@ Genius: A Generalizable and Purely Unsupervised Self-Training

Framework For Advanced Reasoning

Fangzhi Xu'*%* Hang Yan'’

Kanzhi Cheng?

Chang Ma’®
Junxian He®

Qiushi Sun??
Zhiyong Wu?'

Haiteng Zhao*

Jun Liu®¢f

'School of Computer Science and Technology, Xi’an Jiaotong University

2Shanghai Al Lab
“Peking University

3The University of Hong Kong
SHong Kong University of Science and Technology

®Ministry of Education Key Laboratory of Intelligent Networks and Network Security
’Shaanxi Province Key Laboratory of Big Data Knowledge Engineering

{fangzhixu98, whucs2013wzy}@gmail.com

Abstract

Advancing LLM reasoning skills has captivated
wide interest. However, current post-training
techniques rely heavily on supervisory signals,
such as outcome supervision or auxiliary re-
ward models, which face the problem of scal-
ability and high annotation costs. This moti-
vates us to enhance LLM reasoning without
the need for external supervision. We intro-
duce a generalizable and purely unsupervised
self-training framework, named Genius. With-
out external auxiliary, Genius requires to seek
the optimal response sequence in a stepwise
manner and optimize the LLM. To explore
the potential steps and exploit the optimal
ones, Genius introduces a stepwise foresight
re-sampling strategy to sample and estimate
the step value by simulating future outcomes.
Further, we recognize that the unsupervised set-
ting inevitably induces the intrinsic noise and
uncertainty. To provide a robust optimization,
we propose an advantage-calibrated optimiza-
tion (ACO) loss function to mitigate estima-
tion inconsistencies. Combining these tech-
niques together, Genius provides an advanced
initial step towards self-improve LLM reason-
ing with general queries and without supervi-
sion, revolutionizing reasoning scaling laws
given the vast availability of general queries.
The code will be released at https://github.
com/xufangzhi/Genius.

1 Introduction

Reasoning skills are crucial for Large Language
Models (LLMs) to achieve human-level intelli-
gence (Achiam et al., 2023; Team et al., 2023).
Recent efforts (Qwen, 2024; Guo et al., 2025) fo-
cus on enhancing reasoning capabilities during the
post-training phase (Li et al., 2025). Typically, ex-
isting methods rely on supervision, which can be

*Work done during internship at Shanghai AI Lab.
TCorresponding Author.

liukeen@xjtu.edu.cn

Supervised
In-Domain Data

Training

Unsupervised Tmining
In-Domain Data
e
{ _x}1 LLM RM]
Unsupervised Training

General Data

Figure 1: Typical reinforce-like approaches to boost
LLM reasoning. (a) and (b) abstract two types of
reinforce-like methods, which require final answer and
verification respectively. (c) depicts the ultimate goal of
our research. x denotes the input query, a denotes the
LLM-generated responses that contain multiple steps,
and y is the final answer (if exists).

divided into two main approaches. One stream is
supervised fine-tuning (SFT) which requires the
well-annotated response (a) paired with the query
(x). The other line of work is reinforce-like ap-
proaches that require either ground-truth answers
or verification. The former needs rule-based match-
ing of the answer, as depicted in Fig. 1(a). Though
they are effective in specific domains like math
and coding, many other problems lack clear solu-
tions or explicit ground truth, presenting challenges
for generalization to broader reasoning tasks. The
latter utilizes the external reward model for ver-
ification. However, the training of a generalized
reward model relies on expensive annotation (Light-
man et al., 2023) and it may induce the reward
hacking problem (Amodei et al., 2016; Gao et al.,
2023). Considering these limitations of scalabil-
ity, it would revolutionize reasoning scaling law

13153

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 13153—-13167

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

https://github.com/xufangzhi/Genius
https://github.com/xufangzhi/Genius

if we could achieve effective and efficient post-
training simply from general queries. Therefore, it
motivates us to raise a research question of How
to advance LLM reasoning ability without any
external supervision ? (Fig. 1(c)).

This work tackles this problem by proposing a
generalizable self-training framework, named Ge-
nius. As depicted in Fig. 1(c), Genius only requires
the policy LLM itself with a set of unsupervised
queries. Without the external auxiliary, it builds
upon the self-training paradigm that the LLM first
generates response a given the input query x, and
selects the optimal ones for training. As an ini-
tial attempt, Genius paves the way to self-improve
LLM reasoning with unsupervised general queries.

To generate training data for self-training, a cru-
cial challenge is to determine how to collect and
self-reward LLM responses without relying on ex-
ternal auxiliary resources. One intuitive solution is
to have the LLM generate the entire response and
then evaluate the response based on its sequence
confidence (Xu et al., 2024a), re-prompt the model
to assign scores (Yuan et al., 2024), or apply self-
consistency methods (Prasad et al., 2024). How-
ever, these attempts primarily focus on response-
level rewards, while step-wise supervision could
provide more stable and fine-grained training (Ue-
sato et al., 2022; Lightman et al., 2023; Wang et al.,
2024a). Recent efforts like (Zhang et al., 2024) em-
ploy step-level sampling, but they naturally inherit
the short-sighted limitation of auto-regressive gen-
eration, lacking global adherence to overarching
goals (Ma et al., 2024). Search-based rewarding
(e.g., MCTS-style methods) provides more global-
awareness but requires intricate backtracking pro-
cesses, which are notoriously time-consuming.

To this end, Genius seeks the optimal response
sequence via stepwise sampling and collects high-
quality preference pairs with rewards. Without re-
liance on external supervision to obtain the global-
awareness, Genius adopts a coarse step estimation
by simply rolling out future steps, referred to as
foresight (Ma et al., 2024; Xu et al., 2025a) and
using their uncertainty as the foresight score to
evaluate candidate steps. Based on this technique,
we propose the stepwise foresight re-sampling ap-
proach: using foresight scores to approximate the
distribution that is sampled to determine the next
step (for exploration) and re-sampled to create step-
level preference pairs (for exploitation).

Although the above approach offers a quality-

efficiency balanced solution for superior sample-
and-reward, calculating the distribution of fore-
sight scores based on a few rollouts may results
in a biased estimation of step values, inevitably
inducing noise to the self-supervision labels. How-
ever, previous self-training methods simply em-
ploy either supervised fine-tuning (Zelikman et al.,
2022) or reinforced learning strategies (Yuan et al.,
2024) for optimization, neglecting the uncertainty
of self-supervision (Liang et al., 2024). We tack-
les this second challenge — improving the robust-
ness of self-training optimization — by introduc-
ing an advantage-calibrated loss function (ACO),
which penalizes inconsistent estimation between
foresight score and step advantage. We find that
ACO, compared to SFT (Zelikman et al., 2022),
and DPO (Rafailov et al., 2024) improves training
stability and boosts performance.

Genius offers a unique perspective on post-
training: LLMs can self-improve their general rea-
soning abilities using general queries without any
form of external supervision. With merely 25K
unsupervised general queries, Genius surprisingly
improves the average performance across diverse
reasoning benchmarks by >7%. We also demon-
strate that the scaling law on general queries consis-
tently improves with more training steps (see § 4.2).
Given the abundance of general data available, this
scaling can significantly enhance reasoning capabil-
ities and further pushes the boundary of reasoning
scaling law (Guo et al., 2025).

2 Methodology

2.1 Preliminary

One major advantage of Genius is that it only re-
quires unsupervised natural language (NL) queries
as inputs. Under the self-training setting, the LLM
Ty generates responses given the query, and then
select the optimal ones to optimize itself. The main
objectives of Genius are divided into two parts: (1)
synthesizing and rewarding the responses (§ 2.2);
(2) optimizing the LLM with responses (§ 2.3).
Figure 2 presents the overall framework of Genius.

To achieve the first objective, Genius models
the response as a sequence of steps. The globally
optimal response is derived by stepwise sampling
and rewarding. At each timestamp, Genius first
rollouts a set of candidate steps and self-rewards
them via simulating future steps (Fig. 2(a)). Then,
we select the optimal next step (Fig. 2(b)) and col-
lect preference pairs for training (Fig. 2(c)). As

13154

Unsupervised [——
General Data >

Iteration of K steps

Q) QW Qs =
o < < Sampling o \
e —
g { Q. Z < Q@ -
Y < Q® Fy o s
15t @ Keloeps”
k-1 steps k-1 steps

(b) Exploration (a) Foresight

Large Language Model

Advantage-Calibrated
Optimization (ACO)

](—— Data Pool

ol

Q™ Yo
Re-Sampli iy . P
e-sampling 3 \ il X
ind Qk—l(l_)__*_:__:_*__ril(2)
— > x Qi@ @Ak“ﬁ‘-#----«#--EAk(z)
Fy o3, < , Sampled Negative { } Y
g @
® | 1 o8
k-1 steps Pos. Neg.
(c) Exploitation (d) Advantages

Figure 2: The overall framework of Genius. It only receives the unsupervised NL queries as inputs. To complete
goal of self-improving, the policy LLM goes through K steps of sampling and rewarding for each query (Step
1-4), collects the high-quality response sequence as the training data (Step 5), and trains itself with the advantage

calibrated optimization loss (Step 6).

for the second objective, Genius derives the step
advantages during the sampling (Fig. 2(d)), and
adopts them to optimize the LLM with designed
reinforced loss.

For clearer illustration, we introduce the follow-
ing symbols at the timestamp k: aj denotes the
current step with the step value of Q. a~j, repre-
sents the preceding steps while a’~, is the simu-
lated future steps. T = (a<g,ak,a’sy) denotes
the curated response for training. For simplicity,
we omit the symbol index in some descriptions.

2.2 Exploration and Exploitation via
Foresight Re-Sampling

To ensure the diversity, we use beam search strat-
egy (Freitag and Al-Onaizan, 2017) during the step-
wise sampling. We define the step beam size as M,
as illustrated in Fig. 2 where we plot a simple case
of M = 2.

Step Rollouts with Foresight. At Step k— 1, Ge-
nius keeps M preceding paths a, each consisting
of k — 1 steps. The value of the last step in the path
is defined as Q,(ﬁ)l where m € [1, M]. For each
beam m, Genius first rollouts N candidate steps
ag, leading to M * N candidate steps totally.

To address the limitation of auto-regressive gen-
eration and construct the globally-aware response,
Genius performs the simulation of future steps
based on each candidate step a;. We refer to this
process as foresight (Fig. 2(a)). This allows us
to derive the response sequence along with their
respective foresight scores, calculated using the
averaged log probability of the remaining steps:

aly, fr ~ mo(-lack; ax). (1)

With these simulated future steps a’,;, the com-

pleted response can be constructed, written as
T = (ack,ax,al ;). Here we obtain M * N fore-
sight scores fi. They can be utilized to approxi-
mate a distribution Fj,. After normalization, the
elements of F, are given by:

Fi(i) = exp(fy /7)) D_exp(f /1) @)

In this expression, Fy(i) denotes the foresight
score at index ¢, where i € [1, M = N]. 7 is the tem-
perature parameter used to control the sharpness of
the distribution.

Re-Sampling for Exploration and Exploitation.
Based on the foresight technique, Genius further
selects the steps afgm) for current timestamp £ via

sampling on the distribution of Fy, (Fig. 2(b)):
{a,(cm)}%zl ~ Categorical(Fy,). 3)

In this way, we can keep M beams for exploration
in the next step. Here, we define the () value of

each selected step a,({m)

QU .= pim)

Besides the exploration, Genius also exploits the
entire response sequence T}, = (ay,ay,al ;) at
each timestamp k& for optimization (Fig. 2(c)). To
encourage diversity and avoid overfitting on similar
responses, we introduce the re-sampling strategy
based on the distribution F'.. The response with the
highest foresight score f;” is chosen as the positive
one, written as 7;". The negative response is re-
sampled from F ()

with the foresight score:

T} ~ Categorical(Fy/ f&) (5)

13155

The corresponding foresight score of the negative
path is f,i. With such a re-sampling strategy, the
balance between exploration and exploitation can
be achieved.

Advantages and Data Construction. Since the
reasoning sequences are completed from different
beams, it is insufficient to simply evaluate each
step with the foresight score fi. Therefore, Genius
derives the advantage value Ay for both positive
and negative response sequences:

F=F -0 A=fi-Qa ©
From the equation, the foresight score is calibrated
with the @) value of the previous step.

In this way, the training preference pair obtained

from each step k is constructed in the quintuple
format, i.e., (z, T, AV, T}, Ab).

2.3 Advantage-Calibrated Optimization

Given the constructed preference pairs, we can opti-
mize the LLMs through reinforced learning. There
remains two critical steps unaddressed: (i) formu-
lating the self-rewards for preference optimization;
and (ii) deriving the optimization objective.

Formulating Self-Rewards as Preferences.
Building upon Bradley-Terry model (Bradley and
Terry, 1952), the measurement of the preferences
can be formulated as:

p*(Tw . Tl\x) — exp(r*(x,T“’))

=o(r*(z, T") — r*(z, Tl))

(N

where 7*(T'|x) represents the optimal reward func-
tion. o(-) = 1/(1+exp(—z)) denotes the sigmoid
function. Based on this modeling, the well-trained
reward model 7, is required to further optimize the
LLM policy via RL fine-tuning. However, under
our unsupervised setting, training the reward model
becomes impractical.

In the context of DPO (Rafailov et al., 2024), the
policy LLM g is leveraged as the implicit reward
model. The self-reward function ¢ is modeled as:

(T
¢(z,T) = Blog ﬂrjtf(}f;))

7o(T|x)
Trret (|)

+ Blog Z(x)
3)
x Blog

exp(r*(x, Th)) + exp(r*(z, Tt))

1 0‘ a — oo
0.8 . a=8
:C\\ re_a=4
X 0.6
3 ~a=2
0.4+ ~
Calibration
021 Region

05 00 05 10 15 20
A-A

Figure 3: Visualization of the calibration function. The
x-axis denotes the the differences between A; and A,,,
while the y-axis is the value of the calibration term. By
adjusting o, we can control the decay rate of the curve.

where ¢ denotes the reference model and Z(x) =
> 7 Tref(T|z)exp(¢p(x, T') / B) represents the parti-
tion function. With this approximation, the stan-
dard rewards for both the positive and negative
response sequences can be derived:

_ mo(T"|x) mo(T"|)
(Z)w - Blog Wref(Tw’fB)) Cbl - Blog Wref(Tl’x>
©)

ACO Loss Function. Under the unsupervised
setting, the training pairs are sampled based on the
distribution of foresight score. It would induce the
noise during the optimization. The above formu-
lation of self-rewards treats each preference pair
with equal scale, making it difficult to detect the
exception and improve the robustness. Therefore,
we propose to employ the calculated advantage
value A to calibrate the self-reward function ¢. In
detail, we add the relaxation term w(z, A) for the
self-rewards of the negative response sequence:

mo(T"|)
Teef(T!)’

(Al . Aw
(AaA)’l> (11)

where A; — A,, denotes the differences in the ad-
vantages brought by the negative steps and positive
steps. « is the hyper-parameter to control the scale
of the relaxation term.

For better understanding, we visualize w(z, A)
in Figure 3. This function can be categorized into
two distinct regions: the Normal Region and the
Calibration Region. In the Normal Region, where
A; — A, <0, the negative response sequence is

di(x, T = Bw(zx, A)log (10)

w(z, A) = clip (exp

13156

distinguishable from the positive one. Conversely,
when A; — A, > 0, the Calibration Region is
engaged, offering increased relaxation to the nega-
tive sample. Through the adjustment of the hyper-
parameter «, we can regulate the extent of this
flexibility. In short, if the negative response se-
quence provides more actual advantages than the
positive one, then it will be less punished (with
smaller weight in the self-reward calculation).

Substituting the self-reward function ¢,, and ¢;
into Eq. 7 and optimizing it using the form of nega-
tive log-likelihood, the ACO loss is derived:

W@(Tw|x>
L =K ~pl log =73
ACO (z,Tw,T;)~DOBT [ﬁ & Tref (Tow|)
(A — Ay T
_ elip (exp —(A = Ay) ’ 1) log W(lm}
a 7Tref(Tl"r)
(12)

We include the gradient analysis of ACO loss
function and its relations to other robust preference
optimization strategies in Appendix A.

3 Experiments

3.1 Implementation Details

Training Corpora The training queries are re-
spectively sourced from two general corpora,
Magpie (Xu et al.,, 2024c) and OpenHermes-
2.5 (Teknium, 2023). Considering the computa-
tional cost, we opt to randomly select 25K queries
from Magpie and 32K queries from OpenHermes-
2.5. They are utilized respectively as the sources
for self-training.

Evaluation Tasks To comprehensively evaluate
the basic reasoning abilities of the LLMs, we incor-
porate the following benchmarks: GSM8K (Cobbe
etal., 2021), MATH (Hendrycks et al., 2021), and
GPQA (Rein et al., 2023) for math reasoning, Re-
Clor (Yu et al., 2020) and LogiQA (Liu et al.,
2021) for logical reasoning, StrategyQA (Geva
et al., 2021) and ARC-Challenge (Clark et al.,
2018) for general reasoning. Moreover, we also
include the some general benchmarks to verify the
performance stability on the general domain: Al-
pacaEval (Li et al., 2023), WildBench (Lin et al.,
2024), and ArenaHard (Li et al., 2024) for sub-
jective evaluation, WikiBench (Kuo et al., 2024),
MMLU (Hendrycks et al., 2020), and MMLU-
Pro (Wang et al.,, 2024b) for objective evalu-
ation. Also, the competition-level benchmark
AIME2024 (Veeraboina, 2023) is included to prove
the scalability.

Baselines One line of baselines requires su-
pervision (labeled response) beyond the training
queries, including SFT and SPIN (Chen et al,,
2024). Another line of methods only needs un-
supervised queries as the input, covering STaR (Ze-
likman et al., 2022), CoH (Liu et al., 2024), Self-
Rewarding (Yuan et al., 2024) and ScPO (Prasad
et al., 2024). Details refer to Appendix B.1.

Base LLMs In the main experiments, we utilize
LLaMA3.1-8B-Instruct (Dubey et al., 2024) as the
backbone. To verify the generalization capabil-
ity, we also apply the self-training approaches on
Qwen2.5-Instruct series models (Yang et al., 2024),
including 3B and 7B variants.

Training and Inference Setup For the foresight
sampling configuration, we set M=2, N=4, and
K=4. Based on it, the total number of training
pairs is 100K and 128K for Magpie and OpenHer-
mes2.5 respectively. The inference process is ac-
celerated by the vLLM engine. Setup details refer
to Appendix B.2.

3.2 Main Results

In Table 1, we present the evaluation results. In
addition to presenting individual results for each
dataset, the average performances are also reported
in the last column.

Genius significantly boosts the reasoning abili-
ties of LLaMA3.1, surpassing all strong base-
lines. With merely 25K unsupervised training
queries (i.e., self-training from Magpie), Genius
demonstrates a notable enhancement in the aver-
age CoT reasoning performance of LLaMA3.1-8B-
Instruct by 7.43%. This improvement is further un-
derscored when using OpenHermes as the training
corpus. In comparison to strong baselines, Genius
consistently exhibits state-of-the-art performance,
showcasing an average advantage of >2%. Among
them, Genius presents obvious more advantages
in challenging tasks (e.g., MATH), outperforming
Self-Rewarding by >4%. Moreover, the superiority
of Genius is consistent across all the evaluation
benchmarks, while other baselines (e.g., CoH and
SPIN) show deviations in performances.

Self-training with RL optimization is more effec-
tive in improving reasoning with general data.
Among the baselines, RL-based self-training meth-
ods (e.g., CoH, Self-Rewarding and ScPO), ex-
hibit consistent advantages over supervised fine-
tuning baselines (e.g., SFT and STaR). Since cur-

13157

Models | GSMSK MATH ReClor LogiQA StrategyQA GPQA ARC-c | Avg.
LLaMA3.1-8B-Instruct (CoT) | 7028 30.52 49.40 3333 58.91 26.56 7833 | 49.65
Self-Training from Magpie (25K)

w/ Supervision
SFT 71.72 26.27 52.80 37.78 57.34 26.79 74.06 | 49.54
SPIN (Chen et al., 2024) 7491 31.49 57.40 40.09 71.35 29.91 83.96 | 55.59
w/o Supervision
STaR (Zelikman et al., 2022) 72.86 29.32 46.40 35.94 33.36 20.31 67.24 | 43.63
CoH (Liu et al., 2024) 74.37 32.29 56.20 38.56 69.08 28.13 82.51 54.45
Self-Rewarding (Yuan et al., 2024) 76.04 30.19 55.80 37.94 70.48 28.35 82.17 | 54.42
ScPO (Prasad et al., 2024) 71.11 30.99 55.00 40.40 59.87 28.57 78.92 | 52.12
Genius | 78.32 34.64 58.80 40.86 72.53 30.35 84.04 | 57.08
Self-Training from OpenHermes2.5 (32K)
w/ Supervision
SFT 63.68 21.64 45.00 29.03 48.47 23.44 69.37 | 42.95
SPIN (Chen et al., 2024) 63.61 24.74 54.00 3533 59.00 28.57 71.76 | 48.14
w/o Supervision
STaR (Zelikman et al., 2022) 75.51 29.47 43.60 34.87 19.34 22.99 68.43 | 42.03
CoH (Liu et al., 2024) 74.29 31.22 54.80 38.40 69.91 29.69 81.48 | 54.26
Self-Rewarding (Yuan et al., 2024) 73.92 29.99 56.00 39.78 67.55 30.13 81.66 | 54.15
ScPO (Prasad et al., 2024) 73.54 31.27 54.80 41.01 58.65 28.79 79.52 | 52.51
Genius | 75.82 34.42 57.60 41.63 70.79 34.82 83.19 | 56.90

Table 1: Main Results. The self-training performances from Mappie and OpenHermes2.5 corpora are reported

independently. The optimal results are in bold and the suboptimal ones are underlined.

rent LLMs (e.g., LLaMA3.1) have been well op-
timized to perform chain-of-thought reasoning, it
requires RL to cultivate a broader generalization ca-
pacity, rather than relying on SFT to inject reason-
ing patterns. Moreover, it is observed that the su-
pervision of ground-truth responses does not yield
enhancements, whereas self-generated responses
can serve as an effective source to achieve perfor-
mance boosts.

Performance Consistency on General Tasks.
Beyond the reasoning-intensive tasks, it is also
non-trivial to maintain the performances on the
general benchmarks after post-training. Supported
by the evaluation suite of OpenCompass (Contrib-
utors, 2023; Cao et al., 2024), we experiment on
6 widely-used general benchmarks, which are cat-
egorized into subjective and objective evaluation.
We report the evaluation results in Table 2.

Overall, Genius keeps the stability of the perfor-
mances on the general domain, with slight improve-
ments in most cases. Specifically, self-training
with Genius also achieves huge performance gains
in Arena-Hard benchmark, which reflects the su-
perior alignment with human preference. On the
knowledge-intensive benchmarks (i.e., WikiBench,
MMLU, and MMLU-Pro), Genius can maintain
the performances of the base LLMs, avoiding catas-
trophic forgetting after post-training.

3.3 Generalization and Adaptation

In this section, we analyze the generalization and
adaptation of Genius to (i) different backbone
LLMs, and (ii) on the competition-level task.

Generalization to other backbone LLMs. Be-
sides the experiments on LLaMA3.1, we also sup-
plement the evaluations on Qwen2.5-series. Fig. 4a
and 4b present the average performance across 7
benchmarks on Qwen2.5-3B-Instruct and Qwen2.5-
7B-Instruct respectively. Compared with all the
strong baselines, Genius shows the highest per-
formance gains over the base LLM. Notably, self-
training on Qwen2.5 series models does not yield
larger benefits than on LLaMA3.1-8B-Instruct.
Some of the baselines even fail in some cases. One
hypothesis is that Qwen2.5-Instruct has conducted
comprehensive post-training, which makes it chal-
lenging for further advancement. It does not con-
flict with our key contribution that Genius serves
as a versatile post-training technique, as it can
function both as an ongoing self-training method
for post-trained LL.Ms and as an alternative post-
training strategy for the model itself.

Adaptation to Challenging Task. Although Ge-
nius is not targeted for training large reasoning
model like DeepSeek-R1, it is interesting to evalu-
ate the challenging problems and uncover the po-

13158

Models ‘

Subjective Benchmarks

Objective Benchmarks

AlpacaEval WildBench Arena-H | WikiBench MMLU MMLU-Pro
LLaMA3.1-8B-Instruct 24.60 -1.11 30.31 27.65 71.14 48.62
Genius [From Magpie (25K)] 26.96 2.68 50.00 28.75 71.86 48.44
Genius [From OpenHermes (32K)] 25.47 1.44 50.00 27.00 72.21 49.19
Table 2: Performances on benchmarks in the general domain.

~ 62 AIME 2024 (Pass@1
< 6o 352 = —
9 > X Zero-shot +6.67
7 58 +1.83 -~ .
< +0.38 © 20 Il + Genius
I - Q
~ 56 -0.53 =
B 541 £ +6.67
&b 50 1 -3.85 S 101
Z 5
< 50 ' ' ' ' i - .

Qwen2.5 SPIN CoH Self- ScPO Genius 0 . .

3B-Instruct Rewarding LLaMA3.1-8B Qwen2.5-7B

(a) Base LLM: Qwen2.5-3B-Instruct -Instruct -Instruct

2 68 Figure 5: Results on AIME 2024.
< 71 +2.16
=
S 667 voal +0.79 +0.81 pling strategy alleviates the short-sightedness of
% 651 ; 2031 language model generation, and the employment of
oi 64 1 foresight score optimizes the self-rewarding of the
z 63 : : : : step value. Secondly, replacing the sampling with

73?;2‘;;;15“ SPIN CoH Revsvzlrging ScPO Genius the greedy selection also leads to significant drops.

(b) Base LLM: Qwen2.5-7B-Instruct

Figure 4: Generalization to Qwen2.5 series models. All
methods are trained on the OpenHermes?2.5 split. The
numbers above the bars represent the average perfor-
mance gain relative to the base model.

tential. Figure 5 supplements the experiments on
the competition-level task AIME 2024. We evalu-
ate the model trained on OpenHermes2.5 split from
LLaMA3.1-8B-Instruct and Qwen2.5-7B-Instruct
respectively. It is observed that Genius boosts the
performances by 6.67%. It verifies that Genius not
only improves upon the fundamental LLM reason-
ing capabilities but also expands the boundaries of
LLMs to address more intricate scenarios.

4 Analysis
4.1 Ablation Studies

To uncover the effectiveness of the major contribu-
tions of Genius, sample-and-reward strategy and
optimization objectives are ablated respectively.

Ablation of Sampling Strategy. Table 3 presents
the ablation results. Firstly, ablating the foresight
module results in 3.17%-3.25% average perfor-
mance drops. It illustrates that the foresight sam-

It verifies that our re-sampling strategy strikes the
balance between exploration and exploitation.

Ablation of Optimization Methods. We present
the comparison between various optimization ap-
proaches in Table 4, covering DPO, SimPO, 1PO,
ROPO and SFT. Among these popular approaches,
our ACO loss function stands out, showcasing
significant advantages with an average perfor-
mance improvement across 7 reasoning bench-
marks. Compared to the robustness optimization
strategy ROPO, ACO is more suitable for self-
training scenarios.

4.2 Post-Training Scaling Law

Limited by computational resources, we only pro-
vide the 10K-level training attempts, presented in
the main table. To give the direction of future post-
training scaling, Figure 6 shows the down-sampled
scaling curves. We have the following findings.

Genius holds great potential for further scalabil-
ity. From Figure 6, it is observed that Genius can
rapidly self-improve with limited training steps.
The evolution progress proceeds smoothly with
the training steps increasing. This curve suggests
that self-training with Genius is far from saturation
and still has room for improvement, whereas other

13159

Variants | GSM8K MATH ReClor

LogiQA StrategyQA GPQA ARC-c | Avg. A

Self-Training from Magpie (25K)

Genius 78.32 34.64 58.80 40.86 72.53 30.35 84.04 | 57.08 -
w/o foresight 71.65 31.07 57.60 39.17 66.20 30.13 81.57 | 5391 +3.17
w/o sampling 69.29 31.37 57.60 39.17 68.03 24.33 81.06 | 5298 +4.10

Self-Training from OpenHermes2.5 (32K)

Genius 75.82 34.42 57.60 41.63 70.79 34.82 83.19 | 56.90 -
w/o foresight 73.01 30.74 57.60 35.94 67.25 29.46 81.57 | 53.65 +3.25
w/o sampling 72.93 30.59 56.00 41.17 65.76 30.13 80.03 | 53.80 +3.10

Table 3: Ablation studies on the sampling strategy. w/o foresight ablates the look-ahead process and simply samples
from the distribution formed by step uncertainty. w/o sampling indicates that we adopt a greedy approach by
selecting the two steps with the highest foresight score for exploration, while the step with the lowest foresight score

serves as the negative response for exploitation.

Models Average Performances

Magpie OpenHermes
LLaMA3.1-8B-Instruct (CoT) | 49.65 49.65
w/ Foresight Sampling
+ACO 57.08 56.90
+ DPO (Rafailov et al., 2024) 55.51 55.73
+ SimPO (Meng et al., 2025) 50.42 50.87
+IPO (Azar et al., 2024) 5231 52.20
+ ROPO (Liang et al., 2024) 55.30 55.25
+ SFT 44.63 49.70

Table 4: Comparison of different reinforced loss. In the
experiments, we only replace the optimization methods
while keep the foresight sampling strategy unchanged.

baseline methods appear to face challenges when
expanded in scale.

5 Related Works

Post-Training for LLM Reasoning. Boosting
LLM reasoning by post-training has been a hot
topic recently. Some efforts perform large-
scale imitation learning on well-curated reasoning
data (Yue et al., 2024; Toshniwal et al., 2024; Xu
et al., 2025b) to build large reasoning models for
the specific domain (e.g., math, code). Considering
the huge annotation costs, some recent endeavors
have turned to self-training techniques to synthe-
size the reasoning trajectories more efficiently (Sun
et al., 2024b). However, these efforts still rely on
supervision signals and in-domain training corpus,
either with explicit outcome supervision (Zelik-
man et al., 2022; Xu et al., 2024a; Trung et al.,
2024; Cheng et al., 2024) or auxiliary reward mod-
els (Zeng et al., 2024; Jiao et al., 2024). Conversely,
we embark on a new path towards self-improving
the general reasoning ability of LLMs without any
form of supervision.

CoH ScPO
=»>— Self-Rewarding —#— Genius
Magpie OpenHermes
58 £P 58 —2
£ 561 561
wn
3
g 54 54
g
=
o)
A~ 521 521
2
<
501 501

1000 2000
Training Steps

0 500 1000 1500 0
Training Steps

Figure 6: Post-training scaling law with LLaMA3.1-8B-
Instruct as the base LLM.

Optimization Techniques. Previous works (Yue
et al., 2024; Hu et al., 2023; Wang et al., 2025)
often rely on supervised fine-tuning to inject new
reasoning patterns (e.g., reflection, refinement) into
the foundational LLMs. With the development
of stronger backbones, some efforts (Prasad et al.,
2024; Cui et al., 2025; Guo et al., 2025) focus on of-
fering the RL-based solution (Rafailov et al., 2024;
Shao et al., 2024) to improve LLM reasoning, prov-
ing the RL scaling effect with outcome rewards. In
our work, we propose a novel reinforced learning
objective to perform robust optimization under the
unsupervised setting. We uncover the promising
scaling law of self-training with RL optimization.

6 Conclusion

This paper focuses on tackling the challenging and
critical task of enhancing LLM reasoning, with-
out relying on any external supervision. A gen-

13160

eralizable and purely unsupervised self-training
framework, named Genius, is proposed to address
several key technical challenges on how to: (1)
sample responses; (2) self-reward responses with-
out external auxiliary; (3) robustly optimize with
the self-curated data. Extensive experiments on 7
reasoning benchmarks, 7 general benchmarks, and
1 competition-level math task are included to com-
prehensively evaluate the LLM performance after
post-training. The analysis of the scaling law curve
uncovers the huge potential on further scalability.

Acknowledgement

This work was supported by National Key
Research and Development Program of China
(2022YFC3303600), National Natural Science
Foundation of China (No. 62137002, 62293550,
62293553, 62293554, 62437002, 62477036,
62176209, 62176207), "LENOVO-XJTU" Intel-
ligent Industry Joint Laboratory Project, Shaanxi
Undergraduate and Higher Education Teaching Re-
form Research Program (No. 23BY195), and Xi’an
Jiaotong University City College Research Project
(No. 2024Y01), Project of China Knowledge Cen-
tre for Engineering Science and Technology, the
Youth Al Talents Fund of China Association of Au-
tomation (Grant No.HBRC-JKYZD-2024-311).

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul
Christiano, John Schulman, and Dan Mané. 2016.
Concrete problems in ai safety. arXiv preprint
arXiv:1606.06565.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bi-
lal Piot, Remi Munos, Mark Rowland, Michal Valko,
and Daniele Calandriello. 2024. A general theoret-
ical paradigm to understand learning from human
preferences. In International Conference on Arti-
ficial Intelligence and Statistics, pages 4447-4455.
PMLR.

Ralph Allan Bradley and Milton E. Terry. 1952. Rank
analysis of incomplete block designs the method of
paired comparisons. Biometrika, 39:324-345.

Maosong Cao, Alexander Lam, Haodong Duan, Hong-
wei Liu, Songyang Zhang, and Kai Chen. 2024.
Compassjudger-1: All-in-one judge model helps
model evaluation and evolution. arXiv preprint
arXiv:2410.16256.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji,
and Quanquan Gu. 2024. Self-play fine-tuning con-
verts weak language models to strong language mod-
els. In Forty-first International Conference on Ma-
chine Learning.

Kanzhi Cheng, Yantao Li, Fangzhi Xu, Jianbing Zhang,
Hao Zhou, and Yang Liu. 2024. Vision-language
models can self-improve reasoning via reflection.
arXiv preprint arXiv:2411.00855.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the ai2 reasoning challenge. arXiv
preprint arXiv:1803.05457.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

OpenCompass Contributors. 2023. Opencompass: A
universal evaluation platform for foundation models.
GitHub repository.

Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang,
Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu
Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang, Yuan
Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu,
Maosong Sun, Bowen Zhou, and Ning Ding. 2025.
Process reinforcement through implicit rewards.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation.
arXiv preprint arXiv:1702.01806.

Hiroki Furuta, Kuang-Huei Lee, Shixiang Shane Gu,
Yutaka Matsuo, Aleksandra Faust, Heiga Zen, and
Izzeddin Gur. 2025. Geometric-averaged preference
optimization for soft preference labels. Advances in
Neural Information Processing Systems, 37:57076—
57114.

Leo Gao, John Schulman, and Jacob Hilton. 2023. Scal-
ing laws for reward model overoptimization. In In-
ternational Conference on Machine Learning, pages
10835-10866. PMLR.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did aristotle
use a laptop? a question answering benchmark with

13161

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2108.07732
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://proceedings.mlr.press/v238/gheshlaghi-azar24a.html
https://api.semanticscholar.org/CorpusID:121987403
https://api.semanticscholar.org/CorpusID:121987403
https://api.semanticscholar.org/CorpusID:121987403
https://arxiv.org/abs/2410.16256
https://arxiv.org/abs/2410.16256
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2401.01335
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/2411.00855
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://github.com/open-compass/opencompass
https://github.com/open-compass/opencompass
http://arxiv.org/abs/2502.01456
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/1702.01806
https://arxiv.org/abs/1702.01806
https://arxiv.org/pdf/2409.06691
https://arxiv.org/pdf/2409.06691
https://proceedings.mlr.press/v202/gao23h.html
https://proceedings.mlr.press/v202/gao23h.html
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00370/100680/Did-Aristotle-Use-a-Laptop-A-Question-Answering
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00370/100680/Did-Aristotle-Use-a-Laptop-A-Question-Answering

implicit reasoning strategies. Transactions of the
Association for Computational Linguistics, 9:346—
361.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-rl: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2020. Measuring massive multitask language under-
standing. arXiv preprint arXiv:2009.03300.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Qisheng Hu, Kaixin Li, Xu Zhao, Yuxi Xie, Tiedong
Liu, Hui Chen, Qizhe Xie, and Junxian He. 2023. In-
structcoder: Empowering language models for code
editing. arXiv preprint arXiv:2310.20329.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-
uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Fangkai Jiao, Chengwei Qin, Zhengyuan Liu, Nancy F
Chen, and Shafiq Joty. 2024. Learning planning-
based reasoning by trajectories collection and
process reward synthesizing. arXiv preprint
arXiv:2402.00658.

Tzu-Sheng Kuo, Aaron Lee Halfaker, Zirui Cheng, Ji-
woo Kim, Meng-Hsin Wu, Tongshuang Wu, Ken-
neth Holstein, and Haiyi Zhu. 2024. Wikibench:
Community-driven data curation for ai evaluation on
wikipedia. In Proceedings of the CHI Conference on
Human Factors in Computing Systems, pages 1-24.

Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap,
Tianhao Wu, Banghua Zhu, Joseph E Gonzalez, and
Ton Stoica. 2024. From crowdsourced data to high-
quality benchmarks: Arena-hard and benchbuilder
pipeline. arXiv preprint arXiv:2406.11939.

Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori,
Ishaan Gulrajani, Carlos Guestrin, Percy Liang, and
Tatsunori B. Hashimoto. 2023. Alpacaeval: An au-
tomatic evaluator of instruction-following models.
https://github.com/tatsu-lab/alpaca_eval.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian
Xu, Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, et al.
2025. From system 1 to system 2: A survey of
reasoning large language models. arXiv preprint
arXiv:2502.17419.

Xize Liang, Chao Chen, Jie Wang, Yue Wu, Zhihang Fu,
Zhihao Shi, Feng Wu, and Jieping Ye. 2024. Robust
preference optimization with provable noise toler-
ance for llms. arXiv preprint arXiv:2404.04102.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze
Brahman, Abhilasha Ravichander, Valentina Pyatkin,
Nouha Dziri, Ronan Le Bras, and Yejin Choi. 2024.
Wildbench: Benchmarking 1lms with challenging
tasks from real users in the wild. arXiv preprint
arXiv:2406.04770.

Hao Liu, Carmelo Sferrazza, and Pieter Abbeel. 2024.
Chain of hindsight aligns language models with feed-
back. In The Twelfth International Conference on
Learning Representations.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021. Logiqa: a
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3622-3628.

Chang Ma, Haiteng Zhao, Junlei Zhang, Junxian He,
and Lingpeng Kong. 2024. Non-myopic genera-
tion of language models for reasoning and planning.
arXiv preprint arXiv:2410.17195.

Yu Meng, Mengzhou Xia, and Danqgi Chen. 2025.
Simpo: Simple preference optimization with a
reference-free reward. Advances in Neural Infor-
mation Processing Systems, 37:124198-124235.

Archiki Prasad, Weizhe Yuan, Richard Yuanzhe Pang,
Jing Xu, Maryam Fazel-Zarandi, Mohit Bansal, Sain-
bayar Sukhbaatar, Jason Weston, and Jane Yu. 2024.
Self-consistency preference optimization. arXiv
preprint arXiv:2411.04109.

Team Qwen. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2023. Gpga: A
graduate-level google-proof q&a benchmark. arXiv
preprint arXiv:2311.12022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

13162

https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00370/100680/Did-Aristotle-Use-a-Laptop-A-Question-Answering
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2009.03300
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2310.20329
https://arxiv.org/abs/2310.20329
https://arxiv.org/abs/2310.20329
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://arxiv.org/abs/2402.00658
https://dl.acm.org/doi/full/10.1145/3613904.3642278
https://dl.acm.org/doi/full/10.1145/3613904.3642278
https://dl.acm.org/doi/full/10.1145/3613904.3642278
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://arxiv.org/abs/2406.11939
https://github.com/tatsu-lab/alpaca_eval
https://arxiv.org/abs/2404.04102
https://arxiv.org/abs/2404.04102
https://arxiv.org/abs/2404.04102
https://arxiv.org/abs/2305.20050
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2406.04770
https://arxiv.org/abs/2302.02676
https://arxiv.org/abs/2302.02676
https://www.ijcai.org/proceedings/2020/0501.pdf
https://www.ijcai.org/proceedings/2020/0501.pdf
https://www.ijcai.org/proceedings/2020/0501.pdf
https://arxiv.org/abs/2410.17195
https://arxiv.org/abs/2410.17195
https://proceedings.neurips.cc/paper_files/paper/2024/hash/e099c1c9699814af0be873a175361713-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2024/hash/e099c1c9699814af0be873a175361713-Abstract-Conference.html
https://arxiv.org/abs/2411.04109
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300

Qiushi Sun, Zhirui Chen, Fangzhi Xu, Kanzhi
Cheng, Chang Ma, Zhangyue Yin, Jianing Wang,
Chengcheng Han, Renyu Zhu, Shuai Yuan, et al.
2024a. A survey of neural code intelligence:
Paradigms, advances and beyond. arXiv preprint
arXiv:2403.14734.

Qiushi Sun, Kanzhi Cheng, Zichen Ding, Chuanyang
Jin, Yian Wang, Fangzhi Xu, Zhenyu Wu, Chengyou
Jia, Liheng Chen, Zhoumianze Liu, et al. 2024b.
Os-genesis: Automating gui agent trajectory con-
struction via reverse task synthesis. arXiv preprint
arXiv:2412.19723.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Teknium. 2023. Openhermes 2.5: An open dataset of
synthetic data for generalist 1lm assistants.

Shubham Toshniwal, Ivan Moshkov, Sean Narenthi-
ran, Daria Gitman, Fei Jia, and Igor Gitman. 2024.
Openmathinstruct-1: A 1.8 million math instruction
tuning dataset. arXiv preprint arXiv:2402.10176.

Luong Trung, Xinbo Zhang, Zhanming Jie, Peng Sun,
Xiaoran Jin, and Hang Li. 2024. Reft: Reasoning
with reinforced fine-tuning. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
7601-7614.

Jonathan Uesato, Nate Kushman, Ramana Kumar,
H Francis Song, Noah Yamamoto Siegel, Lisa Wang,
Antonia Creswell, Geoffrey Irving, and Irina Higgins.
2022. Solving math word problems with process-
based and outcome-based feedback.

Hemish Veeraboina. 2023. Aime problem set 1983-
2024.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024a. Math-shepherd: Verify and reinforce 1lms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for ComputatDo NOT Think That Much for 2+3=7?
On the Overthinking of ol-Like LLMsional Linguis-
tics (Volume 1: Long Papers), pages 9426-9439.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, et al. 2024b.
Mmlu-pro: A more robust and challenging multi-task
language understanding benchmark. arXiv preprint
arXiv:2406.01574.

Yubo Wang, Xiang Yue, and Wenhu Chen. 2025. Cri-
tique fine-tuning: Learning to critique is more ef-
fective than learning to imitate. arXiv preprint
arXiv:2501.17703.

Fangzhi Xu, Qiushi Sun, Kanzhi Cheng, Jun Liu,
Yu Qiao, and Zhiyong Wu. 2024a. Interactive
evolution: A neural-symbolic self-training frame-
work for large language models. arXiv preprint
arXiv:2406.11736.

Fangzhi Xu, Zhiyong Wu, Qiushi Sun, Siyu Ren, Fei
Yuan, Shuai Yuan, Qika Lin, Yu Qiao, and Jun Liu.
2024b. Symbol-llm: Towards foundational symbol-
centric interface for large language models. In Pro-
ceedings of the 62nd Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 13091-13116.

Fangzhi Xu, Hang Yan, Chang Ma, Haiteng Zhao, Jun
Liu, Qika Lin, and Zhiyong Wu. 2025a. ¢-decoding:
Adaptive foresight sampling for balanced inference-
time exploration and exploitation. arXiv preprint
arXiv:2503.13288.

Haotian Xu, Xing Wu, Weinong Wang, Zhongzhi
Li, Da Zheng, Boyuan Chen, Yi Hu, Shijia
Kang, Jiaming Ji, Yingying Zhang, et al. 2025b.
Redstar: Does scaling long-cot data unlock bet-
ter slow-reasoning systems? arXiv preprint
arXiv:2501.11284.

Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yun-
tian Deng, Radha Poovendran, Yejin Choi, and
Bill Yuchen Lin. 2024c. Magpie: Alignment data
synthesis from scratch by prompting aligned 1lms
with nothing.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024. Qwen2. 5 tech-
nical report. arXiv preprint arXiv:2412.15115.

Weihao Yu, Zihang Jiang, Yanfei Dong, and Jiashi Feng.
2020. Reclor: A reading comprehension dataset re-
quiring logical reasoning. In International Confer-
ence on Learning Representations.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho,
Xian Li, Sainbayar Sukhbaatar, Jing Xu, and Ja-
son E Weston. 2024. Self-rewarding language mod-
els. In Forty-first International Conference on Ma-
chine Learning.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao
Huang, Huan Sun, Yu Su, and Wenhu Chen. 2024.
Mammoth: Building math generalist models through
hybrid instruction tuning. In The Twelfth Interna-
tional Conference on Learning Representations.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Good-
man. 2022. Star: Bootstrapping reasoning with rea-
soning. Advances in Neural Information Processing
Systems, 35:15476—15488.

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang,
Zifei Shan, and Junxian He. 2024. B-star: Monitor-
ing and balancing exploration and exploitation in self-
taught reasoners. arXiv preprint arXiv:2412.17256.

13163

https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2403.14734
https://arxiv.org/abs/2412.19723
https://arxiv.org/abs/2412.19723
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://huggingface.co/datasets/teknium/OpenHermes-2.5
https://arxiv.org/abs/2402.10176
https://arxiv.org/abs/2402.10176
https://arxiv.org/abs/2401.08967
https://arxiv.org/abs/2401.08967
https://mathai2022.github.io/papers/26.pdf
https://mathai2022.github.io/papers/26.pdf
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://www.kaggle.com/datasets/hemishveeraboina/aime-problem-set-1983-2024
https://aclanthology.org/2024.acl-long.510/
https://aclanthology.org/2024.acl-long.510/
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2406.01574
https://arxiv.org/abs/2501.17703
https://arxiv.org/abs/2501.17703
https://arxiv.org/abs/2501.17703
https://arxiv.org/abs/2406.11736
https://arxiv.org/abs/2406.11736
https://arxiv.org/abs/2406.11736
https://aclanthology.org/2024.acl-long.707/
https://aclanthology.org/2024.acl-long.707/
https://arxiv.org/abs/2503.13288
https://arxiv.org/abs/2503.13288
https://arxiv.org/abs/2503.13288
https://arxiv.org/abs/2501.11284
https://arxiv.org/abs/2501.11284
http://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2406.08464
http://arxiv.org/abs/2406.08464
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2002.04326
https://arxiv.org/abs/2002.04326
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2401.10020
https://arxiv.org/abs/2309.05653
https://arxiv.org/abs/2309.05653
https://proceedings.neurips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2022/hash/639a9a172c044fbb64175b5fad42e9a5-Abstract-Conference.html
https://arxiv.org/abs/2412.17256
https://arxiv.org/abs/2412.17256
https://arxiv.org/abs/2412.17256

Xuan Zhang, Chao Du, Tianyu Pang, Qian Liu, Wei Gao,
and Min Lin. 2024. Chain of preference optimization:
Improving chain-of-thought reasoning in llms. arXiv
preprint arXiv:2406.09136.

13164

https://arxiv.org/abs/2406.09136
https://arxiv.org/abs/2406.09136

A Gradient Analysis of ACO

Derivation of the Gradient. The complete form
of ACO loss function is written as:

7I‘9(Tw|l‘)

Laco (2,7, T)~DI08T [ﬁ % et (T2)
. — (A1 — Aw) o (T"|x)

— Bel —— = 1| log ————~
BC P <exp (% ’ °8 7"‘ref(Tl|x)

To simplify the formulation, we denote the ad-
vantage calibration term as w(x, A):

w(z, A) = clip (exp M, 1>
«

Our objective is to derive the gradient VyLaco. At
the beginning, we define:

mo (1|)
Trer (T]2)

mo(T'|z)

2z = [lo AN e
Blog et (TV]7)

— Bw(z, A)log

The gradient of the ACO loss can be represented
in the form of:
VoLaco = —E(rw r1yVolog o(z)
o'(2)

= _E(:B,T“’,Tl) U(z) ng

Using the unique characteristics of sigmoid func-
tion: ¢ (z) = o(z)(1 — o(x)) and o(—z) =
1 — o(z), the gradient of ACO becomes:

VoLaco = —E(, rwiy(1 —0(2))Vez (13)

Now we need to compute Vgz. Since w(z, A)
is independent of 6, the gradient of z reduces to:

mo(T"|)
Wref(Twlx)
7o(T'|x)
Tret(T)

Vyz = fVglog
— pw(x, A)Vylog

The gradients of the log probability terms are:

mo (1|)
Volog———= =Vpyl T
0 108 Tret(T%2) o log mo(T"|x)
o (T"|) !
Vylog ———= = Vyglog mg(T"|x
olog T iy ~ velos o(T"|z)

Replacing them into the gradient of z, we have:

Voz = Vglogmg(TV|x)

(14)
— Bw(z, A)Vglog 7o (T"|x)

Substituting Eq. 14 into Eq. 13, the gradient of
ACO is derived as:
VoLaco = —Eg oy (1 —0(2))-
————
scale
[8V4log mo(T|x) — Buw(x, A)Vglog 7o (T"|2)]

postive and negative gradients

(15)

In this equation, 1 — o(z) controls the scale of
the gradients. Putting z in the formula, then we can
obtain the following format:

mo(T"|x)
Tref (T)
mo(1T"[2)
Tref (T)

1—0(z) = pw(z, A)log
(16)
— plog

When the negative trajectory 7" brings more
advantages (i.e., higher A-value), w(z, A) would
decrease in value according to the illustration in
Fig. 3. Then, the gradient scale 1 — o(z) drops, of-
fering less optimization to the corresponding train-
ing data pairs. It aligns with our initial motivation
of calibrating with advantage values.

Relationship with Other Reinforced Loss Func-
tions. With the derived gradient formulation, we
discuss the relationship between ACO and other
representative reinforced loss function (Furuta
etal., 2025). DPO, ¢c-DPO, and ROPO are included,
where the latter two losses are specifically designed
for the robust optimization.
DPO. The formulation of DPO loss is:

7o (T |)
Tret (T] 2)

(T |2)
Wref(Tl|33)>

Lppo = —log o <B log
—plog

The gradient of DPO Vg Lppo can be represented
as the same formulation of Eq. 15 and 16, where
the gradient scale is 1 — o(z). The DPO loss can
be regarded as the special case of ACO loss, with
a — 400.

¢-DPO. The c-DPO loss is designed to apply the
label smoothing technique to alleviate the noise. Its

formulation is:
Lec.ppo =

mp(T|x) mo(T'|x)
B 610{-’;0 (ﬁ log 71'ref(T”“U|35') B ﬁlog ﬂ-ref(Tl|x))
w .
—(1—-e€loga (5 log ;i zf((];quL)) — Blog ;Zf((?f‘ \lx)))

13165

The gradient of c-DPO VL. ppo has the scale
of (1 —¢€) — o(z) with @ — +oo. Compared
with our ACO loss, c-DPO offers static and equal
calibration for each data pair with the use of ¢,
while ACO loss provides an adaptive solution.

ROPO. The ROPO loss specially proposed for
the robust optimization:

mo(T'|z) - (T |2))
Tref(THx) ™ e (T |)
mo(T%) mo(T'e))
Tref(TY|x) ~ et (T)

Lropo = —70 <5

—nlogtf(B

It has the similar gradient formulation with ACO
loss when a@ — +o0. Its gradient scale can be
derived as (v —no(z))(1 —o(z)). The main differ-
ence is ROPO provides the robust calibration with
the positive and negative gradients, while ACO loss
obtains the advantage during the sampling process.

B Implementation Details

B.1 Baselines

SFT We finetune the LLM given the input query
(x) and the labeled response (a).

SPIN (Chen et al., 2024) It iteratively refines the
model-generated response against the labeled ones
with an objective similar to DPO.

STaR (Zelikman et al., 2022) It continuously
bootstraps from the self-constructed response
through finetuning.

CoH (Liu et al., 2024) It obtains both positive
and negative responses via self-prompting and op-
timizes LLM with DPO loss function.

Self-Rewarding (Yuan et al., 2024) It leverages
the LLM itself as a judge to label the self-generated
responses (1-5 scores), then the LLM is optimized
with DPO loss on the constructed preference pairs.

ScPO (Prasad et al., 2024) This approach gener-
ates multiple trajectories and labels the preference
with self-consistency. To address the open-ended
generation scenarios, we modify the implementa-
tion of self-consistency with the cluster strategy.

B.2 Setup

Sampling. The foresight sampling process is sup-
ported by 32¥*A100 GPUs of 80GB VRAM, and
it is accelerated by the vLLM engine. To ensure
the diversity of sampling, we set the generation
temperature to 0.6. The step beam size M is set to

2, the rollout number on each beam N is set to 4,
and the number of foresight steps K is 4.

Training. The optimization of LLM is imple-
mented with 8*A100 GPUs of 80GB VRAM, sup-
ported by Deepspeed Zero3 and FlashAttention?2.
The total training batch size is set to 128, and the
learning rate is Se-7. The hyper-parameter « in the
ACO loss is set to 1. Based on the configuration of
sampling, we keep 4 training pairs for each query
(collect one at each timestamp). Therefore, the size
of the training datasets is 100,000 and 128,000 for
Magpie and OpenHermes-2.5 respectively.

Inference. The inference is supported by the
vLLM engine. We keep the default configuration of
vLLM with a temperature of 1.0. For GSM8K and
MATH benchmarks, we leverage the widely-used
few-shot examples, utilizing 4-shot for GSM8K
and 8-shot for MATH. For other benchmarks, we
evaluate under the zero-shot setting.

C Analysis of The Training Corpus

We visualize the data distribution difference
between the training corpus and the evalua-
tion tasks in Fig. 7. In the implementa-
tion, we utilize the sentence-embedding model
(multi-ga-mpnet-base-dot-v1) to acquire the
high-dimensional embeddings of the queries. Sub-
sequently, we employ the t-SNE algorithm to
visually represent these embeddings in a lower-
dimensional space. A set of 500 samples are ran-
domly selected in each dataset.

To differentiate the data domains, we employ
the following color scheme: red denotes the gen-
eral training corpus, purple denotes mathematical
datasets, yellow denotes logical datasets, and green
is used for other reasoning datasets. It is observed
that the data distribution of the general training cor-
pus is distinct and independent from that of other
evaluation domains. It supports our conclusion that
Genius paves the way to self-improve LLM rea-
soning from unsupervised queries in the general
domain.

Following the similarity analysis proposed
in (Xu et al., 2024b), we also report the intra- and
inter-class sample distances in Table 5.

The average similarity between the training cor-
pus and the domain-specific downstream tasks, as
depicted in the table, is notably low. Among the
tasks evaluated, the logical reasoning benchmarks
(i.e., ReClor and LogiQA) exhibit the least resem-

13166

@ Trining @ Gonvisk @ GPQA

Corpus MATH

Magpie as Training Corpus

ReClor LogiQA ARC-c StrategyQA

OpenHermes2.5 as Training Corpus

Figure 7: Visualization of data distribution. The training corpus is marked in red color.

Task \ w/ Self w/Magpie w/ OpenHermes
GSMSK 0.3967 0.1343 0.1256
MATH 0.1641 0.0908 0.0719
GPQA 0.1907 0.0566 0.0602
ReClor 0.2609 0.0552 0.0792
LogiQA 0.2330 0.0732 0.0930
StrategyQA | 0.1186 -0.0045 0.0025
ARC-c 0.2276 0.0673 0.0843

Table 5: Comparison between intra- and inter-class dis-
tance. w/ Self denotes the distance within the task
queries. w/ Magpie means the distance between the
target task with Magpie training corpus, while w/ Open-
Hermes denotes the distance between the target task
with OpenHermes2.5 training corpus.

blance to the training corpus, making them an ideal
evaluation scenario for our approach.

D More Experiments on Coding Tasks

Besides the natural language reasoning and un-
derstanding tasks, it is also interesting to present
the potential of Genius on coding-related bench-
marks, which is one of the key abilities of
LLMs (Sun et al., 2024a). Table 6 reports the
performances on MBPP (Austin et al., 2021) and
LiveCodeBench (Jain et al., 2024).

Models | MBPP LiveCodeBench
LLaMA3.1-8B-Instruct 69.65 19.50
Genius [From Magpie] 71.60 19.75
Genius [From OpenHermes] 71.98 21.25

Table 6: Experiments on coding tasks.

It is observed that self-training with Genius on
the general data would also benefit the LLM cod-

ing abilities, which involve strict formats and struc-
tured representations.

13167

