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Abstract

As large language models (LLMs) require con-
tinuous knowledge updates and the mitigation
of hallucination issues in generated content,
lifelong model editing has become a promi-
nent research area. A mainstream knowledge
editing method usually freezes LLM’s original
parameters and adds extra trainable modules
for new knowledge management, reducing in-
terference with old knowledge. Although these
approaches have achieved some success, our ex-
periments show that, after extensive editing, the
model’s knowledge understanding and mem-
ory capacity significantly degrade, particularly
concerning early edited knowledge. The root
cause is that subsequent edits interfere with the
previously edited knowledge, and we refer to
this phenomenon as knowledge coupling. To
address this issue, we propose the Knowledge
Decoupling Editing (KDE) method. Specifi-
cally, KDE stores the basis vectors of the rep-
resentation space of past edits in a knowledge
cache. It projects the gradient of the current edit
onto a space orthogonal to previous knowledge
for updating. This method effectively alleviates
the coupling between different pieces of knowl-
edge. We also propose a two-stage training
strategy to better balance the model’s ability to
edit new knowledge and distinguish whether
a query is related to previous edits. This strat-
egy gradually reduces the interference between
new knowledge editing and query distinction,
maintaining stable performance during long-
term editing. We compared KDE with nine
state-of-the-art editing methods across multiple
mainstream LLMs. The results demonstrate
that, regarding question-answering ability and
hallucination mitigation, KDE achieves aver-
age improvements of 14% and 61%.

1 Introduction

Large language models (LLMs) (Roumeliotis and
Tselikas, 2023; Touvron et al., 2023a; DeepSeek-
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Figure 1: (a) and (b) show the changes in reliability and
generalization for the first 50 samples in the WISE after
50 and 3,000 edits, respectively.

Al et al., 2024) have demonstrated significant po-
tential across various applications. However, they
often face issues such as factual errors (Balachan-
dran et al., 2022), hallucinations (Ji et al., 2023),
and outdated information (Cao et al., 2021), which
undermine their reliability. Updating model knowl-
edge through full fine-tuning is costly and may
compromise the model’s general capabilities.

As a result, model editing techniques (Meng
et al., 2022; Hartvigsen et al., 2023) have emerged
as a more efficient alternative for modifying spe-
cific knowledge. Existing methods can be broadly
categorized into two types (Zhang et al., 2024): (1)
parameter-modifying methods (Meng et al., 2022;
Gu et al., 2024a), which directly alter the model’s
parameters, yet they often change the model’s out-
put for queries that are unrelated to the editing.
(2) parameter-preserving methods (Yu et al., 2024;
Wang et al., 2024c¢), avoid this problem by freezing
the parameters of LLMs and introducing additional
parameters to edit knowledge. In this paper, we fo-
cus on the parameter-preserving method, because
it can protect the general knowledge of LLM more
effectively and absorb new knowledge.

However, most existing research has primarily
focused on single or batch knowledge edits (Meng
et al., 2022, 2023), which can no longer meet the
demand for frequent knowledge updates in real-
world applications. These methods often suffer
from two critical limitations: (1) a significant de-
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cline in editing success rates during frequent edit-
ing and (2) unintended interference with knowledge
unrelated to the edited content (Gu et al., 2024b;
Gupta et al., 2024). To address the challenges of
lifelong model editing, WISE (Wang et al., 2024c)
has designed a knowledge sharding and merging
mechanism, which can effectively alleviate the con-
flict issues caused by excessively high knowledge
density (Allen-Zhu and Li, 2024). In addition, the
method introduces a side memory to avoid inter-
fering with the model’s responses to knowledge
unrelated to the edited content. Therefore, WISE
performs excellently in scenarios that require fre-
quent editing. Nevertheless, as the number of edits
increases, the model’s performance in retaining ear-
lier knowledge significantly declines, as shown in
Figure 1, with the reliability of the first 50 edit
prompts decreasing by an average of 36% and gen-
eralization decreasing by 33%. The performance
degradation highlights a critical challenge in life-
long model editing: the interference between newly
edited and previously edited knowledge. Such inter-
ference often leads to the corruption or forgetting of
earlier edits, a phenomenon we term as knowledge
coupling. Figure 2 presents a specific instance of
the knowledge coupling phenomenon in the ZsRE
dataset (Levy et al., 2017). After applying the exist-
ing editing methods to the LLM for ¢ + 1 edits, we
observed that the knowledge from the ¢-th edit was
distorted. The original answer, “Swan River”, was
incorrectly replaced by a combination of the targets
from the two edits, “Smithan River”. This coupling
phenomenon causes the model to mistakenly con-
flate the results of the two edits during inference.
Solving this problem is crucial for the development
of more powerful editing methods.

Based on these observations, this paper proposes
a Knowledge Decoupling Editing (KDE) method
for lifelong editing of LLMs. KDE consists of four
core components: (1) Editable Memory, (2) Switch
Mechanism, (3) Knowledge Decoupling, and (4)
Two-Stage Training. Specifically, Editable Mem-
ory is an additional parameter we introduce specifi-
cally for editing knowledge, designed to avoid the
side effects of directly modifying the internal pa-
rameters of the LLM. It is a copy of the value
matrix in a certain layer of the LLM’s feedfor-
ward network (FFN) module. The Switch Mech-
anism determines whether the input is related to
the editing content by assessing the activation dif-
ferences between the input, Editable Memory, and
the original value matrix, thereby preventing inter-

Edit Stage
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Figure 2: An example of knowledge coupling on ZsRE.

ference with the model’s responses to knowledge
unrelated to the edited content. Knowledge De-
coupling includes a knowledge cache module that
stores the representation space of the edited knowl-
edge. During each edit, the gradients of the knowl-
edge are constrained to optimize within the orthog-
onal space represented by the cache, thus reducing
the coupling between different knowledge. How-
ever, when editing longer sequences, we observe
a sudden performance drop. This occurs because
Editable Memory must load new knowledge while
maintaining differences from the original value ma-
trix, resulting in increased interference between the
two tasks during long sequence edits, with neither
being effectively optimized. To address this issue,
we propose a simple yet effective Two-stage Train-
ing strategy: during the early editing stages, both
capabilities are trained simultaneously, after which
the focus shifts to optimizing the edited knowledge.
This approach allows our method to maintain stable
and excellent performance even under ultra-long
sequences (e.g., Sk edits).

Our contributions can be summarized as follows:

* We identify one of the key challenges in lifelong
editing as knowledge coupling, where new edits
interfere with previously edited knowledge.

* We propose Knowledge Decoupling Editing
(KDE), which reduces knowledge coupling by
projecting new edit gradients into the orthogonal
space of prior edited knowledge. We also in-
troduce a two-stage training strategy to improve
performance in long-sequence editing.

» Extensive experiments conducted on the ZsRE
and SelfCheckGPT datasets, as well as with the
GPT-J-6B, LLaMa2-7B, and Mistral-7B architec-
tures, demonstrate the effectiveness of the pro-
posed KDE method.
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2 Background
2.1 Model Editing

In this section, we introduce the concepts of life-
long model editing and evaluation metrics.

Based on prior research (Meng et al., 2022,
2023), model editing refers to modifying a lan-
guage model’s parameters to change its behavior
for specific instances while maintaining consistent
behavior for other instances. Given a language
model fp and an editing instance (., y. ), the ini-
tial model may fail to produce the correct output ¥,
for the input x., i.e., fo(ze) # ye. Model editing
generates an edited model f) by adjusting exist-
ing parameters or adding new ones, which satisfies
fo(xe) = ye. In the lifelong editing (Huang et al.,
2023; Hartvigsen et al., 2023), the model requires
continuous updates. Starting from an initial lan-
guage model fg, the editor E sequentially updates
the model according to the editing requirements:

=B meye), t=1,2,3,... (1)

In such scenarios, an ideal model editing method
must exhibit three key characteristics: reliability,
generalization, and locality (Wang et al., 2024c;
Cai and Cao, 2024). Reliability measures the
model’s ability to accurately retain all edited in-
stances; generalization evaluates the model’s abil-
ity to make correct predictions for examples related
to the edited instances; and locality ensures that the
model’s behavior remains unchanged when pro-
cessing inputs unrelated to the edited instances,
thereby preserving its original performance. The
specific information about the evaluation metrics
can be found in Appendix A.1.

2.2 Input and Gradient Spaces

Our method leverages the characteristic of stochas-
tic gradient descent updates confined to the space
spanned by the input data (Zhang et al., 2017;
Saha et al., 2021). We will illustrate this prop-
erty specifically for fully connected layers. Let
x € R™ be the input vector, y € R" be the
corresponding label vector from the dataset, and
W € R™*" be the trainable weight matrix. The
loss function is defined as the mean squared error
loss L = £||Wz — y||3.

The gradient of the loss function with respect to
the weights can be expressed as:

VwL =Wz —y)z' =dz', ()

where § € R" is the error vector. Consequently, the
gradient update occurs within the space spanned
by the input x (a detailed proof is provided in Ap-
pendix B.1). This formulation is also valid for
networks with other loss functions, such as cross-
entropy, except that the computation of the error
vector § will differ.

3 Method

This section introduces our proposed method,
Knowledge Decoupling Editing (KDE). The over-
all architecture is shown in Figure 3. It consists of
four main components: (1) Editable memory, (2)
Switch Mechanism, (3) Knowledge Decoupling,
and (4) Two-Stage Training.

3.1 Editable Memory

To mitigate issues such as knowledge forgetting
arising from directly editing the internal parameters
of LLMs, we draw inspiration from the design in
WISE(Wang et al., 2024¢) and introduce additional
parameters into the FFN of a specific transformer
block in the LLMs to learn new knowledge. Re-
cent research(Geva et al., 2021) has shown that the
structure of an FFN is similar to a key-value mem-
ory, where it can be viewed as consisting of a key
matrix W}, and a value matrix W,,. We refer to the
newly added parameters as the Editable Memory
We, which is directly copied from the FFN’s value
matrix W, and thus we term W,, as the Original
Memory. Given an input z, the forward propaga-
tion of the Editable Memory is as follows:

FFN(z) =h-We, 3)

where h = o(z - W, ) represents the output of the
key matrix Wy, and o(-) is the activation function.
In the subsequent editing process, we update
only the Editable Memory (i.e., W) while freezing
the parameters of the original LLM. This approach
aims to preserve the model’s general capabilities
while updating outdated or erroneous knowledge.

3.2 Switch Mechanism

After introducing Editable Memory, another impor-
tant issue is determining whether a query x should
enter Editable Memory or Original Memory during
inference. Similar to retrieval-augmented methods
(Huang et al., 2023; Wang et al., 2024c¢), our Switch
Mechanism routes queries based on the activation
difference between Editable Memory and Original
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Figure 3: The overview of our proposed KDE. (a) represents the Editable Memory. (b) denotes the Switch
Mechanism, which routes queries based on the activation differences between the editable and original memory. (c)
refers to Knowledge Decoupling, which employs a knowledge cache to store the representation space of past edits
and updates the current edit by projecting its gradient onto the orthogonal space of these historical representations.

Memory for the query z. Specifically, for a given
query x, we first compute its activation difference:

4

where h is the output by the key matrix W}, and
|| - |2 denotes the L2 norm. The activation differ-
ence A(x) reflects the disparity in responses be-
tween Editable Memory and Original Memory for
the query. A larger A(x) indicates that the query
should enter Editable Memory. To accurately dis-
tinguish which memory the query should enter, we
define a hinge loss function (Gentile and Warmuth,
1998) Lg:

Alz) = [[h - (We = Wo)ll2,

L= Iﬁ/in {max (0, A(z;) — «)
+ max(0,8 — A(ze)) }, ()

where x; is the input unrelated to editing, and x.
is the input related to editing. The goal of this loss
function is to maximize the activation difference
for queries unrelated to the edit x;, ensuring it is be-
low «, while minimizing the activation difference
for queries related to the edit x., ensuring it is at
least 5. By default, o and [ are set to 5 and 20,
respectively.

Finally, the Switch Mechanism dynamically de-
cides which memory the query should enter using
a Gate Function 0(-), defined as:

{

where a = A(x) is the activation difference, and
€ is the minimum activation difference across all

0
1

,ifa>¢€

. )
, otherwise

d(a) (6)

edit examples, i.e., A(Z¢)min. Therefore, the final
output of the FFN layer is:

FEN(z) = h-(6(a) - We+(1=0(a)) - Wy), (7)
where h is the output by the key matrix Wy,

3.3 Knowledge Decoupling

Figure 5 (a) illustrates the performance variation
of the WISE method across 100 to 3,000 edits. It
can be observed that after 3,000 edits, the model’s
average performance drops by 24%, and its pro-
ficiency in the edited knowledge significantly de-
creases. Furthermore, as shown in Figure 1, with
increasing edits, the model’s ability to recall and
comprehend earlier edits deteriorates notably, with
reliability decreasing by 36% and generalization
ability dropping by 33%. We believe that the un-
derlying cause of this phenomenon lies in the cou-
pling of knowledge, wherein the knowledge from
later edits interferes with the knowledge from ear-
lier ones. Inspired by works in continual learning
(Zeng et al., 2019; Saha et al., 2021), we propose a
knowledge decoupling method to mitigate the issue
of knowledge coupling by adjusting the direction
of the gradient updates during editing.

First Edit. No restrictions are applied for the first
editing example (!, !). In other words, the Ed-
itable Memory is directly edited. The update pro-
cess is as follows:

oL

WS%WS_UW’

®)

where the loss function is defined as L
—log Py, (ye|ze) + Ls, and 7 represents the learn-
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ing rate. We refer to the Editable Memory after the
first edit as W to simplify notation.

After the first edit, we propagate the input z.
through the network to obtain the intermediate vari-
able hy = f(z! - W), which represents the input
to the Editable Memory W,. The gradient of the lin-
ear layer (represented by each column) lies within
the subspace spanned by the input. The detailed
proof can be found in Appendix B.1. To further
explore the relationship between the input and the
gradient, we apply singular value decomposition
(SVD) (Businger and Golub, 1969) to hy:

hy = U2V, 9)

where U7 € R™*™ and V; € R™" are orthogo-
nal matrices, and 3; € R"*" contains the singu-
lar values arranged along the main diagonal. To
improve computational efficiency, we apply the
Eckart-Young Theorem (see Appendix B.2) to ap-
proximate h; with rank k. Precisely, we control the
number of singular values retained, k, by setting
a predefined threshold -y, such that the following
condition is met:

()l
2 =27 (10)
IZ1%
where || - || denotes the Frobenius norm, and X,

contains the top k singular values. Subsequently,
we define the representation space for the first edit,
S1, as the span of the first k& vectors of Uy :

(In

where the basis vectors w1 ; represent the i-th col-
umn vector of U;. When we update the model
along the direction of 57, it has the maximal impact
on this knowledge, while updating in the orthog-
onal subspace of S; minimizes the effect, which
allows us to decouple the knowledge.

To facilitate the retrieval of the representation

space from prior edits in subsequent edits, we
design a knowledge cache C, where the basis
vectors of the representation space .S; are stored:
Cl == {ulyl, U1,2y -y ul,k}.
Subsequent Edits. For editing the ¢-th (t > 2)
knowledge (z¢,y!), the process begins by retriev-
ing the representation space C;_1 from the knowl-
edge cache C, which contains the representations
of the first £ — 1 knowledge edits. Next, we project
the gradient Vyy, L; of the ¢-th edit onto the orthog-
onal space of C;_; before performing the update:

Sl = span{um, U172, ey uljk},

Vw, Lt = Vw, L — (Vw,L))Ci1CL ;. (12)

| #Edits | Rel. Gen. Loc. Avg.

wi L ‘ 10 ‘ 1.00 096 1.00 0.9
s 500 098 0.88 097 094

w/o L ‘ 2000 ‘ 093 081 0.89 0.88
w/ L ‘ 2000 ‘ 0.70 063 079 0.71

Table 1: Impact of L, on Model Performance Across
Edit Counts On ZsRE.

After completing the t¢-th edit, we use its repre-
sentation space to update the knowledge cache.
As with the first edit, we propagate z! through
the network to obtain the intermediate variable
hy = f(zl - W,[). To ensure the uniqueness of
the basis vectors in the knowledge cache, we need
to remove the overlapping components between h,
and the existing content in the cache:

he = hy — (h)Cy_1 O} 4. (13)

Subsequently, we perform SVD on hy, yielding
Ry = U;%,V,", and select the number of singular
values k£ to retain based on the threshold ~:

||(ht)k\|% + 1(he)Ct—1Cy 1 1% >
|hell% B

Finally, we add the first k£ vectors from the unitary
matrix U; to the knowledge cache, yielding the up-
dated cache C; = {Cy_1,us1,...,us ;. For the
specific update process, please refer to the pseu-
docode in Appendix A.2.

(14)

3.4 Two-Stage Training

As shown in Table 1, after 500 edits, the model’s lo-
cality remains high. If the loss function L, which
optimizes query distinction ability, is removed, the
locality remains stable, staying around 90% even
after 2000 edits. However, when L is retained, we
observe a significant drop in model performance
once the number of edits reaches 2000 or more.
We attribute this phenomenon to the increasing in-
terference between learning new knowledge and
improving query distinction ability as the number
of edits grows, preventing both tasks from being
fully optimized.

To address this issue, we propose a simple yet ef-
fective two-stage training strategy. The core idea of
this strategy is to gradually reduce the interference
between new knowledge editing and query distinc-
tion ability enhancement through staged training.
This strategy helps maintain stable model perfor-
mance during long sequence editing and avoids
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| SelfCheckGPT

Method

\ N=1 \ N =10 \ N =100 \ N = 1000 | N=1 | N=10 | N=100| N =600
‘ReL Gen. Loc. Avg.‘Rel. Gen. Loc. Avg.‘Rel. Gen. Loc. Avg.‘Rel. Gen. Loc. Ang‘PPL. Loc.‘ PPL. Loc.‘ PPL. Loc.‘ PPL. Loc.
LLaMa2-7B
FT-L 0.57 0.52 0.96 0.68|0.48 0.48 0.76 0.57 [0.30 0.27 0.23 0.27 [0.19 0.16 0.03 0.13 | 4.41 0.96|12.57 0.71|33.06 0.41 | 69.22 0.26
FT-EWC |0.96 0.95 0.02 0.64|0.82 0.76 0.01 0.53|0.83 0.74 0.08 0.55|0.76 0.69 0.08 0.51|2.56 0.24| 3.63 0.09| 2.10 0.16| 4.56 0.24
MEND [0.95 0.93 0.98 0.95|0.26 0.28 0.28 0.27 |0.00 0.00 0.00 0.00 [0.00 0.00 0.00 0.00 |5.65 0.87|11.01 0.86|10.04 0.88 - -
ROME |0.85 0.80 0.99 0.88|0.64 0.62 0.75 0.67 |0.23 0.22 0.04 0.16 |0.01 0.01 0.00 0.01|1.68 0.99| 2.04 0.94|94.15 0.05|103.94 0.02
MEMIT |0.84 0.81 0.99 0.88|0.58 0.58 0.85 0.67 [0.02 0.02 0.02 0.02[0.04 0.04 0.02 0.03|1.66 1.00| 2.36 0.97|76.65 0.05|107.61 0.02
MASS |0.84 0.81 0.99 0.88|0.75 0.72 0.97 0.81|0.76 0.68 0.85 0.76 |0.69 0.65 0.62 0.65|1.66 1.00| 1.61 0.99| 7.18 0.96| 13.47 0.94
DEFER |0.68 0.58 0.56 0.61|0.65 0.47 0.36 0.49(0.20 0.12 0.27 0.20|0.03 0.03 0.74 0.27 |1.29 0.23| 3.64 0.28| 891 0.19| 19.16 0.12
GRACE |0.98 0.08 1.00 0.69|0.96 0.00 1.00 0.65|0.96 0.00 1.00 0.65|0.97 0.08 1.00 0.68 |2.59 1.00| 9.62 1.00| 9.44 1.00| 9.34 1.00
WISE 0.98 0.92 1.00 0.97[0.94 0.88 1.00 0.94|0.90 0.81 1.00 0.90|0.77 0.72 1.00 0.83|1.91 1.00| 1.04 1.00| 1.14 1.00| 3.12 0.99
KDE [1.00 1.00 1.00 1.00|1.00 0.96 1.00 0.99 [0.99 0.92 1.00 0.97 |0.95 0.86 0.94 0.92|1.00 1.00| 1.01 1.00| 1.05 0.94| 1.44 091
GPT-J-6B

FT-L 0.57 0.52 0.96 0.48]0.48 0.76 0.27 0.23]0.55 0.19 0.16 0.03 [0.15 0.12 0.05 0.10|6.14 0.92|14.58 0.72]39.25 0.44 | 81.77 0.31
FT-EWC |0.98 0.97 0.01 0.65|0.58 0.56 0.01 0.38|0.59 0.56 0.01 0.39|0.52 0.46 0.01 0.33|2.31 0.16| 3.71 0.10| 424 0.18| 4.89 0.22
MEND [0.96 0.95 0.99 0.97|0.02 0.02 0.02 0.02|0.01 0.01 0.00 0.01/0.00 0.00 0.00 0.00|6.65 0.88|16.82 0.81|21.37 0.74 - -
ROME [0.99 0.96 0.87 0.94|0.48 0.46 0.12 0.35|0.03 0.02 0.04 0.03|0.03 0.02 0.02 0.02|1.81 0.99| 4.62 0.92/99.13 0.04 |136.47 0.01
MEMIT [0.99 0.88 0.98 0.95|0.58 0.56 0.20 0.45[0.02 0.02 0.04 0.03{0.04 0.02 0.02 0.03|1.62 1.00| 7.14 0.91]79.96 0.04|118.43 0.02
MASS [0.99 0.88 0.98 0.95|0.96 0.81 0.97 0.91|0.78 0.72 0.92 0.81|0.81 0.75 0.70 0.75|1.62 1.00| 2.01 0.99| 5.54 0.96| 9.73 0.93
DEFER [0.99 0.99 0.39 0.79]0.67 0.51 0.37 0.52|0.01 0.00 0.92 0.31|0.32 0.28 0.25 0.28|3.32 0.38| 5.16 0.33| 843 0.28| 17.82 0.17
GRACE [0.99 0.01 1.00 0.67{0.97 0.27 1.00 0.75|0.98 0.18 1.00 0.72|0.98 0.09 1.00 0.69 |2.31 1.00| 5.64 1.00| 8.77 1.00| 8.96 1.00
WISE 1.00 0.98 1.00 0.99]0.92 0.91 1.00 0.94|0.86 0.75 1.00 0.87|0.70 0.64 0.99 0.78|1.01 1.00| 1.05 0.99| 1.17 1.00| 4.16 1.00
KDE [1.00 1.00 1.00 1.00|1.00 0.96 1.00 0.99|0.99 0.87 1.00 0.95|0.98 0.79 1.00 0.92|1.00 1.00| 1.00 1.00| 1.01 0.99| 1.31 0.94

Table 2: The overall results for the QA (ZsRE dataset) and Hallucination (SelfCheckGPT dataset) settings are
presented. Here, /N denotes the number of edits, and “Rel.”, “Gen.”, “Loc.” and “PPL.” represent the reliability,
generality, locality, and perplexity, respectively. Note that for PPL, smaller values are better, while higher values are

preferred for other metrics. Due to space limitations, we use

“MASS” stands for “MEMIT-MASS”.

performance degradation due to the interference
between the two tasks. In the first n edits, we use a
composite loss function that includes L, allowing
the model to improve its query distinction ability
while learning new knowledge. In subsequent edits,
we remove L and focus on enhancing the model’s
knowledge editing ability:

—log Pw, (ye‘fce) + L
—log Pw, (yel|ze)

,ift <n
, otherwise '
15)
where ¢ represents the current number of edits. This
strategy leverages the stability of locality during
the editing process and stages the training of new
knowledge editing ability and query distinction
ability. As a result, the model’s performance re-
mains stable during long-term editing, avoiding
performance degradation caused by interference
between the two tasks.

4 Experiments

4.1 Experimental Setup

Datasets and Metrics. We utilize two widely used
lifelong model editing datasets, ZsRE (Levy et al.,
2017) and SelfCheckGPT (Manakul et al., 2023), to
train and evaluate the performance of KDE. Specif-

[T3%L)

to indicate cases where PPL exceeds 1,000, and use

ically, we follow the evaluation methodology of
(Wang et al., 2024c) and test KDE’s performance in
answering context-independent questions (ZsRE)
and its ability to mitigate hallucination issues (Self-
CheckGPT). Details of these two datasets can be
found in Appendix A.3. We evaluate the model’s
performance on the ZsRE using the metrics of Re-
liability, Generalization, and Locality defined in
Section 2, along with their average values. For the
SelfCheckGPT, we follow the evaluation settings
from prior research (Wang et al., 2024c), using
perplexity (PPL) as the metric for evaluating relia-
bility, with locality assessed in the same manner as
for the ZsRE and excluding generalization. !

4.2 Experiment Results

Main Results. As shown in Table 2, we observe
the following phenomena: (1) Our KDE method
outperforms all baseline methods in terms of aver-
age performance, achieving the best results. For in-
stance, after 1,000 edits on the LLaMA?2 in the zero-
shot question-answering task (ZsRE), our method
improves upon the state-of-the-art WISE by 11%.
Notably, our method demonstrates significant im-
provements in reliability and generalization, with

'The detailed description of baselines and implementation
are presented in Appendix A.4 and Appendix A.5.
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Method| N =2000 | N =3000

| N=4000 | N =5000

| Rel. Gen.

Loc. Avg.|Rel. Gen. Loc. Avg.|Rel. Gen. Loc. Avg.|Rel. Gen. Loc. Avg.

GRACE | 0.96 0.03
WISE |0.66 0.63

1.00 0.66]0.96 0.03 1.00 0.66 |0.95 0.02 1.00 0.66[0.95 0.01 1.00 0.65
1.00 0.76 |0.58 0.56 1.00 0.71

0.56 0.55 1.00 0.70|0.54 0.53 1.00 0.69

KDE

|0.93 0.81 0.89 0.88]0.89 0.77 0.87 0.84|0.86 0.74 0.86 0.82|0.81 0.71 0.85 0.79

Table 3: Scaling to 5K edits on ZsRE (LLaMA2).

increases of 23% and 19%, respectively. These
improvements are attributed to the design of our
knowledge decoupling module, which stores the
basis vectors of the historical editing representa-
tion space in a knowledge cache and constrains
the gradient of each edit to its orthogonal space.
This alleviates the knowledge coupling issue and
significantly enhances the model’s reliability and
generalization when responding to edited prompts.
Additionally, our method maintains locality above
90%, highlighting its ability to distinguish inputs
unrelated to the edit prompt.

(2) Among the baselines, GRACE maintains
high levels of reliability and locality, but it suf-
fers from a near-complete loss of generalization
capability. This is due to the non-parametric nature
of its codebook representation, which simply mem-
orizes knowledge without understanding. WISE
shows a more balanced performance, but its perfor-
mance declines significantly as the number of edits
increases. This is because its knowledge sharding
and merging mechanism merely reduces knowl-
edge density in fixed parameters without address-
ing the underlying issue of knowledge coupling.

(3) As the number of edits increases, we observe
a gradual decline in the average performance of
nearly all methods. For instance, the strongest base-
line method, WISE, drops from 99% performance
after a single edit to 83% after several thousand
edits, a decrease of nearly 16%, while our method
only experiences an 8% drop. Such a result aligns
with our expectations, as an increasing number of
edits exacerbates the coupling of knowledge, lead-
ing to a significant performance decline. This fur-
ther highlights the advantages of KDE in lifelong
editing scenarios.

(4) KDE’s advantages in hallucination mitiga-
tion are even more remarkable. KDE maintains
perplexities of 1.44 and 1.31, respectively. KDE
shows 54% and 68% improvements compared to
WISE, respectively. Meanwhile, the locality al-
ways remains above 90%.

Scaling to Longer Sequences: 5,000 Edits. As

Rel. Gen. Loc. | Avg.
KDE 0.95 0.86 0.940.92
- Knowledge Decoupling 0.75 0.71 0.99 | 0.82
- Switch Mechanism 0.97 0.88 0.76 | 0.87

Table 4: Ablation study of Knowledge Decoupling and
Switch Mechanism with 1k edits on ZsRE (LLaMA?2).

Rel. Gen. Loc. | Avg.

KDE 0.89 0.77 0.87 | 0.84
- Two Stage Training 0.70 0.63 0.79 | 0.71

Table 5: Ablation study of Two Stage Training with 3k
edits on ZsRE (LLaMA?2).

shown in Table 3, KDE consistently outperforms all
other methods, with a performance improvement of
approximately 15% over the best baseline method,
WISE. Notably, as the number of edits increases,
the gap between our model and the best baseline
method in terms of reliability and generalization
continues to widen. After 5,000 edits, reliability
and generalization are improved by 50% and 34%,
respectively, compared to WISE. This underscores
the advantages and potential of KDE in handling
extremely long sequence edits.

5 Analysis
5.1 Ablation Study

We designed a series of ablation experiments to
evaluate the impact of each component in the model
on performance, including the Switch Mechanism,
Knowledge Decoupling, and Two-stage Training.
The results are presented in Tables 4 and 5.

First, after removing the switch mechanism, we
observed a decrease of approximately 19% in the
model’s locality, making it more difficult for the
model to accurately distinguish whether a query
should enter editable memory or original mem-
ory. However, the model’s accuracy and general-
ization ability improved, suggesting that remov-
ing the mechanism allowed the model to focus
more on knowledge-learning tasks without frequent
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Figure 4: a) and c), as well as b) and d), show the changes in reliability and generalization for the first 50 samples in

the WISE and KDE after 50 and 3,000 edits, respectively.

memory switching. Overall, after removing the
Switch Mechanism, the model’s average perfor-
mance dropped from 90% to 85%, highlighting
the balance that the Switch Mechanism provides
between accuracy and locality.

After removing the knowledge decoupling mod-
ule, the model’s average performance decreased by
approximately 12%, with reliability and generaliza-
tion dropping by 27% and 17%, respectively. With-
out any constraints on the editing knowledge, the
coupling between knowledge became severe, lead-
ing to interference with early-edited knowledge,
thereby affecting the model’s memory and under-
standing of knowledge. This result underscores the
critical role of the Knowledge Decoupling mod-
ule in maintaining knowledge independence and
enhancing model stability.

Without two-stage training, the model’s perfor-
mance in long-sequence editing decreased by about
15%. This result demonstrates that two-stage train-
ing effectively mitigates the interference between
learning new knowledge and query distinction tasks
by optimizing them in stages.

In summary, the three core components are cru-
cial to KDE’s performance. The switch mechanism
ensures that the model can accurately route queries
to the appropriate memory. Knowledge decoupling
effectively prevents interference between different
pieces of knowledge, and two-stage training en-
sures stability during long-term editing through a
phased training strategy.

5.2 Forgetting Resistance Evaluation

As shown in Figure 1, after multiple edits, WISE
severely forgets earlier edited knowledge. In the
test of the first 50 samples, its reliability decreased
by 36%, and its generalization ability decreased by
33%. This issue arises because subsequent edits
interfere with earlier ones, leading to knowledge
coupling. To address this, KDE extracts the repre-
sentation space of the edited knowledge and stores

it in a knowledge cache. Then, the gradient of the
new knowledge is projected into the orthogonal
space of this cache for updates, achieving knowl-
edge decoupling. Figure 4 shows the changes in
reliability and generalization ability of the first 50
examples after 50 and 3,000 edits, respectively.
KDE outperforms WISE after 50 edits, and after
3,000 edits, its reliability and generalization abil-
ity only decreased by 11% and 12%, respectively,
which is an improvement of 59% and 38% over
WISE. The results demonstrate that our approach
effectively alleviates the knowledge coupling prob-
lem, significantly improving the model’s editing
performance.

5.3 Memory and Computational Efficiency
Scaling with Increasing Edits

On Memory Usage with Increasing Edit Itera-
tions: KDE does not introduce new trainable pa-
rameters as the number of edits increases. However,
we need to store the basis vectors of previously
edited knowledge in the knowledge cache, which
incurs some additional memory overhead. Based
on our experiments with the LLaMA?2-7B model
on the ZsRE dataset (1,000 edits), the average num-
ber of selected singular values per edit is £ = 9.
Given that each parameter is in Float32 precision,
the average memory increase per edit is calculated
as 9 x 11008 x 32/(8 x 1024 x 1024) ~ 0.378MB
(where 11008 is the hidden layer dimension of
LLaMAZ2-7B). After 1,000 edits, the total addi-
tional memory usage amounts to 1000 x 0.378 =
378 MB ~ 0.37GB. For an A100 GPU with 80GB
of memory, this overhead is entirely manageable.

On Computational Efficiency with Increasing
Edit Iterations: We conducted 1,000 edit experi-
ments using the LLaMA2-7B model on the ZsRE
dataset and analyzed the time consumed per 100 ed-
its to roughly evaluate the computational efficiency
of KDE as the number of edits grows. As shown
in the table 6, overall, the time taken by KDE for
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Time for 0-99 edits (min) | 100-199 | 200-299 | 300-399 | 400-499 | 500-599 | 600-699 | 700-799 | 800-899 | 900-999

29.89

| 30.17 | 3834 | 40.74 | 37.23 | 40.96 | 43.16 | 43.01 | 44.44 | 43.58

Table 6: The time consumed for every 100 edits using LL.aMa2-7B on the ZsRe dataset.

every 100 edits remains relatively stable. For in-
stance, after 600 edits, the duration for each set of
100 edits stabilizes at approximately 43 minutes.

5.4 Why Knowledge Decoupling Works

Suppose the editing of the (t— 1)-th piece of knowl-
edge x;_; has been completed, and the editable
memory W, is denoted as W;_; at this stage. The
basis vectors stored in the knowledge cache collec-
tively span a knowledge space S;_1, and as stated
in the appendix B.1, z;_1 is contained within this
space S;—1. When editing the ¢-th piece of knowl-
edge z;, we project its gradient Vyy, L; onto the
orthogonal direction of S;_;, enabling W, to up-
date along the direction orthogonal to S;_1. Let
AW, _1 represent the amount of change in W, af-
ter editing the ¢-th piece of knowledge, where this
change satisfies AW;_jx,—1 = 0. The editable
memory after the ¢-th edit can be expressed as:

Wi = Wiy + AW,_y. (16)

For the (¢t — 1)-th piece of knowledge, the following
derivation holds:

Wiz = (Wit + AWi_1) x4

=Wisiz—1 + AWz = Weix—1. (17)

The above derivation shows that after complet-
ing the editing of the ¢-th piece of knowledge,
the (¢t — 1)-th piece of knowledge remains unaf-
fected, thereby effectively alleviating the problem
of knowledge coupling.

6 Related work

Model editing methods can be categorized into sev-
eral types: constraint-based fine-tuning, locate &
edit, meta-learning, and retrieval-based. The lo-
cate & edit approach, such as ROME (Meng et al.,
2022), uses causal mediation analysis to identify
parameters to be modified, followed by direct mod-
ification. MEMIT (Meng et al., 2023) extends
ROME by enabling batch editing, while AlphaEdit
(Fang et al., 2024) introduces continual learning
techniques to MEMIT for more stable continuous
editing. T-patcher (Huang et al., 2023) performs
editing by adding additional new neurons to the

FFN. Retrieval-based methods, such as GRACE
(Hartvigsen et al., 2023) and WISE (Wang et al.,
2024c), introduce extra modules to edit knowledge.

For detailed related works and additional discus-
sions, please refer to Appendix D.

7 Conclusion

In this paper, we emphasize that existing lifelong
editing methods often result in significant perfor-
mance degradation after extensive editing, particu-
larly for the early edited knowledge. We identify
that this phenomenon is caused by knowledge cou-
pling. To address this issue, we propose KDE,
which mitigates the coupling between knowledge
by adjusting the gradient direction during editing
and maintains stability during long-sequence edit-
ing through a two-stage training strategy. Exten-
sive experiments demonstrate that KDE achieves
promising results across multiple datasets and large
language models.
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Limitations

Several limitations need to be addressed in future
research. First, when the sequence is extended to
tens or even hundreds of thousands of edits, a sin-
gle value matrix may no longer fully comprehend
such vast knowledge (leading to excessive knowl-
edge capacity (Allen-Zhu and Li, 2024)). There-
fore, exploring the introduction of MoE (Jacobs
et al., 1991) mechanisms to accommodate more
knowledge could be an interesting research direc-
tion. Second, our current focus has primarily been
on improving the model’s accuracy in answering
questions, with less attention given to other ca-
pabilities, such as knowledge reasoning. Lastly,
we conducted experiments only on decoder-only
architecture-based LLMs due to computational
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resource constraints while overlooking encoder-
decoder architectures. Future research could extend
our findings by experimenting with larger-scale
models of different architectures.
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Appendix

In the appendix, we provide additional experimen-
tal details, theoretical analysis, more comprehen-
sive experimental results and analysis, as well as a
more detailed discussion of related work.

* Appendix A: Experimental details.
* Appendix B: Theoretical analysis.
* Appendix C: More results and analyses.

* Appendix D: Additional discussions and more
related works.

A Experimental Details

A.1 Evaluation Metrics

Given a dataset D, = {(x.,y.)} containing N
editing instances, where x./ denotes synonyms of
Ze (used to evaluate generalization) and xj,. de-
notes statements unrelated to z. (used to evaluate
locality). The final model after N edits is denoted
as feN . The evaluation metrics of our experiments
are as follows:

* Reliability measures the model’s ability to accu-
rately retain all edited instances:

1 N
Rel. = ; (18)

= yp).

* Generalization assesses the model’s capability
to correctly predict examples related to the edited
instance x7,:

Gen. = a: o) = ye) (19)

* Locality ensures that the model’s behavior on
inputs unrelated to the edited instances remains
unchanged, preserving its original capabilities:

N
1
Loc.zﬁg (f5" (woc) = f§(wE)).  (20)

Here, 1(-) denotes the indicator function.

A.2  Algorithms of Knowledge Decoupling

For the pseudocode of knowledge decoupling,
please refer to Algorithm 1.

Algorithm 1 Knowledge Decoupling

1: Input: The initial LLM model fg, the editable mem-
ory We, the edit dataset Degic = {22, 5.}, the loss
function L.

: Output: The final LLM model f& after N edits.

: for each edit (z¢, ye) € Dedir, Where i € (0, N) do

va'L — SG‘D((‘Z‘Z7 yé)v L7 We)
if M is not empty then
Vw, Li < project(Vw, L;, M) using Eq. 12
end if
We < We — nVw, L; using Eq. 8
€ + min(e, A(x;))

h; « forward(x;, We)

if M is not empty then
hi Deduplication(R;, M) using Eq. 13
Ui «+ SVD(h;)

2
3
4
5
6
7
8
9
10:
11:
12:
13
14
15
16 k < criteria(hi, hi, ) using Eq. 14
17

18

else
: k < criteria(h;, ) using Eq. 10
19: end if
20: Ci + [Cifl,Ui[O : k”
21: end for

22: return the post-edit LLM model f2'.

A.3 Model Editing Datasets

ZsRE Dataset. ZsRE (Levy et al., 2017) is a
context-free question-answering (QA) dataset gen-
erated by BART (Lewis et al., 2020) with human
quality control, and it has been widely studied in
the field of knowledge editing. Each sample in this
dataset consists of an edit example, a synonymous
example, and an unrelated example, which are used
to evaluate the model’s Reliability, Generalization,
and Locality, respectively. We partition the dataset
following the approach of (Mitchell et al., 2022a),
resulting in 163,196 training samples and 19,086
test samples. Notably, among all baseline models,
only MEND (Mitchell et al., 2022a) trains the hy-
pernetwork on the training set, while other methods
perform editing and evaluation directly on the test
set.

SelfCheckGPT Dataset. SelfCheckGPT (Man-
akul et al., 2023) is a dataset designed to evaluate
the effectiveness of model editing methods in miti-
gating hallucinations in LLMs. It contains highly
inaccurate sentences generated by GPT-3 (Brown
et al., 2020), with the goal of replacing them with
accurate statements from Wikipedia. Compared to
ZsRE, SelfCheckGPT presents a greater challenge
due to the significantly larger number of tokens
that require editing. We preprocess the dataset
following the WISE approach, retaining 906 edit
examples. To ensure a fair comparison with MEND
(Mitchell et al., 2022a), we divide the dataset into
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Dataset N  Pre-Edit (LLaMA/GPT-J/Mistral)
ZsRE 1000 0.36/0.22/0.39 ACC
SelfCheckGPT 600 27.4/84.68/19.4 PPL

Table 7: Dataset Statistics for main results. NV is the
number of samples. Pre-edit is the unedited model’s
performance on each dataset.

306 training samples and 600 test samples, with
the training set exclusively used for MEND. At the
same time, all methods are used to edit and evaluate
the test set.

The dataset statistics for the main results are
provided in Table 7, while specific examples can
be found in Table 8.

A.4 Baseline methods

We compare KDE with nine strong baseline meth-
ods, which can be categorized into four groups:

* Fine-tuning based methods: FT-L (Meng et al.,
2022) and FT-EWC (Kirkpatrick et al., 2016). FI-
L edits the model by directly fine-tuning the FFN
of a specific layer. At the same time, FT-EWC
applies regularization to important parameters
during continued fine-tuning to mitigate catas-
trophic forgetting.

* Locate & edit methods: ROME (Meng et al.,
2022), MEMIT (Meng et al., 2023), and MEMIT-
MASS (a batch-editing version of MEMIT).
These methods treat the FFN as the primary mod-
ule for storing knowledge and use causal analysis
to locate and modify the knowledge stored within
the FEN.

¢ Meta-learning methods: MEND (Mitchell et al.,
2022a). MEND trains a meta-network on extra
data, transforming low-rank gradients from fine-
tuning into updated gradients to modify the target
layer’s parameters.

* Memory-based methods: DEFER (Mitchell
et al., 2022b), GRACE(Hartvigsen et al., 2023),
and WISE (Wang et al., 2024c). DEFER uses
a reimplementation of SERAC (Mitchell et al.,
2022b) to store editing examples in an external
cache; GRACE stores new knowledge by main-
taining a codebook; WISE stores new knowledge
by copying the value matrix from a specific layer
of the FFN and reduces interference between dif-
ferent knowledge through a knowledge sharding
and merging mechanism.

In line with prior research(Wang et al., 2024c;
Hartvigsen et al., 2023), we chose three widely
adopted base models: LLaMa2-7B(Touvron
et al., 2023b), GPT-J-6B(Roumeliotis and Tselikas,
2023), and Mistral-7B(Jiang et al., 2023).

A.5 Implementation Details

The hyperparameters for KDE are consistent across
different scenarios (question answering and halluci-
nation handling). We use the SGD optimizer with
a learning rate 7 set to 0.5. Following the config-
urations in GRACE (Hartvigsen et al., 2023) and
WISE (Wang et al., 2024c), we set the batch size
to 1. The model design includes hyperparameters
such as the two boundary parameters o = 5 and
B = 20 in the transformation mechanism, as well
as the ratio of retained singular values v = 0.95 in
knowledge decoupling.

For up to 1,000 edits, a two-phase training pro-
cess is not required, meaning the boundary point
c is set to the number of edits. For longer edits
(N > 2,000), c is set to 400 to ensure the ef-
fectiveness and stability of long-sequence editing.
For LLaMA2-7B, GPT-J-6B, and Mistral-7B, KDE
performs editing on the 27th, 21st, and 27th layers.
KDE is implemented using the Python libraries Py-
Torch 2.0.1 ? and Huggingface Transformers 4.46.3
3. All of our experiments were conducted with 8
GPUs, each with a memory of 48 GB.

For all baseline models, we follow the same eval-
uation and training settings described in (Wang
et al., 2024c¢).

B Theoretical Analysis

B.1 Relationship Between Inputs and
Gradients

Based on existing research(Saha et al., 2021; Zhang
et al.,, 2021), the following conclusion can be
drawn: the gradient updates of a linear layer al-
ways lie within the space spanned by its input.

The forward propagation of a linear layer can be
expressed as:

hy = ol(Wy" hy—y + by), 1)

where the output vector h; € R%, the input vector
hi—1 € R%, the weight matrix W; € R%*d> and
o denotes the activation function. The dimensions
d; and d,, correspond to the input and output dimen-
sions. Let the loss function be denoted as L. By

2ht’cps: //pytorch.org/
Shttps://github.com/huggingface/transformers
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Dataset Type Text
Te, Ye What state is Methley located? Essex
ZsRE ATA What state has Methley? Essex
Ziocs Yloe  Who did the voiceover in michael jackson’s thriller? Vincent Price
Tey Ye This is a Wikipedia passage about william j. flanagan , jr.. William J.
SelfCheckGPT Flanagan, Jr. ?born I())c‘[obger 28, 1945) is aJn Amer%can i)olitician and
lawyer who served as the Mayor of Cranston, Rhode Island, from 2003 to
2019. He was first elected in 2003 and was re-elected in 2006, 2010, and
2014. The Flanagan household consisted of eight children: Patricia
Mary, William John Jr., Kathleen, John J., Peter A., Mary Margaret,
Anne, and Joseph M. William Flanagan, Sr. was a member of the
Massachusetts National Guard.
Ziocs Yloe The actress was one of 27 arrested yesterday for trespassing during a

protest of the DAPL. Actress Shailene Woodley, best known for her
starring role in the Divergent series, was arrested yesterday while
protesting the looming implementation of a new oil pipeline project
in North Dakota. Woodley is

Table 8: An editing dataset example from ZsRE and SelfCheckGPT datasets.

applying the chain rule, the gradient of W, can be

derived as:
oL _ oL Oh; _ oL T
oW, Oh oW, <8hl ®“l> hicn (22)

where © represents element-wise multiplication.

Furthermore, since (% ® al> is equivalent to
a vector consisting of real values, denoted as

[b1,ba,...,bg,]", the gradient of ¥ can also be
written as:

oL

Tm — [blhl—b b2hl—1a .. 7bdohl—1]a (23)

It is evident from the above equation that each
column of 6%{71 can be represented as the input
vector 11 multiplied by a scalar coefficient b;
(1 < j < d,). Therefore, in a linear layer, each
column of the gradient aa—V[L,l lies within the space

spanned by the input vector h;_1.

B.2 Eckart-Young Theorem

For any matrix A € R"*", its optimal low-rank
approximation can be obtained by truncating its
SVD (Businger and Golub, 1969) to retain the top
r singular values along with their corresponding

singular vectors. The SVD of matrix A is given by:
A=UxVT, (24)

where U € R™*" and V' € R™*™ are orthogonal
matrices consisting of the left and right singular

(a) WISE (b) KDE
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Figure 5: (a) and (b) show the changes in various metrics
for both WISE and KDE after edits ranging from 100 to
3,000 on ZsRE, respectively.

vectors, respectively, and 3 € R™*" is a diago-

nal matrix containing the singular values. By pre-
serving the top r largest singular values and their
associated singular vectors, the best rank-r approx-
imation matrix A, can be constructed as:

Ax A, =UX, V.. (25)

The Eckart-Young theorem guarantees that among
all rank-r matrices, A, is the optimal solution that
minimizes the approximation error measured by
the Frobenius norm. The corresponding error is
given by:

(26)

where 0,11 represents the (r + 1)-th singular value
of matrix A.

The Eckart-Young theorem provides an optimal
low-rank approximation method based on SVD, ef-
fectively ensuring the minimal approximation error
in the Frobenius norm.

||A - ATHF = Or41,
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Figure 6: Performance of KDE and baselines on ZsRE using Mistral-7B.
CaseID Prompt Edit Target Post-Edit Output
15 Who is the architect of Toodyay Fire Station? Kohn Pedersen Fox ~ Wohn Pedersen Fox v
Who was behind the establishment of Toodyay Fire =~ Kohn Pedersen Fox =~ Woodohn Pedersen Fox v
I Station?
357 When was USA-64’s launch date? 2 March 1992 3 March 1992 v
What date was USA-64 launched? 2 March 1992 3 March 1992 v
996 What is the language of Sarah Kazemy? English Genman X
What’s Sarah Kazemy’s language? English Genman X
I 570 What language is Politika written in? Russian Polish X
In which language does the monthly magazine Poli- Russian Polish X
tika report?
758 What river does La Crosse Rail Bridge cross? Ohio River Ohio River
I Over what river does La Crosse Rail Bridge cross? ~ Ohio River River v*
272 Which war was Frank Lucien Hale a part of? Korean War Korean War
In which war did Frank Lucien Hale fight? Korean War World war v
417 The artwork The Forest Fire was by who? William Etty University Etty v
The work of art The Forest Fire was from whom? William Etty William Etty
v 977 In which year was the service entry date for JS 7.62? 1963 1961 v*
In which year did JS 7.62 enter the service? 1963 1963

Table 9: Failure cases of KDE after 1,000 edits on ZsRE.
answers, respectively, while v* indicates that some tokens are correct. Each case ID corresponds to two prompts,
which are used to test the reliability and generalization ability of the model, respectively.

C More Results and Analyses

C.1 The performance of Mistral on ZsRE

The performance of Mistral-7B on the ZsRE
dataset is shown in Figure 6. Analyzing the fig-
ure, it can be seen that KDE consistently maintains
a leading position in comprehensive performance
throughout the process from single editing to 1,000
edits. Specifically, its Reliablity and Locality indi-
cators always remain at high levels (both exceeding
90%), and its Generalization performs more stably
compared to other Baseline methods. These exper-
imental results are consistent with the test results
on the LLaMa2-7b and GPT-J-6B models.

C.2 Case Study

As shown in Table 9, we present the failure cases
encountered by KDE after 1,000 edits on the ZsRE

and X represent examples of correct and incorrect

dataset. Analyzing the characteristics of these cases
is crucial for the future development of lifelong
editing technologies. Based on our observations,
the error cases can be broadly classified into the
following four categories:

I) consists of errors occurring in only a subset of
tokens, indicating that the editing operation has not
fully converged. Future improvements may involve
adjusting the number of iterations and learning rate
to alleviate the problem better and enhance the
edits’ accuracy and consistency.

II) involves errors in the entire output, although
these errors are less frequent. We found that these
failure cases often involve editing targets that are
single words. When a token is predicted incorrectly,
it may lead to the entire output deviating from the
editing objective.
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IIT) involves cases where the model produces
an answer that matches the edit prompt but fails
to generalize effectively. For instance, in case ID
758, the model returns “river”, which does not fully
align with the editing goal. This type of error is
relatively common, suggesting substantial room
for improving the generalization capability of the
current editing methods.

IV) is the opposite of the third, where the
model makes an error when responding to the
edit prompt but correctly answers the paraphrased
prompt. These errors are rare, and we observed
that they typically occur when querying dates or
names. This situation is due to the limited num-
ber of samples involving dates and names, which
may also involve repetitions, allowing the model to
occasionally answer correctly.

By classifying and analyzing these error cases,
we gain a deeper understanding of KDE’s limita-
tions in lifelong editing tasks and provide valuable
insights for future improvements.

D Detailed Related Works

D.1 Model Editing of LLMs

Model editing is a promising research area, with ex-
isting studies exploring various methods for editing
large language models (LLMs). These methods can
generally be classified into two categories based on
whether or not the internal parameters of the model
are modified(Zhang et al., 2024; Yao et al., 2023):
Parameter-modifying methods. Methods in this
category primarily focus on identifying model pa-
rameters associated with specific knowledge and
achieving knowledge editing by adjusting these
parameters (Meng et al., 2022; Wu et al., 2023;
Wang et al., 2024b; Chen et al., 2024b). For ex-
ample, KN (Dai et al., 2022) attributes knowledge
to specific neurons and updates these neurons to
edit the model’s knowledge. ROME (Meng et al.,
2022) utilizes causal mediation analysis to locate
the regions of parameters that need modification
and updates these regions to perform the model
edit. To address the limitation of ROME being
capable of only single-step edits, MEMIT (Meng
et al., 2023) extends the framework to allow the
model to edit multiple knowledge points simulta-
neously. PMET (Li et al., 2024) further enhances
MEMIT by incorporating attention mechanisms to
improve the model’s editing capabilities.
Recently, O-edit (Cai and Cao, 2024) and Al-
phaEdit (Fang et al., 2024) methods have explored

the application of continual learning (Chaudhry
et al., 2020) techniques based on MEMIT to en-
hance model performance in lifelong editing tasks.
However, these approaches face notable limita-
tions. For instance, O-edit requires acquiring a
large amount of additional corpora (100,000 pieces
of knowledge unrelated to the edited prompts (Cai
and Cao, 2024)) to mitigate the negative impact on
the general capabilities of the base model. This pro-
cess is not only time-consuming but also computa-
tionally expensive. AlphaEdit ensures knowledge
stability during editing by mapping perturbation
terms to the null space of knowledge. Although
both methods have demonstrated significant results,
they still risk disrupting knowledge unrelated to the
edits. In contrast, our proposed method maintains
editing precision while minimizing the impact on
unrelated knowledge, achieving more stable and
reliable editing outcomes.

Parameter-preserving methods. These meth-
ods avoid directly modifying the model’s original
parameters, instead employing additional mecha-
nisms to edit or expand the model’s knowledge.
Based on the specific method analogies, they can
be classified into three categories (Zhang et al.,
2024): (1) Retrieval-based methods (Chen et al.,
2024c; Wang et al., 2024e; Onoe et al., 2023; Wang
et al., 2024f,d): These techniques supplement the
model with external knowledge repositories, en-
abling the LLMs to retrieve knowledge from the
external database when prompted effectively. For
example, IKE(Zheng et al., 2023) edits the model
through context learning, adjusting the model’s
output based on similarity matching without requir-
ing gradient-based adjustments. (2) Meta-learning
methods (Mitchell et al., 2022a; Cheng et al., 2024;
Tan et al., 2023): These approaches train a meta-
network to assist with editing. For instance, MEND
(Mitchell et al., 2022a) introduces a meta-network
to decouple fine-tuning gradients, enhancing the
model’s generalization ability. Building on MEND,
MALMEN (Tan et al., 2023) uses the meta-network
to generate offsets for editing the model and for-
mulates the aggregation of these offsets as a least
squares problem, mitigating the offset issues in
MEND. (3) Methods of adding extra parameters
(Hartvigsen et al., 2023; Wang et al., 2024c; Huang
et al., 2023; Wang and Li, 2024; Xie et al., 2024):
These approaches freeze the model’s parameters
and introduce additional trainable parameters to
modify the model’s output. CaLiNet (Dong et al.,
2022) and T-Patcher (Huang et al., 2023) introduce
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specific neurons or patches in the model’s feed-
forward network (FFN) to store and process new
knowledge. GRACE (Hartvigsen et al., 2023) main-
tains a discrete codebook to dynamically store and
update knowledge, enabling more stable sequen-
tial editing. MELO (Yu et al., 2024) replaces the
codebook with Lora (Hu et al., 2021) blocks and
explores the use of vector databases for knowledge
retrieval. WISE (Wang et al., 2024c¢) introduces a
side memory in one of the FFN layers of LLMs to
store knowledge and designs knowledge sharding
and merging mechanisms to alleviate knowledge
conflicts caused by high knowledge density (Allen-
Zhu and Li, 2024) in lifelong editing. Recently,
Recipe (Chen et al., 2024a) have shown promising
results. However, due to the editing domain’s un-
predictable nature, this approach faces significant
feasibility challenges when deployed in real-world
applications.

D.2 Continual learning

Continual learning aims to enable models to con-
tinuously acquire new knowledge while retaining
previously learned information (Wang et al., 2024a;
Wu et al., 2024; Wang et al., 2024g). Among tradi-
tional continual learning methods, projection-based
strategies (Chaudhry et al., 2020; Saha et al., 2021;
Yang et al., 2023, 2025) are most relevant to our
work. Specifically, OWM (Zeng et al., 2019) con-
strains parameter updates to move in directions
orthogonal to the gradient space of previous data,
thereby reducing interference. Orthog-Subspace
(Chaudhry et al., 2020) maps different pieces of
knowledge into distinct subspaces, minimizing mu-
tual interference between them. GPM (Saha et al.,
2021) analyzes network activations to identify the
basis of task subspaces and uses gradient projec-
tions to reduce interference between new and old
tasks. Building on GPM, DualGPM (Liang and Li,
2023) is an improved version of GPM, which intro-
duces a dual projection mechanism to balance learn-
ing between new and old tasks better while miti-
gating catastrophic forgetting. TRGP (Lin et al.,
2022), on the other hand, dynamically and selec-
tively projects gradients in directions orthogonal
to old tasks by analyzing inter-task correlations.
PGP (Qiao et al., 2024) combines prompt-tuning
(Lester et al., 2021; Lan et al., 2025b,a) with gradi-
ent projection to ensure the orthogonality of prompt
gradients, thus effectively alleviating forgetting.
DFGP (Yang et al., 2023, 2025) reinterprets the
problem of catastrophic forgetting in orthogonal

projection from the perspective of loss landscape
flatness, and accordingly improves network flatness
to balance plasticity and stability.
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