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Abstract

Large language models (LLMs) with one or
more fine-tuning phases have become neces-
sary to unlock various capabilities, enabling
LLMs to follow natural language instructions
and align with human preferences. However, it
carries the risk of catastrophic forgetting during
sequential training, the parametric knowledge
or the ability learned in previous stages may be
overwhelmed by incoming training data. This
paper finds that LLMs can restore some orig-
inal knowledge by regularly resetting partial
parameters. Inspired by this, we introduce Half
Fine-Tuning (HFT) for LLMs, as a substitute
for full fine-tuning (FFT), to mitigate the forget-
ting issues, where half of the parameters are se-
lected to learn new tasks. In contrast, the other
half are frozen to retain previous knowledge.
We provide a feasibility analysis from the opti-
mization perspective and interpret the parame-
ter selection operation as a regularization term.
HFT could be seamlessly integrated into exist-
ing fine-tuning frameworks without changing
the model architecture. Extensive experiments
and analysis on supervised fine-tuning, direct
preference optimization, and continual learn-
ing consistently demonstrate the effectiveness,
robustness, and efficiency of HFT. Compared
with FFT, HFT not only significantly alleviates
the forgetting problem, but also achieves the
best performance in a series of downstream
benchmarks, with an approximately 30% re-
duction in training time.

1 Introduction

Large language models (LLMs) bring immense
revolutions to various natural language processing
applications with powerful language understanding
and generation capabilities. Unsupervised large-
scale pre-training for learning basic world knowl-
edge (hereinafter referred to as basic knowledge),

*Works done durig Hui’s internship at Baidu Inc.
†The corresponding author.

followed by one or more fine-tuning phases with
supervised data or human feedback, is becoming a
new training paradigm in the era of LLMs (Achiam
et al., 2023; Touvron et al., 2023; Yang et al., 2025).
As the fine-tuning phase proceeds, the enormous
potential of LLMs is gradually unleashed to han-
dle various downstream tasks, while the parametric
knowledge previously learned and stored in the
pre-trained model might face a considerable risk
of catastrophic forgetting (Lin et al., 2024; Nee-
man et al., 2023; Dong et al., 2024). To main-
tain intrinsic basic knowledge, the most straight-
forward idea is to keep the pre-trained parameters
unchanged and include extra modules (e.g., LoRAs
or adapters) for learning task-specific abilities (Dou
et al., 2023; Wu et al., 2024a). However, such ar-
chitectural modifications pose significant obstacles
to model deployment and continual fine-tuning.

Without changing model architecture, full fine-
tuning (FFT) methods update all parameters to im-
prove the performance of downstream tasks (Zhang
et al., 2023c; Hui et al., 2025), in which the
element-wise parameter difference between fine-
tuned and pre-trained models (i.e., task vector) rep-
resents the knowledge shift during fine-tuning (Il-
harco et al., 2023). Herein, a desirable task vector
is expected to keep basic knowledge of pre-trained
models and learn new specialized knowledge. In-
terestingly, recent work shows that partial dropping
or trimming of the task vector has only milder im-
pacts on target task (Yadav et al., 2023; Yu et al.,
2023). In other words, partial new parameters are
sufficient for the learning of new abilities, so the
upcoming question is, is it possible that a portion
of old parameters could maintain the capabilities
of the pre-trained model?

To answer this question, we start with LLAMA 2-
7B and LLAMA 2-CHAT-7B, and attempt to reset
partial parameters of the chat-model to the pre-
trained model, then prob the general abilities and
basic knowledge of these models (see Figure 1). As
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Figure 1: Performance of LLAMA 2-7B, LLAMA 2-CHAT-7B, and the Half-Reset model on six general abilities and
three basic knowledge benchmarks. It is interesting that simply resetting half of the parameters of the chat-model to
the pre-trained model could roughly restore a significant amount of forgotten basic knowledge while maintaining
high-level general abilities performance.

a representative general-purpose fine-tuning prac-
tice, there is some improvement in the general abili-
ties of LLAMA 2-CHAT-7B, while the basic knowl-
edge falls off a cliff. It is consistent with previous
observations, indicating the destruction of paramet-
ric knowledge stored in LLAMA 2-7B (Dou et al.,
2023). To balance the emerging general abilities
and the inherent basic knowledge, we intuitively
select and reset half of the parameters1 of LLAMA

2-CHAT-7B and are pleasantly surprised to find
that the Half-Reset model greatly resumes the ba-
sic knowledge in LLAMA 2-7B while remaining
the excellent general abilities of LLAMA 2-CHAT-
7B (More details in Section 2).

Inspired by these above observations, we pro-
pose Half Fine-Tuning (HFT), a simple yet effec-
tive approach for the training of LLMs and further
extrapolate it to the continual fine-tuning scenarios.
Specifically, in each round of fine-tuning, we ran-
domly select and freeze half of the parameters, and
only update the other half. This enables the model
to retain the capabilities at the starting point while
learning downstream tasks and maintain the best
balance between previous abilities and new skills.
Note that HFT does not change the model architec-
ture or traditional fine-tuning paradigm, thus theo-
retically it can be applied to any setting where the
standard full fine-tuning is previously applicable,
including but not limited to supervised fine-tuning
(SFT), direct preference optimization (DPO), con-
tinual learning (CL), etc.

To evaluate the effectiveness of HFT in instruc-
tion fine-tuning settings, we conduct extensive ex-

1Here, we keep the embedding and lm_head layers un-
changed as LLAMA 2-CHAT-7B, and select 50% of the pa-
rameters in transformer layers. The parameter ratios in this
paper all follow this statistical calibre.

periments with TÜLU V2 (Ivison et al., 2023) for
SFT and UltraFeedback (Cui et al., 2023) for DPO.
Simultaneously, we also extend experiments on
TRACE (Wang et al., 2023a) for CL (i.e. multi-
round fine-tuning) to validate the proposed method
in a more extreme scenario. Experimental results
demonstrate that HFT not only exhibits excellent
talent in alleviating catastrophic forgetting but also
achieves comparable or even better performance
in learning new abilities compared to FFT. Fur-
ther analysis reveals that regardless of which half
(or even only about half) of the parameters are
selected, HFT is capable of attaining tolerable per-
formance gains and impressive efficiency improve-
ments, which brings considerable competition to
the routine fine-tuning paradigm. In summary, the
main contributions of this paper are as follows:

(1) We reveal that by resetting half of the fine-
tuned parameters to the startup state, it is possible
to preliminary restore the primeval ability while
maintaining new learning ability, which poses new
opportunities to alleviate catastrophic forgetting
and obtain an all-around LLM.

(2) We propose Half Fine-Tuning (HFT), which
entails freezing half of the parameters while train-
ing the other half. It allows LLMs to acquire new
abilities while retaining and utilizing previously
learned knowledge in various training settings.

(3) Extensive experiments and analyses demon-
strate the effectiveness and efficiency of HFT. With-
out any alterations to the model architecture, HFT,
as a plug-and-play solution with only a few lines
of code, exhibits the potential to supersede FFT in
the era of LLMs.
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Figure 2: The schematic procedure of HFT with LLAMA 2’s architecture. In each stage, we selectively freeze half
of the parameters at the category-level and update the other half. Best viewed in color.

2 Pilot Experiments

Considering that the partial task vector is capable
of maintaining new abilities (Yadav et al., 2023; Yu
et al., 2023), we attempt to roll back the primaeval
abilities of pre-trained models by resetting the re-
maining part of the task vector, thereby alleviating
the catastrophic forgetting problem caused by fine-
tuning. In this section, We employ the representa-
tive well-aligned LLM, LLAMA 2-CHAT-7B, and
the corresponding pre-trained backbone, LLAMA

2-7B, as models for analysis.
Setup. To balance the original abilities and the

enhanced capabilities gained through instruction
tuning, we simply choose to reset 50% of the pa-
rameters in LLAMA 2-CHAT-7B to LLAMA 2-7B,
so that half of the parameters are hoped to align
with the new tasks, while the other half is intended
to restore the old capabilities. In the implementa-
tion, we randomly select half of each transformer
layer according to the category of the parameter
matrix. Specifically, we choose two from four self-
attention matrices (i.e., WQ, WK , WV , WO),
and for the odd parameter number in LLAMA’s
feed-forward layers (i.e., Wup, Wdown, Wgate),
we randomly select half of the transformer layers
to choose two matrices and the other half to choose
one. Such a fine-grained selection strategy ensures
that the Half-Reset operation rolls back exactly
50% of the parameters.

To assess the performance of the pre-trained,
chat, and half-reset models on both new and old ca-
pabilities, we follow (Ivison et al., 2023) and (Dou
et al., 2023) to introduce two categories of eval-
uation benchmarks: (1) General Abilities, in-

cluding MMLU, GSM8K, BBH, TyDiQA, Truth-
fulQA, and HumanEval, which measure the LLMs’
newly enhanced abilities to perform specific down-
stream tasks like examination, reasoning, and cod-
ing. (2) Basic Knowledge, including NaturalQues-
tion, TriviaQA, and HotpotQA, which reflect the
parametric world knowledge in the pre-trained
model and could be used to evaluate retention of
the primeval capabilities. For more details about
the datasets and evaluation metrics, please refer to
Appendix A.3.1 and A.3.2

Results. From Figure 1, it is intuitive to observe
significant improvement of LLAMA 2-CHAT-7B

on several general ability benchmarks, as well as
the comprehensive decline on the basic knowledge
benchmarks. When selectively restoring half pa-
rameters to the pre-trained LLAMA 2-7B model,
although there is a slight performance loss in the
overall performance of general abilities, we wit-
ness the remarkable recovery of basic knowledge.
In Appendix A.4.2, we attempt other possible half-
reset solutions and provide more numerical results,
all of which exhibit similar phenomena.

In conclusion, the pilot experiments demonstrate
that (1) full parameter fine-tuning with large-scale
instruction data disrupts the basic knowledge stored
within pre-trained LLMs. (2) Through a simple
half-reset operation, it is possible to restore the
forgotten knowledge partially. Take another step
forward, these findings open a new door for model
merging, inspiring us to preserve some mastered
abilities of the startup point by freezing partial
parameters during fine-tuning.
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3 Methodology

Without loss of generality, we consider a sequential
(continual) learning setting with multiple tasks T ,
in which each task corresponds to a set of input-
output pairs Dt =

{
xtn, y

t
n

}N t

n=1
. In the training

process, a single model aligns all the tasks sequen-
tially, with only access to the specific dataset Dt

at t-th round. Formerly, given an LLM parame-
terized by θ, the entire process aims to optimize
the following objective, which encompasses all the
tasks,

J (θ) = max
θ

∑

t∈{1,|T |}

∑

(xtn,y
t
n)∈Dt

logPθt
(
ytn|xtn

)
, (1)

where logP(·) represents the probability distribu-
tion of the model’s output. When there is only
one task, the learning process degenerates into the
standard supervised fine-tuning (SFT) form.

Half Fine-Tuning. Next, we accordingly pro-
pose Half Fine-Tuning (HFT) to learn the upcom-
ing new task while maintaining and utilizing old
abilities. Figure 2 illustrates the overall work-
flow of HFT, regarding the intermediate repeti-
tive transformer layers, we divide each layer into
three blocks: self-attention, feed-forward, and lay-
ernorm, so as half of each block is selected for
updating in this round, while the remaining half
is frozen. Note that the frozen and updated pa-
rameters vary among each training round. In this
way, HFT is more conducive to maintaining relative
knowledge parity across different rounds during the
sequential alignment process, thus exhibiting sig-
nificant scalability in successive training. From the
formula perspective, we define the parameters that
remain unchanged during the t-th round as ψt, and
correspondingly, the parameters that align to the
upcoming tasks as ϑt (i.e., θt = {ϑt, ψt}). The
training objective in Equation 1 thus changes to

J (θ) = max
θ

∑

t∈{1,|T |}

∑

(xtn,y
t
n)∈Dt

logP{ϑt,ψt}
(
ytn|xtn

)
,

s.t. ϑt ← ϑt−1 − η∇ϑL
(
θt−1) , ψt ← ψt−1 ,

(2)

where η and L(·) represent the learning rate and
loss function, ∇ϑ indicates that we only consider
the gradients of selected parameters in fine-tuning.

Why Half Fine-Tuning Works. Excluding
heuristic motivations, we are also interested in the
theoretical principles behind HFT. Theoretically,
HFT could be regarded as exerting a parameter-
level mask to vanilla FFT. In this part, we bor-
row the thread in (Fu et al., 2022) to interpret

why HFT works from the perspective of optimiza-
tion. Given a pre-trained model M0 with param-
eters θ0, the fine-tuned model M with parame-
ters θ has the same structure as M0 such that
∥θ − θ0∥0 ≤ p dim(θ), where p = 0.5 in HFT.
Next, we denote M ∈ {0, 1}m×m as a mask di-
agonal matrix on the parameter, in which the di-
agonal is equal to 1 if the parameter is selected,
thus the fine-tuning procedure can be formulated
as θ = θ0 +M∆θ, where ∆θ is the task vector.
In that case, HFT solves an optimization problem
with constraints min∆θ,M L(θ0+M∆θ) such that
∥M∥0 = ⌊mp⌋; Mij = 0, ∀i ̸= j; Mii ∈ {0, 1}.
where L is the loss function, ⌊·⌋ is the floor func-
tion, m is the parameter numbers. By integrating
previous conditions, the optimization procedure of
HFT can be reformulated as

O = min
θ
L(θ) s.t. ∥(I −M)(θ − θ0)∥2 = 0, (3)

With Lagrangian duality, solving the constrained
optimization problem is equivalent to solving the
following unconstrained optimization problem

OL = min
θ

max
λ
L(θ) + λ∥(I −M)(θ − θ0)∥2, (4)

where λ is the Lagrange multiplier. Based on
the Minimax inequality, it is intuitive to derive
that minθ maxλ L(θ) + λ∥(I −M)(θ − θ0)∥2 ≥
maxλminθ L(θ) + λ∥(I − M)(θ − θ0)∥2 ≥
minθ L(θ) + ∥(I −M)(θ − θ0)∥2. In conclusion,
the optimization process of HFT is equivalent to op-
timizing the upper bound of the FFT loss function
L(θ) with a regularization term ∥(I−M)(θ−θ0)∥2.
From the optimization perspective, such regulariza-
tion (with an appropriate sparsityM ) contributes to
the stability of the sparse fine-tuned model (Radiya-
Dixit and Wang, 2020; Fu et al., 2022), meaning
that HFT has the opportunity to achieve results
comparable to or even better than FFT.

4 Experiments

In this section, we primarily report the experimen-
tal results of full fine-tuning (FFT) and the pro-
posed half fine-tuning (HFT) on supervised fine-
tuning (with TÜLU V2 (Ivison et al., 2023) as
training set), human preference alignment (with
UltraFeedback (Cui et al., 2023)), and continual
learning (with TRACE (Wang et al., 2023a)) sce-
narios, in which direct preference optimization
(DPO) (Rafailov et al., 2023) is used to learn hu-
man preferences. Following (Ivison et al., 2023)
and (Wang et al., 2023a), we employ LLAMA 2 and

12794



MMLU GSM8K BBH TyDiQA TruthfulQA HumanEval

Overall(factuality) (reasoning) (reasoning) (multilingual) (truthful) (coding)

EM EM EM F1 MC2 Pass@10
(0-shot) (8-shot, CoT) (3-shot, CoT) (1-shot, GP) (0-shot) (0-shot)

Pre-trained models
LLAMA 2-7B 41.6 12.0 39.9 48.4 38.5 26.2 34.4
LLAMA 2-13B 52.2 34.5 50.7 50.3 49.8 32.7 45.0

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 48.5 25.0 42.2 51.2 41.7 36.9 41.0
LLAMA 2-7B-SFT (Reset) 48.4 23.0 43.4 52.4 42.5 32.5 40.4
LLAMA 2-7B-SFT (Half) 50.8 30.5 43.6 52.3 45.4 34.6 42.9 (+1.9)

LLAMA 2-13B-SFT 50.6 45.0 47.8 55.0 42.6 42.4 47.2
LLAMA 2-13B-SFT (Reset) 52.7 46.0 52.8 55.5 46.8 41.4 49.2
LLAMA 2-13B-SFT (Half) 54.5 46.5 53.7 56.7 45.7 43.5 50.1 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 48.9 28.0 42.9 50.2 45.7 35.6 41.9
LLAMA 2-7B-DPO (Reset) 49.0 28.5 43.1 50.3 43.3 34.8 41.5
LLAMA 2-7B-DPO (Half) 48.8 25.5 42.8 51.1 45.5 36.7 41.7 (-0.2)

LLAMA 2-13B-DPO 52.0 44.0 47.1 51.5 45.5 44.3 47.4
LLAMA 2-13B-DPO (Reset) 51.5 46.5 48.2 53.7 43.7 42.7 47.7
LLAMA 2-13B-DPO (Half) 51.8 48.5 49.9 52.9 45.3 41.0 48.2 (+0.8)

Table 1: Results on general ability benchmarks of various models with instruction tuning (SFT, DPO), in which the
default setting is FFT, Reset and Half refer to the proposed Half-Reset and Half Fine-Tuning methods, respectively.
Bold text denotes the best result in each group.

LLAMA 2-CHAT as the backbone model, respec-
tively. Apendix A.3 shows more information about
implementations and Appendix A.4 proposes more
additional experiments consisting of the impact of
learning rates and random seeds, the exploration
of DPO on HFT-based models, efficiency analysis
and many other detailed results.

4.1 Experiments on Instruction Tuning
Setup. We employ the general abilities and basic
knowledge benchmarks mentioned in Section 2 to
evaluate various models under the instruction tun-
ing settings. In Appendix 4.4, we introduce a series
of sparse fine-tuning and model merging methods
as additional baselines. To assess the conversation
ability, we also compare these models on AlpacaE-
val 2.0 (see Appendix A.4.8).

Results on Improving General Abilities. Re-
sults in Table 1 demonstrate the effectiveness of our
proposed HFT method, which simultaneously im-
proves different specialized abilities by selectively
fine-tuning half of the parameters. Specifically,
compared to FFT under the SFT setting, HFT leads
to an overall performance improvement of 1.9% on
LLAMA 2-7B and 2.9% when scaling to LLAMA

2-13B. Furthermore, as we continue to perform
DPO on SFT models, we observe that updating the
policy model with HFT does not hinder the model
from learning human preferences. In sum, the HFT
method has strong robustness to adapt to differ-
ent fine-tuning algorithms. Besides, we also review
the Half-Reset method in Section 2, but the benefits

of this approach are not robust, and we attribute it
to the randomness of parameter operations. In com-
parison, HFT achieves a more stable performance
improvement through the learning process, while
avoiding the complexity of the two-stage process
of fully updating followed by partially resetting.

Results on Preserving Basic Knowledge.
When it comes to basic knowledge, as depicted
in Table 2, both SFT and DPO exhibit a signifi-
cant decline across all three benchmarks. Notably,
HFT demonstrates excellent talent in preserving
basic knowledge, consistently outperforming fully
updating parameters during SFT and DPO. For
example, during the SFT stage, HFT achieves im-
provements of 3.4% and 2.9% with LLAMA 2-7B

and LLAMA 2-13B compared to FFT, respectively.
It is worth mentioning that Half-Reset also shows
a stable performance in alleviating knowledge for-
getting, which once again confirms the motivation
to keep partial initial parameters unchanged.

Remark. HFT not only effectively preserves
a certain degree of basic knowledge of the pre-
trained model, but also utilizes this knowledge to
achieve better learning of new abilities.

4.2 Experiments on Continual Learning
Setup. We evaluate the performance in the con-
tinual learning setting (with TRACE (Wang et al.,
2023a)), using four representative approaches and
attempt to replace FFT with HFT. (1) SeqFT: It is
a standard for sequentially learning all parameters
of downstream tasks. (2) GEM (Lopez-Paz and
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NaturalQuestion TriviaQA HotpotQA Overall(EM, 0-shot) (EM, 0-shot) (EM, 0-shot)

Pre-trained models
LLAMA 2-7B 12.9 40.2 15.6 22.9
LLAMA 2-13B 9.6 24.0 13.4 15.7

Supervised Fine-Tuning (SFT) on TÜLU V2
LLAMA 2-7B-SFT 3.2 26.4 14.5 14.7
LLAMA 2-7B-SFT (Reset) 7.3 26.4 14.4 16.0
LLAMA 2-7B-SFT (Half) 6.2 32.8 15.4 18.1 (+3.4)

LLAMA 2-13B-SFT 0.7 9.2 4.9 4.9
LLAMA 2-13B-SFT (Reset) 1.8 13.5 5.3 6.9
LLAMA 2-13B-SFT (Half) 2.7 12.4 8.2 7.8 (+2.9)

Direct Preference Optimization (DPO) on UltraFeedback
LLAMA 2-7B-DPO 1.4 20.8 10.0 10.7
LLAMA 2-7B-DPO (Reset) 2.0 23.6 12.1 12.6
LLAMA 2-7B-DPO (Half) 1.9 22.9 12.8 12.5 (+1.8)

LLAMA 2-13B-DPO 0.1 4.4 2.4 2.3
LLAMA 2-13B-DPO (Reset) 0.3 6.5 3.8 3.5
LLAMA 2-13B-DPO (Half) 0.2 5.5 3.0 2.9 (+0.6)

Table 2: Results on basic knowledge benchmarks of
various models with instruction tuning.

Ranzato, 2017): It leverages episode memories to
avoid forgetting, but it consumes extra computation
time like other regularization-based methods. (3)
Replay: It is a common strategy, here we integrate
alignment data from LIMA (Zhou et al., 2023a)
into the replay memory and replaying 10% of his-
torical data. (4) LoraSeqFT (Hu et al., 2022): It
sequentially updates the low-rank matrices while
keeping the backbone fixed. Note that the LoRA-
based method modifies the model architecture and
is not suitable for combination with HFT. Follow-
ing (Wang et al., 2023a), we start with LLAMA 2-
CHAT-7B/13B, adopt Overall Performance (OP)
and Backward Transfer (BWT) as the evaluation
metrics (Appendix A.3.2 details the calculation pro-
cess). Besides, we also report the general abilities
and basic knowledge of various models after the
final round of learning (see Appendix A.4.5).

FFT HFT

OP BWT OP BWT

LLAMA 2-CHAT-7B
LoraSeqFT 6.4 -45.2% - -
SeqFT 45.7 -10.2% 51.3 (+5.6) -5.6% (+4.6)

GEM 48.2 -7.9% 50.2 (+2.0) -5.9% (+2.0)

Replay 54.3 1.4% 54.1 (-0.2) +2.1% (+0.7)

LLAMA 2-CHAT-13B
LoraSeqFT 26.5 -30.0% - -
SeqFT 49.0 -9.4% 52.0 (+3.0) -8.5% (+0.9)

GEM 50.4 -8.9% 53.6 (+3.2) -6.1% (+2.8)

Replay 54.7 -0.6% 57.4 (+2.7) +1.6% (+2.2)

Table 3: OP and BWT on TRACE with different strate-
gies, OP measures the learning of new tasks and BWT
measures the forgetting of old tasks.

Results. Table 3 shows that the three FFT ap-
proaches could all benefit from equipping HFT.
Specifically, HFT brings performance improve-
ments of 5.7% and 2.0% on the OP metric in the Se-
qFT and GEM settings, respectively. It also boosts

OP BWT

SeqFT (FFT) 45.7 -10.2%

SeqFT (Model-level HFT) 46.9 (+1.2) -9.2% (+1.0%)

SeqFT (Layer-level HFT) 47.9 (+2.2) -8.3% (+1.9%)

SeqFT (Category-level HFT) 51.3 (+5.6) -5.6% (+4.6%)

Table 4: Different strategies for selecting half of the
parameters on TRACE.

the performance with 4.6%, 0.7%, and 2.0% on
the BWT metric based on the LLAMA 2-CHAT-
7B. When scaling the model to 13b, HFT could
also achieve superior performances. Further, fine-
tuning with full parameters often suffers from se-
vere catastrophic forgetting in the 5-th round (see
Appendix A.4.15), while HFT does not experience
such a problem in any of the rounds, making the
learning process more stable. Besides, LoraSeqFT
exhibits notably suboptimal performance in this
setting. We assume that the knowledge capacity of
the LoRA parameter is quite limited, thus resulting
in considerable forgetting during the process of se-
quential training. On the contrary, HFT is based
on a full set of parameters and selects half of the
parameters to be fine-tuned in each round, which
has a stronger knowledge tolerance.

Remark. HFT is naturally suitable for scenarios
with continual fine-tuning, and (almost all) meth-
ods with FFT can be further improved by assem-
bling HFT, highlighting the plug-and-play feature.

4.3 Impact of Parameter Selection
HFT heuristically selects parameters to be tuned or
frozen. We hope to reveal the impact of parameter
selection from parameter radio and selection strat-
egy, to discuss the universality of the methodology.

Impact of Trainable Parameter Ratio. Firstly,
we traverse the radio of parameters to be fine-tuned
at a granularity of ∼10% and evaluate the impact
in both single-round and multi-round fine-tuning
scenarios. From Figure 3, we observe that most of
the results with only updating partial parameters
are superior to FFT, and the performance is quite
satisfactory when the trainable parameter radio
is around 50%. In SFT, the performance of basic
knowledge shows a clear downward trend with the
increase of parameter ratio, while the general abili-
ties slowly rise, which allows updating half or less
of the parameters to have good performance. Mean-
while, when selecting half of the parameters during
continual learning, the model reaches a balance of
abilities between each round of tasks, resulting in a
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more robust training procedure and optimal perfor-
mance. This observation again confirms the early
conjecture about catastrophic forgetting, especially
in continual learning, it is necessary to freeze a
portion of parameters in each round to preserve the
capabilities of the previous models. Not only that,
we also find that fixing partial parameters can im-
prove training efficiency (see Table 10), and HFT
could shorten the training time by 30% in FFT.

Impact of Selection Strategy. Next, we con-
sider other possible strategies for selecting half
of the parameters: (1) Model-level. It arbitrarily
chooses half the number of parameter matrices,
which may prevent the parameter ratio from accu-
rately reaching 50%. (2) Layer-level. It selects
all parameters of a layer every other layer. (3)
Category-level. It selects based on parameter cat-
egories, which is the default strategy used in this
paper, and ensures the accurate selection of 50%
of the parameters. Table 4 reports the results of
performing HFT on TRACE with sequential fine-
tuning (SeqFT). The first noteworthy phenomenon
is that all three selection strategies outperform the
standard FFT, which once again confirms the moti-
vation that freezing some parameters helps balance
the old and new abilities in continual fine-tuning.
Moreover, the category-level selection wins the best
performance, we attribute it to the fine-grained
strategy that maximizes the interaction between
updated and non-updated parameters. From the
perspective of model merging, it minimizes the
damage to ready-made capabilities when perform-
ing a 50% dropout on the task vector, thereby pro-
viding greater possibilities for learning new tasks
based on existing knowledge.

Remark. HFT is robust and insensitive to param-
eter selection, and selecting approximately 50% of
the parameters with a reasonable selection strategy
could achieve acceptable improvements.

4.4 More Baselines of Instruction Tuning
We highlight that the motivation of HFT is to al-
leviate the catastrophic forgetting problem during
fine-tuning without changing the model architec-
ture, which distinguishes it from PEFT methods
such as LoRA. Based on this, we also introduce
three extra groups of methods to illustrate the ef-
fectiveness of HFT. Specifically, we compare four
sparse fine-tuning methods, LoRA (Hu et al., 2022),
QLoRA (Dettmers et al., 2023), AdaLoRA (Zhang
et al., 2023b), P-Tuning (Liu et al., 2022), and
Mixout (Lee et al., 2020), three model merging

methods, Average merging, TIES merging (Ya-
dav et al., 2023), and DARE (Yu et al., 2023) and
three layer freezing method, AutoFreeze (Liu et al.,
2021), SmartFRZ (Li et al., 2024), and LISA (Pan
et al., 2024). The experimental results are shown
in Table 5, demonstrating that the HFT method
achieves the best trade-off in both general abili-
ties and basic knowledge benchmarks. The sparse
fine-tuning methods preserve more basic knowl-
edge but suffer more performance degradation in
the general abilities evaluation, which is consistent
with the previous conclusion that LoRA learns less
and forgets less (Biderman et al., 2024). On the
other hand, the model merging methods, in general,
also perform worse than HFT. Additionally, model
merging methods require FFT training followed by
task vector pruning, making them more complex
and time-consuming due to the two-stage process.
For the Other layer freezing method, finally all the
parameters are updated. According to the experi-
ments and analysis in Section 2, this still cannot
achieve the optimal performance.

5 Discussion

In this section, we further discuss the parameter
changes in the fine-tuning process to deepen the
understanding of HFT. We review the influence of
embedding and lm_head layers, and visualize the
parameter variations during successive training.

Revisit the Embedding and LM_head Layers.
HFT defaults to updating the embedding and
lm_head layers. Here, we aim to explore the
roles of these two layers. Specifically, we freeze
them while maintaining the same selection strategy
and report results in SFT and continual learning.
Since freezing the embedding and lm_head lay-
ers slightly reduces trainable parameters, we also
include two models with similar parameter ratios
that only freeze the parameters in transformer
layers, to mitigate the impact of parameter ra-
tio. As shown in Table 6, freezing these two lay-
ers leads to a substantial decline in knowledge-
intensive benchmarks, especially for QA-related
tasks. Experimental results in Table 7 witness an-
other phenomenon, where forgetting metric BWT
significantly increases while the learning metric
OP faces a cliff-like decrease. Detailed results
in Appendix A.4.13 reveal that there is a substan-
tial decline in the performance of ScienceQA. To
this extent, a preliminary conjecture emerges that
the embedding and lm_head store information are
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Figure 3: Performance concerning different trainable parameter ratios. The solid lines mark the performance of
HFT with various ratios and the dashed lines mark the FFT baseline.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

Sparse Fine-tuning Baselines
LoRA 46.8 18.0 39.5 51.7 44.8 27.3 12.7 36.2 17.8 32.8
QLoRA 38.0 2.5 37.2 15.0 40.6 24.0 12.7 43.2 15.5 25.4
AdaLoRA 47.2 19.5 39.1 51.9 44.4 30.2 12.3 37.5 16.9 33.2
P-tuning 44.7 16.5 36.9 50.2 43.6 26.5 12.8 40.9 17.3 32.2
Mixout 48.1 24.5 41.0 49.8 42.3 33.7 4.5 28.2 15.5 32.0

Model Merging Baselines
TIES (P+S) 47.8 25.5 40.2 50.1 43.3 30.2 5.5 31.7 14.4 32.1
DARE (P+S) 49.2 28.5 42.9 53.0 44.4 32.8 6.1 30.7 15.1 33.6
TIES (S+D) 39.6 1.5 39.7 16.1 38.4 23.3 12.9 40.2 15.6 25.3
DARE (S+D) 45.8 16.5 40.4 50.0 42.7 27.6 5.8 32.7 14.1 30.6
Average (S+D) 49.0 22.0 45.1 52.8 42.5 32.6 7.5 35.6 14.0 33.5

Layer Freezing Baselines
AutoFreeze 48.5 25.5 44.2 50.1 44.4 28.3 3.7 30.2 14.4 32.1
SmartFRZ 46.7 24.5 43.7 50.6 43.8 29.4 4.5 29.5 13.8 31.8
LISA 50.1 27.0 43.2 51.7 45.2 29.7 6.0 31.0 14.7 33.2

HFT (S) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6

Table 5: General abilities and basic knowledge performance of more baselines. In model merging baselines, P, S
and D refer to Pre-trained, SFT and DPO models, respectively.

highly relevant to world knowledge, so it is crucial
to update them during the fine-tuning process.

Parameters Variation Analysis. To intuitively
perceive the difference in model parameters be-
tween HFT and FFT, we visualize parameter vari-
ations of fine-tuned models relative to the ini-
tial model (LLAMA 2-CHAT-7B) during continual
learning on TRACE. On the one hand, we group
two adjacent layers and calculate the average vari-
ation of self-attention and feed-forward blocks,
where average variation refers to the average of
all matrix differences in the block of two models.
On the other hand, based on the selected number
of times in these eight rounds of fine-tuning, we
compare the average variation of each block with
FFT. Figure 4 shows variations from the perspec-
tive of the transformer block and selected time,
respectively. Interestingly, we find that: (1) The pa-

rameter variation of each layer using HFT is fainter
than those using FFT. (2) There is no significant
difference in parameter variation between shallow
and deep transformer layers, which is consistent in
both fine-tuning settings. (3) The deviation from
pre-trained parameters increases linearly with the
time of selection, and the variations of parameters
selected eight times are very similar to FFT. There-
fore, the excessive offset of task vectors may not
necessarily lead to an improvement in downstream
performance but result in forgetting existing capa-
bilities. HFT seeks subtle balance by pulling back
the task vector, alleviating catastrophic forgetting
when learning subsequent tasks.

6 Conclusion

In this paper, we observe that rolling back half
of the parameters to the pre-trained state may re-

12798



MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Questions QA QA

HFT38.9% (update E,H) 49.9 26.0 44.6 52.3 45.0 33.2 6.3 24.0 14.1 32.8
HFT50.0% (update E,H) 50.8 30.5 43.6 52.3 45.4 34.6 6.2 32.8 15.4 34.6
HFT61.1% (update E,H) 49.0 29.5 42.7 50.6 49.6 35.4 6.6 31.3 16.1 34.5

HFT50.0% (freeze E,H) 51.4 29.0 45.0 50.5 45.2 35.0 3.2 24.1 13.7 33.0

Table 6: General abilities and basic knowledge performance of HFT models fine-tuned on TÜLU V2 without
embedding (E) and lm_head (H) layers. Note that the subscript indicates the proportion of selected parameters of
transformer layers.
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Figure 4: Parameters variations of the last round model fine-tuned on TRACE relative to the starting point LLAMA
2-CHAT-7B. The outer blue circle indicates FFT and the inner red circle indicates HFT.

OP BWT

HFT38.9% (update E,H) 49.6 -5.6%
HFT50.0% (update E,H) 51.3 -5.6%
HFT61.1% (update E,H) 49.9 -5.6%

HFT50.0% (freeze E,H) 46.1 -2.2%

Table 7: OP and BWT scores of HFT models fine-tuned
on TRACE without embedding and lm_head layers.

cover partial knowledge of the startup model while
holding the performance of downstream tasks. Tak-
ing inspiration from this, we propose HFT, which
adopts a category-level strategy to select half of the
parameters for updating in each training round, and
the remaining parameters are expected to maintain
the learned knowledge. Extensive experiments on
supervised fine-tuning, direct preference optimiza-
tion, and continual learning scenarios demonstrate
the effectiveness of HFT. It not only alleviates the
catastrophic forgetting in preceding capabilities but
also achieves comparable or even superior perfor-
mance than FFT in downstream tasks. Further anal-
ysis shows that HFT is robust to selection strategies
and selected parameter numbers. Moreover, HFT
does not change the model architecture, making
it easy to implement and scale, especially under
successive fine-tuning scenarios.

Limitations

HFT achieves a balanced performance across gen-
eral abilities and foundational knowledge bench-
marks. It outperforms FFT while reducing train-
ing time by approximately 30%, and demonstrates
strong scalability in continual fine-tuning scenarios.
In contrast, widely adopted sparse fine-tuning meth-
ods such as LoRA underperform compared to HFT.
Particularly in challenging settings like continual
learning, these methods often fail and suffer from
performance collapse. We believe HFT has the po-
tential to succeed FFT as the preferred fine-tuning
strategy in nearly all practical scenarios, owing to
its superior performance and faster convergence.
This work, however, has several limitations. Due to
computational constraints, we focus on representa-
tive open-source models, such as LLAMA 2-7B and
LLAMA 2-13B, without extending to larger models.
Additionally, we evaluate HFT on standard dens
architectures, leaving its application to structures
such as MoE for future exploration. In the future,
we aim to investigate HFT’s effectiveness across
a broader range of model scales and architectures,
while improving selection mechanisms to further
boost performance.
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A Appendix

A.1 Discussion of Selecting Ratios

Yu et al. (2023) have found that parameters are
redundant during the SFT process, and excellent
performance can be achieved for downstream tasks
without the need for full parameter fine-tuning. In
section 2, we also find that there is a correspon-
dence between parameters and abilities. From the
perspective of forgetting and knowledge conflict,
HFT helps mitigate catastrophic forgetting by max-
imizing the balance between existing capabilities
and newly introduced abilities through selecting
half of the parameters, thereby reducing conflicts
between different knowledge and improving perfor-
mance. Furthermore, in Section 3 of our paper, we
provide a theoretical analysis demonstrating that
HFT optimize the upper bound of the FFT loss
function with a regularization term.

A.2 Related Work

Sparse Fine-Tuning. With the continuous in-
crease in the number of language model param-
eters, sparse fine-tuning (a.k.a. parameter-efficient
fine-tuning (PEFT)) offers an effective solution by
reducing trainable parameters while achieving com-
parable performance to FFT (Fu et al., 2022; Ding
et al., 2023; Han et al., 2024). Adapter (Houlsby
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Algorithm 1: Algorithm of HFT with Category-Leval Parameter Selection
Input: Pre-trained model θ0
Initialize sequential training task T with data Dt, feed-forward block container FFNs=[], self-attention block container
SANs=[], and layernorm block container LNs=[].

for t = 1 to |T | do
// Set all parameters to retain gradients before each fine-tuning stage
foreach param in θt−1 do

param.requires_grad = True

// Omit the embedding and lm_head layer
mark_layers = random.sample(transformer_layers, len(transformer_layers)//2)
foreach layer in transformer_layers do

foreach param in layer do
if param belongs to FFN block then

FFNs.append(param)

else if param belongs to SAN block then
SANs.append(param)

else
LNs.append(param)

// For FFNs with an odd number of parameters in one layer, the number of selected parameters in half of the
layers is rounded up, while the other half is rounded down.

if layer in mark_layers then
freeze_ffn = random.sample(FFNs, ⌈len(FFNs)/2⌉)

else
freeze_ffn = random.sample(FFNs, ⌊len(FFNs)/2⌋)

freeze_san = random.sample(SANs, len(SANs)//2)
freeze_ln = random.sample(LNs, len(LNs)//2)
foreach param in freeze_ffn, freeze_san and freeze_ln do

param.requires_grad = False

Set FFNs, SANs and LNs to []

Model training process on with dataset Dt
Output: Fine-tuned model θ|T |

et al., 2019; Mahabadi et al., 2021; Zhang et al.,
2023a) and LoRA (Hu et al., 2022; Dou et al., 2023;
Dettmers et al., 2023), the two most famous kinds
of work, freeze the initial model weight and inject
an adapter or a trainable rank decomposition ma-
trices into each layer. However, these approaches
change the model architecture and therefore re-
quire customized deployment. Keeping the archi-
tecture unchanged, DiffPruning (Guo et al., 2021)
learns a sparse diff vector for each task, enabling
PEFT to scale well with new tasks. BitFit (Za-
ken et al., 2021) only fine-tunes the bias terms
of BERT and achieves considerably good perfor-
mance. Unfortunately, these methods designed for
specific tasks or networks (e.g., bias) are unsuit-
able for modern general-purpose large-scale mod-
els. From the perspective of low GPU memory
overhead, BAdam (Luo et al., 2024) randomly di-
vides the entire parameter into multiple blocks and
updates each block sequentially, LISA (Pan et al.,
2024) changes the granularity of blocks at the layer
level. Besides, Mixout (Lee et al., 2020) resets a
portion of neurons to a pre-trained state in each
training step. In this way, all parameters in BAdam,

LISA, and Mixout are updated, which is different
from HFT and not conducive to continual learning.

Continual Learning. Continual learning aims
to develop learning algorithms that can accumulate
knowledge on non-stationary data, and vanilla FFT
has been proven to lead to severe catastrophic for-
getting issues when adapting to incoming stream-
ing tasks (Luo et al., 2023; Wang et al., 2024).
To address this issue, experience replay (Rolnick
et al., 2019; Peng et al., 2024) is a widely used
technique that incorporates a portion of data from
previous rounds into the current training process.
Regularization-based models (Kirkpatrick et al.,
2017; Lopez-Paz and Ranzato, 2017) introduce
additional terms in the loss function to penalize
changes in crucial weights. Parameter-allocation
approaches (Li et al., 2019; Gurbuz and Dovrolis,
2022) feature an isolated parameter subspace dedi-
cated to each task throughout the network. When
LLMs enter the era of billions of parameters, re-
searchers prefer to use progressive prompts (Raz-
daibiedina et al., 2023) or PEFT (Dou et al., 2023;
Wu et al., 2024a) to tune a powerful general back-
bone for specific tasks or domains (Wu et al.,

12804



2024b). Instead of introducing auxiliary modules
or losses, HFT explores a new direction based on
the characteristics of LLMs, proving that random
parameter selection is sufficient to achieve pass-
able performance and has the potential to become
a successor to FFT.

A.3 Experimental Setup

A.3.1 Datasets
To validate the performance of supervised fine-
tuning, we choose TÜLU V2 (Ivison et al., 2023)
which is a combination of high-quality open re-
sources, including datasets (1) created by re-
searchers from existing NLP datasets (e.g. Su-
perNI (Wang et al., 2022)), (2) written by hu-
mans (e.g. Dolly (Conover et al., 2023) and Open
Assistant (Köpf et al., 2023)), (3) generated by
LLMs (e.g. Self-Instruct (Wang et al., 2023b),
Alpaca (Taori et al., 2023) and Baize (Xu et al.,
2023b)), (4) comprised of user-shared prompts ac-
companied by model-generated completions (e.g.
ShareGPT (Chiang et al., 2023)), and (5) developed
for specific abilities (e.g. CoT (Wei et al., 2022)
for chain-of-thought and Code-Alpaca (Chaudhary,
2023) for code generation). To examine the ca-
pacity for reinstating a fraction of impaired capa-
bilities while adhering to human preferences, we
utilize UltraFeedback (Cui et al., 2023) which
is a large-scale, high-quality, and diversified pref-
erence dataset. For continual learning, we select
TRACE (Wang et al., 2023a), a novel benchmark
designed for continual learning (CL) in LLMs, to
evaluate catastrophic forgetting in standard CL set-
tings. TRACE consists of 8 distinct datasets span-
ning challenging tasks, domain-specific tasks, mul-
tilingual capabilities, code generation, and mathe-
matical reasoning.

A.3.2 Evaluation Metrics
Supervised Fine-Tuning and Direct Preference
Optimization. To validate the effectiveness of
our method, we employ general abilities and basic
knowledge benchmarks to assess the performance
in learning new tasks and preserving the original
capabilities, respectively. Specifically, for the gen-
eral abilities benchmarks, we include the following
evaluation sets to test various abilities. (1) Factual
knowledge: To assess the LLMs’ factual knowl-
edge, we employ the Massive Multitask Language
Understanding dataset (MMLU) (Hendrycks et al.,
2021a). MMLU comprises a collection of ques-
tions across 57 subjects from elementary to pro-

fessional difficulty levels. We report the 5-shot
accuracy based on answer perplexity. (2) Reason-
ing: We utilize the test split of the Grade School
Math (GSM8K) dataset (Cobbe et al., 2021) and
Big-Bench-Hard (BBH) (Suzgun et al., 2023) to
evaluate the reasoning abilities. We report the
8-shot accuracy and the exact match (EM) rates
for GSM8K and BBH, respectively. (3) Multi-
lingualism: To evaluate multilingual capabilities,
we employ TyDiQA (Clark et al., 2020), a multi-
lingual question-answering benchmark that covers
11 typologically diverse languages. We adopt the
gold-passage setup, where a passage containing
the reference answer is provided, and report the F1
score. (4) Coding: To evaluate the LLMs’ ability
to generate functionally correct programs from doc-
strings, we utilize HumanEval (Chen et al., 2021)
and report the pass@10 performance. (5) Truth-
ful: We incorporate TruthfulQA (Lin et al., 2022)
to assess the ability to avoid generating known
falsehoods resulting from misconceptions or false
beliefs while providing informative responses. (6)
Conversation: We use AlpacaEval 2.0 (Li et al.,
2023) to evaluate the instruction-following abilities.
AlpacaEval is an LLM-based automatic evaluation
metric. In this paper, we calculate the win rates
against the GPT-4-preview-1106. We include the
following three datasets for basic knowledge bench-
marks to validate the basic knowledge preserved in
LLMs: (1) NaturalQuestion (Kwiatkowski et al.,
2019), (2) TriviaQA (Han et al., 2019), and (3)
HotpotQA (Yang et al., 2018).

Continual Learning. For continual learning eval-
uations, following (Wang et al., 2023a), we use
Overall Performance (OP) and Backward Transfer
(BWT) scores as the main metrics in CL settings.
In terms of the formula, after incrementally learn-
ing the t-th task, the performance on the i-th task
(where i ≤ t) is denoted as St,i. The OP and BWT
scores can be calculated as

OPt =
1

t

t∑

i=1

St,i, BWTt =
1

t

t−1∑

i=1

(St,i − Si,i) . (5)

We utilize accuracy as the primary evalua-
tion metric for C-STANCE, FOMC, ScienceQA,
NumGLUE-cm, and NumGLUE-ds. In the case of
Py150, we employ similarity as the evaluation met-
ric. Moreover, for the evaluation of MeetingBank
and 20Minuten, we employ the ROUGE-L metric.
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

FFT 59.4 61.0 59.2 56.2 50.1 68.5 5.1 48.6 20.7 47.8
HFT 61.2 63.5 58.3 60.4 50.5 67.9 10.9 55.5 21.6 50.0

Table 8: General abilities and basic knowledge performance of LLAMA 3 8B.

LLAMA 2- LLAMA 2- Model-level Layer-level Category-level
7B CHAT-7B Half-Reset Half-Reset Half-Reset

MMLU (EM, 0-shot) 41.6 47.0 46.2 45.8 46.7
GSM (ACC, 8-shot) 12.0 26.0 8.0 22.0 24.0
BBH (EM, 0-shot) 39.9 39.2 41.0 39.5 37.7
TyDiQA (F1, 1-shot) 48.4 43.6 46.3 44.2 44.9
TruthfulQA (MC2, 0-shot) 38.5 46.0 41.7 43.1 41.7
HumanEval (Pass@10) 26.2 23.9 26.8 25.0 22.0
Overall (General Ability) 34.4 37.6 35.0 36.6 36.2

NaturalQuestion (EM, 0-shot) 12.9 7.2 8.2 11.2 10.9
TriviaQA (EM, 0-shot) 40.2 3.3 18.3 21.3 21.3
HotpotQA (EM, 0-shot) 15.6 6.6 7.4 9.9 9.0
Overall (World Knowledge) 22.9 5.7 11.3 12.4 13.7

Overall 30.6 27.0 27.1 28.5 28.7

Table 9: General abilities and basic knowledge results of LLAMA 2-7B, the well-aligned model LLAMA 2-CHAT-7B,
and our proposed three half-reset approaches.

A.3.3 Implementation Details

Following (Ivison et al., 2023), in the SFT phase
on TÜLU V2, we adopt a linear-decreasing learn-
ing rate of 2e-5 with a 0.3 warmup ratio and train
for 2 epochs. For the human preference alignment
phase on UltraFeedback, we use direct preference
optimization (Rafailov et al., 2023) to align the fine-
tuned LLMs on TÜLU V2. We use a learning rate
of 5e-7 and a global batch size of 32. Due to the
context length of 4096 used during LLAMA 2 pre-
training, as referenced in the (Ivison et al., 2023)
code repository issues, we set a maximum sequence
length of 4096 during the SFT stage. However, due
to hardware resource limitations, the maximum se-
quence length is reduced to 1024 during the DPO
stage under LLAMA 2-13B. During the contin-
ual learning phase, following (Wang et al., 2023a),
we employ a fixed learning rate of 1e-5 and fine-
tune the eight sub-datasets for different numbers
of epochs: 5, 3, 7, 5, 3, 5, 5, and 7 epochs, respec-
tively. The global batch size for both stages is set
to 128. All our experiments are conducted on one
machine equipped with 8x80G Nvidia A100. Al-
gorithm 1 introduce the detailed implementations
of our proposed fine-grained selecting approach of
HFT. Additionally, to evaluate the SFT and DPO
models, we employ a chat format, using special-
ized tokens <|user|> and <|assistant|> to mark

user utterances and target assistant responses, re-
spectively. However, we use a standard language
format for HumanEval and the basic knowledge
benchmarks when evaluating pre-trained models.

As for the implementation of HFT, our HFT
parameter selection method primarily focuses on
each transformer block. For the parameter matrices
within each block, we first categorize them into
three types: attention, MLP, and other. Specifically,
for the LLAMA 2 model, in the attention category,
each block contains four attention layers (Q, K, V,
and O), and we randomly select two of these layers
to freeze. In the "other" category, each block in-
cludes the input layer norm and post-attention layer
norm, and we randomly select one of these layers
to freeze. Finally, for the MLP category, each block
contains up, down, and gate layers. Since there is
an odd number of layers, to maintain a 50% pa-
rameter selection ratio, we freeze two layers in
every other block, while freezing one layer in the
remaining blocks.

A.4 Additional Experiments

A.4.1 More Trials on Other Transformer
Architecture

We mainly focus on the performance of HFT on
standard dense transformers and experiment with
the most representative open-source models. Here,
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# Trainable Parameters (%) 8.3 22.3 30.6 38.9 50.0 61.1 69.4 77.7 91.7 100

Runtime (%) 48.0 52.2 56.4 64.0 68.5 72.5 85.1 85.2 89.0 100
∆ (%) -52.0 -47.8 -43.6 -36.0 -31.5 -27.5 -14.9 -14.8 -11.0 0.0

Table 10: Efficiency analysis among different ratios of trainable parameters, in which FFT as a reference value and
underline marks HFT proposed in this paper.

MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

DPO (FFT-based, 7b) 48.8 25.5 42.8 51.1 45.5 36.7 1.9 22.9 12.8 32.0
DPO (HFT-based, 7b) 50.7 30.5 42.8 43.9 49.8 35.1 1.0 20.4 5.9 31.1
DPO (FFT-based, 13b) 51.8 48.5 49.9 52.9 45.3 41.0 0.2 5.5 3.0 33.1
DPO (HFT-based, 13b) 55.0 45.5 51.4 53.2 49.5 42.9 0.3 4.9 4.7 34.2

Table 11: General abilities and basic knowledge performance of DPO stage (with HFT), which is initialized with
HFT-based SFT models fine-tuned on TÜLU V2.

we conduct an additional experiment to compare
HFT and FFT on LLAMA 3-8B, which uses group-
query attention and differs from the multi-head
attention in LLAMA 2. We make some modifi-
cations to the selection method of HFT when ap-
plied to GQA. Specifically, since each key-value
((K,V )) pair corresponds to multiple queries (Q),
GQA maintains dimensional consistency in matrix
operations by duplicating the (K,V ) pairs. On a
macro level, in terms of matrix representation, the
dimensions of K and V matrices are smaller than
that of Q. Therefore, we separate K and V as one
group and Q as another for selection, rather than
filtering Q,K, V together as traditionally done in
MHA. As shown in Table 8, HFT still achieved the
best performance, which also proves the universal-
ity and robustness of our method.

A.4.2 Detailed Results of Pilot Experiments
Table 9 presents the detailed results of pilot exper-
iments conducted in Section 2. We also compare
two additional model-level and layer-level param-
eter selection methods here. The results indicate
that the category-level selection approach achieves
the highest overall performance, consistent with
the follow-up training setting conclusion.

A.4.3 Efficiency Analysis
We conduct a comparison of the runtime costs for
different ratios of trainable parameters. Specifi-
cally, we fine-tuned LLAMA 2-7B on TÜLU V2
and record the total duration from the start to the
end of the training program. The results in Table 10
demonstrate that, without specific optimization, all
models with varying ratios of trainable parame-
ters can reduce the training time. As expected, as
the proportion of trainable parameters increases,

the training duration also increases. Notably, our
HFT method achieves a 31.5% reduction in train-
ing time, significantly decreasing the training cost
for extremely large-scale instruction datasets.

A.4.4 Direct Preference Optimization with
HFT-based Models

In Section 4.1, we initialize our DPO process with
the FFT model. In this section, we investigate the
performance of the DPO process when initialized
with the HFT model. The experimental results are
shown in Table 11. We observe that while the DPO
process on the HFT model performs better in cer-
tain general abilities„ it experiences minor losses
in overall performance under LLAMA 2-7B. How-
ever, the situation is reversed in LLAMA 2-13B,
where the DPO deployed on the HFT model outper-
forms the FFT-initialized DPO. Nonetheless, DPO
equipped with HFT tends to improve performance
compared to DPO with FFT consistently.

A.4.5 General Abilities and Basic Knowledge
of Continual Fine-tuned Models

We also evaluate the models mentioned in Sec-
tion 4.2 on general abilities and basic knowledge
benchmarks. The experimental results are pre-
sented in Table 12. We observe that after 8 rounds
of fine-tuning on consecutive tasks, the models
fine-tuned with the HFT method consistently out-
perform the FFT models in terms of overall per-
formance. This further confirms the effectiveness
of HFT in preserving the original capabilities of
the model and mitigating catastrophic forgetting.
Furthermore, although LoRA preserves more layer
parameters unchanged, it still performs worse com-
pared to HFT. We believe this may be attributed
to the low-rank decomposition resulting in a lim-
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MMLU GSM BBH TyDi Truthful Human Natural Trivia Hotpot Overall8K QA QA Eval Question QA QA

SeqFT-7b 35.5 3.0 24.3 39.1 42.7 0.3 10.0 23.9 14.0 21.4
GEM-7b 40.1 3.5 17.0 33.4 41.4 2.2 10.0 19.6 14.0 20.1
Replay-7b 45.9 4.5 35.2 41.6 39.6 8.5 11.6 36.1 14.2 26.4
LoraSeqFT-7b 43.3 11.0 30.7 35.5 41.7 8.8 8.7 24.7 13.4 24.2
SeqFT-7b (Half) 44.1 3.5 30.8 41.1 41.8 1.6 11.3 38.9 14.4 25.3 (+3.9)

GEM-7b (Half) 45.1 5.0 32.3 34.9 43.0 2.7 10.4 35.9 13.7 24.8 (+4.7)

Replay-7b (Half) 47.9 11.0 38.8 42.6 42.5 12.7 10.7 38.4 12.9 28.6 (+2.2)

SeqFT-13b 39.7 5.0 27.9 41.0 41.4 0.0 12.7 44.3 16.3 25.4
Replay-13b 49.0 3.5 40.1 37.7 43.1 12.0 12.5 6.7 13.3 24.2
GEM-13b 47.2 4.0 37.6 36.3 43.0 10.0 10.8 10.2 12.1 23.5
LoraSeqFT-13b 43.3 15.0 42.4 43.1 40.5 18.2 10.6 37.6 16.2 29.7
SeqFT-13b (Half) 50.0 7.0 46.3 47.2 41.4 11.2 14.7 50.6 18.7 31.9 (+6.5)

GEM-13b (Half) 49.9 9.5 46.5 38.2 45.1 18.9 9.8 39.7 14.2 30.2 (+6.7)

Replay-13b (Half) 50.0 10.5 47.1 39.6 45.8 20.1 10.1 41.1 14.0 30.9 (+2.3)

Table 12: General abilities and basic knowledge performance of the final round models fine-tuned on TRACE. We
compare four different fine-tuning methods and our HFT approach start from LLAMA 2-CHAT-7B and LLAMA
2-CHAT-13B.

FFT FFT HFT FFT HFT
(linear,1e-5) (linear,2e-5) (linear,2e-5) (cosine,2e-5) (cosine,2e-5)

MMLU (EM, 0-shot) 49.2 48.5 50.8 47.8 50.6
GSM (ACC, 8-shot) 24.5 25.0 30.5 25.5 31.5
BBH (EM, 0-shot) 41.8 42.2 43.6 42.2 44.4
TyDiQA (F1, 1-shot) 51.5 51.2 52.3 51.2 52.8
TruthfulQA (MC2, 0-shot) 40.2 41.7 45.4 42.6 46.4
HumanEval (Pass@10) 36.0 36.9 34.6 34.3 33.7
Overall (General Ability) 40.4 41.0 42.9 40.6 43.2

NaturalQuestion (EM, 0-shot) 4.9 3.2 6.2 3.5 6.4
TriviaQA (EM, 0-shot) 22.7 26.4 32.8 27.6 33.6
HotpotQA (EM, 0-shot) 13.4 14.5 15.4 13.1 14.7
Overall (World Knowledge) 13.7 14.7 18.1 14.7 18.2

Overall 31.5 32.2 34.6 32.0 34.9

Table 13: General abilities and basic knowledge of LLAMA 2 7B based on different learning rates.

ited number of trainable parameters. Merging the
LoRA weights back into the original model could
potentially disrupt the original parameter space to
a greater extent.

A.4.6 The Impact of Learning Rates

To validate whether our approach indeed leverages
the frozen parameters to mitigate the catastrophic
forgetting, rather than being equivalent to the ef-
fects brought about by a reduced learning rate, we
compare the half learning rate and the cosine learn-
ing rate schedule to demonstrate further that the
way HFT alleviates forgetting is not depending on
learning rate but is indeed due to the role played
by the frozen parameters. As shown in Tabel 13,
we observe that upon halving the learning rate, the
overall performance declines, with no significant
recovery in the performance on world knowledge,
thereby underscoring the capability of HFT in mit-
igating catastrophic forgetting. Moreover, under
the cosine learning rate schedule, HFT still outper-

forms FFT, which also demonstrates the robustness
of HFT to variations in the learning rate.

A.4.7 The Impact of Randomness

Here, we discuss a series of factors related to the
randomness of HFT, including different trainable
parameter ratios and selection methods. Note that
in the continual learning setting, we randomly se-
lect trainable parameters for each fine-tuning pro-
cess, with a total of 8 random selections. The signif-
icant performance improvement of HFT over FFT
indicates that it is not sensitive to fine-grained pa-
rameter selection. For all that, we also supplement
a randomness experiment under the instruction tun-
ing setting with 5 different random seeds (i.e. pa-
rameter selections). As shown in Table 14, among
these 5 trials, HFT exhibits minimal variations and
a stable lead relative to FFT, demonstrating its ro-
bustness again.
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HFT HFT HFT HFT HFT
(seed 1) (seed 2) (seed 3) (seed 4) (seed 5)

MMLU (EM, 0-shot) 50.8 49.9 50.2 51.2 50.5
GSM (ACC, 8-shot) 30.5 31.0 30.5 28.5 29.5
BBH (EM, 0-shot) 43.6 43.2 42.9 43.4 44.1
TyDiQA (F1, 1-shot) 52.3 52.3 53.2 52.8 51.7
TruthfulQA (MC2, 0-shot) 45.4 45.7 44.7 45.2 44.9
HumanEval (Pass@10) 34.6 35.1 34.8 34.7 35.2
Overall (General Ability) 42.9 42.9 42.7 42.6 42.7

NaturalQuestion (EM, 0-shot) 6.2 6.1 5.9 6.1 6.4
TriviaQA (EM, 0-shot) 32.8 31.9 33.4 33.1 33.0
HotpotQA (EM, 0-shot) 15.4 15.4 15.6 14.9 15.6
Overall (World Knowledge) 18.1 17.8 18.3 18.0 18.3

Overall 34.6 34.5 34.6 34.4 34.6

Table 14: General abilities and basic knowledge of LLAMA 2 7B based on different random seeds.

Models AlpacaEval 2.0

LLAMA 2-7B-SFT 6.96
LLAMA 2-7B-SFT (Reset) 2.98
LLAMA 2-7B-SFT (Half) 5.59

LLAMA 2-7B-DPO 10.68
LLAMA 2-7B-DPO (Reset) 8.44
LLAMA 2-7B-DPO (Half) 9.07

LLAMA 2-13B-SFT 8.32
LLAMA 2-13B-SFT (Reset) 11.93
LLAMA 2-13B-SFT (Half) 10.43

LLAMA 2-13B-DPO 11.55
LLAMA 2-13B-DPO (Reset) 12.55
LLAMA 2-13B-DPO (Half) 11.68

Table 15: Evaluation results on AlpacaEval 2.0.

A.4.8 Evaluation on AlpacaEval

As shown in Table 15, we evaluate different mod-
els on AlpacaEval 2.0. The results indicate that
our method is less effective than FFT on LLAMA

2-7B. However, a reversal occurs when the model
size scales up to 13b, where our approach outper-
forms the FFT models comprehensively. This sug-
gests that our method has greater potential on much
larger-scale LLMs, as supported by the experimen-
tal results in Table 1, which show a larger improve-
ment of HFT compared to FFT on LLAMA 2-13B

compared to LLAMA 2-7B. Interestingly, the Half-
Reset method performs well on LLAMA 2-13B

but shows completely different results on LLAMA

2-7B. This suggests that simply resetting half of
the parameters may not provide consistent perfor-
mance since the model is trained on the full set of
parameters.

Method Dataset IFEval

Pr.S In.S Pr.L In.L

Results of Llama-3.1-8B
FFT Tulu3-IF 61.00 71.58 65.25 75.42
HFT Tulu3-IF 67.10 75.30 70.43 78.30

Results of Qwen-2.5-7B
FFT Tulu3-IF 34.57 49.64 38.45 52.52
HFT Tulu3-IF 37.89 53.00 39.37 54.56

Table 16: More results on recent models and datasets
with Tulu3-IF.

Method Dataset HumanEval MBPP LiveCode
Bench

Results of Llama-3.1-8B
FFT Tulu3-Code 43.90 42.60 8.35
HFT Tulu3-Code 51.83 47.80 13.99

Results of Qwen-2.5-7B
FFT Tulu3-Code 72.56 63.80 21.92
HFT Tulu3-Code 74.39 66.80 24.43

Table 17: More results on recent models and datasets
with Tulu3-Code.

Method Dataset GSM8K MATH

Results of Llama-3.1-8B
FFT Tulu3-Math 72.63 25.32
HFT Tulu3-Math 74.37 26.58

Results of Qwen-2.5-7B
FFT Tulu3-Math 84.91 46.34
HFT Tulu3-Math 85.82 50.24

Table 18: More results on recent models and datasets
with Tulu3-Math.
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Method Dataset MMLU Hellaswag GSM8K HumanEval BBH NQ TriviaQA Avg.

Results of Llama-3.1-8B
FFT WizardLM-143K 58.69 65.10 57.62 48.17 57.71 26.90 52.69 52.41
HFT WizardLM-143K 58.23 65.07 62.77 50.61 59.19 29.72 59.42 55.00

Results of Qwen-2.5-7B
FFT WizardLM-143K 57.09 77.41 81.35 77.82 67.46 24.18 54.95 62.89
HFT WizardLM-143K 63.35 76.77 81.96 75.67 67.73 25.01 57.30 63.97

Table 19: More results on recent models and datasets with WizardLM-143K.

A.4.9 More Results on Recent Models and
Datasets

To further validate the effectiveness of HFT, we
evaluate the performance of recent advanced mod-
els (Qwen-2.5-7B (Qwen et al., 2025) and Llama-
3.1-8B) on four subsets of Tulu3 (Lambert et al.,
2025) (Tulu3-instruction-following, Tulu3-math,
Tulu3-code), and WizardLM-143K (Xu et al.,
2023a). According to the technical reports of
the Llama-3.1 and Qwen-2.5 series models, we
train them for two epochs using learning rates
of 1e-5 and 7e-6, respectively. The evaluation is
conducted using the OpenCompass (Contributors,
2023) framework, and the results are shown in Ta-
bles 16, 17, 18, 19. We introduce three bench-
marks including MATH (Hendrycks et al., 2021b),
LiveCodeBench (Jain et al., 2024), MBPP (Austin
et al., 2021) and IFEval (Zhou et al., 2023b) for
more convincing evaluations. The experimental
results on the state-of-the-art models trained with
four different domains demonstrate that HFT not
only mitigates forgetting but also achieves supe-
rior performance in broad downstream tasks com-
pared to FFT. We believe these additional exper-
iments further demonstrate the superiority of the
HFT method, and we will also enhance the related
experiments in the final version of the paper to
improve its completeness and timeliness.

A.4.10 The Training Stability of HFT

To further verify the training stability of HFT
and address concerns that FFT might underper-
form compared to HFT due to overfitting, we train
Llama-3.1-8B and Qwen-2.5-7B on the WizardLM-
143K dataset and evaluate models at different train-
ing steps. As shown in Table 20 and 21, we find
that FFT does not exhibit overfitting. During con-
tinual fine-tuning, the average performance of both
HFT and FFT improves; however, at each step, the
average performance of HFT is better than that of
FFT on Llama-3.1-8B. On Qwen-2.5-7B, FFT ex-

hibits instability during training, with significant
fluctuations in performance across different steps,
whereas HFT ensures smooth and stable training.
This phenomenon further demonstrates the superi-
ority of HFT, which enables more stable training
and alleviates forgetting.

A.4.11 The Exploration of Dynamic Freezing
Strategy

In this section, we explore a new strategy that
dynamically freezes the parameters during fine-
tuning. Specifically, at the start of training, we
train all parameters, and as the training progresses,
we continuously freeze parameters in the model
(freezing 10% of the parameters every time train-
ing progresses by 10%). We train Llama-3.1-8B
on the WizardLM-143K dataset, and the results are
shown in Table 22. We find that dynamically freez-
ing parameters performs better than FFT but worse
than HFT. We believe that maintaining the overall
structural consistency of the model during training
is important, and dynamically freezing parameters
can disrupt such consistency.

A.4.12 Explore the Importance of Different
Layers

In this section, we mainly focus on the importance
of different layers in self-attention blocks. Specifi-
cally, we train Llama-3.1-8B on WizardLM-143K.
Since the Llama-3 series models use GQA technol-
ogy, we group Q and O, and K and V , selecting
them separately. Currently, we have explored two
sets of experiments: one where Q and K are fixed
as frozen, and another where O and V are fixed as
frozen. The specific results are shown in Table 23.
We find that if only the Q and K are frozen, or
only the O and V are frozen, although state-of-the-
art performance is achieved on some benchmarks,
severe degradation occurs in certain evaluations,
leading to subpar average performance. This fur-
ther highlights that the fine-grained parameter se-
lection approach adopted in HFT can maintain the
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Steps MMLU Hellaswag GSM8K HumanEval BBH NQ TriviaQA Avg.

Results of FFT
448 47.72 33.07 50.27 37.90 52.85 27.01 50.65 42.77
896 45.83 51.60 50.42 42.07 54.16 27.31 53.37 46.39
1344 51.04 53.37 55.72 47.84 58.03 25.37 52.45 49.12
1792 57.76 65.41 56.41 50.61 58.12 27.37 53.58 52.75
2234 58.69 65.10 57.62 48.17 57.71 26.90 52.69 52.41

Results of HFT
448 50.83 40.98 55.88 42.07 55.44 30.44 57.72 47.63
896 50.31 56.87 57.09 42.67 57.42 30.89 59.01 50.61
1344 50.25 61.77 59.21 49.62 60.05 29.78 57.52 52.60
1792 56.65 62.89 60.58 53.05 57.85 30.17 59.18 54.34
2234 58.23 65.07 62.77 50.61 59.19 29.72 59.42 55.00

Table 20: The results of different training steps on Llama-3.1-8B.

Steps MMLU Hellaswag GSM8K HumanEval BBH NQ TriviaQA Avg.

Results of FFT
448 62.97 50.84 79.68 59.45 66.23 27.17 54.52 57.27
896 59.50 71.05 80.67 63.41 66.35 26.37 52.71 60.01
1344 48.62 77.38 81.35 61.59 68.00 23.80 54.33 59.30
1792 54.66 79.22 81.80 71.89 67.38 24.46 54.32 61.96
2234 57.09 77.41 81.35 77.82 67.46 24.18 54.95 62.89

Results of HFT
448 64.67 51.02 80.44 60.68 67.76 27.09 56.70 58.34
896 64.23 67.35 80.67 71.34 67.37 27.01 56.97 62.13
1344 63.79 79.39 81.43 64.02 67.95 25.10 57.68 62.77
1792 63.84 81.52 81.35 72.18 67.62 24.85 57.55 64.13
2234 63.35 76.77 81.96 75.67 67.73 25.01 57.30 63.97

Table 21: The results of different training steps on Qwen-2.5-7B.

Model MMLU Hellaswag GSM8K HumanEval BBH NQ TriviaQA Avg.

FFT 58.69 65.10 57.62 48.17 57.71 26.90 52.69 52.41
Dynamic 59.13 64.32 63.38 47.82 58.15 28.01 57.62 54.06
HFT 58.23 65.07 62.77 50.61 59.19 29.72 59.42 55.00

Table 22: The results of the dynamically freezing strategy on Llama-3.1-8B.

Model MMLU Hellaswag GSM8K HumanEval BBH NQ TriviaQA Avg.

FFT 58.69 65.10 57.62 48.17 57.71 26.90 52.69 52.41
Freeze Q/K 40.12 65.13 60.50 49.39 55.35 28.45 57.92 50.98
Freeze O/V 45.16 64.41 63.15 38.41 48.84 30.06 60.86 50.13
HFT 58.23 65.07 62.77 50.61 59.19 29.72 59.42 55.00

Table 23: The results of freezing different layers on Llama-3.1-8B.
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overall structural consistency of the model, thereby
achieving more balanced performance.

A.4.13 Detailed Results of Revisiting
Embedding and LM_Head Layers

Table 24 details the results of freezing the input and
output layers. Meanwhile, Table 25 and 26 show
the detailed results of the two adjacent numbers of
parameter settings on TRACE.

A.4.14 Detailed Results of Different
Parameter Selection Strategies

Table 27 and 28 provide the detailed results on
TRACE with model-level and layer-level parameter
selection strategies mentioned in Section 4.3.

A.4.15 Detailed Results of TRACE
Table 29 to 42 show the detailed results of different
models and approaches of each round during the
continual learning on TRACE.

12812



Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.1 48.0 47.2 45.8 46.4 46.2 46.3 48.0
FOMC - 69.0 66.1 65.7 65.7 64.7 63.9 66.9
MeetingBank - - 37.5 34.5 34.2 32.7 31.9 33.2
Py150 - - - 51.2 50.3 49.8 49.2 50.8
ScienceQA - - - - 58.1 58.0 56.8 56.2
NumGLUE-cm - - - - - 33.3 25.9 29.6
NumGLUE-ds - - - - - - 45.8 43.1
20Minuten - - - - - - - 40.6

OP 50.1 58.5 50.3 49.3 50.9 47.5 45.7 46.1
BWT - - - - - - - -2.2%

Table 24: Detailed results on TRACE with 50.0% trainable parameters while freezing embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.2 43.7 43.2 44.2 44.2 44.4 43.7 45.1
FOMC - 71.0 64.3 65.3 60.7 65.9 65.1 63.3
MeetingBank - - 46.9 37.7 35.4 39.0 38.5 36.9
Py150 - - - 57.9 52.6 53.6 53.6 53.4
ScienceQA - - - - 85.7 77.5 71.8 74.8
NumGLUE-cm - - - - - 33.3 29.6 33.3
NumGLUE-ds - - - - - - 56.6 48.9
20Minuten - - - - - - - 41.1

OP 49.2 57.4 51.5 51.3 55.7 52.3 51.3 49.6
BWT - - - - - - - -5.6%

Table 25: Detailed results on TRACE with 38.9% trainable parameters while updating embedding and lm_head
layers.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 45.3 50.8 50.9 51.4 51.3 51.4 51.1 53.3
FOMC - 72.8 63.7 65.7 6.3 68.3 69.0 67.9
MeetingBank - - 48.9 41.1 38.3 41.3 41.1 40.0
Py150 - - - 57.3 50.3 52.8 52.9 52.9
ScienceQA - - - - 88.2 70.6 67.3 69.4
NumGLUE-cm - - - - - 30.9 28.4 21.0
NumGLUE-ds - - - - - - 59.4 53.5
20Minuten - - - - - - - 40.8

OP 45.3 61.8 54.5 53.9 46.9 52.6 52.7 49.9
BWT - - - - - - - -5.6%

Table 26: Detailed results on TRACE with 61.1% trainable parameters while updating embedding and lm_head
layers.
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.3 49.1 48.8 50.2 50.0 48.9 48.1 49.2
FOMC - 70.6 57.5 53.8 42.7 54.4 58.1 55.2
MeetingBank - - 48.9 37.8 36.5 38.2 37.3 38.9
Py150 - - - 57.7 55.4 55.9 54.8 55.7
ScienceQA - - - - 87.7 59.8 54.2 56.4
NumGLUE-cm - - - - - 38.3 22.2 25.9
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.7

OP 49.3 59.9 51.7 49.9 54.5 49.3 47.2 46.9
BWT - - - - - - - -9.2%

Table 27: Detailed results on TRACE with model-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.8 41.4 44.6 46.5 47.5 48.6 48.2 49.0
FOMC - 72.2 58.5 54.6 1.8 46.8 50.2 50.0
MeetingBank - - 47.1 34.7 34.5 37.2 38.6 37.1
Py150 - - - 56.5 53.3 53.8 54.2 54.1
ScienceQA - - - - 88.5 84.4 76.2 77.5
NumGLUE-cm - - - - - 35.8 28.4 21.0
NumGLUE-ds - - - - - - 57.2 52.9
20Minuten - - - - - - - 41.5

OP 50.8 56.8 50.1 48.1 45.1 51.1 50.4 47.9
BWT - - - - - - - -8.3%

Table 28: Detailed results on TRACE with layer-level parameter selection.

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.5 49.7 48.5 48.3 6.7 47.4 47.2 48.7
FOMC - 71.6 46.6 46.4 0.4 43.1 42.9 44.0
MeetingBank - - 49.0 39.9 40.8 37.6 34.5 37.9
Py150 - - - 57.0 49.2 54.5 54.2 54.0
ScienceQA - - - - 89.1 71.5 44.6 60.6
NumGLUE-cm - - - - - 30.9 24.7 25.9
NumGLUE-ds - - - - - - 59.4 52.6
20Minuten - - - - - - - 41.5

OP 48.5 60.7 48.0 47.9 37.2 47.5 43.9 45.7
BWT - - - - - - - -10.2%

Table 29: Detailed results on TRACE with SeqFT (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 49.4 47.6 45.6 46.4 47.8 49.5 49.1 49.3
FOMC - 71.8 57.7 59.1 46.0 66.5 67.3 66.3
MeetingBank - - 47.4 39.1 31.2 38.6 38.4 35.7
Py150 - - - 57.4 52.1 54.8 55.0 55.0
ScienceQA - - - - 87.4 82.1 77.6 75.3
NumGLUE-cm - - - - - 42.0 30.9 32.1
NumGLUE-ds - - - - - - 58.5 55.1
20Minuten - - - - - - - 41.3

OP 49.4 59.7 50.2 50.5 52.9 55.6 53.8 51.3
BWT - - - - - - - -5.6%

Table 30: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.0 48.9 48.4 47.7 13.0 46.5 45.7 48.1
FOMC - 69.4 60.3 59.7 0.4 56.5 57.1 58.5
MeetingBank - - 49.0 40.4 38.4 38.8 34.8 39.0
Py150 - - - 56.7 51.2 54.0 53.6 53.8
ScienceQA - - - - 89.5 64.2 29.5 54.5
NumGLUE-cm - - - - - 33.3 32.1 33.3
NumGLUE-ds - - - - - - 59.7 57.2
20Minuten - - - - - - - 40.8

OP 50.0 59.2 52.6 51.1 38.5 48.9 44.6 48.2
BWT - - - - - - - -7.9%

Table 31: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.3 49.0 47.0 48.3 50.0 50.7 50.1 51.3
FOMC - 70.0 58.9 60.1 36.1 63.9 65.9 65.5
MeetingBank - - 47.5 40.2 38.2 39.2 39.0 37.9
Py150 - - - 57.0 53.0 55.3 55.1 54.6
ScienceQA - - - - 88.4 76.8 70.1 68.4
NumGLUE-cm - - - - - 34.6 24.7 29.6
NumGLUE-ds - - - - - - 60.0 53.6
20Minuten - - - - - - - 41.0

OP 50.3 59.5 51.1 51.4 53.1 53.4 52.1 50.2
BWT - - - - - - - -5.9%

Table 32: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.7 50.1 49.4 48.2 50.6 49.7 49.9 52.0
FOMC - 64.9 68.1 70.2 70.0 70.0 70.6 70.0
MeetingBank - - 43.4 48.0 46.1 46.5 46.4 44.8
Py150 - - - 53.9 55.0 54.1 54.0 53.5
ScienceQA - - - - 81.9 86.0 86.3 87.5
NumGLUE-cm - - - - - 30.9 32.1 32.1
NumGLUE-ds - - - - - - 55.7 53.5
20Minuten - - - - - - - 40.6

OP 51.7 57.5 53.6 55.1 60.7 56.2 56.4 54.3
BWT - - - - - - - 1.4%

Table 33: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 47.7 53.5 50.6 51.0 50.8 50.2 51.1 52.1
FOMC - 61.1 69.4 70.8 69.8 70.2 69.4 69.8
MeetingBank - - 39.3 47.1 47.0 46.0 46.7 47.3
Py150 - - - 55.3 56.3 56.3 56.5 55.6
ScienceQA - - - - 87.3 52.2 85.0 84.8
NumGLUE-cm - - - - - 37.0 29.6 32.1
NumGLUE-ds - - - - - - 48.0 50.5
20Minuten - - - - - - - 40.5

OP 47.7 57.3 53.1 56.1 62.2 52.0 55.2 54.1
BWT - - - - - - - +2.1%

Table 34: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-7B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.6 48.1 47.4 46.9 24.1 12.0 4.1 7.9
FOMC - 68.8 58.3 52.6 0.0 48.4 44.2 1.4
MeetingBank - - 45.7 10.6 5.9 1.1 2.7 3.0
Py150 - - - 58.6 20.8 46.8 45.2 0.4
ScienceQA - - - - 66.1 50.7 41.3 0.0
NumGLUE-cm - - - - - 33.3 27.2 0.0
NumGLUE-ds - - - - - - 50.5 0.0
20Minuten - - - - - - - 38.1

OP 51.6 58.5 50.5 42.2 23.4 32.1 30.7 6.4
BWT - - - - - - - -45.2%

Table 35: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-7B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.3 34.9 37.6 40.0 41.0 44.2 43.8 44.9
FOMC - 70.0 57.5 52.6 4.2 49.0 47.2 49.8
MeetingBank - - 50.5 44.9 44.4 45.7 44.7 41.9
Py150 - - - 56.8 54.9 54.4 53.1 54.6
ScienceQA - - - - 91.3 73.5 66.1 73.9
NumGLUE-cm - - - - - 43.2 28.4 25.9
NumGLUE-ds - - - - - - 62.5 59.4
20Minuten - - - - - - - 41.4

OP 51.3 52.5 48.5 48.6 47.2 51.7 49.4 49.0
BWT - - - - - - - -9.4%

Table 36: Detailed results of on TRACE with SeqFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 54.2 52.2 54.7 55.2 55.3 54.3 54.6 55.5
FOMC - 73.4 56.7 54.6 38.3 43.1 41.9 50.2
MeetingBank - - 48.9 44.4 44.1 45.5 45.9 43.6
Py150 - - - 58.9 56.3 56.4 56.7 56.3
ScienceQA - - - - 89.7 84.3 74.5 74.6
NumGLUE-cm - - - - - 54.3 33.3 35.8
NumGLUE-ds - - - - - - 64.0 59.4
20Minuten - - - - - - - 40.9

OP 54.2 62.8 53.4 53.3 56.7 56.3 53.0 52.0
BWT - - - - - - - -8.5%

Table 37: Detailed results on TRACE with SeqFT and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 51.5 47.2 46.7 48.1 19.0 47.4 48.3 49.2
FOMC - 70.5 59.4 60.2 0.0 60.7 58.2 61.2
MeetingBank - - 52.3 47.6 40.5 40.6 43.2 41.5
Py150 - - - 60.7 60.2 53.6 54.6 55.7
ScienceQA - - - - 92.7 78.5 30.6 60.5
NumGLUE-cm - - - - - 43.7 33.3 33.3
NumGLUE-ds - - - - - - 61.7 60.2
20Minuten - - - - - - - 41.8

OP 51.5 58.9 52.8 54.2 42.5 54.1 47.1 50.4
BWT - - - - - - - -8.9%

Table 38: Detailed results on TRACE with GEM (start from LLAMA 2-CHAT-13B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 51.5 48.9 49.6 51.5 51.0 50.2 51.5
FOMC - 73.4 60.8 61.9 44.4 65.3 68.9 67.2
MeetingBank - - 50.2 47.6 41.2 43.3 40.9 41.8
Py150 - - - 61.7 60.1 60.3 58.7 57.5
ScienceQA - - - - 93.0 88.7 78.9 77.7
NumGLUE-cm - - - - - 44.4 33.3 36.7
NumGLUE-ds - - - - - - 61.9 55.7
20Minuten - - - - - - - 40.6

OP 52.4 62.5 53.3 55.2 58.0 58.8 56.1 53.6
BWT - - - - - - - -6.1%

Table 39: Detailed results on TRACE with GEM and HFT (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 48.8 51.3 48.5 49.3 49.2 47.5 46.7 51.4
FOMC - 62.3 70.6 72.4 71.2 71.2 70.8 73.0
MeetingBank - - 44.9 48.2 47.4 48.5 47.1 47.5
Py150 - - - 53.9 55.1 54.2 47.5 53.3
ScienceQA - - - - 89.5 91.6 90.7 89.6
NumGLUE-cm - - - - - 45.7 29.6 30.9
NumGLUE-ds - - - - - - 57.5 52.3
20Minuten - - - - - - - 39.7

OP 48.8 56.8 54.7 56.0 62.5 59.8 55.7 54.7
BWT - - - - - - - -0.6%

Table 40: Detailed results on TRACE with Replay (start from LLAMA 2-CHAT-13B).

Task\Round 1 2 3 4 5 6 7 8

C-STANCE 50.2 52.5 53.8 53.0 53.4 52.7 52.4 52.1
FOMC - 61.3 74.2 71.2 71.8 73.2 72.4 73.6
MeetingBank - - 48.5 48.7 47.0 46.9 48.6 47.6
Py150 - - - 55.7 58.2 55.4 54.0 54.5
ScienceQA - - - - 83.3 90.0 90.1 89.7
NumGLUE-cm - - - - - 45.7 48.1 43.2
NumGLUE-ds - - - - - - 60.9 57.5
20Minuten - - - - - - - 41.0

OP 50.2 56.9 58.8 57.2 62.7 60.7 60.9 57.4
BWT - - - - - - - +1.6%

Table 41: Detailed results on TRACE with Replay and HFT (start from LLAMA 2-CHAT-13B).
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Task\Round 1 2 3 4 5 6 7 8

C-STANCE 52.4 44.4 45.1 39.0 0.0 41.8 41.1 12.4
FOMC - 67.1 58.3 43.8 2.2 60.3 57.8 0.0
MeetingBank - - 47.3 11.3 18.2 14.6 3.2 12.2
Py150 - - - 59.2 40.0 47.7 50.0 23.6
ScienceQA - - - - 75.4 70.3 71.0 67.7
NumGLUE-cm - - - - - 47.5 28.5 25.7
NumGLUE-ds - - - - - - 61.3 28.6
20Minuten - - - - - - - 41.6

OP 52.4 55.8 50.2 38.3 27.2 47.0 44.7 26.5
BWT - - - - - - - -30.0%

Table 42: Detailed results on TRACE with LoRASeqFT (start from LLAMA 2-CHAT-13B).
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