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Abstract
Composed Image Retrieval (CIR) enables users
to search for images using multimodal queries
that combine text and reference images. While
metric learning methods have shown promise,
they rely on deterministic point embeddings
that fail to capture the inherent uncertainty in
the input data, in which user intentions may be
imprecisely specified or open to multiple inter-
pretations. We address this challenge by refor-
mulating CIR through our proposed Composed
Probabilistic Embedding (COPE) framework,
which represents both queries and targets as
Gaussian distributions in latent space rather
than fixed points. Through careful design of
probabilistic distance metrics and hierarchical
learning objectives, COPE explicitly captures
uncertainty at both instance and feature lev-
els, enabling more flexible, nuanced, and ro-
bust matching that can handle polysemy and
ambiguity in search intentions. Extensive ex-
periments across multiple benchmarks demon-
strate that COPE effectively quantifies both
quality and semantic uncertainties within Com-
posed Image Retrieval, achieving state-of-the-
art performance on recall rate. Code: https:
//github.com/tanghme0w/ACL25-CoPE.

1 Introduction

Composed Image Retrieval (CIR) (Vo et al., 2019)
is a specialized task that enables image search by
combining a reference image and a textual instruc-
tion that specifies desired modifications to the ref-
erence image. The instructions can range from
attribute alterations (e.g., changing a shirt’s logo)
to contextual transformations (e.g., relocating a dog
from indoors to outdoors). By leveraging visual
and textual modalities in the query, CIR provides
users with a powerful means to express complex
search intentions, making it particularly valuable
for applications in personalized content recommen-
dation, e-commerce, and multimedia editing.

∗These authors contributed equally to this work.
†Corresponding author.

Recent approaches (Baldrati et al., 2022; Han
et al., 2023; Wen et al., 2023; Yang et al., 2023;
Xu et al., 2023; Baldrati et al., 2023; Saito et al.,
2023) are mostly built upon metric learning, which
aims to learn latent embeddings that effectively
represent both multi-modal queries and candidate
images. This approach is particularly promising as
it enables models to leverage the expressive and pre-
aligned embeddings from pre-trained models (Rad-
ford et al., 2021; Li et al., 2022, 2023a). However,
existing CIR methods attempt to estimate accurate
point embeddings in the latent space, which is in-
trinsically difficult due to two major challenges:

1) Imprecise or low-quality input. The model
may encounter reference images that suffer from
low resolution, blur, occlusion, and multiplicity.
Meanwhile, modification texts may contain gram-
matical errors, colloquialisms, or perplexing sen-
tences that does not convey sufficient information.

2) Ambiguous intentions. Text instructions like
"make it more natural" or "improve the lighting"
can have multiple valid interpretations. Image prop-
erties may also be subject to multiple perspectives.
What one might consider "minimalist style" could
be interpreted as "abstract style" by others, and a
shirt that is considered long sleeve by some might
be seen as medium sleeve for others.

The aforementioned data quality and semantic
ambiguity issues manifest at varying degrees across
different samples, introducing significant uncer-
tainty to the model’s input. Current point embed-
ding approaches train models to minimize distances
between positive pairs and maximize distances be-
tween negative pairs without accounting for the
varying quality and ambiguity of individual sam-
ples. This uniform treatment of samples, regardless
of their reliability, can lead to training instability
and increased risk of over-fitting.

In this paper, we address these challenges by
quantifying and reasoning about uncertainties for
each individual input. To this end, we propose
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sleeve length

color

(a) Visual ambiguity the image on the left has more uncertainty in sleeve
length and less uncertainty in color, while the image on the right has more
uncertainty in color and less uncertainty in sleeve length.

+ is in darker color 

+ is in all black

(b) Text ambiguity “in darker color” is more
ambiguous than “in all black”, and thus should
be encoded with larger uncertainty.

(c) Image quality: when searching for fashion images, the images on the right side are noisier in terms of background, angle,
occlusion, irrelevant content, etc. And thus should be encoded with larger uncertainty.

Figure 1: Examples of uncertainty in composed image retrieval. Images are curated from Fashion-IQ dataset.

an uncertainty quantification framework that ex-
plicitly models query and candidate embeddings
as probabilistic distributions rather than point es-
timates, with distribution variance reflecting the
uncertainty of input data. Our probabilistic repre-
sentation offers the following key advantages over
deterministic point embeddings: 1) by capturing
data quality through learning the overall magni-
tude of the variance, the model assigns different
significance to different quality instances during
the training and inference process. 2) through the
learned distribution of variance across different fea-
ture dimensions for each instance, the model is
aware of the semantic ambiguity in user’s search
intentions, reducing the importance of feature di-
mensions that are ambiguous and focus on features
with clearer specification. Experiment results show
that this approach improves training stability as
well as overall recall performance.

We summarize our contributions as follows.

1. We propose COPE, a novel probabilistic embed-
ding approach to quantify the uncertainty and
enhance CIR without additional annotations.

2. We develop an uncertainty-aware distance met-
ric and systematic training objectives based on
it, simultaneously modeling the magnitude and
dimensional distribution of uncertainty.

3. We show COPE effectively captures the uncer-

tainty and achieves improved performance over
deterministic methods on the CIR benchmark.

2 Related Work

2.1 Composed Image Retrieval

Research approaches in Composed Image Retrieval
(CIR) generally fall into two main categories: Su-
pervised CIR approaches (Vo et al., 2019; Kim
et al., 2021; Dodds et al., 2020; Lee et al., 2021;
Delmas et al., 2022; Couairon et al., 2022; Wang
et al., 2022; Zhang et al., 2022; Zhao et al., 2022;
Baldrati et al., 2022; Han et al., 2023; Wen et al.,
2023; Yang et al., 2023; Xu et al., 2023) rely on
triplet training data consisting of a reference im-
age, modification text, and target image. These
methods focus on developing sophisticated mecha-
nisms to fuse the latent representations of reference
image and text, as well as accurately capturing sub-
tle visual differences between reference and target
images. Zero-shot CIR methods (Baldrati et al.,
2023; Saito et al., 2023; Tang et al., 2024; Lin
et al., 2024; Suo et al., 2024) take a different ap-
proach by training on image-text paired datasets
instead of triplets. They typically work by con-
verting visual features from the reference image
into pseudo-text tokens, effectively transforming
the CIR task into a conventional text-to-image re-
trieval problem. While zero-shot approach enables
training on more abundant data, the lack of explicit

1211



triplet supervision often limits these methods’ abil-
ity to interpret nuanced search intentions, resulting
in notably lower performance compared to super-
vised approaches. In this paper, we mainly focus
on the supervised setting of the CIR task.

Despite its significance, triplet data in supervised
CIR is inherently noisy and ambiguous, as dis-
cussed in the previous section. Existing methods
have attempted to mitigate this challenge through
augmenting training data with additional high-
quality samples (Jang et al., 2024; Gu et al., 2024;
Feng et al., 2024; Ventura et al., 2024; Liu et al.,
2024), developing fine-grained semantic parsing
and decomposition schemes (Yang et al., 2024;
Lin et al., 2024), leveraging large language models
(LLMs) to refine or disambiguate user intentions
(Baldrati et al., 2023; Karthik et al., 2024), or in-
troduce regularization in the training process to im-
prove the model’s adaptability towards ambiguous
inputs (Chen et al., 2024; Xu et al., 2024). Dis-
tinct from methods that attempts to eliminate the
uncertainty in data, our proposed method identifies
these uncertainties with probabilistic embedding,
offering rich representation, stability in training
and flexibility in matching.

2.2 Uncertainty Quantification
Uncertainty measures the degree of possibility that
a model’s prediction could be wrong. There are two
fundamental factors of uncertainty within a model’s
prediction: (Kiureghian and Ditlevsen, 2009). i)
The imperfection of the model’s capabilities, and
ii) The deficiency of the input data. The former,
known as Epistemic Uncertainty, can be reduced
by scaling up training data or improving model
architecture. The latter, termed Aleatoric Uncer-
tainty, arises from natural variations in data quality,
ambiguity, and semantic content. Due to the infi-
nite possible combinations of real-world data and
its inherent randomness, aleatoric uncertainty can-
not be eliminated even with additional training data
(Kendall and Gal, 2017). In this paper we focus
on the aleatoric uncertainty in CIR and provide
insights for optimizing model performance under
fixed data constraints. Specifically, we aim to de-
velop a method to quantify the level of uncertainty
for each data sample individually.

2.3 Probabilistic Embedding
Numerous works have explored the benefits of
probabilistic embedding in tasks such as graph
learning (Bojchevski and Günnemann, 2018), word

embedding (Vilnis and McCallum, 2015), face
recognition (Shi and Jain, 2019; Chang et al., 2020),
3D pose estimation (Sun et al., 2020), speaker di-
arization (Silnova et al., 2020), etc. Regarding
tasks similar to ours, PFE (Shi and Jain, 2019) and
DUL (Chang et al., 2020) discussed the application
of probabilistic embedding in facial recognition.
These methods leverage probabilistic embedding to
identify the uncertainty in visual qualities of facial
images. HIB (Oh et al., 2019) proposed a general-
ized soft contrastive framework to learn probabilis-
tic embeddings. PCME (Chun et al., 2021) extends
this framework to cross-modal retrieval. Its sequel
(Chun, 2024) took a step further by introducing a
closed form distance metric, improving the training
stability and retrieval performance. Other works
(Song and Soleymani, 2019; Andrei et al., 2022)
have also applied probabilistic embedding to ad-
dress the multi-matching or partial-matching prob-
lems. Different from the line of preceding works,
our method not only learns instance-wise uncer-
tainty, but also explicitly learns the feature-wise
uncertainty. This is achieved by a unique distance
metric that is aware of feature-wise uncertainty dis-
tribution and a hierarchical learning approach that
enables multi-grained uncertainty modeling.

3 Method

3.1 Problem formulation

In the context of CIR, a model operates on triplet
data {

(
xir, x

i
t, x

i
c

)
}Ni=1, where xir denotes the i-

th reference image, xit denotes the i-th modifi-
cation text, and xic denotes their corresponding
candidate image (i.e., target image). The model
aims to produce multi-modal query representation
ziq = fq(x

i
r, x

i
t) and candidate image representa-

tion zic = fc(x
i
c) such that for a certain distance

metric d, corresponding query-candidate pairs have
smaller distances than non-corresponding pairs:

d(ziq, z
i
c) < d(ziq, z

j
c), i ̸= j (1)

In our approach, we model each embedding as
a distribution in the latent space characterized by
a Gaussian prior: z ∼ N (µ,Σ), where µ ∈ RD

is the mean vector and Σ ∈ RD×D stands for the
covariance matrix. For computational tractabil-
ity, we assume mutual independence across em-
bedding dimensions and constrain Σ to have non-
zero entries only on its diagonal. Consequently,
the above notation is reduced to z ∼ N

(
µ, σ2I

)
,
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where µ, σ2 ∈ RD are both D−dimensional vec-
tors and I is the D ×D identity matrix.

The embedding model computes the distribution
parameters for the reference image, the modifica-
tion text, and the candidate image respectively:

µt = fT (xt), σt = gT (xt), (2)

µr = fV (xr), σr = gV (xr), (3)

µc = fV (xc), σc = gV (xc). (4)

Here, fV (·), gV (·) represent the mean and vari-
ance heads of the vision encoder branch, while
fT (·), gT (·) represent the mean and variance heads
of the text encoder branch. The reference image
and candidate image are processed through the
same vision encoder (sharing fV (·), gV (·) ) in or-
der to leverage the visual priors of pre-trained back-
bones and reduce training complexity.

The query embedding is obtained by combining
the Gaussian embeddings of the reference image
and modification text through addition:

zq = zr + zt ∼ N
(
µr + µt,

(
σ2
r + σ2

t

)
I
)
. (5)

This additive composition treats the text embed-
ding as a displacement vector, representing the off-
set from the reference image embedding to the can-
didate image embedding within the latent space.

3.2 Model Architecture
3.2.1 Feature Extraction Network
We extract the mean components of probabilis-
tic embeddings using the CLIP encoders (Radford
et al., 2021). Considering that different text mod-
ification intentions emphasize different levels of
granularity, we implement a multi-grained feature
extraction mechanism that connects the lower lay-
ers of the CLIP vision transformer with the last
hidden embedding layer. The weights of these con-
nections are modulated the global text embedding
through a Cross Attention (XA) gate

h′l = LN(hl + XA(hl, µt)), (6)

hN =
1

N

N∑

l=1

h′l. (7)

hl ∈ RL×D represents the hidden states at the l-th
layer of the vision encoder. We notice that this mod-
ulator helps the model attend to different levels of
representations for different instances, improving
training stability as well as overall performance.

3.2.2 Uncertainty Quantification Head
The uncertainty quantification heads take the last
hidden layer of the vision and text encoders as in-
put and process them through parallel pathways to
estimate both mean and variance parameters of the
probabilistic embeddings. The network processes
the last hidden embeddings through an MLP fol-
lowed by local attention. The outputs are combined
through a residual connection and fed into a Gen-
eralized Pooling Operator (GPO) to produce the
final uncertainty estimates σr/σc. Uncertainties are
captured independently for both modalities before
being combined for the final retrieval task. Follow-
ing (Chen et al., 2021), we implement the GPO as
our final pooling operator, as it has been shown to
effectively aggregate uncertainty information while
maintaining probabilistic interpretability.

3.3 Uncertainty Learning

3.3.1 Instance-Wise Uncertainty Learning
At the instance level, uncertainty stems from the
fact that data instances vary in qualities. In COPE,
this is represented by the magnitude of the uncer-
tainty parameter ||σ||22, larger uncertainty values
indicate less reliable instances.

We apply an batch-wise uncertainty-aware con-
trastive loss to enable the learning of overall in-
stance representations, the form of which is is in-
spired by SigLIP (Zhai et al., 2023):

Lij = − logS (mij(−a · d(zi, zj) + b)) , (8)

LC =
1

|B|
∑

i∈B

∑

j∈B
Lij . (9)

Here, S is the Sigmoid function. mij is the label for
a given query and candidate input, which equals
1 if they are matched and -1 otherwise. a, b are
learnable parameters in which a > 0. d(zi, zj) is
the distance metric defining the matching behavior
under the probabilistic embedding scheme. Given a
pair of probabilistic embeddings z1 ∼ N

(
µ1, σ

2
1I
)

and z2 ∼ N
(
µ2, σ

2
2I
)
, COPE computes their dis-

tance via a closed-form distance metric

d(z1, z2) = ∥µ1 − µ2∥22 + ∥σ1 − σ2∥22 + 2Dσ̄1σ̄2, (10)

in which D is the embedding dimension, σ̄ denotes
the mean value across all dimensions of σ. The
distance metric consists of two parts. The first part
∥µ1 − µ2∥22 + ∥σ1 − σ2∥22 is the Wasserstein-2
distance between the two Gaussian distributions,
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Figure 2: Overview of the Model Architecture. Embedding mean µ is derived by the global features of image
and text encoders directly, while uncertainty values σ are produced by the uncertainty quantification heads, each
consisting of a residual local attention branch and a generalized pooling operator (GPO). The visual branches for
reference and candidate images share the same weights. A modulator is applied to enhance multi-grained feature
extraction during query construction. All parameters are jointly optimized during the uncertainty learning process.

and the second part Dσ̄1σ̄2 penalizes the match-
ing between instances of high uncertainties. This
distance metric bears some basic desirable prop-
erties, including i) Non-negativity. ii) Symmetry.
iii) Discernibility, i.e., the closest embedding to an
instance is always itself. To further illustrate the
properties of this distance metric, we rewrite Equa-
tion (10) with respect to the Pearson Correlation
Coefficient ρ between the uncertainties σ1 and σ2.

d(zi, z2) =∥µ1 − µ2∥22 + ∥σ1∥22 + ∥σ2∥22
− 2ρ · std(σ1) · std(σ2). (11)

This distance metric is positively proportional to
the magnitude of both uncertainty terms ||σ1||22
and ||σ2||22, while being negatively proportional
to the Pearson correlation coefficient ρ between
the uncertainties. This formulation defines two
important matching behaviors:

1) Higher overall uncertainty magnitudes
yield larger distance. Given a query with com-
parable distances to multiple candidates, the model
prioritizes the matches with lower uncertainty val-
ues, effectively favoring embeddings that represent
more reliable and higher quality instances.

2) Similar uncertainty patterns across differ-
ent feature dimensions yield smaller distance.
When both embeddings share high uncertainty in
some particular dimensions, those uncertainties are

mutually canceled and contribute less to the overall
distance. For instance, if a query that searches for a
dress does not specify any information about sleeve
length, then the uncertainty of sleeve length in the
candidate images would also be ignored during
the matching process. When uncertainties are uni-
form across all dimensions (i.e., low std(σ1)) and
std(σ2)), the correlation term’s impact diminishes,
and the absolute magnitudes dominates.

The theoretical grounds of the loss function can
be confirmed by a gradient analysis approach sim-
milar to that of (Chun et al., 2021). In essence, the
proposed loss is in effect a weighting mechanism
in which the model conducts uncertainty-aware
matching by assigning higher weights to pairs with
smaller distances for positive matches and to pairs
with larger distances for negative matches. This
creates a robust learning framework that does not
severely penalize incorrect similarity predictions,
but encodes the dissimilarity information in a more
flexible variance span, thereby encouraging the
model to learn the nuanced matching relationships
while maintaining diversity in its embedding space.

3.3.2 Feature-Wise Uncertainty Learning
Feature-wise uncertainty learning operates on the
basic assumption that different dimensions of the
feature embedding represent different concepts,
e.g., color, shape, texture. Feature-wise uncertainty
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Table 1: Comparison with existing methods on Fashion-IQ dataset.

Dress Shirt Top&tee Avg
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

TIRG (Vo et al., 2019) 14.87 34.66 18.26 37.89 19.08 39.68 17.40 37.41 27.41
CIRPLANT (Liu et al., 2021) 17.45 40.41 17.53 38.81 21.64 45.38 18.87 41.53 30.20

CoSMo (Lee et al., 2021) 25.64 50.30 24.90 49.18 29.21 57.46 26.58 52.31 39.45
ARTEMIS (Delmas et al., 2022) 27.16 52.40 21.78 43.64 29.20 53.83 26.05 49.96 38.00

CompoDiff (Gu et al., 2024) 40.65 57.14 36.87 57.39 43.93 61.17 40.48 58.57 49.53
DWC (Yang et al., 2024) 32.67 57.96 35.53 60.11 40.13 66.09 36.11 61.39 48.75

CLIP4CIR (Baldrati et al., 2022) 33.81 59.40 39.99 60.45 41.41 65.37 38.40 61.74 50.07
SSN (Yang et al., 2024) 34.36 60.78 38.13 61.83 44.26 69.05 38.92 63.89 51.40

SADN (Wang et al., 2024) 40.01 65.10 43.67 66.05 48.04 70.93 43.91 67.36 55.63
CoPE (Ours) 39.85±0.30 66.98±0.34 45.03±0.39 66.81±0.31 48.61±0.49 72.01±0.34 44.50±0.40 68.60±0.36 56.55±0.40

Table 2: Comparison with existing methods on CIRR dataset.

Recall@K Recallsubset@K R@5+Rs@1
2K=1 K=5 K=10 K=50 K=1 K=2 K=3

CIRPLANT (Liu et al., 2021) 19.55 52.55 68.39 92.38 39.2 63.03 79.49 45.88
CompoDiff (Gu et al., 2024) 32.39 57.61 77.25 94.61 67.88 85.29 94.07 62.75

CLIP4CIR (Baldrati et al., 2022) 38.53 69.98 81.86 95.93 68.19 85.64 94.17 69.09
BLIP4CIR (Liu et al., 2024) 40.15 73.08 83.88 96.27 72.10 88.27 95.93 72.59

SSN (Yang et al., 2024) 43.91 77.25 86.48 97.45 71.76 88.63 95.54 74.51
SADN (Wang et al., 2024) 44.27 78.1 87.71 97.89 72.71 89.33 95.38 75.41

CoPE (Ours) 49.18±0.26 80.65±0.21 89.86±0.12 98.05±0.14 72.34±0.23 88.65±0.16 95.30±0.11 76.49±0.22

measures the different levels of ambiguity for dif-
ferent concepts within an instance. In COPE, this
is represented by the value distribution of σ across
different feature dimensions.

The ambiguity of an instance can be estimated
through a neighborhood analysis. Intuitively, if cer-
tain features of an embedding are ambiguous, their
corresponding dimensions are expected to exhibit
higher variance within the embedding’s neighbor-
hood. To capture this, we introduce the neighbor-
hood deviation loss LND, which enforces propor-
tionality between the embedding uncertainty and
the neighborhood feature deviation

LND =
∑

x∈{r,t,c}
∥σx −

1

K
· std(µNx)∥22, (12)

where {r, t, c} represent the reference image, mod-
ification text, and candidate image, respectively. K
is the number number of samples in the neighbor-
hood. By minimizing this loss, the model enforces
a proportional relationship between the embedding
uncertainties (σx) and the standard deviation of
neighborhood features std(µNx). The k-NN search
is conducted based on the mean feature embeddings
µr, µt, µc using cosine similarity metric .

The overall loss is the combination of the
aforementioned instance-wise contrastive loss
and feature-wise neighborhood deviation loss,

weighted by a parameter λ

L = LC + λLND. (13)

During implementation, we set λ to 0.2 for the
best performance. A detailed study on this hyper-
parameter can be found in section 4.3.2

4 Experiment

4.1 Experiment Setting

Datasets and Metrics. We use two standard
datasets for experiments: Fashion-IQ (Wu et al.,
2021) is a fashion dataset containing 18,000 train-
ing triplets and 6,016 validation triplets, with
15,536 candidate images in total as candidate for
validation. We report model performance on this
dataset via Recall@K metric under K=10 and
K=50, respectively. CIRR (Liu et al., 2021) com-
prises 36,554 image triplets derived from 21,552
real-world photographs originally sourced from
NLVR2. While CIRR employs traditional Re-
call@K metrics similar to Fashion-IQ, it intro-
duces an innovative evaluation framework called
Recallsubset@K. This framework challenges mod-
els to identify target images within small groups
of six visually similar images, thereby testing their
capacity for fine-grained discrimination.
Implementation Details. COPE employs CLIP-
ViT-L/14 as the backbone. Training is conducted
on a single A100-80G GPU with a batch size of
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Table 3: Ablation study of COPE on Fashion-IQ dataset.

Dress Shirt Top&tee Avg
R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 Avg.

H.C. 35.53 58.90 40.07 61.87 41.75 66.71 39.12 62.49 50.81
CoPE Ins. 37.42 63.08 41.90 61.06 42.46 65.27 40.59 63.14 51.87

CoPE Ins. + Feat. C 37.57 63.31 41.54 61.75 45.51 68.33 41.54 64.46 53.00
CoPE Ins. + Feat. R 39.85 65.94 43.20 63.48 44.36 66.43 42.47 65.28 53.88
CoPE Ins. + Feat. T 37.67 63.58 41.51 61.16 43.63 66.45 40.94 63.73 52.33

CoPE Ins. + Feat. R&C 38.44 67.81 44.33 63.61 44.33 67.38 42.37 66.27 54.32
CoPE Ins. + Feat. R&T 39.08 66.19 45.11 64.12 45.54 66.69 43.24 65.67 54.46

CoPE 39.85 66.98 45.03 66.81 48.61 72.01 44.50 68.60 56.55

128 and an initial learning rate of 2 × 10−6. We
implement an AdamW optimizer with parameters
β1 = 0.9, β2 = 0.999, ϵ = 1.0× 10−7. We apply
an Exponential Moving Average (EMA) strategy
with an update rate of r = 0.99. To further enhance
the learning process, we incorporate five distinct
augmentation techniques to both reference and tar-
get images: cutout, HSV modification, rotation,
scaling, and Gaussian noise addition. Each aug-
mentation method is independently applied with a
probability of 0.2 per image.

4.2 Comparisons with Existing Methods

We present a comparative evaluation of COPE
against existing CIR approaches, as shown in Ta-
bles 1 and 2. To robustly assess performance, we
conduct 10 training runs with varying random seeds
and report both the mean and standard deviation.
Our results indicate that COPE outperforms all
baselines, including methods that utilize additional
data sources (Gu et al., 2024). This provides strong
empirical support for the advantage of our proba-
bilistic embedding framework.

We notice a slight performance degradation on
the Recallsubset@K setting of the CIRR dataset.
This is likely due to the fact that the probabilistic
embedding scheme works by hedging the matching
process through uncertainty estimation, which may
slightly obscure the difference between instances
that are highly similar. Despite this drawback, our
model still yields competitive performance and
achieves overall SOTA on the CIRR dataset.

4.3 Model Analysis

4.3.1 Ablation Study
We illustrate the effectiveness of instance-wise
and element-wise uncertainty learning via ablation
study on Fashion-IQ dataset. As is shown in Ta-
ble 3. H.C. Refers to training the model using

conventional point embedding and hard contrastive
loss (He et al., 2020). CoPE-Ins and CoPE-Feat
means to apply the instance-wise or feature-wise
uncertainty loss. CoPE-Feat R, T, C represents
feature-wise uncertainty loss on the reference im-
age, text, and candidate image respectively. All
training settings will proceed until the training loss
converges. Results show that I. model trained on
the conventional hard contrastive loss performs far
worse than models trained on probabilistic embed-
ding. Moreover, we observe that the hard con-
trastive scheme quickly over-fits and stops improv-
ing after 10-12 epochs, while the performance of
COPE persistently optimizes even after more than
20 epochs, proving our advantage in training stabil-
ity. II. instance-wise uncertainty loss and feature-
uncertainty loss combined achieves better perfor-
mance than using the two losses individually, thus
proving the effectiveness of our training objectives.

4.3.2 Hyper-parameter Sensitivity
In this section we analyze the performance of
COPE under different hyper-parameter settings.

Effect of the neighborhood size. K determines
the size of the neighborhood during feature-wise
uncertainty learning. A larger K means consider-
ing more neighbors when computing feature-wise
uncertainty, which can provide more comprehen-
sive context but may also introduce noise from less
relevant samples. As shown in Table 4, we exper-
imented with different values of K ranging from
5 to 128. The results demonstrate that a moderate
K (e.g., 10) achieves better performance across
metrics. When K becomes larger, performance be-
gins to degrade, likely due to the inclusion of less
relevant neighbors in the uncertainty estimation.
Similarly, a too small neighborhood (K = 5) pro-
vides insufficient context, resulting in suboptimal
performance. These findings suggest that setting K
at approximately 10 strikes an effective balance be-
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tween capturing enough neighborhood information
and avoiding noise from distant samples.

Table 4: Model performance (average recall) on Fashion-
IQ dataset under different settings of K.

R@10 R@50 Overall
K = 5 43.56 66.18 54.87
K = 10 44.50 68.60 56.55
K = 20 43.94 67.85 55.90
K = 50 42.98 68.03 55.51
K = 128 42.39 67.77 55.08

Effect of the loss coefficient. As specified in
Equation 13, λ defines the ratio between instance-
wise uncertainty learning and element-wise uncer-
tainty learning. A higher λ imposes a greater sig-
nificance in the effect of feature-wise learning.

Table 5: Model performance (average recall) on Fashion-
IQ dataset under different settings of λ.

R@10 R@50 Overall
λ = 1× 10−2 44.36 68.21 56.29
λ = 2× 10−2 44.50 68.60 56.55
λ = 5× 10−2 42.55 65.90 54.23
λ = 1× 10−1 40.18 63.31 51.75

4.3.3 Understanding the Effectiveness of
Uncertainty Modeling

Instance-level Uncertainty. We divide the vali-
dation samples from the Fashion-IQ dataset into
10 bins based on the overall magnitude of their
query uncertainty, ||σ||22. For each subset, we com-
pute the recall rate and plot the average recall rate
against the uncertainty levels, as illustrated in Fig-
ure 3. The results reveal a clear decline in recall
rate as uncertainty increases, demonstrating that the
learned uncertainty effectively reflects the quality
of individual data instances. Additionally, the nega-
tive correlation between recall rate and uncertainty
is more pronounced in the R@50 setting compared
to R@10, indicating that our uncertainty modeling
method provides greater advantage in scenarios in-
volving more ambiguous searches, i.e., with higher
numbers of retrieval attempts.

Feature-level Uncertainty. Figure 4 shows a
case study regarding the top instances with the
highest or lowest uncertainty values on certain di-
mensions. COPE model effectively identifies the
semantic ambiguity in both texts and images.

4.3.4 Computational Efficiency
Unlike conventional cosine similarity or single-
vector L2-distance search, our proposed distance

Figure 3: Fashion-IQ Average Recall with Respect to
the Overall Level of Uncertainty.

metric (10) combines two L2 distance components
with an additional inner product term. While this
multi-term formulation offers uncertainty-aware
distance modeling and enhances matching robust-
ness, it also poses challenges for standard approxi-
mate nearest neighbor (ANN) search frameworks
such as FAISS (Johnson et al., 2019), which lack
native support for multi-vector fusion or hybrid sim-
ilarity computations. Fortunately, advanced vector
search systems such as Milvus (Wang et al., 2021)
provide flexible indexing schemes and hybrid-field
retrieval capabilities that align well with our for-
mulation. To evaluate this, we implement our dis-
tance metric and a standard cosine similarity base-
line using Milvus, and assess performance across
databases of varying scales containing randomly
generated dummy vectors.

Specifically, we decompose our metric into two
components: a concatenated vector [µ;σ], stored in
a FLOAT_VECTOR field and indexed via standard L2-
based ANN structures (e.g., IVFPQ); and a scalar
statistic σ̄, stored separately and indexed for inner
product computation (e.g., IVF_FLAT). Retrieval is
conducted using Milvus’ hybrid_search mecha-
nism, with equally weighted sub-queries executed
via AnnSearchRequest and RRFRanker.

As shown in Table 6, our CoPE embedding in-
troduces some overhead compared to standard 768-
dimensional embeddings due to its multi-vector
nature. Nevertheless, when powered by hybrid vec-
tor search frameworks such as Milvus, the average
retrieval time remains efficient even at large scale,
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Top-3 text with largest
uncertainty in dimension #141 

has a chiffon skirt and is 
less fitted

is farker and more open

Is more feminine with 
shorter sleeves

Top-3 text with smallest
uncertainty in dimension #141 

more purple

the dress is black and 
shorter

is red and shorter

Top-3 images with largest
uncertainty in dimension #126

Top-3 images with smallest
uncertainty in dimension #126 

Figure 4: A case study on the uncertainty values across
different dimensions of the embedding. Texts with high
uncertainty in dimension 141 do not specify any color
property, while texts with low uncertainty in dimen-
sion 141 all have a strong indication in color. The phe-
nomenon holds for images in dimensions 126.

demonstrating the practicality of our method for
real-world deployment.

Table 6: Average retrieval time per query (in millisec-
onds) across vector databases of varying size.

Method 10K 100K 1M 10M

Cosine Similarity 2.817 5.985 38.471 339.719
Cosine Similarity + Milvus 0.202 2.076 2.496 5.498
CoPE 5.474 12.535 115.945 734.305
CoPE + Milvus 3.230 5.589 13.601 46.733

4.3.5 Compatibility with Other Backbones

Our uncertainty learning process is independent of
the feature extraction backbone and its pre-training
process. To prove this, we provide supplemen-
tary experiments with the SigLIP backbone on the
Fashion-IQ dataset.

Table 7: Retrieval performance on Fashion-IQ under
different visual backbones.

Method Mean R@10 Mean R@50 Mean All

Hard Contrastive (CLIP) 39.12 62.49 50.81
Hard Contrastive (SigLIP) 40.88 63.29 52.09
CoPE (CLIP) 44.50 68.60 56.55
CoPE (SigLIP) 46.51 70.02 58.27

Results show that the performance gain of CoPE
does not rely on a specific backbone, but stems
from its inherent modeling of feature uncertainty.

5 Conclusion

We address the challenge of data uncertainty
in compositional image retrieval (CIR) through
our proposed Composed Probabilistic Embedding
(COPE) framework, which represents both queries
and targets as Gaussian distributions in latent space.
Through carefully designed distance metrics and
hierarchical learning objectives, COPE explicitly
captures uncertainty at both instance and feature
levels, enabling more nuanced and robust matching
behavior under diverse compositional queries.

Broader Impact. We believe our work has
broader implications across both the NLP and mul-
timodal learning communities (Han et al., 2024;
Zhao et al., 2023a; Wei et al., 2024; Yu et al.,
2025; Wei et al., 2025). Our uncertainty-aware
perspective aligns closely with ongoing research
into semantic ambiguity and underspecified inter-
pretations. The probabilistic modeling of meaning
can be helpful to tasks such as word sense disam-
biguation (Bevilacqua et al., 2021), semantic role
labeling (Li et al., 2023b), and cross-lingual repre-
sentation learning (Gao et al., 2023).

Our method also holds promise for other advanc-
ing personalized retrieval and generation tasks (Gal
et al., 2022; Ruiz et al., 2022; Wang et al., 2023;
Zhao et al., 2023b; Peng et al., 2025; Lu et al.,
2025; Meng et al., 2025; Dong et al., 2023; Liu
et al., 2025; Xie et al., 2024; Tan et al., 2024; Zhou
et al., 2025), where modeling uncertainty is criti-
cal for interpreting and aligning with highly sub-
jective or ambiguous user intent. We believe the
probabilistic approach provides a principled and
extensible foundation for such applications, and we
anticipate its adaptation to domains beyond CIR.

A Limitations

While the CoPE framework offers notable advances
in compositional image retrieval by modeling un-
certainty in both queries and targets, several tech-
nical limitations remain. First, we observe that
although our model consistently achieves higher
overall performance, it tends to exhibit stronger
gains on broader retrieval metrics (e.g., Recall@50)
than on stricter top-ranked evaluations (e.g., Re-
call@10 or Recall on small subsets). This sug-
gests a potential trade-off between recall coverage
and ranking sharpness, which may be addressed
through more fine-grained contrastive alignment
or dynamic re-ranking mechanisms. Second, com-
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pared to conventional cosine similarity-based meth-
ods, our uncertainty-aware distance function in-
troduces minor computational overhead due to its
multi-term formulation and multi-vector indexing.
Lastly, our current training strategy assumes a static
uncertainty profile per image-query pair. Future
work may explore context-dependent or task-aware
uncertainty adaptation, enabling better personaliza-
tion and generalization across retrieval domains.
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