ble 8, 9, and 10, covering both link prediction and
triple classification tasks. It demonstrates that our
method can effectively address both tasks, indicat-
ing the validity and good generalization ability of
our proposed SSQR.
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Input: This is a knowledge graph completion task, which needs to predict the tail entity for an incomplete query triplet.
The query triplet is (radiotherapy, hypernym, ?).
The quantized representation of entity radiotherapy is: [2006] [588] [350] [1486] [214] [929] [328] [1424] [1792] [919]
[944] [740] [438] [843] [147] [628]
The answer candidates and corresponding quantized representations are as follows:
disease, [156] [1880] [1777] [185] [121] [720] [783] [1713] [945] [1077] [180] [1576] [1574] [1433] [216] [1280]
tomography, [182] [597] [657] [1486] [404] [468] [732] [564] [833] [1470] [1756] [626] [1674] [843] [1928] [513]
medical care, [422] [68] [1329] [1517] [1251] [431] [1479] [1445] [1666] [407] [952] [406] [1337] [388] [1982] [685]
status, [1721] [1906] [1773] [1811] [12] [892] [1625] [1476] [1561] [176] [534] [1463] [1657] [368] [70] [1618]
physiological state, [1721] [718] [267] [394] [120] [1105] [885] [1823] [1496] [23] [952] [406] [1559] [1198] [1149] [1800]
medical science, [565] [413] [842] [1517] [350] [873] [575] [595] [721] [935] [1554] [175] [708] [1643] [1820] [1775]
infection, [565] [1594] [990] [1066] [974] [40] [434] [874] [1401] [371] [1700] [1118] [1709] [52] [71] [1408]
picturing, [788] [168] [641] [1797] [927] [711] [1608] [123] [1163] [1460] [952] [406] [1752] [1464] [553] [1158]
medicine, [1879] [1216] [691] [296] [1743] [892] [1851] [595] [2039] [1428] [426] [740] [399] [579] [433] [1987]
unhealthiness, [1389] [644] [570] [258] [635] [647] [732] [1139] [1660] [407] [464] [1020] [1574] [1905] [926] [1971]
grounds, [1268] [1053] [803] [780] [1194] [285] [328] [289] [1163] [915] [1921] [1020] [524] [1774] [430] [1572]
defense reaction, [1881] [1821] [1620] [1703] [435] [995] [908] [1308] [1596] [1598] [401] [2008] [903] [817] [92] [1158]
radiology, [1478] [588] [1340] [1797] [1436] [1914] [1894] [1424] [634] [1460] [1756] [740] [673] [843] [108] [1088]
radioscopy, [1005] [1002] [1441] [137] [1436] [1378] [1479] [1649] [1544] [1470] [534] [626] [902] [272] [904] [1874]
treat, [396] [2007] [1935] [1305] [1993] [1030] [1690] [1445] [1203] [1417] [1554] [495] [1752] [1001] [1236] [98]
specialize, [1005] [1933] [1976] [780] [927] [1728] [575] [105] [1791] [1598] [616] [1118] [1752] [425] [437] [1847]
therapy, [396] [816] [81] [488] [336] [1164] [1690] [1288] [900] [915] [1554] [175] [666] [1622] [765] [685]
specialism, [384] [816] [599] [394] [435] [789] [1479] [105] [664] [407] [1554] [103] [1752] [1708] [697] [1130]
symptom, [1721] [1913] [772] [858] [120] [1150] [1374] [289] [1666] [1417] [944] [2008] [1454] [958] [1169] [1800]
medicine, [156] [350] [1599] [1955] [1368] [508] [1527] [1445] [1561] [1460] [426] [1142] [940] [653] [793] [471]
Please generate quantized representations of the top-3 potential answer entities, ranked from highest to lowest:
LLM Output: 1, [396] [816] [81] [488] [336] [1164] [1690] [1288] [900] [915] [1554] [175] [666] [1622] [765] [685]
2, [156] [1880] [1777] [185] [121] [720] [783] [1713] [945] [1077] [180] [1576] [1574] [1433] [216] [1280]
3, [182] [597] [657] [1486] [404] [468] [732] [564] [833] [1470] [1756] [626] [1674] [843] [1928] [513]
Ground Truth: [396] [816] [81] [488] [336] [1164] [1690] [1288] [900] [915] [1554] [175] [666] [1622] [765] [685]

Table 8: Case study on WN18RR for link prediction using LLaMA2. The code of ground truth therapy is ranked to
the first position from 17-th.
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Input: This is a knowledge graph completion task, which needs to predict the tail entity for an incomplete query triplet.
The query triplet is (Valparaiso University, inverse relation of /location/location/contains, ?).
The quantized representation of entity Valparaiso University is [527] [1345] [1849] [1227] [1751] [2038] [818] [515] [1417]
[333] [29] [721] [1691] [798] [1033] [153]
The answer candidates and corresponding quantized representations are as follows:
Minnesota, [1532] [258] [1837] [357] [923] [1994] [638] [555] [771] [1003] [1736] [1473] [1495] [1436] [1313] [20]
New York, [661] [1243] [542] [1741] [1907] [1799] [858] [1794] [1916] [458] [1844] [909] [438] [1737] [686] [963]
California, [1059] [1286] [1604] [846] [1086] [451] [1087] [1794] [994] [297] [1463] [159] [556] [1836] [407] [963]
Massachusetts, [202] [1243] [977] [757] [304] [389] [1172] [1308] [1916] [1858] [1323] [11] [841] [1680] [1798] [1885]
Illinois, [961] [1025] [1267] [174] [643] [1951] [1742] [1794] [1720] [1481] [543] [1883] [695] [1921] [182] [963]
New York City, [1458] [326] [1707] [239] [151] [640] [1366] [1794] [610] [458] [1844] [932] [122] [311] [121] [868]
United Kingdom, [51] [193] [1354] [669] [1867] [881] [480] [1271] [392] [1858] [650] [909] [1503] [1126] [1550] [153]
Pennsylvania, [361] [825] [1052] [1655] [1670] [732] [951] [1569] [275] [1995] [543] [4] [753] [351] [331] [637]
Los Angeles, [1584] [1231] [1707] [1461] [1867] [1466] [265] [1933] [850] [1533] [805] [1128] [1824] [1823] [307] [963]
Florida, [2016] [326] [542] [1614] [462] [1433] [1388] [819] [926] [1289] [1321] [563] [1977] [1144] [1268] [662]
Ohio, [1643] [1889] [1604] [88] [1364] [485] [1819] [1569] [54] [1582] [1500] [411] [438] [125] [1636] [20]
Texas, [2012] [1845] [1207] [412] [531] [1394] [1004] [688] [653] [1671] [1790] [1690] [1732] [1686] [1721] [1205]
Virginia, [99] [825] [738] [1859] [1287] [1540] [708] [780] [653] [662] [756] [1873] [1514] [1686] [59] [409]
England, [848] [1220] [1052] [590] [175] [451] [529] [1933] [808] [1598] [1790] [1988] [670] [524] [121] [136]
Connecticut, [633] [1025] [672] [338] [1694] [1799] [1528] [1177] [1949] [458] [1703] [411] [395] [33] [233] [1013]
Indiana, [497] [1875] [1849] [377] [1694] [61] [1471] [1445] [392] [1672] [1500] [300] [711] [1839] [331] [136]
Los Angeles County, [662] [1772] [558] [1623] [304] [1755] [1388] [1794] [1554] [333] [1662] [1258] [1474] [1764] [1021]
[409]
Louisiana, [1584] [326] [1309] [50] [1035] [0] [546] [728] [1130] [297] [1284] [11] [1514] [1929] [1248] [136]
Michigan, [172] [326] [382] [174] [1364] [1774] [1165] [664] [994] [1480] [1923] [431] [816] [1587] [1443] [860]
Hennepin County, [584] [1890] [1263] [1168] [1990] [656] [784] [1735] [102] [1533] [1979] [1005] [1312] [786] [873]
[1294]
Please generate quantized representations of the top-3 potential answer entities, ranked from highest to lowest:
LLM Output: 1, [497] [1875] [1849] [377] [1694] [61] [1471] [1445] [392] [1672] [1500] [300] [711] [1839] [331] [136]
2, [1532] [258] [1837] [357] [923] [1994] [638] [555] [771] [1003] [1736] [1473] [1495] [1436] [1313] [20]
3, [661] [1243] [542] [1741] [1907] [1799] [858] [1794] [1916] [458] [1844] [909] [438] [1737] [686] [963]
Ground Truth: [497] [1875] [1849] [377] [1694] [61] [1471] [1445] [392] [1672] [1500] [300] [711] [1839] [331] [136]

Table 9: Case study on FB15k-237 for link prediction using LLaMA2. The code of ground truth Indiana is ranked
to the first position from 16-th.

Input: Given a triple in the knowledge graph, you need to predict its validity based on the triple itself and entities’ quantized
representations.
The triple is: (Carl Foreman, /people/person/place_of_birth, Chicago)
The quantized representation of entity “Carl Foreman” is: [72] [114] [150] [336] [519] [494] [155] [482] [594] [934] [1012]
[677] [473] [450] [827] [455]
The quantized representation of entity “Chicago” is: [603] [413] [385] [937] [731] [735] [836] [92] [400] [372] [563] [225]
[82] [526] [81] [229]
Please determine the validity of the triple and respond True or False.
LLM Output: True
Ground Truth: True

Input: Given a triple in the knowledge graph, you need to predict its validity based on the triple itself and enti-
ties’ quantized representations.
The triple is: (Jessica Lange, /people/person/profession, Lawyer)
The quantized representation of entity “Jessica Lange” is: [23] [712] [484] [202] [289] [211] [772] [667] [870] [903] [213]
[693] [360] [59] [868] [722]
The quantized representation of entity “Lawyer” is: [760] [84] [976] [802] [430] [735] [912] [480] [966] [411] [284] [113]
[727] [744] [333] [56]
Please determine the validity of the triple and respond True or False.
LLM Output: False
Ground Truth: False

Table 10: Two cases on FB15k-237N dataset for triple classification using LLaMA2.
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