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Abstract

We introduce ABGEN, the first benchmark de-
signed to evaluate the capabilities of LLMs
in designing ablation studies for scientific re-
search. ABGEN consists of 1,500 expert-
annotated examples derived from 807 NLP pa-
pers. In this benchmark, LLMs are tasked with
generating detailed ablation study designs for
a specified module or process based on the
given research context. Our evaluation of lead-
ing LLMs, such as DeepSeek-R1-0528 and
o4-mini, highlights a significant performance
gap between these models and human experts
in terms of the importance, faithfulness, and
soundness of the ablation study designs. More-
over, we demonstrate that current automated
evaluation methods are not reliable for our task,
as they show a significant discrepancy when
compared to human assessment. To better in-
vestigate this, we develop ABGEN-EVAL, a
meta-evaluation benchmark designed to assess
the reliability of commonly used automated
evaluation systems in measuring LLM perfor-
mance on our task. We investigate various
LLM-as-Judge systems on ABGEN-EVAL, pro-
viding insights for future research on devel-
oping more effective and reliable LLM-based
evaluation systems for complex scientific tasks.

Data yale-nlp/AbGen
Code yale-nlp/AbGen

1 Introduction

In empirical scientific fields, designing experiments
and selecting the appropriate experimental settings
often present considerable challenges and requires
significant domain expertise. Oftentimes, scien-
tists learn about the flaws in their experimental
design and missing ablations after going through
a peer review process, which involves domain ex-
perts carefully evaluating a scientific work. The
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RQ1: How well do frontier LLMs perform in ablation study design?

RQ2: How can this research be applied in real-world scenarios to 
assist human researchers?

RQ3: How can future researchers develop more reliable automated 
evaluation systems for complex scientific tasks?
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Given the research context, 
design an ablation study 
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Figure 1: Overview of the research: the ablation study
design task and three research questions investigated.

complexity of tasks in experimental science un-
derscores the need for innovative approaches to
support researchers in optimizing their workflows.
Meanwhile, LLMs have demonstrated remarkable
capabilities across a range of tasks integral to sci-
entific processes, such as reviewing manuscripts
(D’Arcy et al., 2024; Du et al., 2024), scientific
writing (Altmäe et al., 2023; Xu et al., 2024), scien-
tific code generation (Liu et al., 2023; Yang et al.,
2024b). This raises a compelling question: Can
LLMs be effectively leveraged to assist scientists in
the process of experimental design?

While addressing this question is inherently com-
plex due to the diverse nature of scientific disci-
plines and difficulty of evaluation, our objective
is to introduce the first comprehensive benchmark
as well as an evaluation methodology to facilitate
measuring progress on this task. We particularly
introduce ABGEN, the first benchmark for evaluat-

https://huggingface.co/datasets/yale-nlp/AbGen
https://github.com/yale-nlp/AbGen
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Figure 2: An overview of ABGEN construction pipeline.

ing LLMs in the context of designing ablation stud-
ies for scientific research. The dataset consists of
1,500 examples derived from 807 scientific papers
in natural language processing (NLP). Each exam-
ple is carefully annotated and validated by NLP
experts and includes a comprehensive research con-
text along with a reference ablation study, both
restructured from the original research paper. The
research context is divided into three sections: re-
search background, methodology, and the main
experiment setup and results. As illustrated in Fig-
ure 1, the LLMs are tasked with generating a de-
tailed ablation study design for a specified module
or process based on the provided research context.

As outlined in Figure 1, we investigate three
research questions in this study. Our main contri-
butions are summarized below:

• We propose ABGEN, the first benchmark de-
signed to evaluate the capabilities of LLMs in
ablation study designs for scientific research (§2).
We design a comprehensive human and auto-
mated evaluation systems for ABGEN (§3).

• We conduct a systematic evaluation of leading
LLMs, analyzing their strengths and limitations
on our new task, and providing insights for future
advancements (§4.2).

• Our user studies reveals the potential of LLMs in
ablation study design by interaction with human
researchers, and highlights the adaptability of
this approach to other scientific domains (§4.3).

• We develop the meta-evaluation benchmark,
ABGEN-EVAL, and investigate various LLM-
based evaluation methods to provide insights for
creating more reliable automated evaluation sys-
tems for complex scientific tasks (§5).

2 ABGEN Benchmark

To systematically study the capabilities and limita-
tions of current LLMs and measuring progress in

assisting scientists with the design of their experi-
mental workflows, we introduce a new benchmark
named ABGEN. The LLMs are tasked with gener-
ating detailed ablation study designs for a specified
module or process based on the given research con-
text. We focus on scientific research within the
NLP domain, as the involved expert annotators pri-
marily have expertise in NLP (i.e., each has at least
one publication in a top-tier NLP or AI venue as a
leading author). Detailed biographies of the anno-
tators participating in the ABGEN annotation and
LLM performance evaluation process are provided
in Table 7 in Appendix A.1. We believe that future
research could extend our benchmark construction
pipeline to extend to other scientific domains.

In the following subsections, we first provide
a formal definition of the ABGEN task and then
detail each step within the benchmark construction
process. We present an overview of the ABGEN

construction pipeline in Figure 2.

2.1 ABGEN Task Formulation
We formally define the task of ABGEN in the con-
text of LLMs. Specifically, given:

• The research context C, which is an expert-
annotated context of a specific scientific study.
This context is restructured from the original pa-
per by expert annotators, including sections of
research background, methodology, and main ex-
periment setup and results (§2.3).

• The name of a specific essential module or pro-
cess, denoted as M , which is described in the
methodology section within research context C.

The LLM is tasked with generating the design for
an ablation study, A, aimed at evaluating the contri-
bution and impact of M within the overall research
framework:

Â = argmax
A

PLLM(A | C,M) (1)
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The ablation study design should include a clear
statement of the research objective, along with a
detailed description of the experimental process.

2.2 Source Paper Collection and Filtering

Source Paper Collection. We collect scientific
papers from arXiv under the “Computation and
Language” category, targeting those first released
between March 1, 2024 and August 30, 2024. For
each paper, we adopt the tool1 developed by Lo
et al. (2020) to extract its content. Specifically, this
tool parses LaTeX source files of papers into JSON
format, extracting features including the paper title,
abstract, main sections, and appendix. We con-
vert tables within the papers into HTML format.
Both recent works (Sui et al., 2024; Fang et al.,
2024) and our preliminary studies reveal that the
evaluated LLMs can comprehend such table format
effectively. Next, we describe our approach and
criteria for inclusion of the papers for annotation,
as well as the details of the annotation process.

Research Paper Manual Filtering. For each col-
lected NLP paper, the expert annotator first deter-
mines if they are familiar with the paper’s topic. If
not, we randomly assign the paper to another anno-
tator. Papers whose topics are unfamiliar to both
annotators are excluded. The annotators are then
instructed to determine whether the paper quali-
fies for inclusion in our benchmark. Specifically,
we exclude: (1) Papers that are not focused on
experimental work (e.g., surveys, position papers,
dissertations), as they do not involve ablation study
design; (2) Papers with fewer than two ablation
studies, as these may not provide sufficient breadth
of experimental evidence. Additionally, annota-
tors may exclude papers they deem to be of low
quality based on their expert judgment. After ap-
plying these filtering criteria, 807 papers remain
for further annotation.

2.3 Research Context Annotation

After determining that a research paper qualifies for
benchmark inclusion, annotators are instructed to
restructure the original paper into research context
that maintains the original meaning but exclude
any content related to ablation studies. The
research context contains the following three sec-
tions: (1) Research Background, which is restruc-
tured from the introduction and related work sec-

1https://github.com/allenai/
s2orc-doc2json

tions, describing the paper’s motivation, research
problem, and relevant prior work. (2) Method-
ology, which is restructured from the methodol-
ogy sections, This section describes the proposed
method or model, including key components and
innovations. (3) Main Experiment Setup and Re-
sults, which is restructured from the experiment
sections. This section details the primary exper-
imental setup, including datasets, baselines, and
evaluation metrics used in main experiments, as
well as the main experimental results.

2.4 Reference Ablation Study Annotation

Annotators are then tasked with restructuring
each ablation study in the research paper into a
reference ablation study. It consists of the follow-
ing three sections: (1) Research Objective, a one-
or two-sentence description of the research prob-
lem and the goal of the ablation study. If this state-
ment is not explicitly provided in the original ab-
lation study, annotators are required to infer and
summarize it. (2) Experiment Process, a detailed
account of the experimental setup, including the
experimental groups, datasets, procedures, and the
evaluation tools and metrics used. Annotators are
requried to ensure that the process is clearly un-
derstandable and replicable based on the provided
description. (3) Result Discussion, an analysis
of the outcomes, where annotators summarize the
key findings and their implications. It’s worth not-
ing that we do not require LLMs to generate this
part, as our main focus is on evaluating their ability
to design ablation studies rather than execute and
analyze experiments. However, we believe these
features could be valuable for future research.

2.5 Annotation Validation

For each annotated example, we assign an annota-
tor to validate the annotated research context and
reference ablation study based on the original re-
search paper. They are required to identify and
revise examples that contain errors. Out of the
1,500 annotated examples, 273 were identified as
erroneous and were subsequently revised. We
conducted a final human evaluation of data qual-
ity on 100 examples. As shown in Table 6 (Ap-
pendix A.1), for each validation metric, over 95%
of the samples received a satisfaction rating of at
least 4 out of 5. This result indicates the high qual-
ity of ABGEN.

https://github.com/allenai/s2orc-doc2json
https://github.com/allenai/s2orc-doc2json
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Property Value (avg./max)

Research Context Word Length 1,847.8 / 6,253
Research Background 319.6 / 1,178
Methodology 904.4 / 4,685
Exp Setup & Results 623.7 / 2,174

Ref. Ablation Study Word Length 145.5 / 518
Research Objective 6.1 / 15
Experiment Process 72.5 / 264
Result Discussion 67.1 / 336

# NLP Research 807
# Ref. Ablation Study per Research 1.9 / 3

ABGEN Size 1,500
Testmini Set 500
Test Set 1,000

Table 1: Data statistics of the ABGEN benchmark.

2.6 Data Statistics

Table 1 illustrates the data statistics of the ABGEN

benchmark. We randomly split the dataset into two
subsets: testmini and test. The testmini subset con-
tains 500 examples and is intended for both method
validation and human analysis and evaluation. The
test subset comprises the remaining 1,000 exam-
ples and is designed for standard evaluation.

3 ABGEN Evaluation

The automated evaluation of LLM generation for
tasks relevant to scientific workflows remains an
unsolved problem in the community. Recent
benchmark work, such as SCIMON (Wang et al.,
2024a) for novel scientific direction generation and
MARG (D’Arcy et al., 2024) for peer review gener-
ation, primarily rely on human evaluation to assess
LLM-based system performance. In our study, we
also employ human evaluation by expert annotators
as the primary assessment method. Additionally,
in Section 5, we investigate different variants of
LLM-based evaluation methods, aiming to provide
insights for future work to develop automated eval-
uation systems for a large-scale evaluation.

3.1 Evaluation Criteria

This section discusses the human and automated
evaluation protocols developed for ABGEN evalua-
tion. We assess the following three dimensions for
the generated ablation study design.

• Importance: The generated ablation study de-
sign will provide valuable insights into under-
standing the role of the specified module or pro-
cess within the overall methodology.

• Faithfulness: The generated ablation study de-
sign aligns perfectly with the given research con-
text. There are no contradictions between the gen-
erated content and the main experimental setup
within the provided research context.

• Soundness: The generated ablation study design
is logically self-consistent without ambiguious
description. The human researchers would be
able to clearly understand and replicate the abla-
tion study based on the generated context.

To determine these three dimensions, we gath-
ered feedback from three external senior NLP re-
searchers, all of whom serve as area chairs for the
ACL Rolling Review. Through iterative discus-
sions, we identified these dimensions as critical
for evaluating the quality and utility of generated
ablation study designs. This feedback process also
helped us in refining the assessment guidelines used
for human evaluation (§3.2). We do not evalu-
ate the fluency of the generated ablation study, as
both recent works (D’Arcy et al., 2024; Zeng et al.,
2024) and our preliminary findings find that lead-
ing LLMs consistently produce fluent text free of
grammatical errors.

3.2 Human Evaluation Protocol

For human evaluation, we use Likert-scale scores
ranging from 1 to 5 for each criterion (i.e., im-
portance, faithfulness, and soundness). Given the
research context and an LLM-generated ablation
study, human evaluators are asked to score the gen-
erated content for each criteria. Initially, the refer-
ence ablation study is not provided to the evaluator.
This approach encourages evaluators to carefully
review the generated content in light of the research
context, reducing the likelihood of bias from com-
paring it to the reference. This is particularly im-
portant, as LLMs may generate ablation studies
that, while reasonable, differ from the reference.
After submitting their initial scores, evaluators are
then given the reference ablation study and asked
to adjust their scores if they identify any aspects
they may have initially overlooked.

To assess inter-annotator agreement of our
human evaluation, we sample 40 fixed LLM-
generated outputs that are separately evaluated by
all four expert annotators. They achieve inter-
annotator agreement scores (i.e., Cohen’s Kappa)
of 0.735, 0.782, and 0.710 for the criteria of impor-
tance, faithfulness, and soundness, respectively.
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3.3 Automated Evaluation

While human evaluation is generally reliable, it
is time-consuming and does not scale well. To
address this, we also employ an LLM-as-a-judge
system for automated evaluation. Specifically, we
use GPT-4.1-mini as the base evaluator. For each
model-generated response, the evaluator is pro-
vided with the research context and a reference
ablation study. Evaluation is performed across four
criteria (i.e., importance, faithfulness, soundness,
and overall quality), with the model prompted sep-
arately for each criterion to assign a score from 1
to 5. Prior to issuing a final score, the evaluator
must generate a rationale explaining its judgment.
The full evaluation prompts used for each criterion
are provided in Appendix B. To gain a deeper un-
derstanding of the reliability of LLM-as-Judge sys-
tems, we develop the meta-evaluation benchmark,
ABGEN-EVAL, which is detailed in Section 5.

4 LLMs for Ablation Study Design

4.1 Experiment Setup

Evaluated Systems. We examine the perfor-
mance of 18 frontier LLMs across two distinct cat-
egories on our benchmark: (1) Proprietary LLMs,
including o4-mini (OpenAI, 2025a), GPT-4o (Ope-
nAI, 2024), GPT-4.1 (OpenAI, 2025b), Gemini-2.5-
Flash (Gemini, 2024); and Open-source LLMs, in-
cluding Llama-3.1-70B, Llama-3.3-70B, Llama-4-
Scout-17B and Llama-4-Maverick-17B (AI@Meta,
2024; Meta AI, 2025), Mistral-Large (Jiang et al.,
2024), Deepseek-V3, DeepSeek-R1-0528-Qwen3-
8B, and Deepseek-R1 (DeepSeek-AI, 2024, 2025),
Phi-4 (Microsoft et al., 2025), Gemma-3-27b-
it (Team et al., 2025) , Qwen2.5-32B, Qwen3-8B,
Qwen3-32B and Qwen3-235B-A22B, (Yang et al.,
2024a; Team, 2025). Table 8 in Appendix presents
the details of these evaluated LLMs in ABGEN.

Measuring Performance of Real Paper and Ex-
pert. To provide an informative estimate of real
paper and expert-level performance on ABGEN,
we randomly sample 20 examples from 10 papers
in the testmini set. We enlist two expert annotators
(i.e., Annotators 1 and 4, as described in Table 7
in Appendix A.1) to individually solve these ex-
amples. To ensure fairness, we mix these 20×2
expert-annotated data and corresponding 20 ref-
erence ablation study within the standard human
evaluation process. The expert evaluators are not
informed of the sources of these ablation study ex-

Ablation Generation Prompt

[System Input]:
Given the research context, design an ablation study
for the specified module or process. Begin the design
with a clear statement of the research objective,
followed by a detailed description of the experiment
setup. Do not include the discussion of results or
conclusions in the response, as the focus is solely
on the experimental design. The response should be
within 300 words. Present the response in plain text
format only.

[User Input]:
Research Context:{research context}
Design an ablation study about {ablation module}
based on the research context above.

Figure 3: Prompt for ablation study generation.

amples when evaluation. We report the evaluation
results on Table 2.

Implementation Details. For all the experiments,
we set temperature as 1.0 and maximum output
length as 1024 (as the maximum length of refer-
ence ablation study is 518 words as presented in
Table 1). Figure 3 illustrates the default prompt
used across all generation experiments. The model
is tasked with generating the design for an ablation
study, based on the provided annotated research
context and the specified module or process name.
Specifically, the LLMs are required to first gen-
erate a one-sentence description of the research
objectives, followed by a detailed description of
the experimental setup for the ablation study.

4.2 Results and Analysis

� RQ1: How well do frontier LLMs perform
in designing ablation studies?

Table 2 illustrates the performance of the evaluated
LLMs on ABGEN. The human evaluation results
demonstrate that ABGEN poses significant chal-
lenges to current LLMs. Even the best-performing
LLM, DeepSeek-R1-0528, performs much worse
than human experts. This gap highlights the critical
need for further advancements in LLMs, especially
in applying them to complex scientific tasks. More-
over, we observe a disparity between automated
evaluation systems and human assessments. For
instance, despite receiving similar scores in LLM-
based evaluations compared to o4-mini, DeepSeek-



12484

System LLM-based Eval (1-5) Human Evaluation (1-5)

Import. Faith. Sound. Overall Import. Faith. Sound. Avg.

Reference (orig) – – – – 4.70 4.90 4.70 4.77
Human Expert 4.82 4.84 4.33 – 4.65 4.93 4.83 4.80

DeepSeek-R1-0528 4.80 4.85 4.39 4.95 4.23 4.00 4.11 4.11
o4-mini 4.80 4.81 4.33 4.96 4.23 3.78 4.00 4.00
GPT-4.1 4.82 4.84 4.28 4.96 4.12 3.87 4.02 4.00
DeepSeek-V3 4.78 4.80 4.19 4.92 3.98 3.79 3.96 3.91
Qwen3-235B-A22B 4.83 4.76 4.31 4.95 4.26 3.43 4.00 3.90
Gemini-2.5-Flash 4.63 4.52 4.01 4.65 3.89 3.94 3.76 3.86
Gemma-3-27b-it 4.70 4.75 4.21 4.85 3.78 3.81 3.96 3.85
GPT-4o 4.81 4.75 4.15 4.65 3.88 3.67 3.91 3.82
Qwen3-32B 4.82 4.74 4.22 4.94 3.90 3.47 3.98 3.78
Qwen3-8B 4.77 4.69 4.16 4.90 3.86 3.46 3.89 3.74
Mistral-Small-3.1-24B 4.74 4.63 4.12 4.84 3.74 3.35 3.84 3.64
Phi-4 4.74 4.65 4.12 4.81 3.70 3.34 3.78 3.61
Llama-4-Maverick-17B 4.66 4.64 4.04 4.71 3.46 3.66 3.68 3.60
DeepSeek-R1-0528-Qwen3-8B 4.69 4.68 4.12 4.81 3.71 3.18 3.65 3.51
Qwen2.5-32B 4.73 4.64 4.08 4.80 3.53 3.17 3.72 3.47
Llama-4-Scout-17B 4.71 4.51 4.04 4.70 3.49 3.22 3.50 3.40
Llama-3.1-70B 4.68 4.46 4.05 4.70 3.58 2.91 3.55 3.35
Llama-3.3-70B 4.68 4.45 4.03 4.66 3.27 3.08 3.49 3.28

Table 2: Human and automated evaluation results of LLMs on ABGEN. For automated evaluation, we use GPT-4.1-
mini as the base evaluator and report scores on the test subset. For human evaluation, we randomly sample 100
examples from the testmini subset. Each model output is assessed by an expert evaluator. The average human score
is used as the primary metric for ranking model performance in this table.

R1-0528 consistently outperforms it in every crite-
rion according to human evaluation. These results
suggest that current automated evaluation systems
may not be fully reliable for our task. To gain
a deeper understanding of the reliability of cur-
rent automated evaluation systems, we develop the
meta-evaluation benchmark, ABGEN-EVAL, which
is detailed in Section 5.

Error Analysis. We further conduct a compre-
hensive error analysis to better understand the capa-
bilities and limitations of the top-performing LLMs
on our task. This error analysis is based on 100 fail-
ure cases of models from the testmini set, where the
average human evaluation scores are below 3. We
identify five common error types, and provide de-
tailed explanations for each type in Table 3. These
error cases demonstrate that generating construc-
tive ablation study designs based on research con-
text is still challenging for LLMs.

4.3 User Studies on Real-world Scenarios

� RQ2: How can this research be applied
in real-world scenarios to assist human re-
searchers in designing ablation studies?

To investigate this research question, we design and
conduct following two user studies:

LLM-Researcher Interaction While LLMs cur-
rently lag behind human experts in designing abla-
tion studies, they still hold value as tools to assist
researchers. To explore this potential, we examine
scenarios where researchers interact with LLMs,
providing feedback to guide the refinement of their
outputs. Specifically, we first sample 20 failure
cases from testmini set—each with an average hu-
man score below 3—from both GPT-4o and Llama-
3.1-70B. Two expert annotators are then tasked
with reviewing these LLM-generated ablation study
designs, identifying errors, and providing construc-
tive feedback for improvement within a 50-word
limit. We then feed the research context, initial ab-
lation study design, and researcher feedback back
into the same LLMs, instructing them to regenerate
the ablation study design. Another expert evalua-
tor is then assigned to assess the revised version,
following the same human evaluation protocol in
Section 3.2. As shown in Table 4, incorporating re-
searcher feedback can significantly enhance LLM
performance in refining their outputs.
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Error Type Explanation

Misalignment with research con-
text

This error arises when the generated experiment process contradicts with the baseline
in the research context or introduces factual errors.

Ambiguity and Difficulty in Re-
production

This error arises when the generated experiment process contains ambiguous steps or
lacks the necessary datasets or tools, for human researchers to replicate ablation study.

Partial Ablation or Incomplete
Experimentation

This error arises when the generated experiment process partially addresses the ablation
module, such as only ablating a sub-module, or missing experimental groups.

Insignificant Ablation Module This error arises when the generated research objective is focused on an insignificant
ablation module in research context.

Inherent Logical Inconsistencies This error arises when the generated experiment process contains inherent logical
inconsistencies, such as gaps in implementation steps.

Table 3: A summary of GPT-4o’s failure cases. We provide examples for each error type in Appendix D.

User Study Import. Faith. Sound.

User Study 1: LLM-Researcher Interaction

GPT-4o
Initial Failure Case 3.9 2.1 2.0
Revision with Feedback 4.8 (+0.9) 4.2 (+2.1) 4.6 (+2.6)

Llama-3.1-70B
Initial Failure Case 3.7 1.8 1.7
Revision with Feedback 4.5 (+0.8) 3.9 (+2.1) 4.1 (+2.4)

User Study 2: Domain Generalization

GPT-4o
NLP Domain (as Main Exp) 3.9 3.4 3.3
Biomedical Domain 3.7 3.4 3.1
Computer Network Domain 3.8 3.3 3.4

Llama-3.1-70B
NLP Domain (as Main Exp) 3.3 2.8 2.8
Biomedical Domain 3.0 2.8 2.9
Computer Network Domain 3.1 2.9 3.0

Table 4: Human evaluation result from two user studies.
The findings demonstrate (1) the potential of LLMs in
designing ablation studies through interaction with hu-
man researchers, and (2) the adaptability of our research
across different scientific domains.

Domain Generalization of Our Research. Our
research primarily focuses on NLP domains. To
explore the adaptability of our work across other
scientific fields, we conducted user studies in the
areas of biomedical sciences and computer net-
works. Specifically, we engage two experts—one
in computer networking and one in biomedical re-
search—to provide five research papers from their
respective fields that were first published after May
1, 2024, and with which they are familiar. Fol-
lowing the same procedure as ABGEN annotation,
they annotate the research context and reference
ablation studies from five corresponding papers,
resulting in a total of 27 examples over ten papers.
We then provide them with LLM-generated abla-
tion study designs and ask them to strictly follow

our human assessment guidelines to evaluate the
LLM outputs. As shown in Table 4, the human
evaluation scores for GPT-4o and Llama-3.1-70B
are consistent with the results observed in the NLP
domain experiments. We believe that future work
could extend our research framework to other sci-
entific domains.

5 Investigating Automated Evaluation for
Ablation Study Design

� RQ3: How can future researchers develop
more reliable and effective automated evalua-
tion systems for complex scientific tasks?

As discussed in Section 4.2, we observe a sig-
nificant discrepancy between automated and hu-
man evaluation results when assessing LLM per-
formance on ABGEN. To investigate this issue
further, we conduct a systematic meta-evaluation
of commonly used automated evaluation systems.

5.1 ABGEN-EVAL Benchmark

We construct the meta-evaluation benchmark,
ABGEN-EVAL, based on the human assessments
results collected in Section 4. ABGEN-EVAL com-
prises 18 LLM outputs × 100 human assessments
= 1, 800 examples. Each example includes an
LLM-generated ablation study design and three hu-
man scores assessing the study’s importance, faith-
fulness, and soundness, respectively (detailed in
§3.2). In line with previous meta-evaluation stud-
ies (Fabbri et al., 2021; Chen et al., 2021; Liu et al.,
2024), in ABGEN-EVAL, the human evaluation
results on the system-generated ablation study is
considered the gold standard.

The performance of automated evaluation sys-
tems is measured by the system-level and instance-
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Evaluator LLM Import. Faith. Sound. Overall

Gemini-2.5-Flash 0.391 0.482 0.378 0.307
Qwen3-32B 0.305 0.405 0.299 0.248
GPT-4.1 0.238 0.445 0.298 0.246
DeepSeek-R1-0528 0.352 0.234 0.070 0.245
Qwen3-8B 0.318 0.308 0.298 0.237
QwQ-32B 0.232 0.338 0.284 0.225
GPT-4.1-mini 0.164 0.329 0.193 0.194
GPT-4o 0.151 0.249 0.139 0.179
Llama-3.3-70B 0.102 0.268 0.239 0.170
Qwen2.5-32B 0.109 0.234 0.173 0.144
DS-R1-0528-Qwen3-8B 0.232 0.265 0.253 0.124
Llama-4-Maverick 0.158 0.038 0.136 0.122
Llama-3.1-70B 0.071 0.100 -0.020 0.100
Llama-4-Scout 0.167 0.026 0.105 0.083

Table 5: Instance-level Pearson correlations between
pointwise evaluations from various LLM-based evalua-
tors and human judgments across four criteria: impor-
tance, faithfulness, soundness, and overall. The overall
score is not directly rated by humans, but computed as
the average of the other three aspect scores. Evaluation
prompts used in the LLM-based pairwise evaluations
for each aspect are provided in Appendix B. The system-
level correlations are presented in Table 9 in Appendix.

level correlation between scores of human evalu-
ation and automated evaluation systems. Specifi-
cally, given n input scientific papers and m ablation
study generation systems, the human evaluation
and an automatic metric result in two n-row, m-
column score matrices H , M respectively. The
system-level correlation is calculated on the aggre-
gated system scores:

rsys(H,M) = C(H̄, M̄), (2)

where H̄ and M̄ contain m entries which are the
average system scores across n data samples (e.g.,
H̄0 =

∑
iHi,0/n), and C is a function calculating

a correlation coefficient (e.g., the Pearson’s corre-
lation coefficient). In contrast, the instance-level
correlation is an average of sample-wise correla-
tions:

rsum(H,M) =

∑
i C(Hi,Mi)

n
, (3)

where Hi, Mi are the evaluation results on the i-th
data sample.

5.2 Experiments
For the LLM-based evaluation systems, we devel-
oped multiple variants to investigate how different
factors influence their effectiveness. These factors
include: the choice of base LLMs, ranging from
open-source to proprietary models; and whether

evaluation is based on specific criteria or overall
scores. As illustrated in Table 5 and Table 9 in
Appendix, the current automated evaluation sys-
tems show relatively low correlations, indicating
that they are not reliable for assessing generated
ablation study designs. We believe future research
could build on ABGEN-EVAL dataset to develop
more advanced and robust LLM-based evaluation
methods for scientific tasks.

6 Related Work

LLMs have been employed for different scientific
tasks for enhancing researchers’ scientific work-
flows, such as conducting literature reviews (Wang
et al., 2024b; Agarwal et al., 2024), question an-
swering over scientific papers (Dasigi et al., 2021;
Saikh et al., 2022; Lee et al., 2023; Li et al., 2024a;
Wang et al., 2025; Zhao et al., 2025a), research hy-
pothesis generation (Wang et al., 2024a; Zhou et al.,
2024b; Si et al., 2025), scientific paper writing (Xu
et al., 2024; Lu et al., 2024), and peer-review and
meta-review generation (D’Arcy et al., 2024; Tan
et al., 2024; Wu et al., 2022; Zhou et al., 2024a;
Xu et al., 2025), However, the potential of LLMs
to effectively assist scientists in the experimental
design process remains largely open research ques-
tions (Li et al., 2024b; Lou et al., 2025; Chen et al.,
2025a). Additionally, the challenge of developing
effective and reliable automated evaluation systems
for complex scientific tasks is underexplored (Zhao
et al., 2025b). Our work bridges these gaps by in-
troducing standard benchmarks for evaluating both
ablation study design and evaluation.

7 Conclusion

This paper introduces ABGEN, the first benchmark
designed to evaluate LLMs in generating ablation
studies for scientific research. Through a compre-
hensive assessment, we highlight both the strengths
and limitations of leading LLMs on ABGEN, pro-
viding valuable insights for future advancements.
Our findings offer practical guidance on how to ap-
ply this research in real-world scenarios, ultimately
aiding human researchers. Additionally, we iden-
tify a discrepancy between automated evaluations
and human assessments in our task. To investigate
this, we also develop a meta-evaluation benchmark,
providing insights into developing more reliable
automated evaluation for complex scientific tasks.
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Limitations and Future Work

This study does not explore advanced prompting
techniques (Yao et al., 2023; Wang et al., 2024a) or
LLM-Agent-based methods (D’Arcy et al., 2024;
Majumder et al., 2024). Our focus is on assessing
the fundamental capabilities of leading LLMs in
ablation study design. The goal is to provide in-
sights into their strengths and limitations, laying
the groundwork for future advancements. We en-
courage researchers to build upon our benchmark
and findings to develop more advanced approaches
for this task. Second, as shown in our results on
ABGEN-EVAL, the reported automated evaluation
scores are not yet perfect. To support further re-
search, we will make all model outputs from Sec-
tion 4 publicly available. This will enable other
researchers to conduct different automated evalua-
tions and ensure consistent rankings by re-running
their assessments on our model outputs. Addition-
ally, our human evaluation protocol is designed
to minimize the need for repeated human evalua-
tions by future researchers. By strictly adhering to
our assessment guidelines, researchers can reliably
assess and compare their methods with existing ap-
proaches in an independent and consistent manner.
Lastly, we only explore the LLMs’ abilities on de-
signing ablation studies. In real-world scenarios,
how can LLM execute the designed ablation stud-
ies would be an interesting topic and we encourage
future work to explore (Chen et al., 2025b).
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A Appendix

A.1 ABGEN Benchmark

Annotation Quality %S ≥ 4

Research Context
Correctly structured 99.0
Excluding ablation-relevant content 96.5

Reference Ablation Study
Correctly structured 98.5
Non-overlapping 96.0
Justifiable within research context 97.5

Table 6: Human evaluation over 200 samples of ABGEN. Three internal evaluators were asked to rate the samples
on a scale of 1 to 5 individually. We report percent of samples that have an average score ≥ 4 to indicate the
annotation quality of ABGEN.

ID # NLP/AI Publication Data Annotation Data Validation Human Evaluation Human Performance

1 > 10 ✓ ✓ ✓
2 > 10 ✓
3 > 10 ✓
4 5-10 ✓ ✓ ✓
5 1-5 ✓ ✓
6 1-5 ✓ ✓ ✓

Table 7: Details of annotators involved in dataset construction and LLM performance evaluation. ABGEN is
annotated by experts in NLP domains, ensuring both the accuracy of the benchmark and the reliability of the human
evaluation.

B Experiment Setup

User Study Prompt

[System Input]:
Revise or rewrite the initial generation based on research context and user feedback.

[User Input]:
Research context: {research context}
Initial generation: {initial generation}
User feedback: {user feedback}

Redesign an ablation study about the {ablation module}, according to user feedback . . .

Figure 4: Prompt for LLM-researcher interaction.
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Organization Model Release Version Context
Window

Proprietary Models

OpenAI o4-mini 2025-4 o4-mini-2025-04-16 –
GPT-4.1 2025-4 gpt-4.1-2025-04-14 –
GPT-4o 2024-8 gpt-4o-2024-08-06 –

Google Gemini-2.5-Flash 2024-5 gemini-2.5-flash-preview-05-20 –

Open-source Multimodal Foundation Models

Mistral AI Mistral-Small-3.1 2025-3 Mistral-Small-3.1-24B 128k

Microsoft Phi-4 2025-3 Phi-4 16k

Google Gemma-3-27b-it 2025-3 gemma-3-27b-it 16k

DeepSeek
DeepSeekV3 2024-12 DeepSeekV3 160k
DeepSeekR1 2025-5 DeepSeek-R1-0528 160k
DeepSeek-R1-0528-Qwen3-8B, 2025-5 DeepSeek-R1-0528-Qwen3-8B 160k

Alibaba

Qwen2.5-32B 2025-1 Qwen2.5-32B-Instruct 32k
Qwen3-8B 2025-5 Qwen3-8B 40k
Qwen3-32B 2025-5 Qwen3-32B 40k
Qwen3-235BA22B 2025-5 Qwen3-235B-A22B 32k

Meta

Llama-3.1-70B 2024-6 Llama-3.1-70B-Instruct 32k
Llama-3.3-70B 2025-5 Llama-3.3-70B-Instruct 32k
Llama-4-Scout-17B 2025-5 Llama-4-Scout-17B-Instruct 32k
Llama-4-Maverick-17B 2025-5 Llama-4-Maverick-17B-Instruct 32k

Table 8: Details of the organization, release time, maximum context length, and model source (i.e., url for proprietary
models and Huggingface model name for open-source models) for the LLMs evaluated in ABGEN.
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C Experiments

C.1 Meta Evaluation Results

Evaluator LLM Import. Faith. Sound. Overall

QwQ-32B 0.856 0.682 0.858 0.877
Qwen3-32B 0.741 0.779 0.884 0.864
Qwen3-8B 0.796 0.682 0.818 0.847
Gemini-2.5-Flash-Preview 0.590 0.748 0.849 0.775
GPT-4o 0.473 0.607 0.767 0.726
GPT-4.1-mini 0.562 0.523 0.828 0.713
Qwen2.5-32B 0.342 0.673 0.687 0.673
DS-R1-0528-Qwen3-8B 0.674 0.757 0.862 0.660
GPT-4.1 0.606 0.678 0.864 0.647
Llama-4-Maverick 0.584 0.241 0.622 0.523
Llama-3.3-70B 0.463 0.404 0.841 0.516
Llama-3.1-70B 0.264 0.409 0.266 0.436
Llama-4-Scout 0.620 0.327 0.409 0.421
DeepSeek-R1-0528 0.752 0.691 0.181 0.407

Table 9: System-level Kendall correlations between pointwise evaluations from various LLM-based evaluators and
human judgments across four criteria: importance, faithfulness, soundness, and overall. The overall score is not
directly rated by humans, but computed as the average of the other three aspect scores.
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D Error Analysis

D.1 Misalignment with Research Context

Error type: Misalignment with Research Context
Paper Title: Balancing Transparency and Accuracy: A Comparative Analysis of 
Rule-Based and Deep Learning Models in Political Bias Classification
url: https://arxiv.org/pdf/2411.04328v1

Relevant text: We used the University of Central Oklahoma’s Political Bias chart, as 
it is publicly accessible and provides a visual representation of political bias 
categorization of various news sources. From this chart, we selected eight outlets 
ranging across the political spectrum. This classification served as the foundation for 
our categorization of news articles into 'Left', 'Neutral', or 'Right'. These labels were 
then used to evaluate how effectively our models could identify differentiated bias 
features

Error analysis by human experts:
The issue lies in a misalignment with the original research context. The ablation study 
assumes a setup where external bias labels (e.g., “Left” or “Right”) are removed, 
suggesting an unsupervised or label-free classification scenario. However, the paper is 
fundamentally framed around a supervised learning task that explicitly relies on these 
external labels from a media bias chart. Removing them would not simply test a 
variant of the same method—it would redefine the core task, making the ablation 
incompatible with the original experimental objectives and assumptions.

Ablation Study about external news outlet evaluation (generated by DeepSeek-
R1-0528-Qwen3-8B)
The specific aim of this ablation study is to investigate the impact of relying on 
external news outlet evaluation, derived from a pre-existing academic media bias 
classification, versus utilizing internal model-derived labels on the performance of the 
Differentiated Biased feature detection models…
A new ablated version of the experiment will replicate the data sourcing and 
preprocessing steps using the identical dataset. Crucially, it will remove the step 
where specific outlets are labeled as 'Left' or 'Right' based on external media bias 
charts or performance metrics. Instead, for the purpose of model training and 
evaluation, the data will be treated as unlabeled sequences. The convolutional NN and 
rule-based sentiment analysis models will be trained solely on the raw text features 
without predefined target categories corresponding to the outlet bias…

Figure 5: A Failure Example of Misalignment with Research Context
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D.2 Ambiguity and Difficulty in Reproduction

Error type: Ambiguity and Difficulty in Reproduction
Paper Title: RMB: Comprehensively Benchmarking Reward Models in LLM 
Alignment
url: https://arxiv.org/pdf/2410.09893v1

Relevant text: We further analyze the robustness of BoN evaluation with majority 
voting across 3 RM instances. Surprisingly, we do not observe an enhancement of 
ranking consistency or alignment with pairwise results, suggesting that the majority 
voting may not be effective in the RM evaluation context.
We observe a significant inconsistency in both helpfulness and harmlessness 
evaluation when applying BoN across different RM instances, indicating the 
instability of single-RM scoring in such tasks.

Error analysis by human experts:
The ablation study lacks clear details on how confidence scores are computed and 
applied, especially for generative models. Key steps like normalization, weighting 
logic, and model accessibility are vague, making the experiment difficult to reproduce 
reliably.

Ablation Study about confidence weighting (generated by Qwen2.5-32B)
The objective of this ablation study is to evaluate the impact of confidence weighting 
on the performance of reward models (RMs) used in aligning large language models 
(LLMs) with human preferences. Confidence weighting refers to the practice of 
assigning higher or lower weight to a model's score based on a measure of the model's 
confidence in that score. This study aims to determine whether and how confidence 
weighting affects the accuracy of RMs in both pairwise and BoN (Best of N) tasks.
The experimental design includes collecting predictions from each RM on the 
pairwise and BoN datasets, adjusting scores based on confidence for CW variants, 
calculating accuracy metrics, and comparing results…

Figure 6: A Failure Example of Ambiguity and Difficulty in Reproduction
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D.3 Partial Ablation or Incomplete Experimentation

Error type: Partial Ablation or Incomplete Experimentation
Paper Title: RST-LoRA: A Discourse-Aware Low-Rank Adaptation for Long 
Document Abstractive Summarization
url: https://arxiv.org/pdf/2407.13579v1

Relevant text: Based on this, we propose four fine-grained RST matrix distributions:
• RST b_wo: A binary, label-agnostic representation collapsing probabilities into a 
simple 1-or-0 regarding discourse connections.
• RST b_w: An extension of the binary distribution that includes relation labels, 
enriching the binary decisions with relational types.
• RST p_wo: A probabilistic representation that omits labels, focusing instead on the 
probabilities to express uncertainty in discourse connections.
• RST p_w: The most granular representation, retaining both types of discourse 
relations and their probabilistic weights for a full-fledged representation of discourse 
nuances.

Error analysis by human experts:
This sentence reveals that all ablation variants are built on the binary probability 
distribution, which is never ablated itself. Therefore, the design does not isolate the 
effects of this core component, leading to an incomplete assessment of each factor's 
independent contribution.

Ablation Study about assess rank effect (generated by Llama-4-Maverick-17B)
To evaluate the contribution of individual RST structure variants (binary probability 
distribution, relation labels, and uncertainty) to the performance of the proposed RST-
injected LoRA method for long document summarization. 
Four variants are introduced based on the RST integration framework:1. Base Model: 
Vanilla LoRA (for comparison, no RST integration).2. Variation 1 (Binary): 
Integrates only the binary probability distribution of RST relations (without relation 
labels).3. Variation 2 (Labels): Integrates the binary probability distribution along 
with explicit discourse relation type labels (binary probability + labels; no 
uncertainty).4. Variation 3 (Uncertainty): Integrates the binary probability distribution 
and uses uncertainty information (binary probability + uncertainty)...

Figure 7: A Failure Example of Partial Ablation or Incomplete Experimentation
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D.4 Insignificant Ablation Module

Error type: Insignificant Ablation Module
Paper Title: Bayesian scaling laws for in-context learning
url: https://arxiv.org/pdf/2410.16531v3

Relevant text: To reduce the number of learned parameters that we cannot observe 
(and which can thus take on arbitrary values and lead to overfitting), we can tie some 
of the non-diagonal values in P. We propose two approaches to tying parameters: 
sampling-wise and scoring-wise. Under sampling-wise tying, we tie off-diagonal 
values in each column, and under scoring-wise tying we do the same but for rows. … 
Both approaches reduce the parameter count from M² + M to 3M, and the number of 
unobserved parameters from M² − M to M, making the complexity of the law in line 
with that of a power law.

Error analysis by human experts:
The ablation study targets sampling-wise tying as the main module of investigation. 
However, in the original paper, it is not a core theoretical or experimental component 
but a technical simplification to reduce unobserved parameters in the scaling law 
matrix. It is one of two optional tying schemes and is not claimed to affect ICL 
performance. Framing it as the focus of an ablation misrepresents its importance, 
making this an example of the “Insignificant ablation module” error type—where the 
studied component holds little relevance to the main scientific objective.

Ablation Study about sampling-wise tying (generated by DeepSeek-R1)
This ablation study aims to investigate the impact of sampling-wise tying on the in-
context learning (ICL) performance of toy transformer models. The authors train 
GPT-2-style models of varying sizes on the GINC dataset and evaluate them on 
synthetic sequences to produce ICL curves. Two configurations are compared: one 
where sampling-wise tying is applied to ensure consistent sampling across training 
epochs, and another where sampling varies freely. Models are pretrained under both 
settings, and their ICL performance is measured using the probability of the correct 
token at key positions. Normalized Root Mean Square Error (NRMSE) is calculated 
for each condition, and statistical tests are used to assess differences…

Figure 8: A Failure Example of Insignificant Ablation Module



12498

D.5 Inherent Logical Inconsistencies

Error type:Inherent Logical Inconsistencies
Paper Title: A SMART Mnemonic Sounds like "Glue Tonic": Mixing LLMs with 
Student Feedback to Make Mnemonic Learning Stick
url: https://arxiv.org/pdf/2406.15352v2

Error analysis by human experts:
This ablation study contains inherent logical inconsistencies due to the vague and 
speculative definition of MPL, the key variable under investigation. Multiple 
interpretations are proposed without a clear operational definition, making the ablation 
condition ambiguous and difficult to reproduce. This weakens experimental control 
and creates uncertainty about what is actually being tested, undermining the validity 
of the conclusions.

Ablation Study about MPL (generated by DeepSeek-R1-0528-Qwen3-8B)
Objective: Determine the necessity of a specific method MPL (Model Prompt 
Learning?) for achieving high-quality mnemonic explanations via DPO alignment.
Experiment Setup: This ablation study builds upon the fine-tuning and DPO 
alignment stage of the main experiment (Section 3.1.2)...
Ablation Conditions: Base DPO: Uses the full set of preference labels (p_rating, 
p_pair, p_learn) as input to the DPO alignment process.DPO w/o MPL: Replaces the 
standard DPO input with the outcomes solely derived from a specific MPL-related 
aspect. For example, MPL could represent Method Prompt Learning potentially 
related to a particular prompt construction. Alternatively, if MPL refers to a data 
processing technique, MPL could be a specific methodology for selecting, filtering, or 
categorising the preference pairs before DPO, which we omit or substitute with a 
default/cursor. This ensures the ablation examines the impact of removing MPL on the 
outcome quality…

Figure 9: A Failure Example of Inherent Logical Inconsistencies
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