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Abstract

Multilingual language models (MLLMs) have
demonstrated remarkable abilities to transfer
knowledge across languages, despite being
trained without explicit cross-lingual supervi-
sion. We analyze the parameter spaces of three
MLLMs to study how their representations
evolve during pre-training, observing patterns
consistent with compression: models initially
form language-specific representations, which
gradually converge into cross-lingual abstrac-
tions as training progresses. Through prob-
ing experiments, we observe a clear transition
from uniform language identification capabili-
ties across layers to more specialized layer func-
tions. For deeper analysis, we focus on neu-
rons that encode distinct semantic concepts. By
tracing their development during pre-training,
we show how they gradually align across lan-
guages. Notably, we identify specific neurons
that emerge as increasingly reliable predictors
for the same concepts across languages. This
alignment manifests concretely in generation:
once an MLLM exhibits cross-lingual gener-
alization according to our measures, we can
select concept-specific neurons identified from,
e.g., Spanish text and manipulate them to guide
token predictions. Remarkably, rather than gen-
erating Spanish text, the model produces se-
mantically coherent English text. This demon-
strates that cross-lingually aligned neurons en-
code generalized semantic representations, in-
dependent of the original language encoding.

1 Introduction

How do multilingual language models achieve
cross-lingual generalization? This question has
puzzled researchers for years–particularly since
standard pre-training objectives do not explicitly
encourage cross-lingual alignment.

Existing research has explored various poten-
tial explanations, ranging from linguistic similarity
due to genetic or geographic relatedness (Lin et al.,

2019; Lauscher et al., 2020) and word order prop-
erties (Dufter and Schütze, 2020; Deshpande et al.,
2022) to architectural features like shared subwords
(Pires et al., 2019; Wu and Dredze, 2019, inter alia).
However, researchers found conflicting evidence
that challenges these explanations, especially re-
garding the role of shared subwords (Artetxe et al.,
2020; K et al., 2020, inter alia).

In this paper, we aim to derive explanations at a
deeper level, by exploring the connection between
cross-lingual generalization and signals of com-
pression. We build on the theory that the limited ca-
pacity of language models forces them to discover
efficient, shared representations encoded in specific
neurons across languages, rather than maintaining
separate, language-dependent encodings.

To gain deeper insights into the development of
cross-lingual representations, we focus on the pre-
training process itself rather than just analyzing the
final model state. For our analysis, we use mod-
els from the BLOOM family (BigScience Work-
shop, 2022) at different scales (BLOOM-560M

and BLOOM-7B1), which are state-of-the-art mul-
tilingual decoder models that provide open access
to training checkpoints, though their number is lim-
ited. Additionally, we introduce our own decoder-
only model where we collect checkpoints at much
finer intervals and maintain precise control over the
training data and languages, allowing us to build
a detailed picture of how cross-lingual representa-
tions are shaped during training.

While much prior work has focused on zero-shot
cross-lingual transfer performance, recent research
has shown such transfer to be unreliable (Rajaee
and Monz, 2024). We therefore take a more mecha-
nistic approach and analyze the models themselves
rather than their zero-shot transfer capabilities. We
start our analysis by probing model-internal rep-
resentations for language identity prediction, to
build initial intuitions, which reveals clear shifts in
performance across pre-training checkpoints. We
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then examine how semantic concepts (like house or
earthquake) are represented in individual neurons
across different languages, following the neuron
analysis approach of Suau et al. (2022).

Our analysis reveals increasing cross-lingual
alignment during pre-training, with specific neu-
rons emerging as shared concept experts across lan-
guages. We complement these observations with
an information-theoretic perspective on compres-
sion and demonstrate their practical implications
through controlled text generation experiments,
showing how MLLMs evolve from language-
specific to generalized neural representations dur-
ing the pre-training process. To summarize, our
contributions are:

(i.) We provide empirical evidence for the com-
pression hypothesis in MLLMs by tracking
how representations evolve from language-
specific to cross-lingual throughout training,
using mechanistic interpretability methods
and special probing tasks.

(ii.) To our knowledge, we are the first to ana-
lyze the development of cross-lingual seman-
tic generalization during pre-training, by iden-
tifying specific neurons that encode the same
concepts across different languages. Our ana-
lysis reveals how semantic information con-
centrates in middle layers and evolves into
generalized concept representations shared
across languages at later training stages.

(iii.) We demonstrate how our findings have a vis-
ible effect on text generation through con-
trolled neuron manipulation experiments, il-
lustrating that the model’s internal represen-
tations encode shared conceptual knowledge
beyond specific language boundaries.

We release our MLLM with comprehensive train-
ing checkpoints, along with code and data.1

2 Related Work

Studying Cross-Lingual Generalization. Since
the early development of MLLMs, researchers have
investigated their remarkable effectiveness, primar-
ily through the lens of zero-shot cross-lingual trans-
fer performance. Explanatory factors for the iden-
tified cross-lingual generalization capabilities can
roughly be divided into linguistic aspects, such as
genetic and geographic relatedness and word order

1https://github.com/Heidelberg-NLP/
cross-lingual-generalization.

(Lin et al., 2019; Lauscher et al., 2020; Dufter and
Schütze, 2020; Deshpande et al., 2022, inter alia),
and architectural considerations like model depth
and number of parameters (Dufter and Schütze,
2020; K et al., 2020, inter alia). The role of lexical
overlap between languages has been a particular
point of debate in the literature (Pires et al., 2019;
Wu and Dredze, 2019; Artetxe et al., 2020; Dufter
and Schütze, 2020; K et al., 2020, inter alia). For
a comprehensive overview of these developments,
we refer to Philippy et al. (2023).

Compression in Language Models. The infor-
mation bottleneck method, introduced by Tishby
et al. (1999), provides a theoretical framework
for analyzing information flow in neural networks.
Tishby and Zaslavsky (2015) apply this framework
to deep learning, showing that neural networks
must learn to efficiently represent task-relevant in-
formation while “forgetting” irrelevant input de-
tails. Building on these insights, Voita et al. (2019)
analyze how representations evolve bottom-up in
Transformers. Shwartz-Ziv and Tishby (2017) iden-
tify two distinct phases in neural network training:
an initial fitting phase followed by a compression
phase, the latter being causally linked to the net-
work’s generalization capabilities.

In the multilingual context, the compression hy-
pothesis has been acknowledged, but to date re-
mains underexplored: Chi et al. (2021) explicitly
reference the information bottleneck method while
deferring its investigation, and Dufter and Schütze
(2020) observe that overparameterization may ac-
tually hinder multilingual performance. In our
work, we systematically investigate how compres-
sion manifests in multilingual models during pre-
training, hypothesizing that restricted model capac-
ity forces the development of shared cross-lingual
representations, rather than maintaining separate
language-specific ones.

Mechanistic Interpretability. Mechanistic inter-
pretability seeks to reverse engineer neural net-
works to understand their internal functioning.
Even in work not focused on MLLMs, multilin-
gual phenomena have emerged as peripheral find-
ings: Gurnee et al. (2023) identify neurons that
respond to French texts through sparse probing,
while Bricken et al. (2023) discover Arabic script
and Hebrew features via sparse autoencoders.

Current work has begun to explicitly address
multilinguality: Wendler et al. (2024) show that
LLAMA 2 models (Touvron et al., 2023), consistent
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with their English-dominated training data, process
other languages using English as internal pivot. Re-
cently, research has developed specialized methods
to identify language-specific neurons: Tang et al.
(2024) propose LAPE (Language Activation Prob-
ability Entropy), while Kojima et al. (2024) build
on Suau et al.’s (2022) methodology, which we
introduce below. However, these investigations fo-
cus solely on identifying neurons responsible for
language-specific processing, rather than examin-
ing, as we do, whether semantic concepts share
neural representations across languages.

Closest to our work is Blevins et al. (2022), who
analyze XLM-R (Conneau et al., 2020) check-
points for its performance in linguistic tasks such
as PoS tagging or dependency parsing across dif-
ferent languages. Yet, unlike their work, we exam-
ine decoder-only models and investigate the pre-
training process at a more fundamental level.

3 Conceptualizing Cross-Lingual
Generalization

Most prior work studies MLLMs through zero-shot
cross-lingual transfer. In this setting, “a model that
is fine-tuned on one language can be applied to
others without any further training” (Tunstall et al.,
2022). This approach has become the standard for
evaluating multilingual models (Hu et al., 2020).

Often, zero-shot cross-lingual transfer (often ab-
breviated to just “cross-lingual transfer”) is treated
as synonymous with cross-lingual generalization.
This conflation is problematic for two reasons.
First, despite its name suggesting otherwise, in
zero-shot cross-lingual transfer, models do undergo
fine-tuning, potentially obscuring more subtle phe-
nomena (Papadimitriou et al., 2023). Second, these
evaluations are vulnerable to dataset artifacts like
word overlap and answer position bias (Rajaee and
Monz, 2024), and may instead reflect surface-level
patterns, rather than linguistic generalization.

We therefore argue for a clear distinction be-
tween zero-shot cross-lingual transfer as a specific
evaluation method and cross-lingual generalization
as the fundamental ability of models to form cross-
lingual abstractions. Our work investigates the lat-
ter by analyzing internal representations directly,
without any fine-tuning. We hypothesize that cross-
lingual generalization emerges through compres-
sion during pre-training. We assume that once a
model’s capacity constraints prevent pure memo-
rization, it develops more space-efficient represen-

tations by abstracting away language-specific fea-
tures from the encoded content. Our experiments
support this hypothesis: we observe the emergence
of cross-lingual concept neurons that respond to
the same concepts across different languages.

4 Model Details

To study cross-lingual generalization during pre-
training, we require access to model checkpoints
throughout the pre-training process. We therefore
focus our analysis on the BLOOM family (Big-
Science Workshop, 2022), the only recent collec-
tion of MLLMs to offer publicly available training
checkpoints. Due to computational resource con-
straints, we conduct our most detailed analysis on
BLOOM-560M. However, we confirm our key
findings on BLOOM-7B1, demonstrating that our
results generalize to larger models.2

In addition, to allow for a more fine-grained ana-
lysis of training dynamics than BLOOM’s check-
point frequency allows, we pre-trained our own
model based on the XGLM architecture (Lin et al.,
2022), using a reduced dimension (d_model = 512
instead of 1024), resulting in approx. 257M pa-
rameters. We trained on 16 languages spanning
diverse language families and scripts (Germanic,
Italic, Bantoid, and Slavic), collecting checkpoints
at powers of two and regular 5000-step intervals.

5 Probing Language Identity Across
Layers and Checkpoints

Motivation. To investigate the relationship be-
tween cross-lingual generalization and the model’s
representations, we examine to what extent
language-specific information is encoded across
layers and training stages, focusing on how the
MLLM’s internal organization of languages devel-
ops during training. In a first step, we probe each
model layer’s ability to identify which language is
being processed, examining how language-specific
information is distributed across the model’s lay-
ers. This initial probing experiment serves as a
foundation for understanding how language repre-
sentations develop both through the model’s layers
and throughout its training process.

2Two checkpoints each from BLOOM-560M and
BLOOM-7B1 were excluded from our analysis, as they
appear to be corrupted (cf. https://huggingface.co/
bigscience/bloom-560m-intermediate/discussions/2
and https://huggingface.co/bigscience/
bloom-7b1-intermediate/discussions).
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(a) Early training stage (step 1000). (b) Late training stage (step 400 000).

Figure 1: Language identity probing classification accuracy across layers of the BLOOM-560M model at different
training stages. Higher accuracy indicates that language-specific information is more easily extractable from the
hidden states at that layer. Error bars show standard deviation across three random seeds.

Experiment Setup. For a given language l, we
sample {sl0, sl1, ..., sln} sentences from the OS-
CAR corpus (Ortiz Suárez et al., 2019). Each
sentence sli is tokenized into a sequence of tokens
[tli,0, t

l
i,1, ..., t

l
i,Ti−1]. For each tokenized sentence,

the model M produces hidden representations:
hli,0, h

l
i,1, ..., h

l
i,Ti−1 = M(tli,0, t

l
i,1, ..., t

l
i,Ti−1).

From these sequences of hidden states, we ran-
domly sample one token position per sentence and
extract the hidden representation at that position.
For instance, for sentence sli, we might select po-
sition pli to obtain hl

i,pli
. We then train a logistic

regression classifier on these sampled hidden states,
aiming to predict which language l the hidden state
originated from. By analyzing classification per-
formance across layers, we investigate how the
representation of languages evolves throughout the
MLLM’s architecture, and how languages are orga-
nized. For implementation details see Appendix B.

Results. We present analysis results for
BLOOM-560M at pre-training steps 1000 and
400 000 in Figure 1. At step 1000, the model
already demonstrates strong language identifi-
cation capabilities, with a slight performance
increase after the first layer followed by small,
monotonic improvements across subsequent layers.
At step 400 000, by contrast, we observe markedly
different behavior: performance in earlier layers
is substantially weaker, starting at 57% accuracy
in the first layer, increasing until layer 5, then
declining until layer 14. From layer 15 onwards,
performance recovers, eventually matching the
levels observed in the earlier checkpoint.

The precise layer-wise accuracy trajectory ap-
pears to be architecture-dependent, with decoder-

only models showing this distinctive pattern (see re-
sults for BLOOM-7B1 and our toy model, as well
as comparisons with encoder-only models XLM-R
(Conneau et al., 2020) and MBERT (Devlin et al.,
2019) in Appendix B). However, we observe a fun-
damental organization that is shared across differ-
ent model families: language-specific information
diminishes in the middle layers, while the final
layers maintain strong identification capabilities.

Complementing our detailed analysis of individ-
ual checkpoints in Figure 1, Figure 2 tracks three
key statistics throughout training: the first layer ac-
curacy, the mean probing accuracy averaged across
all layers, and the corresponding standard devia-
tion between layer-wise accuracies. During early
training (steps 1000 to 10 000), we observe uni-
formly high language identification performance
across layers, reflected in high mean accuracy and
low between-layer variance. Beyond step 100 000,
layer-averaged accuracy decreases (especially in
the first layer), while standard deviation increases,
indicating greater differentiation between layers.

These findings reveal a fundamental shift in how
language information is processed throughout pre-
training: the model initially develops strong lan-
guage identification capabilities, but subsequently
this ability diminishes. We hypothesize that differ-
ent layers develop distinct functional roles during
training: while final layers maintain high language
identification accuracy necessary for next-token
prediction, middle layers develop representations
that tend to be more language-agnostic. These ob-
servations can be argued to provide initial evidence
for a compression effect that manifests during pre-
training, characterized by a shift from language-
specific to more generalized representations.
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Figure 2: Language identification probing accuracy
throughout training of BLOOM-560M. For each check-
point we show: (1) mean accuracy across layers, (2)
standard deviation across layers (indicating how much
accuracy varies between layers), and (3) first layer accu-
racy, which exhibits the most significant changes during
training. Results averaged over three random seeds.

In what follows, we build on this hypothesis
and investigate whether cross-lingual generaliza-
tion can be explained as a result of compression
that occurs in a multilingual model’s representation
space after an initial phase of memorization.

6 Tracing Concepts in Neurons

Research Question. We now examine how indi-
vidual concepts are represented in MLLMs by trac-
ing their evolution during pre-training, examining
their relationships across languages. We hypothe-
size that MLLMs first develop language-specific
representations of concepts (e.g., separate encod-
ings for “house”, “casa”, or “Haus”), which, as
training progresses, merge into unified abstractions
(e.g., the concept of a dwelling). We expect that
these abstracted representations can be “projected”
into language-specific instantiations during genera-
tion, offering a more space-efficient organization
than separate representations for each language.

Experiment Setup. To identify concept-specific
“expert” neurons (e.g., those specialized in repre-
senting dwelling), we adopt the methodology of
Suau et al. (2022). Each concept c in language l
is represented by a dataset {xc,l

i , bc,li }Ni=1, where
the total of Nc,l = N+

c,l + N−
c,l sentences are di-

vided into positive samples that contain the concept
(bc,li = 1) and negative ones that do not (bc,li = 0).
A neuron demonstrates expertise for concept c if it
selectively activates for positive examples, while
remaining inactive for negative ones.

We evaluate how well an MLP neuron m’s ac-
tivation pattern (excluding attention neurons) pre-
dicts concept c by analyzing the neuron’s outputs
zc,lm = {zc,lm,i}Ni=1 in response to sentences {xc,l

i }

and use these activations as concept prediction
scores, that indicate the presence of concept c in
a given input for language l.3 We measure a neu-
ron’s predictive power through Average Precision
APc,l

m = AP(zc,lm ,bc,l), which quantifies the area
under the precision-recall curve.

Data. We follow Suau et al. (2022) in construct-
ing our concept dataset from ONESEC (Scarlini
et al., 2019), which provides Wikipedia sentences
annotated with WORDNET senses (Miller, 1994).
From this corpus, we sample 200 WORDNET

senses as target concepts, ensuring 100 ≤ N+
c,eng ≤

1000 positive samples and N−
c,eng = 1000 negative

samples per concept. We translate the resulting
English dataset Neng using the NLLB 1.3B model
(Costa-jussà et al., 2022) to create parallel versions
in the languages we use in our analysis. Details
on the dataset construction process are given in
Appendix C.

General Neuron Alignment. Using our multilin-
gual corpus derived from ONESEC and the concept
prediction score introduced above, we compute,
for each language l and concept c, an expert score
vector ec,l ∈ RM , where M is the number of neu-
rons and each element ec,lm = APc,l

m represents the
expertise of neuron m for concept c in language
l. To investigate whether the same neurons spe-
cialize in representing the same concepts across
languages, we analyze the cross-lingual alignment
of these expert scores. Specifically, we compute
the Pearson correlation coefficient between expert
score vectors ec,l1 and ec,l2 for each concept across
different language pairs (l1, l2).

Given the large number of pairwise correlations
across concepts and languages, we need a way to
summarize these results concisely. We therefore
apply Fisher’s Z transformation to the correlation
coefficients, compute their average, and transform
the result back. We emphasize that this averaged
score cannot be interpreted as a statistical correla-
tion, but it still serves as a meaningful indicator of
the degree of neuron alignment between languages.

The resulting matrices for BLOOM-560M at
training steps 1000 and 400 000 are shown in Fig-
ure 3, with values averaged across all concepts. Fig-
ure 4 provides a view of this alignment throughout
the training process, showing the averaged scores
across both concepts and language pairs. For addi-

3A fixed-size sentence representation is obtained via max-
pooling.
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(a) Early training stage (step 1000).
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(b) Late training stage (step 400 000).

Figure 3: Expert neuron alignment across languages in BLOOM-560M at different training stages, measured by
Pearson correlation coefficients averaged across concepts using Fisher’s Z transformation.
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Figure 4: (1) Correlation Coefficient, (2) Neuron Over-
lap Proportion of top 500 neurons, and (3) MI through-
out training, averaged across concepts and languages
for BLOOM-560M.

tional matrices and results for BLOOM-7B1 and
our toy model see Appendix D.

Early in training, the alignment between lan-
guages is relatively weak, but it strengthens sub-
stantially by step 400 000. The correlation matrix
reveals dependencies that are partially attributable
to script families. We observe small but distinct
clusters of related languages sharing the same script
(e.g., Assamese and Bengali, Hindi and Marathi),
and a broader positive alignment across languages
using the Latin alphabet. Most notably, there ap-
pears to be a strong distinction between Latin-script
and non-Latin-script languages, though this pattern
is not absolute. The Dravidian languages (Kan-
nada, Malayalam, Tamil, Telugu) represent a case
of a language family exhibiting high similarities
despite using distinct scripts, reinforcing previous
findings that subword overlap alone cannot explain

cross-lingual generalization. A deeper analysis of
these relationships remains for future investigation.

Information-Theoretic Perspective. Beyond ex-
amining correlations across neurons, we adopt an
information-theoretic approach by analyzing the
Mutual Information (MI) between neural repre-
sentations across languages. MI quantifies how
much knowledge of a concept’s representation in
one language informs its representation in another
language. Specifically, MI measures compression
efficiency by indicating to what degree a concept’s
representation in one language is redundant, and
thus predictable, given its representation in another
language. We compute MI for continuous data
using entropy estimation based on k-nearest neigh-
bors distances, following the methods of Kraskov
et al. (2004) and Ross (2014), as implemented
in scikit-learn (Pedregosa et al., 2011). The
evolution of MI (Figure 4) closely mirrors the
correlation-derived alignment scores, reinforcing
our findings through an information-theoretic lens.

Neuron Overlap. Finally, we analyze the con-
crete overlap between the most concept-selective
neurons across languages. For each concept c
and language l, we identify the set Sc,l of the
top k neurons with the highest expertise scores
ec,l. We quantify the cross-lingual overlap between
languages l1 and l2 using the overlap proportion
Oc

l1,l2
= |Sc,l1∩Sc,l2 |

k . This directly measures the
degree of neuron sharing between languages, sug-
gesting compression, as shared neurons indicate a
more compact representation of concepts.
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Figure 4 shows the resulting overlap for k = 500,
averaged across languages and concepts. The evo-
lution of the overlap aligns with both the correla-
tion-derived and mutual information measures. Re-
markably, among the more than 200 million MLP
parameters analyzed, we find that approx. 1

6 of
the top 500 concept-selective neurons are shared
between any pair of languages. This substantial
overlap, despite the model’s vast capacity, suggests
significant cross-lingual representation sharing.

7 Revisiting Layer Distributions

As shown in Section 5, early layers partially lose
their language identity information during pre-
training. We now return to this observation and
examine how it relates to the distribution of con-
cepts across a model’s layers. Specifically, we
investigate where concept-specific neurons are lo-
cated, and how their distribution evolves during
training.

Layer-Wise Distribution of Expert Neurons.
First, we explore where the previously identified
top k expert neurons are located across layers. By
examining the layer distribution of these neurons,
averaged across all languages and concepts, we
obtain a language-agnostic view of where concept-
specific information is concentrated in the model.

Our analysis in Figure 5 reveals how the concen-
tration of concept information across layers evolves
throughout training. In the randomly initialized
model, the first layer contains the highest concen-
tration of expert neurons. This is intuitive, as the
untrained model can only use surface-level word
overlap to “identify” concepts. This first-layer dom-
inance intensifies during early training (step 1000),
suggesting that the model initially relies heavily on
these lexical cues.

At step 100 000 we observe a fundamental re-
ordering of concept information across layers,
which stabilizes and shows only marginal changes
in later checkpoints. This new distribution reveals
three distinct regions: After initial concentration in
the first layers, there is a notable drop reaching its
lowest point at layer 10. This same layer marks the
beginning of the first of two concentration peaks.
The final layer (24) shows a particularly low pro-
portion, likely due to its role in token generation.

Layer-Wise Cross-Lingual Semantic Overlap.
Building on these insights, we now analyze the
cross-lingual alignment of concept representations
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Figure 5: Layer-wise distribution of BLOOM-560M’s
top 500 expert neurons, averaged across languages and
concepts.

for different layers. For each layer ℓ, we com-
pute the average pairwise overlap between top k
expert neurons by comparing the sets Sc,l

ℓ across
languages, measuring the proportion of shared neu-

rons between languages l1 and l2 as |Sc,l1
ℓ ∩Sc,l2

ℓ |
k .

The results in Figure 6 complement our previous
findings (Figure 5). While the early layers showed
high concept specificity, likely due to subword over-
lap, this does not lead to strong cross-lingual align-
ment. Instead, substantial cross-lingual overlap
develops in the middle layers (10-17), particularly
in later checkpoints, suggesting that genuine se-
mantic generalization occurs in this region. This
indicates that while subword similarity provides
a useful initial bias for the model, actual cross-
lingual semantic representations emerge in the mid-
dle layers. The increasing alignment in later check-
points supports the compression hypothesis, sug-
gesting that the model learns to abstract away from
language-specific features. The decrease in overlap
in the final layers aligns with their specialization
for language-specific token generation. By compar-
ing Figure 6 and Figure 5, we can disentangle the
effect of subword overlap from true cross-lingual
generalization. We confirm the same trends for
BLOOM-7B1 in Figures 16 and 17.

8 Steering Text Generation

Until now, we have examined probing performance
and neuron behavior to understand neuron align-
ment in MLLMs. We now investigate whether
these findings are reflected in BLOOM-560M’s
text generation capabilities. To test the cross-
lingual semantic properties of concept-specific ex-
pert neurons, we adapt the neuron manipulation
technique from Suau et al. (2022). For a given
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Checkpoint Concept Language Generation

10 000

earthquake

Spanish Posteriormente se quem se hizo sentir en el segundo
momento una intensidad máxima de unos 40 minutos
y la presencia de varios volcanes. [...]

Simplified
Chinese

去年,大连市高岭土场镇发现30余处安全隐患。
经市安全气象台和地质灾害防御站队员检查,发
现大量高空存在安全隐患, [...]

joy

Spanish Por todo lo que he leído sobre este nuevo reto, me ha
encantado y he querido brotar las historias [...]

Simplified
Chinese

你越长大越幸福,幸福带给你的就是一生的幸
福。你越长大越幸福,幸福带给你的就是一生的
幸福。 [...]

400 000

earthquake

Spanish Strong earthquakes occurred in Japan on Saturday.
Five large earthquakes occurred in central Japan on
Saturday, and the epicities affected areas [...]

Simplified
Chinese

There is no obvious risk to the city and infrastructure
in the past 12 hours. Numerary records for GTC were
occurring at 8.4 degrees (58.8, 18.3) [...]

joy

Spanish The queer, introvert, positive and wonderful ever. In
a happy, happy way for you. Embrace this away from
the point of. Simple joy to everybody. [...]

Simplified
Chinese

Been on the monitor for an hour now, absolutely
amazing work. The photo imagery, the quality of
the work and the POCs are over an hour and we are
pleased with our work. [...]

Table 1: Example text generations from BLOOM-560M when activating top 500 expert neurons derived from
Spanish and Simplified Chinese concepts, shown at training checkpoints 10 000 and 400 000.
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Figure 6: Cross-lingual overlap of BLOOM-560M’s
top 500 expert neurons per layer, showing the averaged
proportion of shared neurons between language pairs.

concept (e.g., earthquake), we identify its top 500
expert neurons using data from one language (e.g.,
Spanish) and manipulate their activations. Specifi-
cally, we compute the median activation value of
these neurons across all samples containing the
concept (bc,li = 1), and set their activations to these
values. We then generate text by prompting the
model with only a beginning-of-sequence token,
using nucleus sampling (p = 0.9) and temperature
(t = 0.8) across 100 random seeds. Full details are
in Appendix E.

Setting neurons to their median values biases
the model’s representations toward the target con-

cept. This allows us to examine whether concept-
specific neurons, identified in one language, encode
semantic information that generalizes across lan-
guages (or whether such neurons remain language-
specific, such that neurons derived from the concept
earthquake in Spanish texts lead to earthquake-
related content in Spanish). Importantly, our ma-
nipulation is limited to modifying expert neurons.
We provide neither language-specific nor concept-
related tokens, thus giving the model freedom in
choosing language and content of its generations.

Example generations are shown in Table 1. Ini-
tially, the model produces incoherent text with ex-
cessive punctuation. By step 10 000, it generates
concept-relevant text in the language from which
the expert neurons were derived (e.g., Spanish
text about earthquakes). However, at step 400 000,
while the generated text remains concept-relevant,
most generations are in English, even though the
manipulated expert neurons were determined using
exclusively non-English data.

To quantify these observations, we analyze the
language of the generated text using LANGDETECT

(Shuyo, 2010). We classify 100 generations per
checkpoint for all 200 concepts. For this analy-
sis, we focus on neurons derived from Spanish
data. The language distributions for steps 10 000

13477



(a) Early training stage (step 10 000). (b) Late training stage (step 400 000).

Figure 7: Relative frequency distribution of the top 10 detected languages when manipulating neurons derived from
Spanish data, as classified using LANGDETECT.

and 400 000 are presented in Figure 7. We show
distributions across all steps alongside results for
neurons derived from Chinese and Swahili data in
Appendix E.

At step 1000, the model is too underdeveloped to
generate meaningful text, producing mainly punc-
tuation marks that LANGDETECT fails to classify.
By step 10 000, language-specific representations
become most prominent–the model primarily gen-
erates Spanish text, though with a substantial pres-
ence of English. Interestingly, we also observe
significant Portuguese generation, likely due to its
proximity to Spanish. The notable presence of Chi-
nese text can be attributed to its prominence in
BLOOM’s pre-training corpus, where it represents
the second most common language after English.

This shift from generating text in the concept’s
source language to producing content in other lan-
guages supports our core hypothesis about the
model’s learning trajectory: Early training builds
language-specific representations that gradually
transform into compressed cross-lingual represen-
tations. Our generation experiments present direct
evidence of this generalization effect in MLLMs.

While cross-lingual generalization succeeds in
our experiments, its nature raises important ques-
tions. Concept knowledge successfully transfers
across languages, but this transfer is biased to-
ward high-resource languages: We observe that the
model tends to express concepts in English and Chi-
nese, regardless of the language from which these
concepts were learned. This bias is particularly
pronounced for neurons derived from low-resource
languages like Swahili (Figure 20), which never
generate in their source language. We also observe
spillover within language families, such as Por-
tuguese generation from Spanish-derived neurons.
This suggests that the model uses shared neurons
to form a common understanding of concepts that
can be accessed across languages. However, the
key question that remains is whether models can re-

liably draw upon such shared representations when
they generate text in specific languages–especially
those underrepresented in the training data.

9 Conclusion

We investigate cross-lingual generalization from
a compression perspective, complementing prior
and concurrent work by analyzing the pre-training
process of MLLMs. Our linear probing experi-
ments reveal a decrease in language identification
performance in certain layers during pre-training,
pointing to changes in how the model utilizes its
parameter space. By identifying and comparing
expert neurons across languages, we demonstrate
that multilingual models progressively align repre-
sentations across languages, ultimately sharing a
substantial portion of expert neurons.

Our analysis of expert neuron distributions re-
veals a systematic processing pattern: The model
combines token-level features from early layers
with abstracted semantic content in middle lay-
ers. Notably, the proportion of shared neurons
increases significantly in middle layers, indicat-
ing this is where semantic generalization primarily
occurs. Generation experiments provide behav-
ioral evidence of this phenomenon, showing the
evolution from language-specific to abstracted con-
cepts, as demonstrated by English generation from
Spanish-derived concept neurons.

Future work could build on our insights to im-
prove multilingual models. While we focused on
shared representations, examining where languages
maintain distinct encodings could provide supple-
mentary understanding. Beyond obvious language-
specific elements, culturally embedded concepts
may require protection from the high-resource lan-
guage bias we uncover. Our research offers insights
for developing models that appropriately balance
cross-lingual generalization with the preservation
of linguistic and cultural diversity.
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Limitations

Our analysis spans multiple model scales (from our
small toy model to BLOOM-7B1) but does not in-
clude the largest MLLMs due to the computational
demands of calculating expert neuron scores across
multiple languages, concepts, and training check-
points. Nevertheless, the observed trends appear
consistent and suggest broader applicability.

We analyze the BLOOM family, which is cur-
rently the only state-of-the-art MLLM family with
publicly available checkpoints. However, in both
BLOOM-560M and BLOOM-7B1, some check-
points appear to be corrupted and were excluded
from our analysis. To validate our findings despite
these limitations, we conduct parallel experiments
with our custom toy model.

Our analysis focuses specifically on individual
semantic concepts, leaving other phenomena for
future work: relationships between concepts (e.g.,
hierarchical categories or attribute sharing), syntac-
tic phenomena shared across languages (such as
agreement and word order), and specific patterns
between individual language pairs.

Ethics Statement

We do not foresee immediate ethical concerns for
our research, as we primarily conduct analytical
studies. BLOOM is a considerably diverse lan-
guage model family with a relatively high number
of underrepresented languages. While we demon-
strate biases toward high-resource languages in
MLLMs, potentially disadvantaging speakers of
lower-resourced languages, our analysis aims to
make these biases transparent. Our toy model,
though potentially inheriting biases from the MC4
corpus, serves exclusively for controlled observa-
tion of MLLMs and has minimal dual-use potential.
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A Pre-training of Our Toy Model

We randomly initialize a model from the XGLM-
564M architecture (Lin et al., 2022) and change
d_model from 1024 to 512, resulting in a model
size of approximately 257M parameters (configu-
ration details in Table 2). We pre-train this model
using the Transformers library (Wolf et al., 2020)
with default Trainer parameters and a batch size
of 32 for 217 (= 131072) steps on the MC4 corpus
(Raffel et al., 2020), which is released under the
terms of ODC-BY. Pre-training language models
is the intended use of this corpus. We uniformly
sample data from the partitions of the following
languages: it, es, fr, pt, de, en, nl, af, zu, sn,
sw, xh, ru, uk, bg, sr. This sampling ensures bal-
anced representation of all languages. We take
checkpoints at powers of two {1, 2, 4, ..., 131072}
and regular 5000-step intervals. Training took 72
hours on a single NVIDIA A100-SXM4-80GB.

B Linear Probing for Language Identity

For every language that appears in both the
model’s pre-training data and the OSCAR (Or-
tiz Suárez et al., 2019) corpus, we sample 100
sentences, splitting them into 80 for training and
20 for testing. Each sentence sli is tokenized into
a sequence of tokens [tli,0, t

l
i,1, ..., t

l
i,Ti−1]. For

each tokenized sentence, the model M produces
hidden representations: hli,0, h

l
i,1, ..., h

l
i,T1−1 =

M(tli,0, t
l
i,1, ..., t

l
i,Ti−1). From these sequences of

hidden states, we randomly sample one token po-
sition per sentence and extract the hidden repre-
sentation at that position. We then train a logistic
regression classifier for each layer to predict the
language of origin for each hidden state. To ensure
robustness, we repeat this experiment with three
different random seeds.

As the BLOOM models have different avail-
able checkpoint intervals and our toy model is pre-
trained on a different set of languages, the results
are not directly comparable across models. How-
ever, the observed trends are consistent between all
models regarding the evolution of representations
across training checkpoints.

We present training progression results for our
toy model in Figure 8 and for BLOOM-7B1 in
Figure 9, with a detailed layer-wise comparison for
BLOOM-7B1 shown in Figure 10.

For comparison, we include results from the
encoder-only models XLM-R BASE (Figure 11)
and MBERT BASE CASED (Figure 12). While

decoder-only models exhibit relatively weak per-
formance in early layers, which then increases,
encoder-only models display a u-shaped pattern
for language identification.

attention_dropout 0.1
attention_heads 8
d_model 512
dropout 0.1
ffn_dim 4096
num_layers 24
vocab_size 256008

Table 2: Configuration details of our toy model.
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Figure 8: Language identification probing accuracy
throughout training of our toy model. For each check-
point, we show: (1) the mean accuracy across layers,
(2) the standard deviation across layers (indicating how
much accuracy varies between layers), and (3) the first
layer’s accuracy, which exhibits the most significant
changes during training. Results averaged over three
random seeds.
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Figure 9: Language identification probing accuracy
throughout training of BLOOM-7B1. For each check-
point, we show: (1) mean accuracy across layers, (2)
standard deviation across layers (indicating how much
accuracy varies between layers), and (3) first layer accu-
racy, which exhibits the most significant changes during
training. Results averaged over three random seeds.
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(a) Early training stage (step 1000). (b) Late training stage (step 300 000).

Figure 10: Language identity probing classification accuracy across layers of the BLOOM-7B1 model at different
training stages. Higher accuracy indicates that language-specific information is more easily extractable from the
hidden states at that layer. Error bars show standard deviation across three random seeds.
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Figure 11: Layer-wise language identity probing on
XLM-R BASE. Higher accuracy indicates that language-
specific information is more easily extractable from the
hidden states at that layer. Error bars show standard
deviation across three random seeds.

Figure 12: Layer-wise language identity probing on
MBERT BASE CASED. Higher accuracy indicates that
language-specific information is more easily extractable
from the hidden states at that layer. Error bars show
standard deviation across three random seeds.
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C Expert Neuron Data

We construct binary concept identification datasets
using ONESEC (Scarlini et al., 2019), which pro-
vides sentences where one word per sentence is
annotated with its WORDNET sense. The data is
licensed under a Creative Commons Attribution-
Noncommercial-Share Alike 4.0 License for re-
search purposes. From this data, we sample 200
concepts, ensuring each has at least 100 sentences
containing a word annotated with that concept. For
each concept, we create negative examples by ran-
domly sampling sentences from other concepts.

We then use NLLB 1.3B (Costa-jussà et al.,
2022) with greedy decoding to translate all datasets
into all of our target languages, thereby creating
parallel corpora. For computational efficiency, our
toy model and BLOOM-7B1 experiments use a
random subset of 100 concepts. The full concept
lists are available in Table 3 (BLOOM-560M) and
Table 4 (BLOOM-7B1 and toy model).

D Additional Results

We show alignment matrices for all checkpoints
of BLOOM-560M in Figure 13. While there is
a clear increase in alignment from step 1000 to
step 100 000, later checkpoints show minimal dif-
ferences, becoming almost indistinguishable from
each other.

Alignment matrices for the toy model are dis-
played in Figure 14. Early in training, a division
emerges between the four Cyrillic-script languages
and those using the Latin script. By step 512,
while this script-based division strengthens, lan-
guage families develop distinct internal alignments,
visible as red squares in the matrix. Notably, script
alone does not determine alignment patterns: Ger-
manic and Romance languages (middle of matrix)
show stronger mutual alignment than either does
with the Bantoid languages, although all use the
Latin script.

Beyond these detailed alignment analyses, we
confirm that the alignment behavior during train-
ing (Figure 4) as well as the layer distributions
(Figures 5 and 6) are consistently replicated in the
larger BLOOM-7B1 model (Figures 15 to 17).

E Text Generation Experiments

Following Kojima et al. (2024), we generate 100
sentences per concept using different random seeds,
with nucleus sampling (p = 0.9), temperature (t =
0.8), and a maximum sequence length of 64. For

generation, we only manipulate the top 500 expert
neurons by setting them to their concept-specific
median values, and provide the model with the
</s> token.

Example generations for the senses
earthquake-1_11_00 and joy-1_12_00, de-
rived from Spanish and Simplified Chinese data,
are shown in Table 1. To quantify the phenomenon
of later BLOOM-560M checkpoints favoring
high-resource languages, we show the detailed
development for Spanish in Figure 18. Here, we
see that the model first creates language-specific
concepts, generating text in Spanish, but in later
checkpoints favors English. Alongside English,
other high-resource languages such as Chinese and
French “compete for dominance” as well (step
300 000).

We demonstrate the same trend for Chinese in
Figure 19. For lower-resourced languages like
Swahili, however, the pattern differs: when deriv-
ing concept-specific neurons from Swahili data, no
checkpoint generates a notable amount of Swahili
text (Figure 20), suggesting these languages are
underrepresented throughout training.
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acceptance-1_09_00, account-1_10_00, accumulation-1_22_00, action-1_04_02,
adaptation-1_22_00, adviser-1_18_00, aftershock-1_11_00, agent-1_17_00,
american-1_18_00, amount-1_07_00, amount-1_21_00, appearance-1_11_00,
area-1_15_01, assumption-1_09_00, attendance-1_28_00, attention-1_04_01,
authority-1_18_01, backing-1_06_00, bacterium-1_05_00, band-1_14_00,
bank-1_14_00, bar-1_06_04, barrel-1_06_01, bay-1_17_00, beat-1_15_00,
bell-1_06_02, bill-1_10_01, body-1_14_00, boost-1_04_00, bottom-1_15_00,
bourbon-1_18_01, box-1_06_02, capital-1_21_01, cent-1_21_00, center-1_15_01,
ceo-1_18_00, childhood-1_26_00, church-1_06_00, circle-1_14_00, cleric-1_18_00,
client-1_18_01, commitment-1_07_01, companion-1_18_02, compensation-1_22_00,
conservative-1_18_00, contract-1_10_01, contractor-1_18_00, copy-1_10_00,
crystal-1_27_00, cycle-1_14_00, deposit-1_19_00, desk-1_06_00, duty-1_04_00,
e-mail-1_10_00, earthquake-1_11_00, economy-1_09_01, edition-1_14_00,
election-1_04_01, emotion-1_12_00, end-1_15_00, enterprise-1_04_00,
equity-1_21_00, equity-1_21_01, excess-1_07_02, execution-1_04_00,
expulsion-1_04_01, eyebrow-1_08_00, face-1_08_00, faithful-1_14_00,
family-1_14_00, favor-1_04_00, fee-1_21_00, feeling-1_03_00, find-1_04_00,
forehead-1_08_00, foreigner-1_18_00, game-1_04_03, genesis-1_10_00,
germany-1_15_00, goal-1_15_00, gold-1_21_00, governance-1_04_00,
grievance-1_10_01, hall-1_06_03, height-1_07_00, house-1_14_01,
hydrogen-1_27_00, information-1_09_00, infrastructure-1_06_00,
initial-1_10_00, injection-1_27_00, insight-1_12_00, inspiration-1_06_00,
interference-1_10_00, involvement-1_24_00, job-1_04_00, joy-1_12_00,
judge-1_18_00, kid-1_18_00, killer-1_18_00, kind-1_09_00, kitchen-1_06_00,
lack-1_26_00, lady-1_18_02, length-1_07_00, level-1_26_01, library-1_14_00,
lifetime-1_28_00, machine-1_06_00, march-1_04_00, march-1_28_00, margin-1_07_00,
master-1_18_00, math-1_09_00, member-1_18_00, memory-1_09_01, message-1_10_00,
minister-1_18_00, ministry-1_06_00, minute-1_28_01, money-1_21_00,
money-1_21_02, morale-1_07_00, move-1_04_01, mr-1_10_00, mystery-1_09_00,
need-1_17_00, negotiation-1_10_00, news-1_10_01, nickname-1_10_01,
nobility-1_14_00, notion-1_09_00, one-1_23_00, order-1_07_01, paint-1_06_00,
paradox-1_10_00, participant-1_18_00, participant-1_18_01, pattern-1_09_00,
percent-1_24_00, percentage-1_24_00, perimeter-1_25_00, person-1_03_00,
personality-1_18_00, pet-1_05_00, phase-1_26_00, phosphorus-1_27_00,
pier-1_06_00, place-1_15_04, politician-1_18_01, poster-1_18_00,
premonition-1_12_00, president-1_18_01, president-1_18_04, process-1_04_00,
program-1_09_00, programme-1_10_00, pub-1_06_00, race-1_11_00, rank-1_14_00,
recovery-1_11_00, refinery-1_06_00, regard-1_09_01, release-1_04_01,
release-1_06_00, role-1_04_00, schoolteacher-1_18_00, score-1_10_00,
scourge-1_26_00, senator-1_18_00, september-1_28_00, signal-1_16_00,
situation-1_26_01, skepticism-1_09_01, solution-1_27_00, someone-1_03_00,
space-1_03_00, spain-1_15_00, spite-1_12_00, statement-1_10_00, step-1_04_02,
striker-1_18_02, suicide-1_04_00, suspension-1_28_00, system-1_06_00,
tax-1_21_00, thing-1_04_00, thinking-1_09_00, times-1_04_00, triage-1_04_00,
trial-1_04_00, type-1_18_00, unemployment-1_26_00, verdict-1_04_00,
vicar-1_18_00, wealth-1_26_00, wednesday-1_28_00, will-1_09_00, yield-1_04_00,
zip-1_10_00

Table 3: Complete set of 200 randomly sampled WORDNET senses (alphabetically ordered) used in BLOOM-560M
experiments.
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accumulation-1_22_00, action-1_04_02, adviser-1_18_00, aftershock-1_11_00,
american-1_18_00, amount-1_07_00, appearance-1_11_00, attention-1_04_01,
authority-1_18_01, bar-1_06_04, boost-1_04_00, bourbon-1_18_01,
center-1_15_01, ceo-1_18_00, circle-1_14_00, client-1_18_01, companion-1_18_02,
conservative-1_18_00, contractor-1_18_00, cycle-1_14_00, deposit-1_19_00,
e-mail-1_10_00, economy-1_09_01, edition-1_14_00, equity-1_21_00,
excess-1_07_02, execution-1_04_00, eyebrow-1_08_00, faithful-1_14_00,
family-1_14_00, favor-1_04_00, forehead-1_08_00, foreigner-1_18_00,
genesis-1_10_00, germany-1_15_00, goal-1_15_00, gold-1_21_00,
governance-1_04_00, height-1_07_00, house-1_14_01, information-1_09_00,
infrastructure-1_06_00, insight-1_12_00, inspiration-1_06_00,
interference-1_10_00, job-1_04_00, joy-1_12_00, kid-1_18_00, killer-1_18_00,
lady-1_18_02, length-1_07_00, library-1_14_00, lifetime-1_28_00, march-1_04_00,
margin-1_07_00, master-1_18_00, message-1_10_00, money-1_21_00, morale-1_07_00,
move-1_04_01, mystery-1_09_00, negotiation-1_10_00, news-1_10_01,
nobility-1_14_00, notion-1_09_00, paint-1_06_00, participant-1_18_00,
participant-1_18_01, pattern-1_09_00, percent-1_24_00, perimeter-1_25_00,
personality-1_18_00, pet-1_05_00, phosphorus-1_27_00, pier-1_06_00,
place-1_15_04, premonition-1_12_00, president-1_18_01, president-1_18_04,
program-1_09_00, pub-1_06_00, race-1_11_00, rank-1_14_00, refinery-1_06_00,
release-1_06_00, september-1_28_00, skepticism-1_09_01, someone-1_03_00,
spite-1_12_00, striker-1_18_02, system-1_06_00, tax-1_21_00, thing-1_04_00,
thinking-1_09_00, type-1_18_00, unemployment-1_26_00, verdict-1_04_00,
vicar-1_18_00, wealth-1_26_00, yield-1_04_00

Table 4: Subset of 100 WORDNET senses randomly selected from Table 3 (alphabetically ordered), used in
BLOOM-7B1 and toy model experiments for faster experimentation.
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(a) Step 1000.
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(b) Early training stage (step 10 000).
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(c) Step 100 000.
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(d) Step 200 000.
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(e) Step 300 000.
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(f) Step 400 000.

Figure 13: Expert neuron alignment of BLOOM-560M at different training stages.
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(a) Step 64.
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(b) Step 128.
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(c) Step 256.
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(d) Step 512.
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(e) Step 1024.
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(f) Step 2048.
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(g) Step 4096.
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(h) Step 8192.
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(i) Step 16 384.
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(j) Step 32 768.
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(k) Step 65 536.
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(l) Step 131 072.

Figure 14: Expert neuron alignment of our toy model at different training stages.
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Figure 15: Correlation Coefficient and Neuron Overlap
Proportion of top 500 neurons throughout training, aver-
aged across concepts and languages for BLOOM-7B1.
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Figure 16: Layer-wise distribution of BLOOM-7B1’s
top 500 expert neurons, averaged across languages and
concepts.
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Figure 17: Cross-lingual overlap of BLOOM-7B1’s
top 500 expert neurons per layer, showing the averaged
proportion of shared neurons between language pairs.
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(a) Step 1000. The model generates incoherent text with
excessive punctuation, which LANGDETECT cannot clas-
sify.
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(b) Step 10 000. The model primarily generates Spanish
text, but we also observe a substantial presence of English,
Portuguese, and Chinese generations.
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(c) Step 100 000. The model now generates primarily En-
glish text, followed by Chinese and Spanish. Importantly,
English and Chinese are the two most common languages
in BLOOM-560M’s pre-training corpus.
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(d) Step 200 000. French, a Romance language like Span-
ish, becomes more prominent. As with Chinese, its promi-
nence reflects its status as a high-resource language in
BLOOM-560M’s pre-training corpus.
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(e) Step 300 000. The three high-resource languages–
Chinese, English, and French–dominate, while Spanish
becomes increasingly less present.
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(f) Step 400 000. The model generates a large amount
of English text, with Spanish appearing to a much lesser
extent.

Figure 18: Text generation experiments: Relative frequency distribution of the top 10 detected languages when
manipulating neurons derived from Spanish data across all available BLOOM-560M checkpoints, as classified
using LANGDETECT.
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(a) Early training stage (step 10 000).
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(b) Late training stage (step 400 000).

Figure 19: Text generation experiments: Relative frequency distribution of the top 10 detected languages when
manipulating neurons derived from Chinese data, as classified using LANGDETECT.
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(a) Step 1000.
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(b) Step 10 000. The model already generates text in high-
resource languages.
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(c) Step 100 000.
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(d) Step 200 000.
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(e) Step 300 000.
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(f) Step 400 000.

Figure 20: Text generation experiments: Relative frequency distribution of the top 10 detected languages when
manipulating neurons derived from Swahili data across all available BLOOM-560M checkpoints, as classified
using LANGDETECT.
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