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Abstract

One of the primary driving forces contribut-
ing to the superior performance of Large Lan-
guage Models (LLMs) is the extensive avail-
ability of human-annotated natural language
data, which is used for alignment fine-tuning.
This inspired researchers to investigate self-
training methods to mitigate the extensive re-
liance on human annotations. However, the
current success of self-training has been pri-
marily observed in natural language scenarios,
rather than in the increasingly important neural-
symbolic scenarios. To this end, we propose
an environment-guided neural-symbolic self-
training framework named ENVISIONS . It
aims to overcome two main challenges: (1) the
scarcity of symbolic data, and (2) the limited
proficiency of LLMs in processing symbolic
language. Extensive evaluations conducted on
three distinct domains demonstrate the effec-
tiveness of our approach. Additionally, we have
conducted a comprehensive analysis to uncover
the factors contributing to ENVISIONS ’s suc-
cess, thereby offering valuable insights for fu-
ture research in this area.

1 Introduction

Large Language Models (LLMs) (Achiam et al.,
2023; Team et al., 2023) have undergone exten-
sive training using massive data, enabling them
to possess remarkable capabilities across diverse
domains. One of the main recipes of LLMs’ suc-
cess is the post-pretraining effort to achieve align-
ment with downstream tasks (Taori et al., 2023;
Yin et al., 2023). The effective alignment pri-
marily relies on the accessibility of a substantial
volume of expensive human-annotated data, em-
ploying techniques such as Supervised Fine-Tuning

∗Work done during internship at Shanghai AI Lab.
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(SFT) (Ivison et al., 2023) or Reinforcement Learn-
ing from Human Feedback (RLHF) (Ouyang et al.,
2022). Recently, there has been a growing inter-
est in developing self-training methods that enable
fine-tuning of LLMs without human annotations,
thereby reducing cost and streamlining the training
process (Yuan et al., 2024).

Notable progress has been made in self-training
techniques for natural language (NL) scenar-
ios (Chen et al., 2024; Rosset et al., 2024), where
researchers focus on improving LLMs by syn-
thesizing their own natural language input-output
pairs. However, in recent years, there has been a
growing emphasis on delegating tasks to external
tools/environments to expand the capability bound-
aries of LLMs. The shift in focus necessitates the
generation of a symbolic intermediate representa-
tion a that can be executed in the environment to
faithfully produce the desired output y. This neural-
symbolic framework (Xu et al., 2024) has achieved
significant success in complex planning (Liu et al.,
2023a), mathematical reasoning (Gou et al., 2023),
robotic planning (Hu et al., 2023), and agentic
tasks (Zheng et al., 2023; Wu et al., 2024). In
contrast to the abundance of NL annotation data
(x-y), curating symbolic annotation (x-a-y) is sig-
nificantly more challenging and costly due to the
scarcity and inherent complexity of symbolic lan-
guage (SL). In this paper, we delve into the explo-
ration of effective self-training methods for LLMs
within complex neural-symbolic scenarios, all with-
out human-annotated symbolic data.

Current self-training approaches in empowering
LLMs in SL-centric scenarios fall into two cate-
gories, each with its own drawbacks. Distill-then-
Finetune (Ivison et al., 2023; Xu et al., 2023a),
shown in Fig. 1(a), entails fine-tuning a less pow-
erful LLM using distilled data obtained from a
teacher LLM, such as GPT-4 (Achiam et al., 2023).
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Figure 1: Weak-to-strong paradigms. (a) Distill-then-
Finetune paradigm. (b) Reinforced Self-Training meth-
ods. (c) Environment-guided Self-Training paradigm.

Although this method is simple yet effective, its
application is constrained by the requirement of
an already existing stronger LLM and the asso-
ciated high costs. Furthermore, the performance
of the student LLM is upper-bounded by the ca-
pabilities of the teacher LLM. Reinforced Self-
Training (Gulcehre et al., 2023; Singh et al., 2023),
as shown in Fig. 1 (b), iteratively improves a
weak LLM by leveraging reinforcement learning
algorithms (Rafailov et al., 2024), guided by cus-
tomized reward models. Nevertheless, reinforced
methods are constrained by their inefficiency in
training and/or reliance on human annotations for
reward model training.

To address the limitations of previous ap-
proaches, this work focuses on two key challenges:
enhancing the proficiency of LLMs in processing
SL and eliminating the requirement for human-
annotated data. Illustrated in Figure 1 (c), the pro-
posed approach, called Environment-guided (Env-
guided) self-training, involves iterative training of
LLMs through interactions with an embodied envi-
ronment. Built upon the approach, we propose an
ENV-guIded Self-traIning framework fOr Neural
Symbolic scenarios, named ENVISIONS . As an
example, consider the training of LLMs for web
browsing, i.e., training a web agent. Given a web
manipulation task x, the agent generates multiple
candidate actions a ∈ A and executes these actions
within the web browser, resulting in both correct
and incorrect outcomes. A self-rewarding algo-
rithm is designed to post-process the agent’s trajec-
tories and create contrastive training pairs. These
correct-incorrect trajectory pairs, along with a self-
refining loss, are utilized to empower the LLMs to
self-improve.

Through the Env-guided self-training approach,
the LLMs leverage the interactive nature of the
embodied environment to generate trajectories and
learn symbolic language processing abilities, miti-
gating the need for human annotations. Through ex-

tensive evaluation, we found that ENVISIONS can
consistently convert an existing LLM to a stronger
one without reliance on existing stronger models
or reward models. It’s also worth noting that EN-
VISIONS and previous methods are not mutually
exclusive, but we leave it as a future work to ex-
plore their synergy.

We highlight our contributions as follows:
(1) A neural-symbolic self-training framework:
We propose a novel framework ENVISIONS for
neural-symbolic self-training. The proposed frame-
work can eliminate the need for human annotation
or a stronger teacher model during self-training.
(2) Comprehensive evaluations and analysis: We
extensively evaluate ENVISIONS across three do-
mains to showcase its superiority over existing self-
training methods. Our thorough analysis uncov-
ers the reasons behind ENVISIONS ’s exceptional
performance, highlighting its potential as a new
paradigm for neural-symbolic self-training.
(3) Insights on Env-guided neural-symbolic self-
training: Our research provides valuable insights,
supported by evidence, into the training process of
Env-guided neural-symbolic self-training. These
findings pave the way for future researches.

2 Related Work

Self-Training Methods. Self-training (Tao et al.,
2024; Cao et al., 2024), offers a promising avenue
for models to learn from their own outputs, re-
ducing reliance on extensive human annotations.
Recent advances (Gulcehre et al., 2023) leverage
well-trained reward models to filter better train-
ing samples, and optimize the policy via rein-
forced self-training (Singh et al., 2023; Liu et al.,
2023b). However, these approaches heavily rely on
a strong reward model, which limits its applicabil-
ity and training efficiency. Following the success of
DPO (Rafailov et al., 2024), self-play frameworks
have emerged as a new path that implicitly models
the preferences among unlabeled rationales in iter-
ative DPO styles (Chen et al., 2024; Rosset et al.,
2024; Yuan et al., 2024). Nevertheless, these RL
methods still face efficiency issues (Wang et al.,
2023a). Beyond RL, previous works (Zelikman
et al., 2022; Ni et al., 2022) optimize policy models
within iterative SFT frameworks, yet neglecting
the value of negative samples. Notably, previous
efforts merely focus on the NL scenarios, but fail
to apply in neural-symbolic settings.
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Data Synthesis with LLMs. Obtaining high-
quality reasoning traces to optimize LLMs has been
a long-standing challenge (Mukherjee et al., 2023).
Beyond well-established approaches utilizing data
augmentation strategies to obtain diversified train-
ing data (Deng et al., 2023; Lee et al., 2024; Huang
et al., 2025a). Recent efforts (Yue et al., 2023;
Zeng et al., 2023; Cheng et al., 2024) primarily dis-
till strong LLMs (Achiam et al., 2023; Anil et al.,
2023) to generate novel samples in the given for-
mat. They either generate more diverse samples
from seed data through self-instruct (Wang et al.,
2023b) or enhance diversity through sample rewrit-
ing (Wei et al., 2023; Xu et al., 2025). However,
current works mainly employ proprietary LLMs
for data synthesis, which is a cost.
Neural-Symbolic Integration for LLMs.
Neural-symbolic methods synergize the powerful
generation capacity of LLMs with the reliability
and interpretability of symbolic systems. Typically,
PAL/PoT (Gao et al., 2023; Chen et al., 2023)
synthesize executable programs as intermediate
reasoning steps to solve numerical problems. This
strategy of delegating problems to external solvers
(e.g., Python interpreter), has gained significant
traction (Xu et al., 2024; Sun et al., 2024; Huang
et al., 2025b). For instance, (Gou et al., 2023) and
(Pan et al., 2023) apply neural code generation
and symbolic execution on math and logical
reasoning respectively. Beyond reasoning, recent
endeavors have extended the application into
agent scenarios (Xu et al., 2023b; Qin et al.,
2023) and leverage external feedback from the
environment (Zheng et al., 2023; Yang et al.,
2024) for refinement. However, these approaches
mainly optimize LLM usage rather than providing
autonomous self-improvement.

3 Methodology

3.1 Preliminaries

In neural-symbolic scenarios, based on the NL in-
put x, LLMs are required to produce symbolic so-
lution a to obtain the desired output y through the
execution in the environment ENV. To adapt the
weak LLMs to such complex settings and curate
extensive (x, a, y) pairs, we propose to iteratively
interact with ENV for self-improving LLMs. For
each iteration i, the LLM πθi will be provided with
the task data set {(x(i), y(i))}, with J input-output
pairs. Without loss of generality, we assume the
samples keep static between iterations.

Our framework ENVISIONS , presented in
Fig. 2, is specifically designed to address two key
challenges: (1) the scarcity of SL data and (2) the
limited proficiency of LLMs in SL. Data scarcity
limitation is addressed by the online exploration
stage (Step ①-⑦). To convert LLMs from weak
to strong in addressing SL, we employ LLM train-
ing using a carefully designed loss function and
filtered data (Step ⑧-⑩). To simplify the expres-
sion, we omit the indicator of iteration i in the
symbols. The overall procedure of ENVISIONS is
also concluded in the pseudocode of Appendix D.

3.2 Online Exploration for SL Scarcity
Given the limited annotated SL data, ENVISIONS
enables the policy LLM to autonomously generate
symbolic solutions by interacting with the environ-
ment ENV. This process is named Online Explo-
ration, which includes three main aspects 1) self-
exploration (Step ①-③); 2) self-refinement (Step
④-⑥); and 3) self-rewarding (Step ⑦).

Self-exploration. Given the NL input x, the
policy model πθ first generates K diverse sym-
bolic outputs (Step ①), formulated as {ak}Kk=1 ∼
πθ(·|x). These intermediate outputs will be exe-
cuted in ENV (Step ②) to obtain the binary feed-
back {bk}Kk=1 based on y (Step ③). This procedure
allows πθ to explore the environment autonomously
and search for diverse symbolic solutions.

Self-refinement. Considering the complexity of
SL, solutions generated by the LLM may con-
tain mistakes in symbolic format, which signif-
icantly impair the efficiency of exploration. To
address this, we utilize the above self-explored so-
lutions {ak}Kk=1 as references to regenerate new
refined symbolic solutions (Step ④), formulated as
{ãk}Kk=1 ∼ πθ(·|x; ak). Similarly, these outputs
will be executed in ENV (Step ⑤) and receive the
corresponding binary reward {b̃k}Kk=1 (Step ⑥).

Self-rewarding. Feedback from ENV merely
gives the binary rewards. However, it remains chal-
lenging to discern preferences among various pos-
itive solutions or obtain valuable feedback from
negative solutions. Motivated by it, we propose a
soft reward score through sequence output proba-
bilities with the following calculation:

r = pθ(a|x) =
1

||a||
∑

t

log pθ(at|x; a<t), (1)

where ||a|| is the length of the symbolic solution
a. Based on this definition, the soft self-rewards
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Figure 2: The neural-symbolic self-training framework ENVISIONS .→ denotes self-exploration process (Step
①-③),→ indicates self-refinement (Step ④-⑥), and→ is self-rewarding (Step ⑦). a is the solution, and b is the
binary feedback from the environment based on the execution of a.

of ak and ãk are derived respectively as rk and r̃k.
Considering that no extra reward model is involved,
we name it self-rewarding1 (Step ⑦).

3.3 Data Selection and Training Strategies
After the online exploration stage, the candidate tra-
jectories are constructed as Tk = (x, y, ak, bk, rk)
and T̃k = (x, y, ãk, b̃k, r̃k), which are sourced
from self-exploration and self-refinement respec-
tively. Next, we select premium trajectories for
training the LLM πθi .

Trajectory filtering and candidate pool updating.
To control the candidate number and maintain high-
quality trajectories. we select the superior one from
Tk and T̃k to update the candidate pool (Step ⑧).
To facilitate automatic selection, we incorporate
binary rewards and self-rewards for assessment.
Following the principle of prioritizing execution
correctness, we derive the filtered trajectory T ∗

k :

T ∗
k = (x, y, a∗k, b

∗
k, r

∗
k)

=





(x, y, ak, bk, rk), if bk = 1 and b̃k = 0,

(x, y, ak, bk, rk), if bk = b̃k and rk > r̃k,

(x, y, ãk, b̃k, r̃k), otherwise.
(2)

Notably, our filter strategy still maintains some
trajectories with incorrect solutions but relatively
higher rewards. These trajectories will serve as
hard negative samples for the subsequent steps.

Supervised fine-tuning on positive solutions.
As we have explored diverse trajectories in ENV,
an intuitive way to bootstrap the performance of
LLMs is fine-tuning with the positive solutions.
Therefore, for each input x, we can retrieve the

1Self-rewarding step in ENVISIONS is different
from (Yuan et al., 2024), though they share the same name.

positive trajectories (i.e., b = 1) from the candidate
pool. Giving priority to more valuable solutions,
we rank the trajectories in descending order based
on self-rewards, resulting in the positive set S+. To
mitigate overfitting, we enforce a maximum of N1

positive-only solutions sampled for each input x:

U1 = {(x, a+m) | m ≤ min(N1, |S+|)
and T+

m ∈ S+} (3)

where m ∈ Z+ means the index in the ranked
set and | · | returns the number of trajectories in
the given set. T+

m = (x, y, a+m, b+mr+m) denotes the
trajectories in S+. Following the principle of MLE,
the optimized loss function can be written as:

L1 = −
∑

(x,a+)∼U1

log pθ(a
+|x) (4)

RL-free loss to learn from mistakes. Under the
neural-symbolic setting, negative solutions may
comprise a substantial portion of exploration tra-
jectories, while also offering valuable insights for
model enhancement. ENVISIONS explores mo-
tivating the policy LLM to learn from mistakes
during the weak-to-strong process. We can obtain
the ranked negative set S− from the candidate pool.
For each input x, at most N2 positive-negative pairs
will be constructed from S+ and S−:

U2 = {(x, a+m, a−m) | T+
m+|U1| ∈ S+ and T−

m ∈ S−

and m ≤ min(N2, |S+| −N1, |S−|)},
(5)

where T−
m = (x, y, a−m, b−mr−m) denotes the trajecto-

ries in S−. Limited by the difficulty and complex-
ity of optimizing models in an RL manner (e.g.,
DPO (Rafailov et al., 2024)), it is challenging for
reinforced-based methods (Chen et al., 2024; Ros-
set et al., 2024) to quickly adapt to the SL scenarios.

12978



Therefore, we design the following contrastive RL-
free loss function:

L2 = −
∑

(x,a+,a−)∼U2

log pθ(a
+|x; a−) (6)

It brings two main advantages: (1) the abil-
ity of self-refinement is acquired, which benefits
the scalability to complex cases; (2) compared to
reinforced losses, superior training efficiency is
achieved. Finally, the overall loss function of each
iteration is simply designed as L = L1 + L2.

4 Experiments

4.1 Datasets

We evaluate the proposed framework on three dis-
tinct domains, each with its own environment:
web agents (Chrome browser), math reasoning
(Python compiler), and logical reasoning (Pyke en-
gine). For agentic tasks, we select the widely-used
web navigation benchmark MiniWob++ (Liu et al.,
2018). For the math reasoning domain, we include:
GSM8K (Cobbe et al., 2021), MATH (Hendrycks
et al., 2021), GSM-Hard (Gao et al., 2023),
SVAMP (Patel et al., 2021), and AsDiv (Miao
et al., 2020). For logical reasoning tasks, we in-
clude ProofWriter (Tafjord et al., 2021) and Rule-
Taker (Clark et al., 2021). To evaluate the general-
ization capability of our method, we reserve some
datasets for out-of-distribution evaluation as shown
in Table 1. Refer to Appendix A.2 for details.

4.2 Baselines and Training Details

Following the categorization of Figure 1, we con-
sider the respective three lines of baselines. All
baselines are reproduced under the same codebase
for a fair comparison.
Distill-then-Finetune. GPT-4 and Claude-2 are
selected as strong teacher LLMs in this approach.
By prompting teacher LLMs, we obtain the sym-
bolic trajectories with correct answers to fine-tune
LLMs. Due to the high time and financial cost of
calling API, each input will be prompted only once.
Reinforced Self-Training. We implement
two RL-based self-training baselines: Self-
Rewarding (Yuan et al., 2024) and iterative
SFT+DPO. For the former, we follow the official
implementation to first warm up the weak LLM
using human annotation from OpenAssistant (Köpf
et al., 2024). The latter is a variation of ENVI-
SIONS that mainly separates the training into

two stages, with positive solutions for SFT and
positive-negative pairs for DPO.

Env-guided Self-Training. Since there is no
existing baseline for this approach, we consider
extending the NL-centric self-training method
STaR (Zelikman et al., 2022) to support neural-
symbolic scenarios. It is worth noting that STaR
only uses positive samples for behavior cloning.
For the methods under this paradigm (including
ENVISIONS ) we optimize LLM from scratch in
each iteration with the updated training samples.

Except for Distill-then-Finetune baselines, all
other methods utilize few-shot prompting to ac-
quire training samples as a cold start. The few-shot
numbers for the web agent, math, and logic do-
mains are set to 1, 3, and 1 respectively. We also
include few-shot results on weak LLM for compar-
ison. For a fair evaluation, all baselines are opti-
mized to generate symbolic outputs (e.g., Python
code) rather than natural language outputs, follow-
ing PoT style (Chen et al., 2023). Please refer to
Appendix A for other details.

We use LLaMA2-Chat 7B/13B models for the
evaluation. At each generation step (i.e., Step ①,④),
the candidate size K is set to 5. The total iteration
number for web agent, math, and logic tasks is set
to 5, 10, and 8 respectively, unless otherwise stated.
For each input, N1 and N2 are fixed to 10 and 2
respectively. All the self-training experiments are
implemented on 8*A100 of 80GB VRAM. Please
refer to Appendix A.1 for other details.

4.3 Main Results

Table 2 presents the evaluation results. For sup-
plementary experiments on other backbone LLMs,
please refer to Section 4.5 and Appendix C.3.

ENVISIONS presents consistent superiority
over strong baselines. Evolving from LLaMA2-
Chat, ENVISIONS notably boosts average perfor-
mance by 30.00% and 24.95% for the 7B and 13B
variants, respectively. Compared with Distill-then-
Finetune methods, 5.66%-7.13% gains are obtained.
Apart from its superior performance, ENVISIONS
presents scalability without the associated costs of
using strong LLMs. It exhibits clear advantages
over Reinforced Self-Training and other Env-guided
Self-Training methods, delivering average gains
of 2.78%-14.47%. The competitive performances,
with the training efficiency, makes ENVISIONS
stand out among these strong baselines.
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Domains Held-in Tasks Held-out Tasks #Samples Static ? Env.

Web Agent MiniWob++ - 2,200 No Chrome browser
Math Reasoning GSM8K, MATH GSM-H, SVAMP, AsDiv 13,492 Yes Python compiler
Logic Reasoning ProofWriter RuleTaker 3,600 Yes Pyke engine

Table 1: Details and statistics of evaluated domains. #Samples denotes the number of input samples per iteration.
Static? indicates whether the input data remains the same across all iterations.

Models Agent Math Reasoning Logical Reasoning Avg.MiniWob++ GSM8K MATH GSM-H SVAMP ASDiv ProofWriter RuleTaker

Is Held-out ? ✓ ✓ ✓ ✓
LLaMA2-Chat (7B)

LLaMA2-Chat (few-shot) 51.14 12.21 1.32 10.69 22.00 25.86 34.83 47.44 25.69

Distill-then-Finetune
GPT-4 + LLaMA2-Chat 81.14 53.07 18.84 47.84 66.80 68.75 34.33 48.88 52.46
Claude-2 + LLaMA2-Chat 82.80 52.69 18.17 44.88 70.50 69.85 36.17 49.17 53.03

Reinforced Self-Training
Self-Rewarding 69.39 40.03 10.70 31.69 58.20 61.55 32.17 50.04 44.22
Iterative SFT+DPO 77.05 54.81 14.75 47.08 70.10 66.22 49.00 58.82 54.73

Env-guided Self-Training
STaR + Env. 83.71 58.23 15.97 46.63 67.50 68.46 50.17 58.60 55.91
ENVISIONS 85.38 58.98 19.00 48.52 72.40 69.80 52.83 62.63 58.69

LLaMA2-Chat (13B)

LLaMA2-Chat (few-shot) 60.00 34.87 6.07 28.96 45.00 46.61 35.83 51.50 38.61

Distill-then-Finetune
GPT-4 + LLaMA2-Chat 80.15 62.85 23.64 53.98 73.00 73.52 34.17 50.61 56.49
Claude-2 + LLaMA2-Chat 84.77 62.24 23.47 52.08 76.30 74.05 36.00 48.45 57.17

Reinforced Self-Training
Self-Rewarding 74.55 50.80 13.97 41.24 74.10 71.37 37.33 56.66 52.50
Iterative SFT+DPO 82.73 63.84 22.32 50.57 77.30 70.94 51.00 59.47 59.77

Env-guided Self-Training
STaR + Env. 85.15 63.61 20.57 53.37 74.70 74.76 52.33 60.33 60.60
ENVISIONS 87.12 68.31 26.04 57.54 78.30 75.52 54.83 60.84 63.56

Table 2: Main Results on Agent, Math Reasoning and Logical Reasoning domain. Notably, we report the average
performance across extensive tasks in MiniWob++ benchmark (refer to Appendix C.8 for details). Is Held-out? row
distinguishes the held-in and held-out tasks. Avg. column reports the averaged performances on all tasks.

Env-guided Self-Training exhibits strong scala-
bility to neural-symbolic scenarios. Compared
to the other two approaches, Env-guided Self-
Training is more applicable to complex neural-
symbolic scenarios, especially in agentic tasks
where NL-centric methods inherently exhibit lim-
itations. Besides the great performances of EN-
VISIONS , previous methods STaR can also bene-
fit from the supervision signals acquired in ENV,
which helps the evolution progress.

4.4 Evolution Progress

In Figure 3, we present the iterative evolu-
tion curves of the self-training frameworks with
LLaMA2-Chat (13B) as the LLM, which clearly
shows the procedure of weak-to-strong transforma-
tion. We leave the discussion on the evolution of
both performance and explored sample numbers
with the 7B version in Appendix C.1.

ENVISIONS combines high evolutionary effi-
ciency and sustainability. In the initial iterations,
ENVISIONS demonstrates swift adaptability to
different scenarios. This indicates that exceptional
performance can be achieved with minimal time for
data collection in ENVISIONS . Additionally, EN-
VISIONS stands out as a more sustainable option
when compared to other baselines. For instance,
in math reasoning tasks of Fig. 3(b), all baseline
methods achieve saturated performance levels by
6th iteration. However, our framework continues
to exhibit evolutionary progress.

Reinforced baselines are largely flawed during
iterations. The incorporation of reinforced loss
(e.g., DPO) brings difficulty in optimization and
greatly restricts the evolutionary scales of the LLM
to adapt to the neural-symbolic scenarios. Self-
Rewarding exhibits largely reduced benefits during
iterations, in contrast to its impressive performance
in NL-centric tasks. For Iterative SFT+DPO, the
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SFT stage boosts the ability in effective exploration.
However, the subsequent DPO stage imposes a
slight improvement while significantly reduce the
training efficiency.

4.5 Generalization to Various Backbones

To demonstrate the generalizability, we apply EN-
VISIONS to enhance two additional base LLMs
on mathematical reasoning tasks: (1) DeepSeek-
Chat (DeepSeek-AI, 2024) model of 7B size, which
is a foundational LLM and (2) Llemma (Azerbayev
et al., 2023), a competent domain-specific LLM
optimized for math reasoning. Figure 4 shows the
comparisons with Few-shot Prompting and Dis-
till GPT4-then-Finetune. It is observed that our
framework still works for strong foundation LLMs,
with 9.20% and 14.78% performance boosts for
DeepSeek-Chat and Llemma respectively. This
demonstrates that our framework can not only con-
vert LLMs from weak to strong, but also elevate
LLMs from strong to stronger.

5 Analysis

This section will make an in-depth analysis of the
underlying reason behind ENVISIONS ’s success.

5.1 What is the Impact of Key Components?

Some key components are ablated independently
to verify their effectiveness in Table 3. w/o self-
refine ablates both the self-refinement process (i.e.,
Step ④-⑥) and L2. w/o self-rewards replaces the
trajectory ranking on the self-rewarding strategy
with random sampling. w/o long-term memory
only utilizes the generated trajectories from the
current iteration for training. w/o L2 loss ablates
the optimization with positive-negative pairs.

Of these components, self-refine-oriented opti-
mizations (i.e., self-refinement and L2 loss) play
key roles in boosting the performances. As one of
the key contributions, the design of L2 loss leads
to 3.10%-4.57% improvements in ENVISIONS . It
makes full use of negative trajectories while main-
taining training efficiency in an RL-free style. Es-
pecially in agent tasks, ENVISIONS benefits a lot
from L2 loss, with 3.49%-5.53% gains.

5.2 What is Behind the Superiority?

We provide in-depth evidence and analysis on the
superiority of ENVISIONS from three distinctive
views: (1) exploratory ability and stability; (2) log
probability margin between positive and negative
solutions; and (3) diversity of synthetic samples.
The analysis is on LLaMA2-Chat 7B and we leave
the discussion of 13B in Appendix C.6.

Balanced exploratory ability and stability are
key to success in weak-to-strong. To effectively
navigate the environment and acquire new skills
autonomously, two factors are crucial: 1) promptly
resolving extensive samples to collect correct tra-
jectories, and 2) minimizing the potential loss of
knowledge from previously solved samples. We
employ two metrics exploratory ability and stabil-
ity to evaluate the LLM (both of them are the higher,
the better). Refer to Appendix B for definition de-
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Models Agent Math Reasoning Logical Reasoning Avg.MiniWob++ GSM8K MATH GSM-H SVAMP ASDiv ProofWriter RuleTaker

LLaMA-2-Chat (7B)

ENVISIONS 85.38 58.98 19.00 48.52 72.40 69.80 52.83 62.63 58.69
w/o self-refine 84.92 56.86 18.20 48.14 68.70 67.89 42.00 58.60 55.66
w/o self-reward 84.47 58.61 18.75 47.92 71.10 68.46 47.33 59.61 57.03
w/o candidate pool 83.86 57.77 17.55 47.16 70.90 68.03 49.17 59.18 56.70
w/o L2 loss 81.89 55.88 18.90 47.16 67.60 67.75 47.67 57.88 55.59

LLaMA-2-Chat (13B)

ENVISIONS 87.12 68.31 26.04 57.54 78.30 75.52 54.83 60.84 63.56
w/o self-refine 84.24 65.96 24.95 55.34 77.70 73.90 51.00 57.59 61.34
w/o self-reward 85.45 67.02 25.59 55.57 77.80 74.05 51.50 60.69 62.21
w/o candidate pool 85.61 66.89 24.19 53.07 77.20 72.90 51.33 58.96 61.27
w/o L2 loss 81.59 63.08 20.00 51.18 74.30 71.23 50.33 60.19 58.99

Table 3: Ablation studies on key components.

Figure 5: In-depth analysis from three perspectives. Plots in fig.(b) correspond to the methods represented by the
same colors in fig.(a).

tails. In Figure 5(a), ENVISIONS demonstrates
remarkable performance in achieving a balance
between exploratory ability and stability. By lever-
aging the candidate pool and self-rewards, ENVI-
SIONS effectively retains high-quality positive so-
lutions during training, significantly mitigating the
issue of forgetting previous trajectories. Addition-
ally, the RL-free loss L2 enables flexible updates
of the LLM, enhancing its exploration capabilities.

Clearly distinguishing positive and negative so-
lutions can help the LLM optimization. During
the optimization process, it is inevitable for the log
probability of both positive and negative trajecto-
ries to increase simultaneously (Hong et al., 2024).
However, clearly keeping the probability margins
(∆logp) between positive-negative pairs is crucial
to facilitate the optimization. Fig. 5(b) shows the
analysis of ∆logp during iterations. It is observed
ENVISIONS keeps the margin within a reasonable
range, while reinforced methods exhibit a rapid
decrease in ∆logp. It indicates the unsuitablity
of DPO to the exploration setting and the impor-
tance of feedback from ENV. Notably, STaR+Env.

fails to keep the stable margins in the math domain,
since it merely utilizes positive data for training,
which fails to distinguish negative ones and leads
to overfiting on the limited number of solutions.
Such finding corresponds to the lack of exploratory
ability in Fig. 5(a).

Diverse trajectories are what you need for self-
training. In Fig. 5(c), we compare the number
of correct and unique trajectories by the last it-
eration. It demonstrates the huge strengths of
ENVISIONS in synthesizing diverse trajectories.
It largely surpasses Reinforced Self-Training ap-
proaches, which is one of the underlying reasons
for our superiority. In fact, the LLM updates in RL
methods are restricted by KL constraints, which
ultimately impact the diversity of the generated
trajectories. Moreover, Distill GPT-4 and Distill
Claude2 lead to 10,831 and 8,561 diverse trajec-
tories with one iteration. Since repeatedly calling
strong LLMs involves extremely high cost and cum-
bersome prompt optimizations, they are far from
sustainable compared with ENVISIONS .
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6 Conclusion

This paper focuses on converting LLMs from
weak to strong in increasingly promising neural-
symbolic scenarios, without human-annotated sym-
bolic training data. In view of two key challenges,
i.e., 1) the scarcity of symbolic training data, and 2)
the inherent weakness of LLMs in addressing SL,
we conclude the env-guided self-training approach.
Built on it, we propose a novel neural-symbolic
self-training framework ENVISIONS . Extensive
experiments across three domains verify the re-
markable performances. In-depth analysis on the
superiority of ENVISIONS from three distinctive
views provide novel insights for future researches.
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A Implementation Details

In this section, we provide some details of the im-
plementation.

A.1 Training Details
The SFT training in both our framework and base-
lines is conducted on 8*A100 with a maximum
length of 2,048. They are optimized and acceler-
ated with Deepspeed Zero3 and FlashAttention2.
The AdamW optimizer (Loshchilov and Hutter,
2017) is leveraged with a Linear learning rate of
2e-5. The SFT training epoch number of each iter-
ation is set to 2, 1, 2 for agent, math reasoning, and
logic reasoning tasks respectively.

For the DPO training stage in baseline methods,
it is also conducted on 8*A100 with a maximum
length of 2,048. The Linear learning rate is 5e-7
with a warm-up ratio of 0.1. The epoch number for
each domain is the same as the SFT stage.

A.2 Test Tasks and Benchmark
The experiments in the main paper primarily cover
three domains: web agent, math reasoning, and
logic reasoning. We have concluded some key de-
tails in Table 1. In Table 4, we attach extra infor-
mation on the test tasks and benchmark.

Unless otherwise stated, all these test tasks are
evaluated under the zero-shot setting. For Mini-
Wob++ benchmark, we select 44 tasks for the
test (Cheng et al., 2024), each with 30 randomly
generated samples. All the above settings are con-
sistent among all baseline methods.

B Definition of Exploratory Ability and
Stability

(1) Whether the policy LLM can rapidly explore
large amounts of correct samples, and (2) whether
it can mitigate the issue of forgetting previously-
solved samples are two key factors to evaluate
LLMs in interacting with the environment. We de-
fine Exploratory Ability (EA) and Stability (STB)
respectively as the metrics. The calculation of the
metrics is defined as follows:

Suppose that we have the input set M . In the
ith iteration, the solved sample (with correct tra-
jectories) constitute of set Mi.

⋃i−1
j=1Mj contains

all the previously-solved samples from the itera-
tion 1 to i− 1. And Mi ∪

⋃i−1
j=1Mj comprises the

overlapped successful samples between the current
iteration and preceding iterations. Mi \

⋃i−1
j=1Mj

denotes the sample set that are newly solved in the

current iteration i. Based on the definition, we ac-
cumulate to obtain the overall EA and STB of the
entire process:

EA =

T∑

i=2

|Mi \
⋃i−1

j=1Mj |
|⋃i−1

j=1Mj |
,

STB =
T∑

i=2

|Mi ∩
⋃i−1

j=1Mj |
|⋃i−1

j=1Mj |

(7)

where | · | is the number of samples in the given
set. T is the total number of iterations.

Take the process of 2 iterations as an example,
suppose the iteration 1 explores 1,000 correct sam-
ples. Iteration 2 obtains 1200 correct samples, in-
cluding 800 previously-solved samples and 400
newly-solved samples. Then, EA = 400/1000 and
STB = 800/1000.

C Supplementary Results

C.1 Evolution Progress

Apart from the performance evolution curves with
the LLaMA2-Chat 13B model presented in Fig-
ure 3, we expand the discussion on the 7B version.
In Figure 6, we visualize the evolution progress
of self-training methods on both the model perfor-
mance and the number of explored samples. The
explored sample denotes that one input x is solved
by at least one generated symbolic solution ak (i.e.,
bk = 1). We count the number of explored samples
at each iteration to make the figure.

From the results, the performances of the frame-
works are positively correlated with the ability to
continuously explore correct trajectories. ENVI-
SIONS presents great superiority, especially in the
logic reasoning tasks. Compared with our pro-
posed Env-guided Self-Training approach, Rein-
forced Self-Training approach appears to be weaker
at exploring new samples. This finding is consis-
tent with Figure 5 in the main paper.

C.2 Scaling of K

The hyper-parameter K controls the number of gen-
erated candidate symbolic solutions at each genera-
tion step. In the main results, we only implement
K = 5 for illustration.

In Table 5, we present performances under var-
ious choices of K, including 2, 5, 10, and 15.
Considering the training cost, we only include
LLaMA2-Chat (7B) as the base LLM. From the
results, we conclude the following takeaways:
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Domains Task name Is Held-out? #Test Samples Beam Size Max. Length Sources

Web Agent MiniWob++ 30 (×44 tasks) 1 2,048 Liu et al. (2018)

Math Reasoning

GSM8K 1,319 2 2,048 Cobbe et al. (2021)
MATH 4,001 2 2,048 Hendrycks et al. (2021)

GSM-Hard ✓ 1,319 2 2,048 Gao et al. (2023)
SVAMP ✓ 1,000 2 2,048 Patel et al. (2021)
AsDiv ✓ 2,096 2 2,048 Miao et al. (2020)

Logic Reasoning ProofWriter 600 1 4,096 Tafjord et al. (2021)
RuleTaker ✓ 1,389 1 4,096 Clark et al. (2021)

Table 4: Details of test tasks and benchmarks.

Models Agent Math Reasoning Logical Reasoning Avg.MiniWob++ GSM8K MATH GSM-H SVAMP ASDiv ProofWriter RuleTaker

K=2 78.56 53.60 17.37 44.96 67.20 66.84 35.17 49.82 51.69
K=5 85.38 58.98 19.00 48.52 72.40 69.80 52.83 62.63 58.69
K=10 79.24 58.30 21.89 48.29 67.90 69.75 53.50 61.99 57.61
K=15 79.55 57.47 23.72 46.63 69.80 70.28 54.83 59.54 57.73

Table 5: Scaling of K with LLaMA2-Chat (7B) as the base LLM. In the main results, we implement K = 5 for
illustration.

Moderate value of K leads to the optimal per-
formances. When K = 5, ENVISIONS demon-
strates superior performances, especially on agen-
tic tasks (i.e., MiniWob++ benchmark). However,
when reducing the value of K (i.e., K = 2), the
overall performances of ENVISIONS drop a lot. It
indicates that keeping a moderate number of candi-
date solutions in each generation step benefits the
self-training process.

Scaling of K does not bring significant improve-
ments. Scaling K from 5 to 10 and 15 does
bring improvements on some challenging tasks
(e.g., MATH). However, this observation is not con-
sistent across various tasks. Generally, the average
performances remain stable with K increasing.

C.3 Generalization to Other Backbones

In Section 4.5 of the main paper, we have presented
the generalization of ENVISIONS to various back-
bones. The promising results in mathematical do-
mains demonstrate that ENVISIONS is compatible
with a wide range of LLMs (from weak LLMs to
stronger ones).

To further support our claims, we supplement
the experiments on another popular LLM back-
bone Mistral-Instruct-v0.2 (7B). Limited by self-
training time cost, we only implement it in the
agentic domain. We include the strong baselines
of STaR+Env. and iterative SFT+DPO for compar-
isons. Table 6 presents the experimental results.

It is observed that the superiority of ENVISIONS

Methods MiniWob++ ∆

Few-shot Prompting 51.44 +26.51
iterative SFT+DPO 73.18 +4.77
STaR+Env. 65.00 +12.95

ENVISIONS 77.95 -

Table 6: Averaged performances on MiniWob++ bench-
mark. All these methods are based on Mistral-Instruct-
v0.2 (7B) model.

with the Mistral backbone is also obvious. The gen-
eralization capability is further verified. Compared
with the previous SOTA method STaR+Env., ENVI-
SIONS achieves 12.95% superiority over it. And it
also outperforms reinforced self-training baseline
iterative SFT+DPO baseline by 4.77%.

C.4 Results on latest powerful LLM

To verify the effectiveness and generalization ca-
pability of ENVISIONS, we supplement the im-
plementation of ENVISIONS on the latest open-
source LLM - LLaMA3.1 in Table 7.

From the results, ENVISIONS still works for
the powerful LLaMA3.1-8B model in the mathe-
matical reasoning tasks. It improves performances
by large margins and presents superiority over
strong baselines.

It is observed that some previous SOTA meth-
ods fail to generalize well to LLaMA3.1. It
is worth noting that current trending LLMs (e.g.,
LLaMA3.1) may be widely contaminated by the
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Figure 6: Evolution curves on LLaMA2-Chat 7B version across agent, math, and logic reasoning domains. (a) is the
performance evolution progress. (b) denotes the evolution of explored sample numbers.

GSM8K MATH GSM-H Avg.

Is Held-out ? ✓ -

LLaMA3.1-Chat (8B)

Few-shot 60.27 39.57 50.95 50.26

Distill GPT-4 63.08 38.47 53.07 51.54
ETO 66.64 39.29 59.06 55.00
STaR + Env. 69.60 36.69 66.11 57.47
ENVISIONS 83.32 42.13 69.14 64.86

Table 7: Performances on LLaMA3.1.

training corpus (e.g., GSM8K) or have been ex-
posed to similar training corpus. That is why we
chose to experiment on the Llemma or Mistral base
model to evaluate its generalization capability in
the original manuscript.

C.5 Inference-Time Optimization

One of the unique advantages of RL-free loss is the
inference-time self-refinement, which can be ob-
tained with traditional contrastive learning works.
Table 8 presents the results.

The experimental results show that ENVISIONS
can benefit a lot from the optimization of self-
refinement (RL-free loss), while other baselines

GSM8K MATH GSM-H SVAMP AsDiv

iterative SFT+DPO 54.81 14.75 47.08 70.10 66.22
+Self-refine 55.11 14.82 47.38 71.10 66.36

STaR+Env. 58.23 18.82 48.45 67.50 68.46
+Self-refine 58.30 18.87 48.52 67.60 68.51

ENVISIONS 58.98 19.00 48.52 72.40 69.80
+Self-refine 60.65 19.70 49.81 73.60 70.61

Table 8: Inference-time optimization. We apply self-
refinement strategy to the self-training methods and
report the performances on five mathematical datasets.

can hardly conduct effective self-refinement.

C.6 Detailed Analysis From Three Views

In the section 5.2 of the main paper, we make a
analysis on What is behind the superiority of EN-
VISIONS. We present the analysis with LLaMA2-
Chat (7B) model as backbone from three distinc-
tive views: (1) exploratory ability and stability;
(2) log probability margin between positive and
negative solutions; and (3) diversity of synthetic
samples. Here, we supplement the results on the
LLaMA2-Chat (13B) model. The main findings
are consistent with the 7B model:
Balanced exploratory ability and stability are
key to success in weak-to-strong. We employ
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Figure 7: In-depth analysis from three perspectives. The first row (i.e., (a),(b),(c)) and the second row (i.e., (d),(e),(f))
represent the results on LLaMA2-Chat (7B) and LLaMA2-Chat (13B) respectively. Plots in fig.(b),(e) correspond to
the methods represented by the same colors in fig.(a),(d).

two metrics exploratory ability and stability to eval-
uate the LLM (both of them are the higher, the
better). Appendix B gives definition details. In
both Fig. 7(a) and (d), ENVISIONS demonstrates
remarkable performance in achieving a balance
between exploratory ability and stability. By lever-
aging the candidate pool and self-rewards, ENVI-
SIONS effectively retains high-quality positive so-
lutions during training, significantly mitigating the
issue of forgetting previous trajectories. Notably,
reinforced self-training methods consistently ex-
hibit unstable performance.

Clearly distinguishing positive and negative so-
lutions can help the LLM optimization. Clearly
keeping the probability margins (∆logp) between
positive-negative pairs is crucial to facilitate the
optimization. Fig. 7 (b) and (e) shows the analysis
of ∆logp during iterations. It is observed ENVI-
SIONS keeps the margin within a reasonable range,
while reinforced methods exhibit a rapid decrease
in ∆logp. It indicates the unsuitablity of DPO to
the exploration setting and the importance of feed-
back from ENV. Such finding corresponds to the

lack of exploratory ability in Fig. 7(a) and (d).

Diverse trajectories are what you need for self-
training. In Fig. 7 (c) and (f), we compare the
number of correct and unique trajectories by the
last iteration. It demonstrates the huge strengths
of ENVISIONS in synthesizing diverse trajecto-
ries. It largely surpasses Reinforced Self-Training
approaches. Notably, LLM updates in RL methods
are restricted by KL constraints, which ultimately
impact the diversity of the generated trajectories.
Moreover, Distill GPT-4 and Distill Claude2 lead
to 10,831 and 8,561 diverse trajectories. Since re-
peatedly calling strong LLMs involves extremely
high costs, they are far from sustainable compared
with ENVISIONS .

C.7 How does the Training Recipe Matter in
Iterative Self-Exploration?

In each iteration of ENVISIONS , we optimize the
policy LLM from scratch (e.g., LLaMA2-Chat)
with the updated training trajectories. Such a train-
ing recipe is expected to bring stability to the train-
ing process, compared with the strategy of contin-
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Tasks Cont. ENVISIONS ∆

LLaMA-2-Chat (7B)

Agent 78.18 85.38 +7.20
Math Reasoning 51.20 53.74 +2.54
Logic Reasoning 46.20 57.73 +11.53

Average 53.32 58.69 +5.37

Table 9: Comparisons between training strategies. Cont.
column denotes the performances of ENVISIONS un-
der the continual training setting.

uous training based on previous checkpoints. Ta-
ble. 9 presents the performance comparisons. Obvi-
ous superiority of ENVISIONS is observed across
these three domains, with an average improvement
of 5.37%. Training from previous checkpoints
does affect the exploration. For the RL-based self-
training method, the training of the policy LLM is
constrained within the range of the reference model
by the KL term. In order to enable continuous evo-
lution, the policy LLM is required to be updated
from the checkpoint of the previous iteration. It is
also one of the main causes of their sub-optimal
performances.

C.8 MiniWob++ Results Per Tasks

Table 11 shows the performance of ENVISIONS
on each of the 44 MiniWob++ tasks.

C.9 Comparison with more SOTA baselines

To better verify the effectiveness of ENVI-
SIONS, we supplement one more SOTA baseline
ETO (Song et al., 2024)for comparison. The re-
sults show consistent superiority in math reasoning
tasks.

Tasks GSM8K GSM-H MATH SVAMP AsDiv Avg.

LLaMA-2-Chat (7B)

ETO 50.04 15.75 45.49 68.10 65.36 48.95
ENVISIONS 58.98 19.00 48.52 72.40 69.80 53.74

Table 10: Comparisons with another SOTA baseline
ETO on math reasoning tasks.

D Pseudocode of ENVISIONS

The self-training framework ENVISIONS can be
expressed in Algorithm 1.

E Prompt of Self-Refinement

We provide the prompt for the self-refinement. Be-
low is an example of the math reasoning task.

[INPUT]
You are provided with a Python code to solve
the given problem. You can either repair and
refine it, or simply return the original solution.
The question is:
<question>
The current Python code is:
<negative solution>
The solution code is:
[OUTPUT]
<positive solution>
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1-shot Distill GPT4 Distill Claude2 STAR+Env. Self-Rewarding iter. SFT+DPO Ours
LLaMA-2-Chat (7B)

choose-date 0.00 0.00 0.00 0.00 0.00 0.00 0.00
choose-list 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-button 0.00 100.00 100.00 100.00 100.00 96.67 100.00
click-button-sequence 100.00 100.00 100.00 100.00 100.00 100.00 96.67
click-checkboxes 20.00 100.00 96.67 100.00 100.00 100.00 100.00
click-checkboxes-large 20.00 86.67 96.67 86.67 66.67 100.00 100.00
click-checkboxes-soft 0.00 6.67 30.00 50.00 0.00 63.33 76.67
click-checkboxes-transfer 56.67 100.00 100.00 100.00 100.00 100.00 100.00
click-collapsible 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-color 53.33 100.00 100.00 100.00 100.00 100.00 100.00
click-dialog 100.00 100.00 100.00 100.00 0.00 100.00 100.00
click-dialog-2 0.00 26.67 73.33 100.00 73.33 100.00 100.00
click-link 73.33 93.33 93.33 93.33 93.33 93.33 93.33
click-option 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-scroll-list 56.67 100.00 100.00 100.00 96.67 100.00 100.00
click-shades 93.33 100.00 100.00 100.00 100.00 100.00 100.00
click-shape 0.00 70.00 53.33 63.33 16.67 50.00 70.00
click-tab 100.00 100.00 100.00 96.67 26.67 56.67 100.00
click-test 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-test-2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-widget 96.67 100.00 100.00 100.00 100.00 100.00 100.00
copy-paste 100.00 100.00 100.00 100.00 100.00 100.00 100.00
copy-paste-2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-date 3.33 100.00 100.00 100.00 100.00 100.00 100.00
enter-password 96.67 100.00 100.00 100.00 100.00 100.00 100.00
enter-text 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-text-dynamic 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-time 0.00 30.00 0.00 0.00 0.00 0.00 43.33
focus-text 100.00 100.00 100.00 100.00 100.00 100.00 100.00
focus-text-2 33.33 100.00 100.00 100.00 100.00 100.00 100.00
guess-number 6.67 0.00 6.67 10.00 6.67 10.00 10.00
identify-shape 0.00 56.67 80.00 100.00 56.67 50.00 100.00
multi-layouts 3.33 96.67 86.67 100.00 76.67 96.67 100.00
multi-orderings 0.00 93.33 100.00 100.00 80.00 100.00 100.00
navigate-tree 60.00 60.00 60.00 60.00 60.00 60.00 60.00
read-table 70.00 100.00 100.00 100.00 100.00 100.00 100.00
search-engine 3.33 100.00 100.00 100.00 43.33 0.00 100.00
simple-algebra 6.67 50.00 63.33 80.00 6.67 3.33 73.33
simple-arithmetic 0.00 86.67 90.00 100.00 40.00 73.33 96.67
social-media-all 30.00 100.00 100.00 30.00 0.00 30.00 30.00
text-transform 66.67 100.00 100.00 100.00 100.00 100.00 100.00
unicode-test 100.00 100.00 100.00 100.00 100.00 100.00 100.00
use-slider 0.00 6.67 6.67 6.67 6.67 6.67 6.67
use-spinner 0.00 6.67 6.67 6.67 6.67 0.00 0.00

Average 51.14 81.14 82.80 83.71 69.47 77.05 85.38

LLaMA-2-Chat (13B)

choose-date 0.00 0.00 0.00 0.00 0.00 0.00 0.00
choose-list 96.67 100.00 100.00 100.00 100.00 100.00 100.00
click-button 96.67 100.00 100.00 100.00 100.00 96.67 100.00
click-button-sequence 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-checkboxes 30.00 100.00 100.00 100.00 100.00 100.00 100.00
click-checkboxes-large 26.67 86.67 96.67 90.00 43.33 90.00 93.33
click-checkboxes-soft 0.00 3.33 46.67 90.00 20.00 60.00 90.00
click-checkboxes-transfer 10.00 100.00 96.67 100.00 100.00 100.00 100.00
click-collapsible 100.00 100.00 96.67 100.00 100.00 100.00 100.00
click-color 56.67 100.00 100.00 100.00 100.00 100.00 100.00
click-dialog 100.00 100.00 100.00 100.00 0.00 100.00 100.00
click-dialog-2 0.00 26.67 73.33 100.00 73.33 100.00 100.00
click-link 70.00 93.33 93.33 93.33 93.33 93.33 93.33
click-option 0.00 100.00 100.00 100.00 100.00 100.00 100.00
click-scroll-list 63.33 100.00 100.00 100.00 100.00 100.00 100.00
click-shades 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-shape 10.00 76.67 56.67 86.67 10.00 66.67 73.33
click-tab 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-test 100.00 100.00 96.67 100.00 100.00 100.00 100.00
click-test-2 100.00 100.00 100.00 100.00 100.00 100.00 100.00
click-widget 96.67 100.00 100.00 100.00 100.00 100.00 100.00
copy-paste 100.00 100.00 100.00 100.00 100.00 100.00 100.00
copy-paste-2 100.00 100.00 100.00 100.00 100.00 100.00 96.67
enter-date 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-password 100.00 96.67 100.00 100.00 100.00 100.00 100.00
enter-text 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-text-dynamic 100.00 100.00 100.00 100.00 100.00 100.00 100.00
enter-time 0.00 0.00 23.33 0.00 0.00 0.00 93.33
focus-text 0.00 100.00 100.00 100.00 96.67 100.00 100.00
focus-text-2 63.33 100.00 100.00 100.00 100.00 100.00 100.00
guess-number 6.67 0.00 6.67 3.33 6.67 10.00 6.67
identify-shape 0.00 10.00 90.00 100.00 20.00 90.00 100.00
multi-layouts 66.67 100.00 100.00 100.00 86.67 96.67 100.00
multi-orderings 56.67 100.00 100.00 100.00 100.00 100.00 100.00
navigate-tree 60.00 60.00 60.00 60.00 60.00 60.00 56.67
read-table 76.67 100.00 100.00 100.00 100.00 100.00 100.00
search-engine 90.00 100.00 100.00 100.00 100.00 100.00 100.00
simple-algebra 23.33 76.67 80.00 80.00 43.33 36.67 83.33
simple-arithmetic 56.67 100.00 100.00 100.00 100.00 96.67 100.00
social-media-all 93.33 100.00 100.00 30.00 0.00 30.00 30.00
text-transform 96.67 83.33 100.00 100.00 100.00 100.00 100.00
unicode-test 93.33 100.00 100.00 100.00 100.00 100.00 100.00
use-slider 0.00 6.67 6.67 6.67 6.67 6.67 10.00
use-spinner 0.00 6.67 6.67 6.67 6.67 6.67 6.67

Average 60.00 80.15 84.77 85.15 74.24 82.73 87.12

Table 11: Detailed performances on 44 MiniWob++ tasks.
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Algorithm 1: A Neural-Symbolic Self-Training Framework ENVISIONS
Input: Data pair {(x, y)}, environment ENV, candidate trajectory pool POOL, weak LLM πθ0 ,

number of generated samples K, number of iteration T .
Output: Strong LLM π∗

θ .
// Initialize
πθ ← πθ0
// Start the Loop
for i = 1 to T do

for each x in the input do
// 1-Online Exploration
Generate K symbolic solutions with self-rewards: {ak}Kk=1, {rk}Kk=1 ∼ πθ(·|x).
Get binary rewards by executing in ENV: {bk}Kk=1 ←− I[ENV(ak) == y].
Generate self-refined solutions with self-rewards: {ãk}Kk=1, {r̃k}Kk=1 ∼ πθ(·|x; ak).
Get binary rewards by executing in ENV: {b̃k}Kk=1 ←− I[ENV(ãk) == y].
Let Tk = (x, y, ak, bk, rk), T̃k = (x, y, ãk, b̃k, r̃k) denote the collected trajectories.

// 2-Traj. Filtering and Candidate Pool Updating

Filter the superior trajectory T ∗
k from Tk and T̃k with binary rewards and self-rewards.

Update the candidate pool with T ∗
k .

end
// 3-Training
Rank and retrieve positive-only training set U1 and positive-negative pairs U2 from POOL.
Optimize πθ0 to π∗

θ with L = − ∑
(x,a+)∼U1

log pθ0(a
+|x)− ∑

(x,a+,a−)∼U2

log pθ0(a
+|x; a−).

Update the policy LLM for the next iteration: πθ ← π∗
θ

end
// Output the enhanced LLM
Return π∗

θ ;
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