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Abstract

In knowledge graph embedding, leveraging
relation specific entity transformation has
markedly enhanced performance. However, the
consistency of embedding differences before
and after transformation remains unaddressed,
risking the loss of valuable inductive bias in-
herent in the embeddings. This inconsistency
stems from two problems. First, transforma-
tion representations are specified for relations
in a disconnected manner, allowing dissimilar
transformations and corresponding entity em-
beddings for similar relations. Second, a gener-
alized plug-in approach as a SFBR (Semantic
Filter Based on Relations) disrupts this consis-
tency through excessive concentration of entity
embeddings under entity-based regularization,
generating indistinguishable score distributions
among relations. In this paper, we introduce
a plug-in KGE method, Relation-Semantics
Consistent Filter (RSCF). Its entity transfor-
mation has three features for enhancing seman-
tic consistency: 1) shared affine transformation
of relation embeddings across all relations, 2)
rooted entity transformation that adds an en-
tity embedding to its change represented by
the transformed vector, and 3) normalization
of the change to prevent scale reduction. To
amplify the advantages of consistency that pre-
serve semantics on embeddings, RSCF adds
relation transformation and prediction mod-
ules for enhancing the semantics. In knowledge
graph completion tasks with distance-based and
tensor decomposition models, RSCF signifi-
cantly outperforms state-of-the-art KGE meth-
ods, showing robustness across all relations and
their frequencies.

1 Introduction

Knowledge graphs (KGs) play crucial roles in a
wide area of machine learning and its applica-
tions (Zhang et al., 2022b; Zhou et al., 2022; Geng
et al., 2022). However, KGs, even on a large scale,
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still suffer from incompleteness (Dong et al., 2014).
This problem has been extensively studied as a task
to predict missing entities, known as knowledge
graph completion (KGC).

An effective approach for KGC is knowledge
graph embedding (KGE) that learns vectors to
represent entities and relations in a low dimen-
sional space to measure the validity of triples.
Two primary approaches to determine the valid-
ity are distance-based model (DBM) using the
Minkowski distance and tensor decomposition
model (TDM) regarding KGC as a tensor com-
pletion problem (Zhang et al., 2020a).

A recently tackled issue of the models is to learn
only single embedding for an entity, which is insuf-
ficient to express its various attributes in complex
relation patterns such as 1-N, N-1 and N-N (Chao
et al., 2021; Ge et al., 2023). A proposed and ef-
fective approach for this issue is entity transforma-
tion based model (ETM) that uses relation specific
transformations to generate different entity embed-
dings for relations from their original embedding,
enabling more complex entity and relation learn-
ing (Ge et al., 2023).

ETMs, however, have a limit to learning useful
inductive bias that could be obtained in semanti-
cally similar relations. For example, SFBR, a re-
cently proposed method plugged in to various KGE
models (Liang et al., 2021), assigns mutually dis-
connected relation specific transformation to each
relation. Furthermore, under a significantly useful
regularizer such as DURA (Zhang et al., 2020a),
especially on TDM, the method critically concen-
trates entity embeddings, including unobserved en-
tities and generates indistinguishable score distribu-
tions across relations. Both issues are interpreted as
limited learning an important and implicit inductive
bias that semantically similar relation have simi-
lar relation specific entity transformation, called
relation-semantics consistency in this paper.

To alleviate the issues, we present a simple and
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effective method, Relation-Semantically Consis-
tent Filter (RSCF). Its entity transformation has
three features for enhancing semantic consistency.
1) shared affine transformation for consistency map-
ping of relations to entity transformations, 2) rooted
entity transformation using the affine transforma-
tion to generate only the change of an entity em-
bedding subsequently added by this embedding
and 3) normalization of the change for preventing
critical scale reduction breaking consistency. To
amplify the benefit of the consistency, RSCFs adds
relation transformation (RT) and relation predic-
tion (RP) (Chen et al., 2021), for inducing useful
relation specific semantics on embeddings.

Our contributions are as follows.

• We raise and clarify two problems in terms
of relation semantics consistency in learning
useful inductive bias on embeddings.

• We propose a novel and significantly outper-
forming RSCF as a plug-in KGE method,
which induces the consistency and effectively
learns useful semantic representations.

• We provide experimental results on common
benchmarks of KGC, and in-depth analysis to
verify the causes and derived effects.

2 Loss of Useful Inductive Bias

Because semantically similar relations have similar
embedding (Zhang et al., 2018), we define that map-
ping relation embeddings to entity transformations
(ETs) is relation semantically consistent if and only
if any relation pairs (r1, r2) and shorter pair (r1, r3)
for a given r1 are mapped to ET pair (T1, T2) and
shorter pair (T1, T3), respectively. This consistency
serves as an inductive bias implying that semanti-
cally similar relations have similar ETs and, there-
fore, overall similar entity embeddings (EEs). Two
phenomena of losing this inductive bias and their
causes are as follows.

Disconnection of Entity Transformations Dis-
connected ET loosely use this bias, especially un-
der lack of triplet data. In existing methods, re-
lation specific ETs use separate parameters such
as hr = Wrh and tr = Wrt, where h, t, are head
and tail entity embedding, and Wr is a relation spe-
cific transformation. Despite the disconnection, the
methods can still learn similar Wr for given two
similar relation embeddings if their desirable entity
ranks are similar. However, limited observation of

Metric ET-SFBR ET-RSCF EE-SFBR EE-RSCF
Intra Cluster Distance (↓) 1.10 0.47 2.35 0.53
Inter Cluster Distance (↑) 0.27 0.82 0.40 0.85

Table 1: Intra and Inter Cluster Distance of ET and
EE. RSCF shows more concentrated yet distinguishable
clusters compared to SFBR. (Intra Cluster Distance:
mean distance of elements in a cluster to their centroid,
Inter Cluster Distance: distance of a centroid with its
closest centroid. Both measures are averaged across
clusters.)

(a) ET-SFBR (b) ET-RSCF

(c) EE-SFBR (d) EE-RSCF

position
currency
film production
film actor
people place
film place
music role
organization place
producer type
award category

Figure 1: t-SNE result distribution of head ET ((a) and
(b)) and EE ((c) and (d)) for semantically similar relation
groups. Same color represents same semantic group.

entities due to sparse KG introduces a wide variety
of possible ETs and their corresponding embedding
distributions, thereby diluting consistency. In this
environment, the disconnected representation with-
out any specific training and initialization process
aiming to foster the consistency is exposed to the
loss of useful inductive bias of similar relations.

Empirical Evidence for Disconnection The
quantitative empirical evidence of disconnection
in ET and EE is shown in Table 1. The results rep-
resent that SFBR applied to TransE produces ET
and EE that are less distinguishable among clus-
ters (lower Inter Cluster Distance) and less concen-
trated in each cluster (higher Intra Cluster Distance)
compared to RSCF. Additionally, Figure 1 shows a
qualitative example of the distributions visualized
by t-SNE. This example also indicates the evidence
of disconnection of ET and EE in SFBR. More de-
tails of making groups for ET and EE, Intra Cluster
Distance, and Inter Cluster Distance are shown in
Appendix A.

Entity Embedding Concentration In particular,
SFBR additionally loses consistency under entity-
based regularization, DURA (Zhang et al., 2020a).
In KGE based on TDM, DURA has shown signif-
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(b) MRR of validation set (left) and Transformation
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Figure 2: Result of entity embedding concentration, and
performance and scale decrease in training. The results
are collected from ComplEX with DURA regularization.
DURA is applied in all epochs and SFBR is applied after
200 epochs (λ: regularization weight).

icant improvement enough to be inevitable. How-
ever, ComplEX-SFBR with DURA reduces the
scale of ET, causing a strong concentration of entire
entity embeddings. Observed entities are relatively
safe because the score distribution is continuously
adjusted to predict correct triples, but unobserved
entities are critically vulnerable to the concentra-
tion causing indistinguishable score distributions
for semantically different relations, implying crit-
ically broken consistency. This cause of this phe-
nomenon is simply derived in the following equa-
tions of DURA in the original (above) (Zhang et al.,
2020a) and DURA in SFBR (below).

∑
p ||hiRj||22+||hi||22+||tk||22+||tkRj

⊤||22∑
p ||Wrj

hiRj||22+||Wrj hi||22+||tk||22+||tkRj
⊤||22

(1)

where p = (hi, rj , tk) ∈ S for total training data
S, hi and tk are head and tail embeddings with
indices and Rj is a matrix representing relation rj .
In the equation 1, to minimize DURA loss, model
always decreases the scale of ET (simple proof in
Appendix B.1) and this causes indistinguishable
score distribution in all score distributions.

Empirical Evidence for Concentration Fig-
ure 2 presents a T-SNE visualization of score distri-

butions for selected queries. We selected the rela-
tion r1, which shows significantly low performance
in SFBR on FB15k-237, and selected all queries (h,
r1, ?) for this relation r1 in the validation set. We
then generate score distribution for each query us-
ing ComplEX-RSCF, ComplEX-SFBR, ComplEX-
SFBR with normalization (SFBR (N)), and the
ComplEX-DURA. The results show that SFBR
concentrates embeddings into a small cluster, while
the other methods are diversely dispersed.

Do We Need to Use DURA regularizer? Gener-
ating indistinguishable score distributions cannot
be merely resolved by handling the regularization
weight. Figure 2 (b) shows the valid MRR (left) of
SFBR and transformation scale (right) according
to the regularizer weight λ. In training until 200
epochs, largely weighted DURA shows significant
performance, but applying SFBR starts to decrease
MRR and the transformation scale. The results im-
ply that integrating SFBR with DURA causes per-
formance degradation with scale decrease ending
up in the entity embedding concentration. Also, the
result of SFBR with a small weighted DURA in-
dicates that simply excluding DURA on the TDM
will critically decrease the performance.

3 Method

Overview In this section, we propose Relation-
Semantics Consistent Filter (RSCF) to address the
consistency issues. In Figure 3, the overall filtering
process of RSCF, distinguished features compared
to ETMs, and their intended effects are illustrated.

RSCF represents the ET as an addition of origi-
nal embedding ( c⃝) and its relation specific change.
The change is generated by an affine transformation
from relation embedding ( a⃝), and then normalized
( b⃝), described as

er = (

b⃝︷︸︸︷
Np (

a⃝︷︸︸︷
rA1)

c⃝︷︸︸︷
+1 )⊗ e

(2)

where A1 ∈ Rn×n is shared affine transforma-
tion across all relations, r and e ∈ Rnare relation
and entity embedding. Np(rA) = rA

∥rA∥p , and ⊗ is
an elementwise product. Detailed motivation and
effects are as follows.

Shared Affine Transformation for Consistency
A basic property of affine transformation is to main-
tain the parallelism of two parallel line segments
after the transformation and preserves the ratio of
their lengths. This property guarantees consistent
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Lookup Table of ET Matrix Shared Across Relations

Figure 3: Overview of RSCF and its effect. Its process (left) is illustrated on SFBR coloring changed modules. The
two effects (right) are shown by comparing SFBR and RSCF on ET and entity embeddings.

mapping of relation embeddings at least on a line to
generated vectors (part a⃝ in Equation 2). Even in
the case that embeddings are not exactly on a line,
the consistency is maintained with high probability
as shown in Table 2. It presents the proportion of
consistency maintenance rate for each component
of RSCF based on Monte Carlo simulations. The
result indicates that our ET can preserve consis-
tency in the most cases. (Details about this result
are presented in Appendix B.3).

After normalization of the generated vectors
(part b⃝), the consistency still holds in most cases,
showing a maximum of over 99% in the table 2.
The addition of one vector to the normalized
change (part c⃝) does not alter the inequality of
distances, so the consistency is again maintained.
Overall, by applying the affine transformation, we
can maintain the consistency between relation em-
bedding and its ET. To implement the affine trans-
formation shared across relations, we simply adopt
a linear transformation for A.

Rooted Entity Transformation Sharing an
affine transformation across all relations inevitably
reduces the expressiveness of ET compared to en-
tirely separate relation specific ET such as SFBR.
To mitigate the negative effects from this reduc-
tion, we decrease required expressiveness by learn-
ing only the changes in entity embeddings, rather

Method On a Line |AC|
|AB| > 1 |AC|

|AB| > 1.01 |AC|
|AB| > 1.02

Transformation ( a⃝) 1.000 .728 .808 .875
Normalization ( b⃝) .965 .869 .958 .994
Add one ( c⃝) 1.000 1.000 1.000 1.000

Table 2: Consistency of our ET: The numbers represent
the success rates of preserving the superiority of dis-
tances for 10,000 randomly generated samples of three
relation embeddings, notated as A, B, and C. (Line: the
rates for samples with elements exactly on a line, the
others: the rate for samples not on a line with varying
distance rate conditions.)

than learning their diverse positions. Moreover, this
rooted ET representation enables safely bounding
changes via normalization without altering original
entity embeddings. 1 To implement it, we add one
to the normalized change Np(rA) and multiply it
to the original entity embedding (part c⃝).

Relation Prediction for More Consistent Rela-
tion Embedding to its Semantics The induc-
tive bias introduced by the RSCF is dependent
on the semantics of relation embeddings. There-
fore, directly enhancing these semantics results in
the improvement of RSCF performance. An effec-
tive approach is Relation Prediction (RP) (Chen
et al., 2021) forming a cluster for semantically sim-
ilar relations and improving discrimination of dis-

1Refer to Appendix B.2 for details on the bounds of entity
changes.
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Model ET Features Entity Transformation Relation Transformation Relation Prediction (Chen et al., 2021)a⃝ b⃝ c⃝
PairRE ✗ ✗ ✗ er = e ⊗ re ✗ ✗
SFBR ✗ ✗ ✗ er = Wr · e + b ✗ ✗
CompoundE ✗ ✗ ✗ er = Tr · Rr(θ) · Sr · e ✗ ✗

RSCF ✓ ✓ ✓ er = ψ(r) ⊗ e rht = ψ′(h) ⊗ ψ′(t) ⊗ r ✓

Table 3: Summary of difference between RSCF and ETMs (h: head entity, t: tail entity, er: transformed entity
from h and t, which contains both transformed head entity hr and transformed tail entity tr, ψ: ET represented in
Equation (2), ψ′: applied ET to relation transformation shown in and Equation (4), a⃝: shared affine transformation,
b⃝: bounding change from e, c⃝: rooting er to e). Computational complexity is presented in Appendix C.5

similar relations. We add the training objective of
RP (Chen et al., 2021) to RSCF as follows:

L =
∑

p

ϕ(hr|rht, tr) + ϕ(tr|hr, rht) + λϕ(r|h, t) (3)

where ϕ is a loss function with a score function
and λ is a hyper-parameter that controls the contri-
bution of RP.

Relation Transformation for Relation Embed-
ding of its Fine-Grained Semantics In KGs,
some relations have various semantic meanings
that can be divided into fine-grained sub-relations
according to their semantics (Zhang et al., 2018).
Because the semantic meanings of sub-relations are
determined by their context, which is defined by
head and tail entities (Jain and Krestel, 2022), we
propose an entity specific relation transformation
(RT) to split relations into sub-relations, and apply
the filter of ET of RSCF for the same purpose. By
using Equation 2, we present the RT as follows:

rht = (Np(hA2) + 1)⊗ (Np(tA3) + 1)⊗ r (4)

where A2 ∈ Rn×n and A3 ∈ Rn×n are shared
affine transformation across all heads and tails. To
predict score of given triplet (h, r, t), transformed
entities er and relation rhr are used. The difference
of RSCF and ETMs and are summarized in Table 3.

4 Related Works

Knowledge Graph Embedding KGE encodes
entities and relations into low-dimensional latent
spaces to assess the validity of triples. TransE (Bor-
des et al., 2013) and RotatE (Sun et al., 2018) de-
scribe each relation as a translation and rotation be-
tween entities, respectively. DistMult (Yang et al.,
2015) regards KGC as a tensor completion prob-
lem in euclidean space, and ComplEX (Trouillon
et al., 2016) extends it to complex space. Tran-
sHRS (Zhang et al., 2018) improves knowledge

representation by using the information from the
HRS. DURA (Zhang et al., 2020a), AnKGE (Yao
et al., 2023), and CompliE (Cui and Zhang, 2024)
are methods that can be applied to KGE models
to prevent overfitting, provide analogical inference
and enable composition reasoning. VLP (Li et al.,
2023) presents an explicit copy strategy to allow re-
ferring to related factual triples. GreenKGC (Wang
et al., 2023) and SpeedE (Pavlović and Sallinger,
2024) propose low-dimensional embedding meth-
ods to handle large-scale KGs. WeightE (Zhang
et al., 2023) utilizes a reweighting technique to al-
leviate the data imbalance issue. UniGE (Liu et al.,
2024) introduce integration KGE in both euclidean
and hyperbolic to capture various relational pat-
terns. However, using only a single embedding for
an entity or a relation can restrict the learning of
complex relation patterns.

Entity Transformation Models ETM is a model
that uses relation specific ET to model various at-
tributes of an entity. Models such as TransH (Wang
et al., 2014), TransR (Lin et al., 2015), and
TransD (Ji et al., 2015) are variants of TransE (Bor-
des et al., 2013), designed to handle complex rela-
tions by employing hyperplanes, projection ma-
trices, and dynamic mapping matrices for their
transformation functions, respectively. Recently,
AutoETER (Niu et al., 2020) learns the type em-
bedding for each entity with relation specific trans-
formation. PairRE (Chao et al., 2021) performs a
scaling operation through the Hadamard product
to the head and tail entities. SFBR (Liang et al.,
2021) and AT (Yang et al., 2021) present a univer-
sal entity transformation applicable to both DBM
and TDM. ReflectE (Zhang et al., 2022a) intro-
duces relation specific householder transformation
to handle sophisticated relation mapping properties.
CIBLE (Cui and Chen, 2022) use relation-aware-
transformation for prototype modeling to represent
the knowledge graph. CompoundE (Ge et al., 2023)
applied compound operation to both head and tail
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Knowledge Graph Embedding WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

DistMult (Yang et al., 2015) .430 .390 .490 .241 .155 .419 - - -
ComplEX (Trouillon et al., 2016) .440 .410 .510 .247 .158 .428 - - -
RotatE (Sun et al., 2018) .476 .428 .571 .338 .241 .533 - - -
DistMult-HRS (Zhang et al., 2018) - - - .315 .241 .496 - - -
AutoETER (Niu et al., 2020) - - - .344 .250 .538 .550 .465 .699
PairRE (Chao et al., 2021) - - - .351 .256 .544 - - -
CIBLE (Cui and Chen, 2022) .490 .446 .575 .341 .246 .532 - - -
ReflectE (Zhang et al., 2022a) .488 .450 .559 .358 .263 .546 - - -
HAKE-AnKGE (Yao et al., 2023) .500 .454 .587 .385 .288 .572 - - -
CompoundE (Ge et al., 2023) .491 .450 .576 .357 .264 .545 - - -
RotatE-GreenKGC (Wang et al., 2023) .411 .367 .491 .345 .265 .507 .453 .361 .629
RotatE-VLP (Li et al., 2023) .498 .455 .582 .362 .271 .542 - - -
RotatE-WeightE (Zhang et al., 2023) .501 .448 .592 .371 .281 .557 .580 .504 .713
CompliE-DURA (Cui and Zhang, 2024) .495 .453 .579 .372 .277 .563 - - -
SpeedE (Pavlović and Sallinger, 2024) .493 .446 - .320 .227 - .413 .332 -
UniGE (Liu et al., 2024) .502 .455 .592 .357 .264 .559 .583 .512 .715
TransE (Bordes et al., 2013) .226 - .501 .294 - .465 - - -
ComplEX-DURA (Zhang et al., 2020a) .491 .449 .571 .371 .276 .560 .584 .511 .713
TransE-SFBR (Liang et al., 2021) .242 .028 .548 .338 .240 .538 - - -
ComplEX-DURA-SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

TransE-RSCF (Ours) .267 .066 .546 .363 .264 .558 - - -
±.001 ±.002 ±.002 ±.001 ±.001 ±.001 - - -

ComplEX-DURA-RSCF (Ours) .503 .460 .588 .388 .295 .573 .589 .516 .718
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 4: Test performance of KGE-based KGC on FB15k-237, WN18RR and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result. ± indicates standard deviation. (The comparison results of
RSCF, SFBR, and other KGE models presented in Appendix C.2.)

entities. However, these models have no chance for
inductive bias sharing due to the separate parameter
of ET, and SFBR (Liang et al., 2021), which can
be applied to both DBM and TDM, suffers from
indistinguishable score distribution because of the
entity embedding concentrations.

5 Experiments

5.1 Settings

Dataset To evaluate our proposed RSCF
models, we consider three KG datasets:
WN18RR (Dettmers et al., 2018), FB15k-
237 (Toutanova and Chen, 2015), and YAGO3-
10 (Mahdisoltani et al., 2013). The statistics for the
three benchmarks are shown in Appendix C.1.

Evaluation Protocol We evaluated the perfor-
mance of KGC following the filtered setting (Bor-
des et al., 2013). The filtered setting removes all
valid triples from the candidate set when evaluat-
ing, except for the predicted triple. We adopt the
MRR and Hits@N to compare the performance of
different KGE models. MRR is the average of the
inverse mean rank of the entities and Hits@N is the
proportion of correct entities ranked within top k.

Baselines and Training Protocol We compare
the performance of RSCF with the KGE models:
TransE, DistMult, ComplEX, RotatE, DistMult-
HRS, AutoETER, ComplEX-DURA, PairRE,
SFBR, CIBLE, ReflectE, HAKE-AnKGE, Com-

poundE, RotatE-GreenKGC, RotatE-VLP, RotatE-
WeightE, CompliE-DURA, SpeedE, and UniGE.

Because RSCF is a module that is plugged in
based on existing models, we use DBM, including
TransE, RotatE, and TDM, including CP, RESCAL,
and ComplEX as base models. Additionally, fol-
lowing the setting of SFBR, ET is applied to both
head and tail entities in DBM, while it is applied
only to the head entity in TDM due to computa-
tional cost (Liang et al., 2021). For the same reason,
both head and tail entities are utilized for RT in
DBM, while only the head entity is used in TDM.
In the FB15k-237, the entity/relation ratio and the
triple/relation ratio are significantly lower than in
the other two datasets, limiting the context infor-
mation available to each relation. This limitation
is particularly critical in TDM, which relies solely
on the head entity. Therefore, RT is not applied to
TDM in the FB15k-237 dataset.

5.2 Performance

Performance on KGC Table 4 shows the perfor-
mance comparison of the RSCF and other KGE
models on WN18RR, FB15k-237 and YAGO3-10.
Overall, RSCF shows higher or competitive perfor-
mance compared to base models like TransE and
ComplEX-DURA and other KGE models. Espe-
cially in FB15k-237 and YAGO3-10, RSCF out-
performs other state-of-the-art models that include
HAKE-AnKGE and CompliE-DURA.
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Query (h, r, ?) | Correct Answer Related Triples in Training Set Rank(R/S)

(Guillermo del Toro, /people/person/place_of_birth, ?) | Guadalajara (Guillermo del Toro, /people/person/places_lived./people/place_lived/location, Jalisco) 5 / 35
(Guillermo del Toro, /people/person/nationality, Mexico)

(Shawn Pyfrom, /people/person/places_lived./people/place_lived/location, ?) | Florida (Shawn Pyfrom, /people/person/place_of_birth, Tampa) 3 / 32
(Shawn Pyfrom, /people/person/nationality, United States of America)

(Walt Whitman, /people/person/places_lived./people/place_lived/location, ?) | New York (Walt Whitman, /people/deceased_person/place_of_death, Camden) 10 / 21
(Walt Whitman, /people/person/nationality, United States of America)

Table 5: Example KGC results of RSCF compared to SFBR (R: rank of RSCF, S: rank of SFBR). Related triples
show that similar relations to the queries have similar entities to the correct answers in the training set. TransE is
used as baseline

Model ET RP RT T C
a⃝ b⃝ & c⃝ MRR MRR

RSCF ✓ ✓ ✓ ✓ .363 .387
+ w/o ET ✗ ✗ ✓ ✓ .356 .385
+ w/o RP ✓ ✓ ✗ ✓ .358 .374
+ w/o RT ✓ ✓ ✓ ✗ .356 .388

+ w/o RP ✓ ✓ ✗ ✗ .349 .375
+ w/o ET ✗ ✗ ✓ ✗ .338 .385
+ w/o a⃝ ✗ ✓ ✓ ✗ .354 .386
+ w/o b⃝ & c⃝ ✓ ✗ ✓ ✗ .353 .377

Table 6: Results of an ablation study of RSCF on FB15k-
237. TransE and ComplEX are used as base models. T
and C indicate the base models of RSCF, which denote
TransE and ComplEX, respectively. MRR is used for
performance comparison.
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Figure 4: MRR changes over epochs of RSCF, RSCF
(w/o N), SFBR (N), SFBR, and ComplEX on FB15k-
237.

Ablation Study Table 6 presents ablation studies
of RSCF to verify the effectiveness of each com-
ponent. a⃝ and b⃝ & c⃝ are the components of ET
described in Equation 2. In the ablation study, b⃝
& c⃝ are combined because b⃝ & c⃝ should be
used simultaneously to maintain the original scale.
In Table 6, RSCF shows higher performance com-
pared to the other ablated models in both TransE
and ComplEX, suggesting that each component of
RSCF contributes to the effectiveness of RSCF. Es-
pecially, Figure 4 shows that w/o normalization ( b⃝
& c⃝) can significantly reduce model performance
and w/ normalization maintain model performance
in both RSCF and SFBR in ComplEX, indicating
that normalization is necessary to maintain the per-
formance of models that use DURA regularizer.2 In
addition, please note that RT can reduce the perfor-

2Detailed description of SFBR (N) is presented in Ap-
pendix C.3.
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Figure 5: KGC performance of the relation set that is
sorted by their frequency (above) and groups of seman-
tically similar relations observed in Figure 1 (e) (below)
on FB15k-237

mance of ComplEX-RSCF on FB15k-237 because
of context information restriction.

Performance on Relation Frequency and Se-
mantically Distinguished Relation Groups To
demonstrate the generality of applying RSCF re-
gardless of relation frequency, we sort relations by
their frequency and divide them into ten sets. Each
set has an equal number of relations. Figure 5 above
shows the MRR for each set in TransE, RSCF, and
SFBR. The results shows that RSCF outperform
SFBR and TransE in all sets, demonstrating the ro-
bustness of RSCF to relation frequency and show-
ing that RSCF can be applied without trade-off
between high and low frequency of relations.

Figure 5 below shows the MRR for each relation
group as defined in Figure 1 (e). RSCF outper-
formed SFBR and TransE in all groups, demon-
strating that RSCF can be utilized without specific
bias to the semantics of relations and that incorpo-
rating relation semantics into the transformation
function can improve model performance.
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Figure 6: Entity transformation scale (left) and final
entity embedding scale (right) of RSCF, SFBR (N),
SFBR, and ComplEX-DURA over epochs on FB15k-
237. DURA is applied in all epochs and RSCF and
SFBR are applied after 200 epochs.

Qualitative Example Analysis For qualitative
analysis, Table 5 presents sampled queries, their
correct answers, related triples with the sample
queries, and the ranks obtained by RSCF and SFBR.
Relations in sample queries and related triples be-
long to the same relation group (people place).
In Table 5, RSCF shows enhanced performance
compared to SFBR, indicating that RSCF can use
trained bias between semantically similar relations.

5.3 In-Depth Analysis

Relation-Semantics Consistency of ET and EE
Figure 1 shows ET and their corresponding EE
of SFBR and RSCF via T-SNE. RSCF represents
a more concentrated cluster compared to SFBR,
which indicates that similar relations have similar
ET and EE in RSCF; in other words, RSCF satisfies
relation-semantic consistency.

Recovery of Embedding Scale and Score Dis-
tribution Figure 6 presents transformation scale
and final entity embedding scale over epochs on
FB15k-237, using ComplEX as the baseline. Fol-
lowing the approach of SFBR, DURA is applied
in all epochs, and RSCF and SFBR are plugged
in after 200 epochs. The results show that SFBR
decreases both transformation scale and final en-
tity embedding scale. In contrast, RSCF and SFBR
(N) maintain scales, indicating that normalization
helps preserve the embedding scale due to normal-
ization. As shown in Figure 4, MRR decreases for
SFBR and RSCF w/o normalization but increases
for both RSCF and SFBR (N), implying that en-
tity embedding concentration negatively impacts
model performance.

To investigate the detailed change of score dis-
tribution, we present the score distribution of ran-
domly sampled queries from Figure 2 (a) in Fig-
ure 7. SFBR shows near-zero scores for most enti-

Figure 7: Score distribution of all entities for randomly
selected queries from Figure 2 (a)

Model MRR H@10 Concentration
ComplEX-RSCF .375 .609 ✗
ComplEX-SFBR (N) .366 .587 ✗
ComplEX-SFBR .267 .522 ✓
ComplEX-DURA .347 .609 ✗

Table 7: KGC performance of all queries associated
with the relation that shows strong concentration of en-
tity embedding in SFBR. Concentration presents entity
embedding concentration.

ties, with significantly similar distributions across
queries. However, by applying normalization or us-
ing RSCF, the diversity of scores is recovered as
the original base model.

Performance Decrease by Entity Embedding
Concentration To assess the impact of indis-
tinguishable score distribution, we conduct a per-
formance evaluation for the selected relation that
shows critical entity embedding concentration in
Figure 2. Table 7 presents the MRR for all queries
associated with the selected relation. SFBR shows
significantly lower performance than RSCF, SFBR
(N), and the ComplEX. This result implies that in-
distinguishable score distribution strongly affects
the prediction of SFBR, and simply applying nor-
malization can recover it.

6 Conclusion

In this paper, we address the limit in inducing
relation-semantics consistency, implying that se-
mantically similar relations have similar entity
transformation, on entity transformation models
for KGC, especially SFBR. We clarify two causes,
disconnected entity transformation representation
and entity embedding concentration, and provide
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a novel relation-semantics consistent filter (RSCF)
method. Its entity transformation use shared affine
transform to generate the change of entity embed-
ding, normalize it and add it to the embedding for
enhancing the semantic consistency. Also, RSCF
adds relation transformation and prediction for en-
hancing the semantics. This method significantly
improves the performance of KGC compared to
state-of-the-art KGE methods for overall relations.

7 Limitations

RSCF uses the simplest form of affine transforma-
tion, but it has a limit of expressing all changes
across all embeddings, which requires more ad-
vanced approach. Future work should extend the
method to additional KGE models to enhance gen-
erality.
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A Appendix A

A.1 Relation Groups for Entity
Transformation

Figure 8 illustrates the relation embedding of
TransE. We select ten relation groups whose re-
lation embeddings build clear and mutually decou-
pled clusters, which implies semantically distin-
guished relation groups. The other relations are
plotted as grey points. The relations correspond-
ing to each group are listed in Table 14. Note that
similar relations belong to the same group.

position
currency
film production
film actor
people place
film place
music role
organization place
producer type
award category
others

Figure 8: Visualization of relation embeddings of
TransE using T-SNE

(a) ET-SFBR (b) ET-RSCF

(c) EE-SFBR (d) EE-RSCF

Figure 9: Tail entity transformations and entity embed-
dings for semantically similar relation groups. (a) and
(b) indicate ET of SFBR and RSCF, (c) and (d) indicate
EE of SFBR and RSCF.

Metric ET-SFBR ET-RSCF EE-SFBR EE-RSCF
Intra Cluster Distance (↓) 5.20 0.52 2.94 0.67
Inter Cluster Distance (↑) 0.46 0.70 0.46 0.74

Table 8: Intra Cluster Distance and Inter Cluster Dis-
tance of tail entity transformation and entity embedding
of SFBR and RSCF.
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A.2 Distribution of Tail Entity
Transformations and Corresponding
Entity Embedding

Figure 9 presents the t-SNE visualization of tail ET
and corresponding EE of RSCF and SFBR. Even
in the tail, RSCF shows more concentrated clusters.
Also, in Table 8, RSCF exhibits lower Intra Cluster
Distance and higher Inter Cluster Distance com-
pared to SFBR. The groups for ET are equivalent
to the relation groups in Figure 8, and an entity for
EE is randomly selected from FB15k-237.

A.3 Measurement of Cluster Concentration

To measure distance between elements within a
cluster, we defined intra cluster distance score as
follows:

n∑

k

m∑

i

||(ki − Ck)||
n||Ck|| (5)

where k is clear and mutually decoupled clusters
and ki is i-th vector embedding of ET in group k
and Ck is centroid of cluster k that can be calcu-
lated as:

Ck =

∑m
i ki
m

(6)

In the equation 5, the vector norm of C (||C||) is
used because of the relative intra cluster distance
score for clusters. Also to evaluate the distance
between different clusters we defined inter cluster
distance score as follows:

n∑

k

||(Ck − Ckc)||∑m
i ||ki|| (7)

where Ckc represent the centroid that is closest to
Ck, and it can be written as:

Ckc = min
k ̸=j

{||Ck − Cj ||} (8)

In Equation 7, the norm of the cluster, which is
calculated as the sum of the elements in the cluster,
is used for the relative inter cluster distance.

B Appendix B

B.1 Proof of scale decrease of ET

Let Wrj is the ET of SFBR and wrj ,n is n-th ele-
ment of Wrj , than the gradient of wrj ,n in DURA

can be calculated as:
∑

p

dL

dwrj ,n
||wrj,nhi,nrj,n||22 + ||wrjnhi,n||22

=
∑

p

dL

dwrj ,n
w2
rj,n

(hi,nrj,n)
2 + w2

rjnhi,n
2

=
∑

p

2wrj,n(hi,nrj,n)
2 + 2wrjnhi,n

2

(9)

The gradient of ET shows that the gradient of wrj ,n

has always same sign withwrj ,n parameters. There-
fore, gradient descent always reduces the scale of
the parameters regardless of their sign.

B.2 Normalization of Change for Reducing
Entity Embedding Concentration

The change generated from the affine transfor-
mation is normalized by its length, expressed as
Np(rA) in the part b⃝. This normalization alle-
viates critical entity embedding concentration via
reducing scale decrease of transformed entity em-
beddings er in DURA regularization. In our rela-
tion specific rooted ET, the change of er is simply
written as

∥α⊗ e∥p (10)

where α = Np(rA). This value has a maximum
when α has the same direction to e. Since α is a
unit vector in p-norm, α = e/∥e∥p . Then, the
maximum change is

∥ e

∥e∥p
⊗ e∥p = ∥ e2

∥e∥p
∥p =

∥e2∥p
∥e∥p

(11)

In practice, the elements of embedding vectors are
much less than 1 in most cases. Therefore, the max-
imum change ∥e2∥p/∥e∥p is significantly lower
than the unrestricted scale change in SFBR.

B.3 Empirical Experiments on Maintaining
Consistency through Monte Carlo
Simulation

Linear transformation ensures consistency when re-
lation embeddings exist on a line. Furthermore, for
relations that do not lie on the line, we can predict
that that similar relations will have similar ETs be-
cause of the continuous property of linear transfor-
mation, i.e. if r1 ≈ r2 then r1A ≈ r2A. However,
there has been no research on the proportion of
these relations that maintain consistency after trans-
formation and also, after normalization, and it is
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Knowledge Graph Embedding WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

TuckER (Balažević et al., 2019) .470 .443 .526 .358 .266 .544 - - -
QuatE (Zhang et al., 2019) .488 .438 .582 .348 .248 .550 - - -
MuRP (Balazevic et al., 2019) .481 .440 .566 .335 .243 .518 - - -
HAKE (Zhang et al., 2020b) .497 .452 .582 .346 .250 .542 .545 .462 .694
RoTH (Chami et al., 2020) .496 .449 .586 .344 .246 .535 .570 .495 .706
DualE (Cao et al., 2021) .492 .444 .584 .365 .268 .559 - - -
FieldE (Nayyeri et al., 2021) .48 .44 .57 .36 .27 .55 .51 .41 .68
Rot-Pro (Song et al., 2021) .457 .397 .577 .344 .246 .540 .542 .443 .699
HAKE-CAKE (Niu et al., 2022) - - - .321 .226 .515 - - -
GIE (Yang et al., 2022) .491 .452 .575 .362 .271 .552 .579 .505 .709
ComplEX-ER (Cao et al., 2022) .494 .453 .575 .374 .282 .563 .588 .515 .718
TranSHER (Li et al., 2022) - - - .360 .264 .551 - - -
STaR-DURA (Li and Yang, 2022) .497 .452 .583 .368 .273 .557 .585 .513 .713

ComplEX-DURA-RSCF (Ours) .503 .460 .588 .388 .295 .573 .589 .516 .718
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 9: Test performance of KGE-based KGC on FB15k-237, WN18RR and YAGO3-10. Bold indicates the best
result, and underlined signifies the second best result.

Dataset Entities Relations Entities/Relations Triples/Relations Triples
Train Valid Test

WN18RR 40,943 11 3,722 7,894 86,835 3,034 3,134
FB15k-237 14,541 237 61 1,148 272,115 17,535 20,466
YAGO3-10 123,182 37 3,329 29,163 1,079,040 5,000 5,000

Table 10: Statistics of KGC Benchmark Datasets

extremely challenging to determine this proportion
through mathematical formulations. Therefore, we
conducted an empirical analysis using Monte Carlo
simulations to investigate the consistency of points
that do not lie on the line. Table 2 presents the pro-
portion of consistency maintained under various
conditions based on Monte Carlo simulations. For
the experiment, we divided the scenarios into four
cases: (1) when three randomly generated points
(A, B, C) lie on the same line and the distance
between A and C is greater than the distance be-
tween A and B (Line), (2) when the three points
(A, B, C) do not lie on the line and the distance
between A and C is greater than the distance be-
tween A and B( |AC|

|AB| > 1), (3) when the distance
between A and C is at least 1.01 times greater than
the distance between A and B ( |AC|

|AB| > 1.01), and
(4) when the distance between A and C is at least
1.02 times greater than the distance between A and
B ( |AC|

|AB| > 1.02) and sampling was performed
10,000 times for each condition. Under each con-
dition, we measured the proportion of cases where
(|AC| > |AB|) was maintained even after Trans-
formation ( a⃝), Normalization ( b⃝), and the Add
one ( c⃝). The results showed that consistency was
preserved in most cases, even when the three points
did not lie on the same line. Specifically, in con-
dition where ( |AC|

|AB| > 1), over 72.8% of the sam-
ples maintained consistency in Transformation ( a⃝).
Furthermore, in cases where ( |AC|

|AB| > 1.02) ap-

proximately 87.5% of the samples maintained con-
sistency after Transformation ( a⃝). Also in Nor-
malization ( a⃝), over 86.9% of the samples main-
tained consistency in ( |AC|

|AB| > 1) and 99.4% in

( |AC|
|AB| > 1.02). Considering that relations tend to

form clusters based on their semantics because of
score function and RP (Chen et al., 2021), it is
difficult to say that these conditions are unrealis-
tic, indicating that our method performs robustly
across various conditions.

C Appendix C

C.1 Datasets
We evaluate the RSCF using three widely-used
datasets: WN18RR, FB15k-237, and YAGO3-10.
WN18RR, FB15k-237 and YAGO3-10 are subsets
of WN18 (Bordes et al., 2013), FB15k (Bordes
et al., 2013), and YAGO3 (Mahdisoltani et al.,
2013), respectively, designed to alleviate the test
set leakage problem. Statistics of these datasets are
shown in Table 10.

C.2 Additional Performance Experiments
Performance Comparison of RSCF and Other
KGE Models Table 9 shows the performance
comparison of the RSCF and previous KGE-based
models on WN18RR, FB15k-237 and YAGO3-10.
Overall, ComplEX-DURA+RSCF shows higher
performance than other KGE models in all settings,
demonstrating that the effectiveness of the RSCF
for the KGC task.
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Distance-Based Model
with Entity Transformation

WN18RR FB15k-237
MRR H@1 H@10 MRR H@1 H@10

TransE-SFBR (Diag) (Liang et al., 2021) .242 .028 .548 .338 .240 .538
TransE-SFBR (Linear-2) (Liang et al., 2021) .263 .110 .495 .354 .258 .545
RotatE-SFBR (Diag) (Liang et al., 2021) .489 .437 .593 .351 .254 .549
RotatE-SFBR (Linear-2) (Liang et al., 2021) .490 .447 .576 .355 .258 .553

TransE-RSCF .267 .066 .546 .363 .264 .558
±.001 ±.002 ±.002 ±.001 ±.001 ±.001

TransE-RSCF (Linear-2) .343 .232 .499 .359 .262 .552
±.009 ±.014 ±.003 ±.001 ±.001 ±.001

RotatE-RSCF .493 .447 .584 .363 .268 .556
±.001 ±.001 ±.001 ±.000 ±.001 ±.001

RotatE-RSCF (Linear-2) .495 .452 .578 .364 .268 .556
±.001 ±.001 ±.001 ±.000 ±.000 ±.001

Table 11: Test performance of DBM-based RSCF and SFBR on FB15k-237 and WN18RR. Bold indicates the best
result, and underlined signifies the second best result.

Tensor Decomposition Model
with Eentity Transformation

WN18RR FB15k-237 YAGO3-10
MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

CP-DURA + SFBR (Liang et al., 2021) .485 .447 .561 .370 .274 .563 .582 .510 .711
RESCAL-DURA + SFBR (Liang et al., 2021) .500 .458 .581 .369 .276 .555 .581 .509 .712
ComplEX-DURA + SFBR (Liang et al., 2021) .498 .454 .584 .374 .277 .567 .584 .512 .712

CP-DURA + RSCF .486 .447 .561 .379 .287 .565 .585 .514 .711
±.001 ±.001 ±.001 ±.000 ±.000 ±.001 ±.000 ±.001 ±.001

RESCAL-DURA + RSCF .507 .467 .581 .381 .289 .562 .584 .511 .716
±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000 ±.000

ComplEX-DURA + RSCF .503 .460 .588 .388 .295 .573 .589 .516 .718
±.001 ±.001 ±.002 ±.001 ±.002 ±.004 ±.002 ±.003 ±.002

Table 12: Test performance of TDM-based RSCF and SFBR on FB15k-237, WN18RR, and YAGO3-10. Bold
indicates the best result, and underlined signifies the second best result.

Performance Comparison of RSCF and SFBR
Table 11 shows the performance comparison of the
DBM-RSCF and DBM-SFBR on WN18RR and
FB15k-237. Overall, DBM-RSCF shows similar or
higher performance than DBM-SFBR in most set-
tings. Table 12 shows the performance comparison
in TDMs. Compared to TDM-SFBR, TDM-RSCF
shows consistent performance improvements in all
datasets and settings.

Performance Comparison of RSCF with Differ-
ent RP Weights Figure 10 shows the MRR vari-
ations with respect to the RP weight, λ. TransE-
RSCF achieves better performance at λ = 0.1,
while ComplEX-DURA-RSCF performs better at
λ = 1. In general, the MRR tends to decrease as
λ becomes smaller, suggesting that the RP plays a
crucial role in enhancing model performance.

C.3 SFBR with Normalization

To prevent entity embedding concentration, We
apply normalization to SFBR that is presented as
SFBR (N). Let Wr is relation specific ET using
separate parameters, then SFBR with normalization
can be written as:

Np(Wr) + 1 (12)

10.50.10.050.010
Weight of 
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Figure 10: MRR variations with respect to the RP weight
λ, which is defined in Equation (3). The performance is
measured on FB15k-237.

where Np(Wr) = Wr
∥Wr∥p . Additionally, trans-

formed entity embedding can be described as:

er = (Np(Wr) + 1)e (13)

where e is a original entity embedding.

C.4 Extension of RSCF
The shared affine transformation can be easily ex-
tended to Linear − 2 that is introduced in SFBR
by extending shared affine transformation We ∈
Rn×n to We ∈ Rn×2n. Therefore, RSCF (Linear-
2) can be written as:

Wr
Linear-2 =

[
diag(w1) diag(w2)
diag(w3) diag(w4)

]
(14)
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Model Training Time Inference Time # Params MRR
WN18RR FB15k-237 WN18RR FB15k-237 WN18RR FB15k-237 WN18RR FB15k-237

TransE 45m 1h 30s 1m 20s 20.48M 14.78M .226 .294
PairRE - 3h - 1m 20s - 22.52M - .351
T-SFBR 1h 1h 15m 30s 1m 30s 20.49M 15.25M .242 .338
CompoundE 2h 40m 2h 20m 30s 1m 20s 20.5M 9.58M .491 .357
T-RSCF 3h 10m 5h 30m 30s 1m 50s 21.48M 18.78M .267 .363
T-RSCFsmall 1h 40m 3h 30s 1m 20s 10.49M 8.4M .263 .358

Table 13: Training time, inference time, number of parameters and MRR of RSCF and ETMs, T-SFBR (Diag)
and T-RSCF indicate TransE-SFBR and TransE-RSCF, respectively. T-RSCFsmall has half of the entity/relation
embedding dimension compared to T-RSCF. Inference Time denotes inference time on test set. Both training and
inference time are measured on RTX3090.

where Wr
Linear-2 ∈ Rn×n is ET built from the re-

lation specific change vector Np(rA)+1 of RSCF
that is notated as concatenation of diagonal values
of w1,w2,w3,w4 ∈ Rn/2.

C.5 Computational Complexity

Table 13 presents the complexity comparison be-
tween RSCF and other ETMs. In general, because
the number of parameters in KGE methods is sig-
nificantly influenced by the number of entities and
relations, the parameter difference between RSCF
and ETMs is marginal. Additionally, although
RSCF requires more training time compared to
other models, considering that the proposed KGE
models assume an offline learning setting and have
similar inference times to RSCF, this is not a sig-
nificant drawback. Moreover, T-RSCFsmall that has
half of the entity/relation embedding dimension
compared to T-RSCF, exhibits higher performance
than base models like TransE and T-SFBR. Es-
pecially in FB15k-237, T-RSCFsmall outperforms
all other models except for T-RSCF, while requir-
ing lower computational cost than T-RSCF. These
results show that RSCF can be effective even in
resource-constrained situations.

C.6 Implementation Details

When training the RSCF, we followed the exper-
imental settings described in the SFBR (Liang
et al., 2021). Following the settings of SFBR, RSCF
and RSCF (Linear-2) are applied to both head
and tail entities in DBM, and RSCF is applied
to only the head entity in TDM due to compu-
tational costs (Liang et al., 2021). For the same
reason, both head and tail entities are used for RT
in DBM, whereas only the head entity is used in
TDM. In FB15k-237, the entity/relation ratio and
the train/relation ratio are significantly lower com-
pared to the other two datasets, which restricts the
context information that each relation can obtain.
This restriction is more critical in TDM, which uses
only the head entity, and thus RT is not applied

to TDM on FB15k-237. The hyper-parameters in
DBM are consistent with the hyper-parameters
in Sun et al. (2018), and hyper-parameters of TDM
are consistent with the hyper-parameters in Zhang
et al. (2020a). Additionally, similar to Chen et al.
(2021), we searched the weight of RP over [1, 0.5,
0.1, 0.05, 0.01, 0]. The presented results of RSCF
represent the mean of the three runs for each model.
Experiments for the DBM were conducted on an
NVIDIA 3090 with 24GB of memory, while experi-
ments for the TDM were conducted on an NVIDIA
2080TI with 11GB and an A100 with 40GB of
memory was used for both DBM and TDM.

D Appendix D

D.1 Special Cases with RSCF
Let hr, tr are transformed head and tail embed-
ding by RSCF, then the score function dr(h, r) of
TransE-RSCF can be expressed as:

dr(h, r) = ∥hr + rht − tr∥ (15)

The score function dr(h, r) of RotatE-RSCF can
be expressed as:

dr(h, r) = ∥hr ◦ rht − tr∥ (16)

The score function dr(h, r) of RESCAL-RSCF can
be expressed as:

dr(h, r) = ∥hrrht∥ (17)

In TDM, tail embeddings are not transformed ac-
cording to the settings of SFBR in order to reduce
computational costs. For the same reason, only the
head entity is used for relation transformation.
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Relation Group Relations

position

/sports/sports_team/roster./basketball/basketball_roster_position/position

/soccer/football_team/current_roster./soccer/football_roster_position/position

/ice_hockey/hockey_team/current_roster./sports/sports_team_roster/position

/sports/sports_team/roster./american_football/football_historical_roster_position/position_s

/sports/sports_team/roster./baseball/baseball_roster_position/position

/sports/sports_team/roster./american_football/football_roster_position/position

/american_football/football_team/current_roster./sports/sports_team_roster/position

/soccer/football_team/current_roster./sports/sports_team_roster/position

currency

/location/statistical_region/gdp_nominal_per_capita./measurement_unit/dated_money_value/currency

/film/film/estimated_budget./measurement_unit/dated_money_value/currency

/business/business_operation/operating_income./measurement_unit/dated_money_value/currency

/organization/endowed_organization/endowment./measurement_unit/dated_money_value/currency

/business/business_operation/revenue./measurement_unit/dated_money_value/currency

/business/business_operation/assets./measurement_unit/dated_money_value/currency

/location/statistical_region/rent50_2./measurement_unit/dated_money_value/currency

/education/university/local_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_real./measurement_unit/adjusted_money_value/adjustment_currency

/education/university/domestic_tuition./measurement_unit/dated_money_value/currency

/education/university/international_tuition./measurement_unit/dated_money_value/currency

/location/statistical_region/gdp_nominal./measurement_unit/dated_money_value/currency

/location/statistical_region/gni_per_capita_in_ppp_dollars./measurement_unit/dated_money_value/currency

/base/schemastaging/person_extra/net_worth./measurement_unit/dated_money_value/currency

film production

/film/film/costume_design_by

/film/film/executive_produced_by

/award/award_winning_work/awards_won./award/award_honor/award_winner

/tv/tv_program/program_creator

/film/film/film_art_direction_by

/film/film/music

/film/film/film_production_design_by

/film/film/other_crew./film/film_crew_gig/crewmember

/film/film/produced_by

/tv/tv_program/regular_cast./tv/regular_tv_appearance/actor

/film/film/edited_by

/film/film/written_by

/film/film/personal_appearances./film/personal_film_appearance/person

/film/film/story_by

/film/film/cinematography

/film/film/dubbing_performances./film/dubbing_performance/actor

/film/film/production_companies

film actor

/award/award_nominee/award_nominations./award/award_nomination/nominated_for

/tv/tv_network/programs./tv/tv_network_duration/program

/film/special_film_performance_type/film_performance_type./film/performance/film

/film/director/film

/tv/tv_personality/tv_regular_appearances./tv/tv_regular_personal_appearance/program

/film/film_set_designer/film_sets_designed

/tv/tv_writer/tv_programs./tv/tv_program_writer_relationship/tv_program

/film/actor/film./film/performance/film

/tv/tv_producer/programs_produced./tv/tv_producer_term/program

/media_common/netflix_genre/titles

/film/film_distributor/films_distributed./film/film_film_distributor_relationship/film
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/film/film_subject/films

people place

/music/artist/origin

/people/person/places_lived./people/place_lived/location

/people/person/place_of_birth

/government/politician/government_positions_held./government/government_position_held/jurisdiction_of_office

/people/deceased_person/place_of_death

/people/person/nationality

/people/deceased_person/place_of_burial

/people/person/spouse_s./people/marriage/location_of_ceremony

film place

/film/film/distributors./film/film_film_distributor_relationship/region

/film/film/featured_film_locations

/film/film/release_date_s./film/film_regional_release_date/film_release_region

/film/film/release_date_s./film/film_regional_release_date/film_regional_debut_venue

/film/film/country

/film/film/runtime./film/film_cut/film_release_region

/tv/tv_program/country_of_origin

/film/film/film_festivals

music role

/music/group_member/membership./music/group_membership/role

/music/artist/track_contributions./music/track_contribution/role

/music/artist/contribution./music/recording_contribution/performance_role

organization place

/organization/organization/headquarters./location/mailing_address/state_province_region

/organization/organization/place_founded

/user/ktrueman/default_domain/international_organization/member_states

/organization/organization/headquarters./location/mailing_address/country

/people/marriage_union_type/unions_of_this_type./people/marriage/location_of_ceremony

/base/schemastaging/organization_extra/phone_number./base/schemastaging/phone_sandbox/service_location

/government/legislative_session/members./government/government_position_held/district_represented

/organization/organization/headquarters./location/mailing_address/citytown

producer type

/tv/tv_producer/programs_produced./tv/tv_producer_term/producer_type

/film/film/other_crew./film/film_crew_gig/film_crew_role

/tv/tv_program/tv_producer./tv/tv_producer_term/producer_type

award category

/award/award_category/winners./award/award_honor/award_winner

/award/award_category/winners./award/award_honor/ceremony

/award/award_category/category_of

/award/award_category/nominees./award/award_nomination/nominated_for

/award/award_category/disciplines_or_subjects

Table 14: Clearly distinct relation groups that are selected from original TransE
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