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Abstract

Training Large Language Models (LLMs) with
synthetic data is a prevalent practice in code
generation. A key approach is self-training,
where LLMs are iteratively trained on self-
generated correct code snippets. In this case,
the self-generated codes are drawn from a con-
ditional distribution, conditioned on a specific
seed description. However, the seed descrip-
tion is not the only valid representation that
aligns with its intended meaning. With all
valid descriptions and codes forming a joint
space, codes drawn from the conditional distri-
bution would lead to an underrepresentation of
the full description-code space. As such, we
propose Gibbs Fine-Tuning (GiFT), a novel
self-training method inspired by Gibbs sam-
pling. GiFT allows self-generated data to be
drawn from the marginal distribution of the
joint space, thereby mitigating the biases in-
herent in conditional sampling. We provide a
theoretical analysis demonstrating the potential
benefits of fine-tuning LLMs with code derived
from the marginal distribution. Furthermore,
we propose a perplexity-based code selection
method to mitigate the imbalanced long-tail dis-
tribution of the self-generated codes. Empirical
evaluation of two LLMs across four datasets
demonstrates that GiFT achieves superior per-
formance, particularly on more challenging
benchmarks. Source code is available at https:
//github.com/Alex-HaochenlLi/GiFT.

1 Introduction

Code generation, the automated synthesis of code
snippets from natural language specifications, sig-
nificantly enhances software development produc-
tivity (Han et al., 2024; Jiang et al., 2024b). Recent
advances in large language models (LLMs), trained
on massive web-derived code and text corpora, ex-
hibit notable capabilities for code understanding
and generation (Jiang et al., 2024a; Wang et al.,

* Corresponding author

wanjin_feng@outlook.com

Figure 1: For the intention of dy, the set of all valid
descriptions and codes forms a space. The distribution
gap between conditional distribution (Red) and marginal
distribution (Blue) indicates the bias introduced when
fine-tuned LLMs with codes conditional on dj, as some
codes are rarely sampled.

2024; Liu et al., 2024b). While scaling training
data is beneficial, high-quality data has been found
to play a more important role in boosting LLM
performance (Wei et al., 2023, 2024).

However, curating large-scale, high-quality
datasets by manual annotation is challenging due to
substantial costs. Consequently, researchers switch
gears to synthetic data. Two principal approaches
to generate data are: a) knowledge distillation from
stronger LLMs (Wei et al., 2023; Yu et al., 2024;
Luo et al., 2023), and b) self-training, wherein mod-
els generate their own training data (Yuan et al.,
2023; Zelikman et al., 2022; Wei et al., 2024). The
prerequisite of stronger LLMs for distillation re-
stricts its general applicability, thus many works
focus more on self-training, as we studied in this
paper.

The self-training process utilizes a seed dataset,
denoted as {d;} ;. For each description d;, an
LLM generates multiple candidate code snippets,
which are evaluated against test cases. Snippets
passing all tests are used to fine-tune the same LLM.
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Figure 2: Overview of GiFT. For each description d; in the seed dataset, we first translate it between descriptions
and codes iteratively to draw codes from the marginal distribution based on the intention of d;. Then, we calculate
the perplexity of each generated code and employ weighted random sampling to select codes with codes from the
tail being more likely to be selected for fine-tuning. Finally, all selected codes are paired with d; for fine-tuning.
The example shown in this figure is taken from MBPP-sanitized/6.

This process iterates until performance plateaus or
degrades. However, the natural language descrip-
tion d; represents only one possible articulation
of the underlying intention. Consider the goal of
matching a pattern within a string. This underly-
ing goal—what we refer to as the “intention”—can
be expressed through various descriptions such as
“Write a function to search a string for a regex pat-
tern” or “Find a substring within a larger string
that matches a given regular expression pattern’.
Considering the set of all valid descriptions and
corresponding code implementations that satisfy
the underlying intention of d; as a description-code
space, generating code exclusively from d; can be
viewed as sampling from the conditional distribu-
tion P(c|d;). We argue that this approach is sub-
optimal. Instead, we propose that sampling from
the marginal distribution of codes within the joint
description-code space, denoted as P(c), would
yield superior results. Figure 1 illustrates the poten-
tial benefit of sampling from the marginal distribu-
tion compared to the conditional distribution. The
figure highlights the possibility of oversampling
certain code implementations and undersampling
others when relying solely on the conditional prob-
ability P(c|d;).

In this paper, we first theoretically justify the
benefit of fine-tuning LLMs with samples drawn
from the marginal distribution, by showing that an
additional expectation of loss is implicitly taken
to reduce the bias introduced by samples from the
conditional distribution. Direct sampling from the
marginal distribution is intractable in practice. We
gain inspiration from Gibbs sampling (Geman and

Geman, 1984), an MCMC algorithm, that itera-
tively samples each variable from its conditional
distribution while keeping the others fixed, grad-
ually approximating the joint distribution. Simu-
lating the Gibbs sampling in the context of code
generation, we propose Gibbs Fine-Tuning (GiFT).
From a seed description, code is generated and then
summarized into a new description, used for subse-
quent code generation. This process is repeated to
get a set of self-generated description-code pairs,
which could be considered drawn from the joint
distribution. The code components in pairs can be
considered drawn from the marginal distribution !.

Self-generated code often suffers from data im-
balances detrimental to LLM fine-tuning. One
source of imbalance is the varying number of
generated codes for descriptions of differing dif-
ficulty. We address this by selecting a fixed num-
ber of codes per description. The other more fun-
damental imbalance arises from the long-tailed
nature of the marginal distribution from which
code is sampled (Ding et al., 2024; Dohmatob
et al., 2024). High-probability (head) codes are
over-sampled, while low-probability (tail) codes
are under-sampled. This disparity can lead to
model collapse during iterative self-training (Shu-
mailov et al., 2023). To address this, we use
perplexity as a proxy for the likelihood of being
sampled: higher perplexity indicates rarer, tail-
distributed code. During training, we select more
high-perplexity codes from the tail. Figure 2 illus-

'In this paper, we primarily study the impact of using code
samples from either conditional or marginal distributions on
fine-tuning. The incorporation of self-generated descriptions
is discussed in Section 5.
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trates the GiFT overview.

We evaluate GiFT on DeepSeek-Coder-6.7B
(Guo et al., 2024) and CodeLlama-7B (Roziere
et al., 2023) over APPS+ (Introductory-level and
Interview-level) (Dou et al., 2024), MBPP+ (Liu
et al., 2024a), and Codelnsight (Beau and Crabbé,
2024) datasets. Experimental results demonstrate
the superiority of drawing codes from the marginal
distribution instead of the conditional distribution
(+1.2% on MBPP+, +2.3% on Codelnsight, +9.8%
on APPS+ dataset), and perplexity-guided data se-
lection benefits self-training over iterations.

2 Related Work

We classify related works into distillation and self-
training based on whether the synthetic data is gen-
erated by stronger LL.Ms or the LLM undergoing
training itself.

Distillation Code Alpaca (Chaudhary, 2023),
similar to Self-Instruct (Wang et al., 2023), lever-
ages the in-context learning ability of ChatGPT
to generate new description-code pairs. Wizard-
Coder (Luo et al., 2023) prompts ChatGPT with
five tailored heuristics to improve the difficulty
of existing descriptions in Code Alpaca. Magi-
coder (Wei et al., 2023) and WaveCoder (Yu et al.,
2024) highlight the importance of data diversity
and quality by prompting ChatGPT to create new
pairs based on open-sourced codes on the web in-
stead of LLM-generated Code Alpaca. MathGe-
nie (Lu et al., 2024) improves from the solution
side where it augments the solutions by prompting
an external LLM with heuristics and then back-
translates augmented solutions into math problems
in order to create new problems. However, stronger
LLMs are not always available, which limits the
generalizability of distillation methods.

Self-training Self-training refers to making
LLMs learn from their own outputs based on a
set of seed descriptions. Self-training approaches
can be categorized into two directions based on
whether additional data is synthesized on the de-
scription side or the code side. On the description
side, Instruction Backtranslation (Li et al., 2023b)
and InverseCoder (Wu et al., 2024) ask an LLM
to generate synthesized descriptions for unlabeled
codes for instruction tuning. On the code side, Self-
Taught Reasoner (STaR) (Zelikman et al., 2022) is
a pioneering work that generates a single rationale
for each reasoning problem. LMSI (Huang et al.,

2022) and Rejection Fine-tuning (RFT) (Yuan et al.,
2023) enhance STaR by generating multiple ratio-
nales per problem. While STaR, LMSI, and RFT
rely on the ground truth answer to filter out incor-
rect rationales, SelfCodeAlign (Wei et al., 2024)
additionally asks LL.Ms to generate test cases for
synthesized codes to conduct self-validation. Rein-
forced Self-Training (ReST) (Gulcehre et al., 2023)
and ReSTPM (Singh et al., 2023) expand the RFT
process into an iterative one, where the generate-
then-fine-tune process is repeated multiple times
until no further improvement is observed.

Though there are intermediate descriptions gen-
erated in GiFT, we do not use those intermediate
descriptions for fine-tuning, as GiFT is mainly pro-
posed to improve the data quality on the code side.
GiFT is orthogonal to the self-training methods on
the code side as each synthetic description can ben-
efit from higher-quality codes generated in GiFT.
Besides, GiFT is beneficial under the distillation
setting. We empirically demonstrate the effective-
ness of data from GiFT in Section 5.

3 Gibbs Fine-Tuning

Preliminaries We first introduce how iterative
self-training works. Given a seed dataset D =
{d;}¥.|, an LLM M is used to generate n code
snippets for each d;:

{cij}i=1 ~ Pm(cld;) (1)

Then correct codes that pass all the test cases are
selected as C for supervised fine-tuning (SFT). The
SFT loss L for d; could be written as:

L(d}) = —Ecpp(clar) log Pm(cld;)

= =" Puleld?) log Pu(clds) @)
ceC

Here d; refers to the description source that c;; is
generated from. In this case, d; = d;. The SFT
loss is calculated over the seed dataset D to update
M, and the updated M will be used to generate
codes in the next iteration. This process is repeated
until no further improvement in performance is
observed.

Theoretical Insight The problem in the code
generation process is that all the self-generated
codes are drawn from a conditional distribution
¢ij ~ P(c|d;) instead of the joint space of descrip-
tions and codes based on the intention behind d;.
We argue that it is better to draw codes from the
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marginal distribution of that space. If we fine-tune
LLMs with codes from marginal distribution, we
have:

ﬁmarg
= —Ecp,. log Pr(c|d)

:—ZP ) log Pa(cldy)
= Zczdz:PM(c]dij)P
:_Z[ZPM (cldij) log Paa(cld;) | P(dij)
:_Z.c i7) 3)

= —Edindﬁ(dij) 4)

According to the law of total expectation, we could
find that £,,,,4 is estimated over all possible de-
scriptions d;; in the joint space, instead of only
d; in Eq. 2. The additional expectation in L,,4rq
reduces the bias of £(d;) in learning to generate
codes for the intention behind d;.

Besides, we analyze the variance of self-
generated codes ¢ from either the marginal dis-
tribution or the conditional distribution. According
to the law of total variance, we have:

Var(c) = Eq,; [Var(cldij)] + Var(Ea,;[cldij])
Since Var(Eq,;[c|di;]) > 0, the variance of codes
drawn from the marginal distribution is greater
than or equal to the expected variance of codes
drawn from the conditional distribution condi-
tioned on a certain d;; (e.g. the seed description d;).
What’s more, Var(Eq,;[c|d;;]) could become even
larger if an LLM is sensitive to input descriptions,
which further widens the gap between Var(c) and
Eq,;[Var(c|dij)]. Here the variance of c reflects
the diversity of self-generated codes. More diverse
codes are found to benefit LLM fine-tuning (Yuan
et al., 2023).

Gibbs Sampling Though we have demonstrated
that marginal distribution is better than conditional
distribution, direct sampling from marginal distri-
bution is not straightforward, as we only have one
certain d; in the seed dataset. We gain inspiration
from Gibbs sampling (Geman and Geman, 1984),
a Markov chain Monte Carlo algorithm, that is
commonly used to approximate joint distributions
based on conditional distributions. Take a bivariate

distribution as an example. It approximates joint
distributions by drawing an instance of one variable
conditional on the current value of the other vari-
able, then drawing an instance of the other variable
conditional on the new value of the first variable,
and repeating this process for several rounds.

In GiFT, we consider the code-to-text translation
and text-to-code translation as the conditional sam-
pling process. We keep translating between descrip-
tions and codes to simulate Gibbs sampling. Dur-
ing this process, all the intermediate description-
code pairs could be considered as being drawn from
the joint distribution. If we take all codes from the
pairs, those codes can be considered drawn from
the marginal distribution of the joint space. Specif-
ically, for each description d; in the seed dataset,
we start from the description side to generate cor-
responding codes ¢;1, and then summarize ¢;; into
description d;;. We repeat this process for n times.
The whole process could be formulated as:

cii = M(d;)  dix = M(ci)
)

din—1 = M(cin—1) Cin = M(din—1)

The prompting templates for code generation and
summarization are shown in Appendix A. To im-
prove the efficiency of the Gibbs sampling, we gen-
erate 3 codes in each code generation step but only
select one correct code for the following rounds.
If none of the 3 codes passes all the test cases, we
use the code from the last round for the next code
summarization step.

Perplexity-guided Data Selection After the
Gibbs sampling process, for each d;, we have a
set of codes that could be paired with it for fine-
tuning. As shown in Eq. 3, P(d;;) plays a pivotal
role in the estimation of L,,,4r4. In practice, P(d;;)
is reflected in the selection of codes.

Simply selecting all correct codes is detrimental.
On the one hand, we are more likely to sample more
codes for easy descriptions in the seed dataset and
less for harder ones. Fine-tuning with all codes will
bias LLMs towards easy descriptions (Singh et al.,
2023), so we only select K codes for each descrip-
tion. For descriptions with fewer than K codes,
we resample existing codes to ensure balance. On
the other hand, there is data imbalance in the code
set of each d;. According to Ding et al. (2024),
the marginal distribution within each code set is
found to follow a long-tail distribution. Employing
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random sampling to select K codes makes codes
from the tail occupy only a small proportion of
the training data since they are seldom generated,
which bias L., towards the head. In iterative
self-training, this bias will be exacerbated where
the knowledge distribution of the LLM shifts to be
more peaked.

We propose to use perplexity (Brown et al.,
1990) as a measurement to guide data selection.
As we know, LLLMs prefer tokens with higher prob-
abilities in each generation step, despite using tem-
perature to flatten the probability distribution. The
probability of generating a code ¢ with [ tokens
given d could be formulated as:

l

Pu(eld) = T] Puletle<t d)
t=1

And the perplexity (ppl) is calculated by:

l
1
ppl(c|d, M) = exp (— 7 g log Pp(ct|e<t, d))
t=1

We could find that the perplexity of c and the prob-
ability of generating c have a strong negative corre-
lation. In other words, codes with lower perplexity
are more likely to come from the head. Thus, to
mitigate imbalance during data selection, we em-
ploy weighted random sampling and assign more
weights for high perplexity (i.e. tail) codes:

exp(ppl(ci;)/T)
> iy exp(ppl(ci;) /T)

where n; is the number of correct codes for d; and
T is the scaling temperature. Finally, the selected
codes {c;; }szl are paired with d; for fine-tuning
LLMs with the SFT loss. The workflow of GiFT in
each iteration is shown in Appendix B Algorithm 1.

wij =

4 Experimental Setups

Datasets We evaluate GiFT on three datasets,
APPS+ (Dou et al., 2024), MBPP (Austin et al.,
2021), and Codelnsight (Beau and Crabbé, 2024).
APPS+ is a sanitized version of APPS (Hendrycks
et al.,, 2021) where wrong descriptions or test
cases are removed from the original dataset. For
MBPP, we use MBPP-sanitized for training and
MBPP+ (Liu et al., 2024a) for testing. The APPS
dataset consists of problems collected from differ-
ent open-access coding websites, MBPP is full of
general programming problems, and Codelnsight

is collected from StackOverflow focusing on stan-
dard library usage. In this paper, we consider the
problems in APPS+ with the difficulty of “introduc-
tory” and “interview” as two independent datasets.
All four datasets are written in Python and their
statistics are shown in Appendix C.1. We take the
widely adopted Pass@1 as the evaluation metric.

Baselines We compare GiFT with two baseline
methods. (1) Rejection Fine-Tuning (RFT) (Yuan
et al., 2023) uses rejection sampling that generates
multiple codes depending on each seed description.
As ReST (Gulcehre et al., 2023) could be consid-
ered as iterative RFT, we denote this baseline as
RFT in our experiments. (2) In RFT+Rewriting De-
scription (RFT+RD), we first ask LLMs to rewrite
the seed description and then apply RFT to both
the original description and rewritten descriptions.
Though no related works employ this method, we
consider it as an alternative way to approximate the
marginal distribution. We apply these three meth-
ods to DeepSeek-Coder-6.7B (Guo et al., 2024)
and CodeLlama-7B (Roziere et al., 2023).

Implementation Details For GiFT, we repeat the
description-to-code and code-to-description pro-
cess for 20 times, and we generate 3 codes from
each description and only select at most one correct
code for the next round. To ensure fair generation
times, for RFT, we generate 20x3 codes for each
seed description. And for RFT+RD, we rewrite
the seed description into 5 new descriptions and
generate 10 codes for each new description and
the original description. For all the generation pro-
cesses of LLMs, we set a temperature of 1.0. We
set the temperature 7' = 2 in weights calculation
for random sampling. For three methods, we se-
lect K = 8 codes per description for fine-tuning
and employ resampling for descriptions with fewer
than 8 codes. More details can be found in Ap-
pendix C.2.

5 Experiments

Overall Results We apply RFT, RFT+RD, and
GiFT to DeepSeek-Coder-6.7B and CodeL.lama-7B
across four datasets with a 3-iteration self-training,
the results are shown in Figure 3. Note that for
RFT+RD and GiFT, we also consider codes gen-
erated from RFT as candidates for being selected,
since we find that incorporating codes from RFT
could further boost the performance of GiFT, even
though merely using GiFT data has already outper-
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Figure 3: Pass@1 (%) of applying RFT, RFT+RD, and GiFT to Deepseek-Coder-6.7B and CodeLlama-7B on 4
code generation datasets. The x-axis represents the iteration number and the shaded area represents the standard

deviation.

formed baseline methods. We discuss the impact
of these RFT-generated codes in Appendix D.1.

We could see that GiFT outperforms RFT and
RFT+RD with a significant margin on all evaluated
datasets, which indicates the effectiveness of GiFT.
Generally, the improvement brought by GiFT is
more significant on more challenging datasets like
APPS+. We think this is because LLM’s output
distribution for complicated descriptions is more
peaked, which exacerbates the bias in loss calcula-
tion. This speculation is supported by the results
shown at the bottom of Figure 5. We can find that
the perplexity distribution of self-generated codes
of APPS+ Introductory is much more peaked com-
pared to that of MBPP+.

Given the fact that GiFT is superior compared
to RFT, and RFT+RD outperforms RFT on most
of the datasets, we demonstrate that drawing self-
generated codes based on multiple possible descrip-
tions that represent the intention of the seed de-
scription is better than drawing solely based on the
seed description. In other words, mitigating the
bias introduced in the loss calculation of examples
from conditional distribution is beneficial for LLM
fine-tuning.

Analysis for RFT+RD Though RFT+RD outper-
forms RFT on most of the datasets, drawing codes
based on multiple rewritten descriptions is still not
comparable with GiFT.

We find the reason is that the rewriting ability of
LLMs is not satisfiable. There are often errors and

information loss in rewritten descriptions, which
makes the codes translated from rewritten descrip-
tions often wrong. We calculate the pass rate of
self-generated codes in the first iteration to indicate
the correctness of self-generated descriptions. For
RFT+RD, we separately calculate the pass rate of
codes from the seed description and five rewritten
descriptions. The results are shown in Table 1. We
can see that the pass rate of codes generated from
rewritten descriptions is significantly lower, which
indicates that the rewritten descriptions are often
incorrect. Since we do not train LLMs to rewrite
descriptions, this phenomenon is expected to exist
in the following iterations of self-training. Given
this reason, we believe that there will be no sig-
nificant improvement despite scaling the RFT+RD
method with more rewritten descriptions.

RD

Datasets GiFT
Seed  Rewritten
APPS+ (Intro.) 17.79 4.8 >10.31
APPS+ (Inter.) 3.22 0.38 >2.28
MBPP+ 53.71 24.6 >24.07
Codelnsight 43.87 9.84 >24.18

Table 1: Pass rate (%) of self-generated codes from the
seed description, rewritten description, and GiFT. In
GiFT, we generate 3 codes per description and save at
most 1 for the next round. Thus, the true pass rate of
GiFT is higher than the value in this table.
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Figure 4: Pass@1 (%) of applying RFT+RD with de-
scriptions from a single step of Gibbs sampling to
Deepseek-Coder-6.7B on MBPP+ and Codelnsight.

RFT+RD with Descriptions from a Single-step
GiFT Given that the rewritten descriptions are
often incorrect, we evaluate the performance of an-
other stronger setting for RFT+RD. That is, we use
the self-generated descriptions from a single step
of Gibbs sampling as the rewritten descriptions in
RFT+RD. The results of DeepSeek-Coder-6.7B on
MBPP+ and Codelnsight are shown in Figure 4.
The improvement of stronger RFT+RD over the
vanilla RFT+RD verifies our claim that it is bet-
ter to leverage the outstanding ability of LLMs
to translate the code back to a description instead
of rewriting the description to a new one. How-
ever, we could see that GiFT still outperforms the
stronger RFT+RD. We think this is because all of
the descriptions are from the same code. Instead, in
GiFT, descriptions are from various codes in each
Gibbs sampling step.

Impact of 7' in Data Selection Recall that in
perplexity-guided data selection, we set 7' = 2 to
encourage the selection of more codes from the
tails of the distribution to mitigate the tail narrow-
ing problem (Ding et al., 2024). On the contrary,
we could set T as a negative value to select more
codes from the head. By setting 7' = 42, we ex-
plore the impact of data source (head or tail) for
LLM fine-tuning. Note that we conduct extended
experiments by setting 7' = £5 in Appendix D.2.
We show the performance of DeepSeek-Coder-
6.7B on APPS+ Introductory and MBPP+ in Fig-
ure 5. Furthermore, we visualize the perplexity
distribution of self-generated codes at the third it-
eration for APPS+ Introductory and MBPP+. We
could find that selecting more codes from the head
outperforms the tail at the first several iterations,
but is surpassed from the third iteration. We specu-
late that selecting more codes from the head rein-
forces LLM’s knowledge at the head hence acceler-
ating training at the beginning, but with the expense

o APPS+ (Introductory) MBPP+
~ &
© 1 70 /(,/4;.
% 80
S 68
<70
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o
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60
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Figure 5: Top: Pass@1 (%) of applying GiFT to
Deepseek-Coder-6.7B on APPS+ (Introductory) and
MBPP+ with T' = £2. Bottom: Perplexity distribution
of self-generated codes at the 3rd iteration for APPS+
(Introductory) and MBPP+.

of discarding or forgetting knowledge at the tail.
Over iterations, the tail-narrowing phenomenon
is exacerbated and hinders further improvement.
When selecting more codes from the tail, LLMs
could achieve an overall better performance though
they improve slower. As we show at the bottom of
Figure 5, after three iterations, LLM could generate
more low-perplexity codes on two datasets if we
set]' = 2.

Iteration 2 Iteration 3
0.8 0.8
0.6
5 0.6
o4
7 0.4
0.2 0.2
001 ¢ ’ : 0.0 ‘ $ ‘
RFT RFT+RD GiFT RFT RFT+RD GiFT
Method Method

Figure 6: Boxplot of BLEU for self-generated codes
from DeepSeek-Coder-6.7B on MBPP+ at the 2nd and
3rd iteration.

Similarity Analysis for Self-generated Code
We use BLEU as a measurement of code diver-
sity to show that one of the benefits of using GiFT
is the increase in data diversity. For each seed de-
scription, we calculate the BLEU score between
any two self-generated codes and average them to
indicate one code’s similarity to others. We show
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the BLEU results of MBPP+ at the 2nd and 3rd iter-
ation of DeepSeek-Coder-6.7B in Figure 6. We can
observe that generating codes from various descrip-
tions leads to more diverse codes for fine-tuning.
Besides, as the number of iterations increases, RFT
tends to generate more similar code, while the di-
versity holds for GiFT.

. Codelnsight MBPP+
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Figure 7: Comparison of incorporating self-generated
descriptions and vanilla GiFT on DeepSeek-Coder-6.7B
over Codelnsight and MBPP+.

Incorporating Self-generated Descriptions into
Fine-tuning In GiFT, we only take the self-
generated codes for fine-tuning after Gibbs sam-
pling. Here we investigate the impact of incorpo-
rating self-generated descriptions into fine-tuning.
Theoretically, if self-generated descriptions can
match self-generated codes, LLMs are expected
to achieve an even better performance, since LLMs
benefit from not only diverse codes but also diverse
descriptions as inputs.

We discover two alternatives, for each seed de-
scription, we add 8 self-generated descriptions, and
1) each one is paired with the code generated from it
(denoted as GiFT-1pair). 2) each one is paired with
8 codes randomly sampled from the self-generated
code set of the seed description (denoted as GiFT-
mixpair). Note that not all self-generated descrip-
tions are correct. We only select self-generated
descriptions that can result in correct codes. We
compare these two settings with the vanilla GiFT
on DeepSeek-Coder-6.7B over Codelnsight and
MBPP+ and the results are shown in Figure 7. It
was observed that incorporating self-generated de-
scriptions into fine-tuning leads to better perfor-
mance at the first iteration, yet is outperformed by
GiFT in subsequent iterations.

We suspect that this is because LLMs are rela-
tively tolerant of noisy data at the beginning, but
as they have more expertise, their requirements for
data quality become increasingly higher. We find
there are mainly two sources of noisy pairs. First,
some self-generated descriptions are just incorrect.

Since we additionally provide some test cases in
the docstring, LLLMs may generate correct codes
by inferring through given test cases and ignoring
the incorrect description. Second, a self-generated
description may not match all codes in the self-
generated code set, possibly due to specifications
on implementation requirements. To filter out noisy
pairs, we may calculate the similarity between de-
scription and code using code search models (Li
et al., 2023a, 2022) or LLM-as-a-Judge (Zheng
et al., 2023; Gu et al., 2024). Since we mainly
aim to show the benefit of fine-tuning LLMs using
the seed description paired with codes from the
marginal distribution, we leave this as our future
work.
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g 68
£ 581, —
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Figure 8: Comparison of using GiFT and RFT data
from DeepSeek-Coder-6.7B to distill CodeLlama-7B
over Codelnsight and MBPP+. The yellow line shows
the performance of self-training with GiFT.

GiFT for Distillation As we discussed in the
introduction, since the prerequisite of stronger
LLMs limits the generalizability of distillation
methods, we focus on self-training methods, as
many recent works do. Yet, we are also inter-
ested in exploring whether drawing codes from
the marginal distribution is beneficial for distil-
lation. To simulate the distillation process, we
use self-generated codes from DeepSeek-Coder-
6.7B to fine-tune Codel.lama-7B, as we find that
DeepSeek-Coder is stronger than CodelLlama on
evaluated datasets. We keep other settings the same
as they are in the main experiments. The compar-
ison between distillation with RFT and GiFT on
MBPP+ and Codelnsight is shown in Figure 8. It
is observed that GiFT also outperforms RFT un-
der the distillation setting. This superiority meets
our expectations because the benefit of fine-tuning
LLMs with codes drawing from the marginal dis-
tribution is not limited to self-training methods, as
we analyzed in the theoretical insights.

Ablation study for Perplexity-guided Data Se-
lection The proposed perplexity-guided data se-
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Figure 9: Pass@1 (%) of applying the proposed data
selection method to RFT and GiFT on APPS+ (Intro-
ductory) and APPS+ (Interview). DS is short for data
selection.

lection method can be applied not only to GiFT but
also to baseline methods. The results of applying
the proposed data selection method to RFT and
GiFT with T" = 2 on DeepSeek-Coder-6.7B are
shown in Figure 9. We can see that the data selec-
tion method does not bring significant improvement
to RFT compared with GiFT.
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60+

50

AN AR
Inn
= 0 O
o

AN AR
Inn
= 0 o
o

DeepSeek-Coder-6.7B
3

1 ‘ 2 ‘ 3 1 ‘ 2 ‘ 3
Iteration Iteration

Figure 10: Pass@1 (%) of applying GiFT to DeepSeek-
Coder-6.7B on APPS+ (Introductory) and APPS+ (In-
terview) with K = 6, 8, 10, respectively.

Impact of K in Data Selection In this paper,
we set K = 8 for all the reported experimental
results. In this section, we explore the impact of K
in GiFT. We set K = 6, 8, 10 for DeepSeek-Coder-
6.7B on APPS+ Introductory and APPS+ Interview
and the results are shown in Figure 10. We can
find that pairing each seed description with more
codes significantly improves LLM performance at
the beginning of iterative self-training. Yet this
benefit diminishes as the iteration progresses, and
finally, LLM performance converges to similar per-
formance. We think that the curves will converge to
the upper bound of LLM’s potential. Thus, we ar-
gue that increasing K in GiFT accelerates iterative
self-training.

6 Discussion

Here we discuss the generalization of GiFT to other
tasks. The applicability of GiFT and its superior-

ity over RFT depends on two factors. First, there
is a joint input-output sampling space, in which
same intention has multiple possible forms of pre-
sentation, and such presentation largely decides the
self-generated outputs from LLM. GiFT is suitable
for code generation because descriptions and codes
naturally form such a joint space (Li et al., 2024).
On the other hand, take question answering as an
example, while there are numerous ways to phrase
the same question, the answers tend to be highly
similar due to the uniqueness of factual truths. This
characteristic naturally mitigates biases introduced
by conditional sampling.

Second, LLMs should be able to translate accu-
rately between inputs and outputs. Since LLMs
are found to be good at translating between de-
scriptions and codes (Sun et al., 2025; Zan et al.,
2022; Jiang et al., 2024a), GiFT performs well on
code generation. Nevertheless, for mathematical
reasoning, whether LLMs can reliably generate a
math problem based on the given solution should
be carefully evaluated before we apply GiFT. If the
translation from solutions to problems lacks preci-
sion, the Gibbs sampling process in GiFT may be
highly inefficient.

7 Conclusion

In this paper, we first theoretically demonstrate
the benefit of fine-tuning LLMs with codes from
the marginal distribution of the joint description-
code space instead of the conditional distribution
conditioned on the seed description. Then, we
propose GiFT, which iteratively translates natu-
ral language descriptions and codes between each
other to approximate the marginal distribution. Fur-
thermore, we leverage perplexity to guide data
selection to mitigate the data imbalance problem
in Gibbs sampling. Experimental results on two
LLMs across four datasets demonstrate the effec-
tiveness of GiFT.
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Limitations

There are mainly three limitations in this work.
First, GiFT is only evaluated on LLMs with a size
of around 7B across Python datasets. However, as
we demonstrated in the theoretical analysis, the loss
bias from the conditional distribution is indepen-
dent of model sizes and programming languages.
Thus, we expect that GiFT is also effective in big-
ger or smaller LL.Ms and other programming lan-
guages. Second, GiFT relies heavily on test cases
to filter out wrong self-generated codes. In this
paper, we mainly evaluate GiFT on datasets that
already provide test cases in the training set. We do
not evaluate GiFT on the most recent high-quality
datasets like OSS-Instruct (Wei et al., 2023). A
possible solution is to ask LL.Ms to generate test
cases and codes at the same time, which is stud-
ied by recent works (Chen et al., 2022, 2024; Liu
et al., 2024c). Third, GiFT outperforms RFT by
translating between natural language descriptions
and codes, which introduces additional code sum-
marization steps in the self-generation process. In
our future work, we will focus on improving the
sampling efficiency of GiFT by introducing a dy-
namic sampling strategy. For example, we do not
generate a fixed number of codes and select at most
one correct code for the next round. Instead, we
dynamically adjust the number of generated codes
based on the estimated accuracy to ensure that at
least one correct code is expected. Thus, LLMs
tend to generate fewer code candidates for easier
descriptions in each round.
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A Prompting Templates for Code-to-Text
and Text-to-Code Translation

An example of a prompt for code generation is
shown in Table 2. We construct a template for
code completion where we provide a function head
and a function docstring. The function docstring
could be replaced with descriptions from previ-
ous Gibbs sampling results. We additionally pro-
vide one input-output pair for MBPP-sanitized and
Codelnsight.

An example of a prompt for code summariza-
tion is shown in Table 3. We provide in-context
examples to help LLM learn summarization. The
in-context example is selected from a pool. We
construct the pool by asking LLMs to summarize
the same dataset without in-context examples and
then filter out meaningless or too-long responses.
The code following “###Code:” could be replaced
with codes from previous Gibbs sampling results.

def first_repeated_char(strl):

""" Write a python function to find the
first repeated character in a given string.

>>> first_repeated_char("abcabc")

non

a

nmn

Table 2: A prompt example of MBPP-sanitized/1 for
code generation.

###Code:

{example_code}

###Description of the given code:
{example_description}

###Code:

def first_repeated_char(strl):
### BEGIN SOLUTION
letters_found = []

for char in strl:
if char in letters_found:
return char
else:
letters_found.append(char)
### END SOLUTION

###Description of the given code:

Table 3: A prompt example used of MBPP-sanitized/1
for code summarization. {example_code} and {exam-
ple_description} are randomly selected from a pool.

B Algorithm Workflow

The algorithm workflow of GiFT in each iteration
is shown in Algorithm 1. This workflow is repeated
where the updated LLM M™ in each iteration is
used as the initialization LLM for the next one.

C Experimental Setup

C.1 Dataset Statistics

The dataset statistics are shown in Table 5. Note
that we use MBPP sanitized version for training
while MBPP+ (a version with more test cases for
each problem) for testing.

C.2 Implementation Details

For the prompting template of generating codes in
RFT and RFT+RD, we follow Table 2. An example
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Figure 11: Pass@1 (%) of applying RFT, pure GiFT, and GiFT+RFT to Deepseek-Coder-6.7B across four code
generation datasets. The x-axis represents the iteration number and the shaded area represents the standard deviation.

Rewrite the given Description
###Description:

Write a python function to find the first re-
peated character in a given string.

###New Description:

Table 4: A prompt example of MBPP-sanitized/1 for
rewriting description.

Dataset  TPS*  APPS* yippn Codelnsight
Introductory  Interview

Train 1,998 3,73 170 1,547

Test 90 367 378 1,856

Table 5: Statistics of the dataset used in our experiment.

of a prompt for rewriting descriptions is shown
in Table 4. DeepSeek-Coder-6.7B is initialized
with the checkpoint at https://huggingface.
co/deepseek-ai/deepseek-coder-6.7b-base.
CodeLlama-7B is initialized with the checkpoint
at https://huggingface.co/meta-11lama/
CodelLlama-7b-hf. We fine-tune the LLMs with
DeepSpeed ZeRO-2 optimization with a batch
size of 1 for each GPU. The maximum length is
set to be 1,024 for MBPP and Code Insight and
1,536 for APPS. We use AdamW as the optimizer
with a learning rate of 2e-5 and set the gradient
accumulation steps as 16. We fine-tune LLMs
for 2 epochs for APPS+ and 1 epoch for MBPP
and Codelnsight. All experiments are running
with 3 random seeds 1234, 12345, and 123456.
Experiments are conducted on 8 Nvidia Tesla
A100 GPUs.

D More Experimental Results

D.1 Impact of RFT data in GiFT

As we mentioned, we find that incorporating RFT
data in GiFT could further boost the performance

of GiFT, even though merely fine-tuning LLMs
with codes from GiFT has already outperformed
RFT. We compare the performance of RFT, pure
GiFT, and GiFT+RFT on DeepSeek-Coder-6.7B
across four datasets in Figure 11. We suspect that
this is due to the lack of correct codes for some
seed descriptions. As a result, we have to resample
existing codes to ensure that there are /K codes
for each seed description during fine-tuning. The
incorporation of RFT data mitigates this drawback
and improves data diversity. In practice, we can ask
LLM:s to generate several times at the first round
of GiFT, since in the first round of GiFT, LLMs
generate codes from the seed description, which is
the same in input of RFT.

APPS+ (Introductory) MBPP+

m

™~ 721

© g5 -3

T 70 /’/_.

S 80

o

Qs 68 /
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Figure 12: Pass@1 (%) of applying GiFT to Deepseek-
Coder-6.7B on APPS+ (Introductory) and MBPP+ with
T ==+2,£5.

D.2 Extended Experiments of T’

We additionally conduct experiments with bigger
and smaller 7" values to further study the impact of
T in data selection. Specifically, we set T' = £5
and the results are shown in Figure 12. We can
observe that a larger 7' which makes codes from the
tail more likely to be selected leads to even better
performance. On the contrary, T’ = —5 leads to
worse performance. We argue that " should be set
within a moderate range and specifically tuned for
each dataset.
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Algorithm 1 Workflow of GiFT in each iteration

Input: A seed dataset D = {d;} |, an LLM M.
Parameter: Gibbs sampling iterations n, selection threshold K, temperature 7.
Output: An updated LLM M* for next GiFT iteration.
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end for
D* + {(dz,c)\d, eD,ce Cz*}
M* «— SFT(M,D*)
return M*

leij ]

514 log Pu(etle<t,dy))

{ei; 1 < weighted random sampling({c;;,w;;})

> Gibbs Sampling
> Summarize code into description

> Generate code from description

> Perplexity-Guided Selection

> Compute perplexity

> Compute weight

> Construct dataset for SFT
> Supervised Fine-Tuning
> Return fine-tuned model
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