Redundancy Principles for MLLMs Benchmarks
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Figure 1: Where Redundancy Exists? and Why Evaluate Redundancy?

Abstract

With the rapid iteration of Multi-modality
Large Language Models (MLLMs) and the
evolving demands of the field, the number
of benchmarks produced annually has surged
into the hundreds. The rapid growth has in-
evitably led to significant redundancy among
benchmarks. Therefore, it is crucial to take
a step back and critically assess the current
state of redundancy and propose targeted prin-
ciples for constructing effective MLLM bench-
marks. In this paper, we focus on redundancy
from three key perspectives: 1) Redundancy of
benchmark capability dimensions, 2) Redun-
dancy in the number of test questions, and 3)
Cross-benchmark redundancy within specific
domains. Through the comprehensive analysis
over hundreds of MLLMs’ performance across
more than 20 benchmarks, we aim to quanti-
tatively measure the level of redundancy lies
in existing MLLM evaluations, provide valu-
able insights to guide the future development of
MLLM benchmarks, and offer strategies to re-
fine and address redundancy issues effectively.

"Equal Contribution.
*Corresponding Author.

1 Introduction

Model Evaluation has always played a crucial role
in the development of Multi-modal Large Lan-
guage Models (MLLMs). Benchmarks serve not
only as tools for assessing model accuracy but
also as catalysts for driving innovation and im-
provements within the field. In the early stages,
traditional model evaluation benchmarks such as
GQA (Hudson and Manning, 2019), VQA-V2 (An-
tol et al., 2015), VizWiz (Bigham et al., 2010),
and TextVQA (Singh et al., 2019) are character-
ized by relatively simple questions and answers,
with responses often being a single word. This
limits the depth of understanding and reasoning
required from the models, making them less ef-
fective at evaluating the complex capabilities of
modern MLLMs that are expected to handle more
nuanced tasks. With the emergence of more pow-
erful MLLMs (Achiam et al., 2023; Team et al.,
2023; Chen et al., 2024b; Wang et al., 2024b; Li
et al., 2024a; Liu et al., 2024), traditional evalua-
tion frameworks have become inadequate to meet
the flexible evaluation requirements. In response,
a new generation of VQA benchmarks has arisen,
such as MMBench (Liu et al., 2025), MM Vet (Yu
et al., 2023a), and MMMU (Yue et al., 2024).
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As MLLMs have rapidly iterated and evolved,

their diverse capabilities across various domains
have garnered increasing attention, which has led
to the development of specialized benchmarks to
evaluate MLLMs’ performance in specific areas,
like Mathematics Task (Lu et al., 2023; Zhang et al.,
2025; Wang et al., 2024a; Zou et al., 2024), Optical
Character Recognition (OCR) (Mishra et al., 2019;
Liu et al., 2023a; Mathew et al., 2021), Medical
Field (Hu et al., 2024), Remote Sensing (Li et al.,
2024e), Agents (Yang et al., 2024), GUIs (Baechler
et al., 2024), and so on.

The rapid proliferation of benchmarks has in-

evitably introduced significant redundancies, with
overlapping capabilities being assessed and recur-
ring questions appearing within and across bench-
marks. Such redundancies create inefficiencies in
model evaluation, repeatedly testing similar aspects
of MLLM performance without contributing mean-
ingful new insights. Additionally, this trend risks
overemphasizing certain task types while neglect-
ing others, potentially distorting research priorities.
In this work, we address these challenges through
a comprehensive and systematic exploration.

1.1 Identifying Redundancy

Redundancy is an intrinsic and multifaceted issue
in benchmarks, appearing in several key forms:

Redundancy across dimensions (intra-bench):
Tasks within the same benchmark may evaluate
overlapping capabilities of MLLMs, leading to
repetitive assessments.

Redundancy among instances (intra-bench):
Certain instances closely resemble others, provid-
ing minimal additional differentiation or insight
for model evaluation.

Redundancy across benchmarks within spe-
cific domains: Benchmarks targeting specific
domains often exhibit overlapping objectives or
scopes, resulting in duplicated efforts across dif-
ferent evaluation sets.

1.2 Ideal Redundancy Principles

Effective benchmarks should adhere to the follow-
ing principles regarding redundancy:

Independence of dimensions: Ideal benchmarks
should ensure that its dimensions are largely in-
dependent, minimizing overlap between them.
However, some degree of redundancy may be
inevitable when certain capabilities naturally re-
quire the interaction of multiple foundational

skills, and redundancy should be carefully bal-
anced to avoid excessive overlap.

* Optimal instance count: A well-designed
benchmark should strike a balance in the number
of instances: neither too few nor too many, to en-
sure reliable and meaningful evaluations without
introducing unnecessary redundancies.

* Domain representativeness: A comprehensive
benchmark targeted to a specific domain should
represent the domain. This may involve purpose-
ful overlap with other benchmarks within the
same domain to reflect shared core capabilities.

1.3 Benifits of Evaluating Redundancy

Evaluating and addressing redundancy offers sev-
eral significant benefits, as shown in Fig. 1:

* Optimizing benchmark design: 1). Determines
whether certain dimensions within a benchmark
warrant separate assessments or can be consoli-
dated; 2). Identifies the minimal and sufficient
number of instances required for accurate evalu-
ation; 3). Assesses the necessity of introducing
new benchmarks within specific domains.

¢ Enhancing efficiency in MLLM evaluation:
1). Determines whether a benchmark deviates
from the domain’s distribution ; 2). Identifies the
anchor benchmarks required to evaluate model
performance within the domain.

By systematically addressing redundancy, we
can not only enhance the principles of benchmark
design but also alleviate the resource demands of
MLLM evaluation, creating a more streamlined
and effective evaluation ecosystem.

2 Redundancy Framework

We present a framework for evaluating redundancy
among MLLM capabilities, defined as specific
tasks within a benchmark. Our framework is
grounded in the following prior assumption:

When evaluating similar capabilities, the per-
formance rankings of MLLMs should exhibit strong
correlation. Conversely, significant differences in
these rankings suggest the evaluated capabilities
are relatively independent.

Based on this principle, we propose the Per-
formance Correlation Redundancy Framework,
which quantifies redundancy by measuring the
correlation of MLLM performance rankings. To
ensure robustness and generalization capabil-
ity, we leverage the comprehensive data from
VLMEvalKit (Duan et al., 2024), which includes
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diverse benchmarks and performance results from
more than 100 MLLMs.

2.1 Dimensions Redundancy

Assume a benchmark consists of a set of dimen-
sions, denoted as X = { X1, Xo,..., X}, where
each X; represents a specific dimension. Let N
denote the number of MLLMs evaluated on these
dimensions. For a given dimension X;, we denote
the ranking of the N MLLM:s on this dimension as
R;. To quantify the redundancy of X;, we compute
the average rank correlation between R; and the
rankings R; of all other dimensions X; (j # 1).
Formally, the redundancy p(X;) is defined as:

1 m
p(X;) = 1 2 CORR(R;, Rj), (1)

j=1

J#i

where CORR(R;, R;) is the correlation coefficient

between the rankings R; and R;.

* High CORR(R;, R;) values can help identify po-
tentially redundant dimension pairs.

* p(X;) represents the average redundancy level
of dimension X;, quantifying its overall overlap.
By calculating the redundancy p(X;) for all di-

mensions X; in the benchmark and averaging these

values, we can obtain the overall internal redun-
dancy of the benchmark as well. Formally, the
benchmark internal redundancy ppg; is defined as:

1 m
pBI = ;P(Xi), 2

where p(X;) is the redundancy of the i-th dimen-
sion as previously defined. This metric reflects the
average similarity among all dimensions within the
benchmark. A lower ppr suggests that the dimen-
sions are relatively independent and diverse.

2.2 Instances Redundancy

Let a benchmark contain M total instances (e.g.,
QA pairs). To evaluate redundancy, we begin by
calculating the MLLM performance rankings ob-
tained over the full set of all M instances, denoted
as the ground-truth ranking Rgr. We then ran-
domly sample a subset of the instances, comprising
A% of the total M, and compute the corresponding
MLLM rankings, denoted as Rgample. To quantify
the redundancy of the benchmark at a sampling ra-
tio of A%, we calculate the correlation coefficient
between Rgample and Rgr. This correlation reflects
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Figure 2: A quick look at the redundancy framework,
where (a), (b), and (c) show the general process of com-
puting dimensions redundancy, instances redundancy,
and cross-benchmark redundancy respectively.

how representative the sampled subset is of the en-
tire benchmark. To reduce the effect of randomness,
the sampling process is repeated 7" = 100 times,
and the average correlation result is recorded. We
define the instance redundancy of the benchmark at
sampling ratio A%, denoted as p(A%), as follows:

1
p(A%) == ) CORR(Rag,,Rar), (3)
1<t<T

where IR 49, represents the MLLM ranking based

on the sampled A% instances at the ¢, time, and

Rgr is the MLLM ranking based on the full M

instances within the MLLM benchmark. The inter-

pretation of p(A%) is straightforward:

* A higher p(A%) indicates that the sampled in-
stances are highly representative of the entire
benchmark, and the remaining 1 — A% instances
contribute little additional information.

* Conversely, a lower p(A%) suggests that the sam-
pled instances are less representative, and more
instances are needed to capture the variability of
the full benchmark.

2.3 Cross-Benchmark Redundancy

Consider Y = {Y7,Y3,...,Y;}, a collection of [
benchmarks within a specific domain (e.g., object
hallucination, visual reasoning, visual perception).
Let N represent the number of MLLMs evaluated
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(b) 50" PLCC dimensions redundancy.

(d) 50~ SRCC dimensions redundancy.

(e) 50~ PLCC dimensions redundancy.

(c) 50 R2 dimensions redundancy.

(f) 50~ R2 dimensions redundancy.

Figure 3: Visualizations of dimensions redundancy for MMBench (Liu et al., 2025) on Top-50 and Bottom-50
(marked as 50" and 50~) MLLMs respectively. More benchmark results can be found in Appendix. B.

across these benchmarks. For a given benchmark
Y;, let K; denote the ranking of the N MLLMs
based on their performance on Y;. To identify key
anchor benchmarks within this domain (an anchor
benchmark can serve as a representative over mul-
tiple other benchmarks), we focus on benchmarks
that demonstrate high redundancy with others in
the domain (Zohar et al., 2024). We define the
redundancy of a benchmark p(Y;) as the average
rank correlation coefficient between K; and the
rankings K; of all other benchmarks Y; (5 # ) in
the domain. Formally, p(Y;) is expressed as:

1<
pY) =1 ;CORR(K;, Kj), @
7

where CORR(Kj;, K) is the correlation coefficient

between the rankings K; and K;. The interpreta-

tion of p(Y;) is as follows:

* A higher p(Y;) indicates that benchmark Y; ex-
hibits strong similarity with others in the domain,
suggesting that it is highly representative of the
domain’s capabilities or evaluation focus.

* Conversely, a lower p(Y;) indicates that bench-
mark Y; shares less overlap with others, imply-
ing that it is less redundant and may capture
unique/distinct aspects of the domain, or incor-
porate noises that are not related to the domain.

2.4 Correlation Metrics

In this work, we adopt multiple metrics to describe

the correlation between two set of performance

numbers, including the Spearman Rank Correlation

Coefficient (SRCC), the Pearson Linear Correlation

Coefficient (PLCC), and the R? Score (R-squared

Coefficient of Determination).

* SRCC is an evaluation metric that measures rank
similarity, capturing how well the relative order
between two rankings aligns.

e PLCC quantifies linear similarity, assessing how
closely the rankings follow a linear relationship.

* R? Score, on the other hand, evaluates the pro-
portion of variance explained by the ranking rela-
tionship, serving as a measure of goodness-of-fit.

2.5 Top-K Analysis

Considering that the performance of top-tier
MLLMs often garners greater attention on bench-
marks, we can streamline the redundancy analysis
by focusing only on the top-K MLLMs with the
highest overall performance on a given benchmark,
rather than incorporating all MLLMs in the calcula-
tion. By selecting the top-K models, we can better
target the analysis of benchmark redundancy across
different performance tiers. This approach also sim-
plifies the process of maintaining and updating our
framework as new MLLMs are introduced.
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(a) Top-50 SRCC redundancy.

(d) Bottom-50 SRCC redundancy.

=

(e) Bottom-50 PLCC redundancy.

(f) Bottom-50 R2 redundancy.

Figure 4: Bar plots of dimensions redundancy for MMBench (Liu et al., 2025) on Top-50 and Bottom-50 MLLMs.
The redundancy values are computed by averaging the redundancy of each dimension with the redundancy of all

other dimensions.

3 Experiment & Discussion

We use the evaluation results of hundreds of
MLLMs obtained through the VLMEvalKit (Duan
et al., 2024) as our data source for conducting ex-
periments and analysis. All the data sources are
open-sourced and available on HuggingFace !.

3.1 Exploring Dimension Redundancy

To comprehensively demonstrate the application
of our redundancy framework in MLLM bench-
marks, we conduct a detailed case study using the
widely adopted and dimensionally diverse MM-
Bench benchmark (v1.1) (Liu et al., 2025). We
categorize the MLLMs into two groups, Top-50
and Bottom-50, based on their overall performance
in MMBench. This categorization enables us to
highlight the differences in redundancy exhibited
by MMBench when evaluating MLLMs with vary-
ing levels of capability. The dimension redundancy
results are illustrated in Fig. 3 and Fig. 4, from
which we derived several interesting insights.

Top-50 Redundancy. Figs. 3a and 3b visually il-
lustrate the redundancy of SRCC and PLCC across
various sub-dimensions, allowing for a quick anal-
ysis of which dimensions exhibit high correlations.
For example, the tasks Image Emotion and Social
Relation display strong redundancy, suggesting a
significant overlap in the skills they assess. Sim-
ilarly, Structuralized Image-Text Understand-
ing demonstrates notable redundancy with several

lhttps ://huggingface.co/datasets/VLMEval/
OpenVLMRecords

other dimensions, such as Spatial Relationship,
Physical Property Reasoning, OCR, and Nature
Relation, indicating that these tasks collectively
represent the diverse abilities required to perform
Structuralized Image-Text Understanding. In
contrast, Image Topic and Image Scene exhibit
relatively low redundancy with other dimensions,
as shown in Figs. 4a to 4c. This could arise from
the inherent complexity of assessing the overall
topic and scene of an image, which is often less
correlated with evaluating specific attributes or re-
lationships. For instance, strong performance in
recognizing individual attributes does not neces-
sarily imply a comprehensive understanding of the
overall topic or scene. However, Fig. 3b reveals that
these two dimensions exhibit redundancy in terms
of PLCC, suggesting potential overlaps within cer-
tain contexts. Another interesting insight arises
from Celebrity Recognition, a knowledge-based
task that remains relatively independent of other
dimensions, which primarily measure perceptual
abilities. As a result, it consistently exhibits sig-
nificantly lower redundancy across SRCC, PLCC,
and R2. Conversely, high levels of redundancy are
observed for Nature Relation and Spatial Relation-
ship, as shown in Figs. 4a to 4c. This is attributed
to the fact that these two dimensions serve as fun-
damental skills required by numerous other tasks,
making their overlap a cornerstone of the broader
evaluation framework.

Bottom-50 Redundancy. The results for the
Bottom-50 redundancy, as shown in Figs. 4d to 4f,
reveal a striking trend where nearly all dimensions
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(a) Instances redundancy with Top-50 MLLMs.
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(b) Instances redundancy with Bottom-50 MLLMs.

Figure 5: Visualizations of average instance redundancy for (a) Top-50 MLLMs and (b) Bottom-50 MLLMs across
18 LMM benchmarks (A-Bench (Zhang et al., 2024a), AI2D (Kembhavi et al., 2016), BLINK (Fu et al., 2025),
HallusionBench (Guan et al., 2023), MMBench (Liu et al., 2025), MMMU (Yue et al., 2024), MME (Fu et al.,
2024), MMStar (Chen et al., 2024a), MMT (Ying et al., 2024), MM Vet (Yu et al., 2023b), OCRBench (Liu et al.,
2023b), Q-Bench (Wu et al., 2023; Zhang et al., 2024b), R-Bench-Dis (Li et al., 2024d), RealWorldQA (xAl, 2024),
ScienceQA (Lu et al., 2022), SeedBench_IMG (Li et al., 2023), SeedBench2_Plus (Li et al., 2024b)). Notably, each
data point represents the average of 100 sampling iterations to mitigate the impact of randomness.

exhibit significantly higher redundancy compared
to the Top-50 redundancy. Specifically, most di-
mension pairs achieve SRCC and PLCC scores
exceeding 0.6 (Figs. 4d and 4e), leading to an
interesting conclusion: the dimensions appear
to be more redundant for Bottom-50 MLLMs
than for Top-50 MLLMs. This phenomenon can
primarily be attributed to the fact that Bottom-50
MLLMs generally underperform across all capa-
bilities. For these models, as their foundational
abilities improve, incremental enhancements in one
dimension often drive simultaneous improvements
across others. This results in high consistency in
performance rankings across dimensions, thereby
causing relatively high dimensional redundancy. In
contrast, the Top-50 MLLMs have already achieved
relatively strong foundational capabilities. Conse-
quently, more complex tasks across different di-
mensions introduce greater variability, allowing for
more differentiation between performance in those
dimensions. This leads to noticeably lower levels
of redundancy for the Top-50 models. These find-
ings emphasize the importance of carefully select-
ing the MLLMs included in redundancy analysis.
Specifically, avoiding models with universally poor
performance is crucial to ensure that the evaluation
yields meaningful and accurate insights.

3.2 Exploration Instance Redundancy

We include the evaluation results from 18 publicly
available benchmarks in VLMEvalKit (Duan et al.,
2024) in our experiments, with the average per-
formance across benchmarks presented in Fig. 5.

We adopt a similarity threshold of 0.95 for parti-
tioning?, This leads to an intriguing conclusion: a
majority of existing MLLM benchmarks exhibit
significant redundancy in their instances when
ranking both Top-50 and Bottom-50 MLLMs,
with at least 50% of the instances being redun-
dant. This indicates that many benchmarks could
reduce their instance counts by half without sig-
nificantly affecting the ranking of MLLMs being
tested. The R2? score provides further insight, as it
measures how effectively the final performance of
MLLMs can be predicted using sampled instances.
Compared to ensuring accurate ranking, achieving
high accuracy in predicting the absolute perfor-
mance of MLLMs requires a much larger num-
ber of instances. For example, both Top-50 and
Bottom-50 MLLMs require over 90% of the in-
stances to achieve an R? score greater than 0.95.
This distinction highlights that fewer instances are
sufficient for reliable ranking than for precise per-
formance prediction.

We also compare redundancy tendencies be-
tween Top-50 and Bottom-50 MLLMs, as shown in
Figs. 5a and 5b. Notably, at the same 0.95 thresh-
old for SRCC and PLCC, Bottom-50 MLLMs
require significantly fewer instances than Top-
50 MLLMs. This implies that accurately rank-
ing higher-performing MLLMs (Top-50) demands
more instances, while ranking lower-performing
MLLMs (Bottom-50) can be achieved with fewer

2Ranks with SRCC and PLCC coefficients exceeding 0.95
are considered nearly identical, with only marginal differences
in very few cases (Hauke and Kossowski, 2011).
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(d) Bottom-50 SRCC redundancy.

(e) Bottom-50 PLCC redundancy.

(f) Bottom-50 R2 redundancy.

Figure 6: Benchmark-specific instance redundancy for (a) Top-50 MLLMs and (b) Bottom-50 MLLMs. The
benchmarks include BLINK (Fu et al., 2025), ScienceQA (Lu et al., 2022), MMMU (Yue et al., 2024), Real-
WorldQA (xAl, 2024), MMBench (Liu et al., 2025), MMStar (Chen et al., 2024a), SeedBench_IMG (Li et al.,
2023), and AI2D (Kembhavi et al., 2016). The selection of the Top-50 and Bottom-50 MLLMs is based on the

corresponding benchmark.

instances. Consequently, the redundancy of bench-
mark instances correlates strongly with the capabil-
ity of the MLLMs being evaluated: the stronger
the MLLMs, the lower the redundancy of the
benchmark instances.

From the benchmark-specific results (Fig. 6),
the redundancy gap between Top-50 and Bottom-
50 MLLMs remains consistent across different
benchmarks. Further examination reveals consider-
able variation in redundancy levels between bench-
marks. For example, in the Top-50 redundancy
analysis, RealWorldQA (xAl, 2024) demonstrates
relatively low redundancy, requiring nearly 80% of
the instances to reach saturation, while other bench-
marks require far fewer. However, for Bottom-50
MLLMs, redundancy levels across benchmarks in-
crease significantly, and the differences between
them narrow. This illustrates that benchmark re-
dundancy is more prominent when evaluating less
capable MLLMs.

It is important to note that the conclusions above
are based on the statistical analysis of mainstream
benchmarks. Specialized benchmarks, with unique
design goals or tasks, require case-by-case analy-
ses to assess their instance redundancy accurately.
Therefore, while these results provide general in-
sights into redundancy trends for standard bench-
marks, further evaluation is necessary for niche or
task-specific benchmarks.

3.3 Exploring Cross-Benchmark Redundancy

To analyze cross-benchmark redundancy, we fo-
cus on the Math domain, specifically examining
several popular mathematical benchmarks: Math-
Vista (Lu et al., 2023), MathVision (Zhang et al.,
2025), MathVerse (Wang et al., 2024a), and Dy-
naMath (Zou et al., 2024). We utilize the avail-
able evaluation results of 37 MLLMs listed on the
OpenCompass Reasoning Leaderboard? and assess
their ranking performance across these math bench-
marks. The corresponding heatmap is presented
in Fig. 8. The results reveal that, although all four
benchmarks are designed to evaluate the mathe-
matical abilities of MLLMs, the correlations be-
tween them are not particularly strong. Among
them, MathVista (Lu et al., 2023) exhibits the least
redundancy, showing the lowest correlation with
the other benchmarks. In contrast, MathVerse and
MathVision demonstrate high redundancy, indicat-
ing a strong correlation with other benchmarks.
These differences suggest varying levels of overlap
in their evaluation focus areas.

To better understand the variability across bench-
marks, we analyze their task distributions. While
MathVerse and MathVision are focused on standard
mathematical tasks, resulting in the highest correla-

3https ://huggingface.co/spaces/opencompass/
Open_LMM_Reasoning_Leaderboard
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Q: Was this a square pizza? Q: In the diagram of the food web shown

A:no what will most directly be affected by the loss

of the trees?
A: horses

(2) (b)

Q: What is the lowest value in blue bar? Q: Subtract all tiny purple shiny cubes. Subtract
A7 all large purple balls. How many objects are left?

A:9

(©) (d

Figure 7: Examples of tasks excluded from the MathVista benchmark. (a), (b), and (c) showcase tasks derived from
the general-vqa category, including Scientific Figure Understanding, General VQA, and Chart/Table/Diagram QA.
Panel (d) presents questions extracted from the CLEVR dataset but categorized as math-targeted-vqa.

tion and substantial overlap with other benchmarks,
MathVista includes 30%-40% of questions outside
traditional mathematics, such as tasks related to Sci-
entific Figure Understanding, General VQA, and
Chart/Table/Diagram QA (see Fig. 7(a)(b)(c) for
examples). As discussed in Sec. 2.3, low redun-
dancy can arise from unique elements specific to
a domain or from irrelevant tasks, which we con-
sider “noise" within the dataset. For instance, gen-
eral VQA tasks, while broadly useful, have limited
relevance to assessing mathematical ability and
contribute to this noise. To quantify the impact,
we remove general VQA tasks from MathVista
and recalculate its redundancy with other bench-
marks. After this refinement, the redundancy be-
tween MathVista and other mathematical bench-
marks significantly increases, aligning more closely
with their task profiles. Additionally, we identify
and exclude CLEVR-derived questions categorized
as math-targeted vga within MathVista, which also
have limited relevance to mathematical capabili-
ties (examples in Fig. 7(d)). This further increases
overlap with specialized mathematical benchmarks,
demonstrating that removing irrelevant tasks im-
proves alignment and reduces noise.

Therefore, we propose the following principles
for benchmark design within a domain:

* A benchmark intended to broadly assess model
performance in one domain should demonstrate
relatively high redundancy with other in-domain
benchmarks, reflecting comprehensive coverage
of diverse sub-capabilities.

* A specialized benchmark should display lower
redundancy with other benchmarks, focusing on
distinct capabilities to fill the vacancy, comple-
ment broader assessments, and provide a unique
perspective on specific topics in a domain.

Spearman Rank Correlation Coefficient Heatmap

DynaMath

MathVerse_MINI
Vision_Only

MathVision
MathVista
MathVista w/o.
VQA

MathVista w/o.
VQA, CLEVR

Figure 8: Cross-benchmark redundancy map. Math-
Vision and MathVersion are more focused on the core
domain of mathematics (with relatively higher redun-
dancy across other math benchmarks), making them
more suitable for benchmarking the mathematical capa-
bilities of MLLMs in a narrow sense.

4 Conclusion

In conclusion, this paper addresses the pervasive
issue of redundancy in MLLM benchmarks, im-
pacting both the effectiveness and efficiency of
model evaluation. We identify redundancy at three
levels: dimension, instance, and cross-benchmark
redundancy, and propose a framework with action-
able guidelines to improve benchmark design. By
promoting the independence of dimensions, opti-
mizing instance counts, and ensuring purposeful
redundancy within specific domains, our frame-
work streamlines evaluations and enhances reliabil-
ity. Case studies further demonstrate its utility in
refining current practices, paving the way for more
efficient and accurate MLLM assessments.
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5 Limitations Jeffrey P Bigham, Chandrika Jayant, Hanjie Ji, Greg

The limitations of this work is as follows:

¢ The assumption that MLLM performance rank-
ings should show strong correlation when eval-
uating similar capabilities may not always hold.
In some cases, performance on seemingly similar

Little, Andrew Miller, Robert C Miller, Robin Miller,
Aubrey Tatarowicz, Brandyn White, Samual White,
et al. 2010. Vizwiz: nearly real-time answers to vi-
sual questions. In Proceedings of the 23nd annual
ACM symposium on User interface software and tech-
nology, pages 333-342.

tasks could diverge due to subtle task differences, ~ Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang

domain-specific nuances, or differences in model
strengths.

* The use of correlation metrics (SRCC, PLCC,
and R?) to quantify redundancy may be limited
in capturing the full complexity of model perfor-
mance across different tasks and domains. These
metrics may not adequately account for differ-
ences in task difficulty, model behavior under
various conditions, or the impact of outliers.

* The redundancy value is not fixed when using

Zang, Zehui Chen, Haodong Duan, Jiaqi Wang,
Yu Qiao, Dahua Lin, et al. 2024a. Are we on the
right way for evaluating large vision-language mod-
els? arXiv preprint arXiv:2403.20330.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo

Chen, Sen Xing, Muyan Zhong, Qinglong Zhang,
Xizhou Zhu, Lewei Lu, et al. 2024b. Internvl: Scal-
ing up vision foundation models and aligning for
generic visual-linguistic tasks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 24185-24198.

different selections of MLLMs for calculation. Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu

This bias could result in misleading conclusions
about the redundancy or uniqueness of certain
benchmarks.

6 Acknowledgements

Fang, Lin Chen, Yuan Liu, Xiaoyi Dong, Yuhang
Zang, Pan Zhang, Jiaqi Wang, et al. 2024.
Vlmevalkit: An open-source toolkit for evaluating
large multi-modality models. In Proceedings of the
32nd ACM International Conference on Multimedia,
pages 11198-11201.

This research was partly supported by grants of Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin,

Science and Technology Commission of Shanghai
Municipality (STCSM, Grant No. 20DZ1200203,
2021SHZDZX0102), National Key R&D Program
of China (No.2022ZD0161600), the Shanghai Post-
doctoral Excellence Program (No.2023023), China
Postdoctoral Science Fund (No0.2024M751559),
National Natural Science Foundation of China
(NSFC, Grant No. 62301310, 623B2073), and
Shanghai Artificial intelligence Laboratory.

Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu Zheng,
Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji.
2024. Mme: A comprehensive evaluation benchmark
for multimodal large language models.

Xingyu Fu, Yushi Hu, Bangzheng Li, Yu Feng, Haoyu

Wang, Xudong Lin, Dan Roth, Noah A Smith, Wei-
Chiu Ma, and Ranjay Krishna. 2025. Blink: Multi-
modal large language models can see but not perceive.

In European Conference on Computer Vision, pages
148-166. Springer.

Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian,

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.

Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang Chen,
Furong Huang, Yaser Yacoob, et al. 2023. Hallu-
sionbench: An advanced diagnostic suite for en-
tangled language hallucination and visual illusion
in large vision-language models. arXiv preprint
arXiv:2310.14566.

arXiv preprint arXiv:2303.08774. Jan Hauke and Tomasz Kossowski. 2011. Comparison

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Mar-
garet Mitchell, Dhruv Batra, C Lawrence Zitnick, and
Devi Parikh. 2015. Vqa: Visual question answering.

of values of pearson’s and spearman’s correlation
coefficients on the same sets of data. Quaestiones
geographicae, 30(2):87-93.

In Proceedings of the IEEE international conference ~ Yutao Hu, Tianbin Li, Quanfeng Lu, Wenqi Shao, Jun-

on computer vision, pages 2425-2433.

Gilles Baechler, Srinivas Sunkara, Maria Wang, Fedir
Zubach, Hassan Mansoor, Vincent Etter, Victor
Carbune, Jason Lin, Jindong Chen, and Abhanshu
Sharma. 2024. Screenai: A vision-language model

jun He, Yu Qiao, and Ping Luo. 2024. Omnimed-
vga: A new large-scale comprehensive evaluation
benchmark for medical Ivim. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 22170-22183.

for ui and infographics understanding. arXiv preprint ~ Drew A Hudson and Christopher D Manning. 2019.

arXiv:2402.04615.
12500

Gqa: A new dataset for real-world visual reasoning


https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394

and compositional question answering. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6700-6709.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Min-
joon Seo, Hannaneh Hajishirzi, and Ali Farhadi.
2016. A diagram is worth a dozen images. In Euro-
pean conference on computer vision, pages 235-251.
Springer.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang,
Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. 2024a. Llava-
onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326.

Bohao Li, Yuying Ge, Yi Chen, Yixiao Ge, Ruimao
Zhang, and Ying Shan. 2024b. Seed-bench-2-plus:
Benchmarking multimodal large language models
with text-rich visual comprehension. arXiv preprint
arXiv:2404.16790.

Bohao Li, Yuying Ge, Yixiao Ge, Guangzhi Wang, Rui
Wang, Ruimao Zhang, and Ying Shan. 2024c. Seed-
bench: Benchmarking multimodal large language
models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
13299-13308.

Bohao Li, Rui Wang, Guangzhi Wang, Yuying Ge, Yix-
iao Ge, and Ying Shan. 2023. Seed-bench: Bench-
marking multimodal llms with generative compre-
hension. arXiv preprint arXiv:2307.16125.

Chunyi Li, Jianbo Zhang, Zicheng Zhang, Haoning
Wu, Yuan Tian, Wei Sun, Guo Lu, Xiaohong Liu,
Xiongkuo Min, Weisi Lin, et al. 2024d. R-bench:
Are your large multimodal model robust to real-world
corruptions? arXiv preprint arXiv:2410.05474.

Xiang Li, Jian Ding, and Mohamed Elhoseiny. 2024e.
Vrsbench: A versatile vision-language benchmark
dataset for remote sensing image understanding.
arXiv preprint arXiv:2406.12384.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae
Lee. 2024. Visual instruction tuning. Advances in
neural information processing systems, 36.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li,
Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi
Wang, Conghui He, Ziwei Liu, et al. 2025. Mm-
bench: Is your multi-modal model an all-around
player? In European Conference on Computer Vi-
sion, pages 216-233. Springer.

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li,
Xucheng Yin, Cheng-lin Liu, Lianwen Jin, and
Xiang Bai. 2023a. On the hidden mystery of
ocr in large multimodal models. arXiv preprint
arXiv:2305.07895.

Yuliang Liu, Zhang Li, Biao Yang, Chunyuan Li,
Xucheng Yin, Cheng-lin Liu, Lianwen Jin, and
Xiang Bai. 2023b. On the hidden mystery of
ocr in large multimodal models. arXiv preprint
arXiv:2305.07895.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chun-
yuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. 2023.
Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint
arXiv:2310.02255.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-
Wei Chang, Song-Chun Zhu, Oyvind Tafjord, Peter
Clark, and Ashwin Kalyan. 2022. Learn to explain:
Multimodal reasoning via thought chains for science
question answering. In The 36th Conference on Neu-
ral Information Processing Systems (NeurlPS).

Minesh Mathew, Dimosthenis Karatzas, and CV Jawa-
har. 2021. Docvqa: A dataset for vqa on document
images. In Proceedings of the IEEE/CVF winter con-
ference on applications of computer vision, pages
2200-2209.

Anand Mishra, Shashank Shekhar, Ajeet Kumar Singh,
and Anirban Chakraborty. 2019. Ocr-vqa: Visual
question answering by reading text in images. In
2019 international conference on document analysis
and recognition (ICDAR), pages 947-952. IEEE.

Amanpreet Singh, Vivek Natarajan, Meet Shah,
Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. 2019. Towards vqa models
that can read. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition,

pages 8317-8326.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M Dai, Anja Hauth, Katie
Millican, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Mingjie
Zhan, and Hongsheng Li. 2024a. Measuring mul-
timodal mathematical reasoning with math-vision
dataset. arXiv preprint arXiv:2402.14804.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, et al. 2024b. Qwen2-vl: Enhanc-
ing vision-language model’s perception of the world
at any resolution. arXiv preprint arXiv:2409.12191.

Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng
Chen, Liang Liao, Annan Wang, Chunyi Li, Wenxiu
Sun, Qiong Yan, Guangtao Zhai, et al. 2023. Q-
bench: A benchmark for general-purpose founda-
tion models on low-level vision. arXiv preprint
arXiv:2309.14181.

xAl. 2024. Realworldga dataset.  Available at
https://huggingface.co/datasets/xai-org/
RealworldQA.

Rui Yang, Lin Song, Yanwei Li, Sijie Zhao, Yixiao Ge,
Xiu Li, and Ying Shan. 2024. Gpt4tools: Teaching
large language model to use tools via self-instruction.
Advances in Neural Information Processing Systems,
36.

12501


https://huggingface.co/datasets/xai-org/RealworldQA
https://huggingface.co/datasets/xai-org/RealworldQA

Kaining Ying, Fanqing Meng, Jin Wang, Zhiqgian Li,
Han Lin, Yue Yang, Hao Zhang, Wenbo Zhang, Yuqi
Lin, Shuo Liu, et al. 2024. Mmt-bench: A compre-
hensive multimodal benchmark for evaluating large
vision-language models towards multitask agi. arXiv
preprint arXiv:2404.16006.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023a. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Weihao Yu, Zhengyuan Yang, Linjie Li, Jianfeng Wang,
Kevin Lin, Zicheng Liu, Xinchao Wang, and Lijuan
Wang. 2023b. Mm-vet: Evaluating large multimodal
models for integrated capabilities. arXiv preprint
arXiv:2308.02490.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng,
Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang,
Weiming Ren, Yuxuan Sun, et al. 2024. Mmmu: A
massive multi-discipline multimodal understanding
and reasoning benchmark for expert agi. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 9556-9567.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun
Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu,
Kai-Wei Chang, Yu Qiao, et al. 2025. Mathverse:
Does your multi-modal Ilm truly see the diagrams in
visual math problems? In European Conference on
Computer Vision.

Zicheng Zhang, Haoning Wu, Chunyi Li, Yingjie Zhou,
Wei Sun, Xiongkuo Min, Zijian Chen, Xiaohong
Liu, Weisi Lin, and Guangtao Zhai. 2024a. A-bench:
Are Imms masters at evaluating ai-generated images?
arXiv preprint arXiv:2406.03070.

Zicheng Zhang, Haoning Wu, Erli Zhang, Guangtao
Zhai, and Weisi Lin. 2024b. Q-bench: A benchmark
for multi-modal foundation models on low-level vi-
sion from single images to pairs. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Orr Zohar, Xiaohan Wang, Yann Dubois, Nikhil Mehta,
Tong Xiao, Philippe Hansen-Estruch, Licheng Yu,
Xiaofang Wang, Felix Juefei-Xu, Ning Zhang, et al.
2024. Apollo: An exploration of video understand-
ing in large multimodal models. arXiv preprint
arXiv:2412.10360.

Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang,
Bin Hu, and Huan Zhang. 2024. Dynamath: A dy-
namic visual benchmark for evaluating mathemati-
cal reasoning robustness of vision language models.
arXiv preprint arXiv:2411.00836.

A Metrics Equation

To evaluate the consistency and accuracy of predic-
tions, we employ three widely used metrics: the
Spearman Rank Correlation Coefficient (SRCC),
the Pearson Linear Correlation Coefficient (PLCC),
and the Coefficient of Determination (R?). These
metrics provide complementary perspectives on
model performance, capturing rank-based, linear,
and variance-explained relationships, respectively.
The mathematical definitions are detailed below.
1) The SRCC measures the rank-based relation-
ship between predicted and true values. It is defined
as: n
SRCC = 1 — O2i=1h ,
n(n?—1)
where:
d; = rank(z;) — rank(y;),

and n is the number of data points. A higher
SRCC indicates a stronger monotonic relationship
between the rankings of predicted and ground truth
values.

2) The PLCC quantifies the linear relationship
between predicted and true values. It is computed
as:

2 i (@i — T)(yi = ¥)

Pee= Vi (@i =22/ i — 9)?

where:

* x; and y; are the data points,

* Z and ¥ are the means of x and y, respectively.

A higher PLCC indicates a stronger linear relation-

ship between predicted and ground truth values.
3) The R? score represents the proportion of

variance in the ground truth values that is explained

by the predictions. It is defined as:

> i1 (yi — 9i)°

R*=1- &£ 4
> i1 (yi — 9)?

where:

e y; are the ground truth values,

* ; are the predicted values,

* g is the mean of the ground truth values.

An R? score closer to 1 indicates a better fit be-
tween the predictions and the ground truth.

B Extra Dimensions Redundancy Maps

We present the dimension redundancy maps for
AI2D (Kembhavi et al., 2016) and SEED-Bench (Li
et al., 2024c), as shown in Fig. 9 and Fig. 10.
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1. Key Observations from the Redundancy

Maps:

* In Fig. 9, it is evident that the dimension
‘lifeCycles’ exhibits the highest redundancy,
particularly with ‘typesOf’.

* Similarly, in Fig. 10, the ‘Instance Identity’
dimension shows the highest redundancy
and is most closely related to ‘Scene Under-
standing’.

2. Trends in Top-50 vs. Bottom-50 Redun-

dancy:

* A clear pattern emerges when comparing the
Top-50 and Bottom-50 redundancy maps.
Nearly all Bottom-50 dimensions display
significantly higher redundancy than their
Top-50 counterparts. This observation sup-
ports our conclusion that dimensions tend
to exhibit greater redundancy for Bottom-
50 MLLMs compared to Top-50 MLLMs.

* This phenomenon can be attributed to the
overall underperformance of Bottom-50
MLLMs across various capabilities. As
these models begin to improve, enhance-
ments in their foundational abilities often
lead to simultaneous progress across multi-
ple dimensions. This results in a high de-
gree of similarity in performance rankings,
contributing to elevated dimensional redun-
dancy.

* In contrast, Top-50 MLLMs already possess
relatively strong foundational capabilities.
As a result, more challenging tasks across
different dimensions introduce greater dif-
ferentiation, reducing redundancy and creat-
ing more distinct performance profiles.

3. Implications for Redundancy Analysis:

* To ensure a reasonable and accurate evalu-
ation during redundancy analysis, it is cru-
cial to exclude MLLMs with consistently
poor performance. Including such models
could skew the analysis by disproportion-
ately inflating redundancy, as their universal
underperformance does not provide mean-
ingful insights into inter-dimensional rela-
tionships.

C Redundancy Practice

Recommendations

tion into the benchmark design process after its
initial testing on a set of MLLMs. This criti-
cal step identifies potential redundancies across
dimensions/instances/cross-benchmark overlaps,
leading to more precise and meaningful evalua-
tions.

1. Dimension Redundancy Check.

Calculate the dimensional redundancy within
the benchmark, with particular attention to di-
mensions exhibiting overall high redundancy.
Analyze the redundancy heatmap to identify
pairs of dimensions with exceptionally strong
correlations, as these may indicate overlap-
ping capabilities being assessed. For such
cases, evaluate whether these dimensions are
truly necessary or whether they assess similar
or redundant skills.

2. Instance Redundancy Check.

Compute the instance redundancy curve to
determine whether a smaller subset of bench-
mark instances can produce results compa-
rable to the full instance set. If significant
instance redundancy is identified, the bench-
mark should be reviewed, and redundant in-
stances should be reduced. This not only
streamlines the evaluation process but also op-
timizes resource usage without compromising
the accuracy of results.

3. Cross-benchmark Redundancy Check.

If the benchmark is intended to serve as a rep-
resentative for a specific domain, measure its
cross-benchmark redundancy relative to other
benchmarks within the domain. Higher redun-
dancy indicates stronger representativeness,
making it a reliable choice for tasks requiring
domain coverage. Conversely, if the goal is to
fill a vacancy in the specific domain (e.g., fo-
cusing on a specific topic in mathematics that
is not covered by previous benchmarks) main-
taining low redundancy is a more favorable
choice. For use cases focusing on core capa-
bilities within a specific domain under lim-
ited resources, it is recommended to select the
benchmark with the highest cross-benchmark
redundancy. This ensures that the benchmark
comprehensively covers the essential skills
while minimizing unnecessary overlaps.

To ensure benchmarks are reliable and efficient,
we recommend incorporating redundancy detec-
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Figure 9: Visualizations of dimensions redundancy for AI2D (Kembhavi et al., 2016) on Top-50 and Bottom-50
MLLMs (marked as 50" and 507).
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Figure 10: Visualizations of dimensions redundancy for SEED-Bench (Li et al., 2024c) on Top-50 and Bottom-50
MLLMs (marked as 501 and 507).
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