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Abstract

Modern zero-shot text-to-speech (TTS) sys-
tems, despite using extensive pre-training, of-
ten struggle in challenging scenarios such
as tongue twisters, repeated words, code-
switching, and cross-lingual synthesis, leading
to intelligibility issues. To address these limi-
tations, this paper leverages preference align-
ment techniques, which enable targeted con-
struction of out-of-pretraining-distribution data
to enhance performance. We introduce a new
dataset, named the Intelligibility Preference
Speech Dataset (INTP), and extend the Direct
Preference Optimization (DPO) framework to
accommodate diverse TTS architectures. After
INTP alignment, in addition to intelligibility,
we observe overall improvements including nat-
uralness, similarity, and audio quality for multi-
ple TTS models across diverse domains. Based
on that, we also verify the weak-to-strong gen-
eralization ability of INTP for more intelli-
gible models such as CosyVoice 2 and Ints.
Moreover, we showcase the potential for fur-
ther improvements through iterative alignment
based on Ints. Audio samples are available at
https://intalign.github.io/.

1 Introduction

Despite leveraging large-scale pre-training (Anas-
tassiou et al., 2024; Wang et al., 2025a; Du et al.,
2024b), modern zero-shot TTS systems still lack
robustness during real-world applications (Sahoo
et al., 2024; Neekhara et al., 2024). These sys-
tems struggle to meet even the most fundamen-
tal requirement of speech synthesis — intelligibil-
ity (Tan, 2023) in several scenarios, including: (1)
the target text is hard to pronounce, such as tongue
twisters or continuously repeated words (Neekhara
et al., 2024; Anastassiou et al., 2024), which is
referred to as articulatory cases in this paper, (2)
code-switching cases, where the target text contains
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a mixture of multiple languages, and (3) cross-
lingual cases, where the languages of the target
text and the reference speech differ. In these do-
mains, existing zero-shot TTS models frequently
exhibit “hallucination” issues, such as content in-
sertion, omission, and mispronunciation (Neekhara
et al., 2024; Wang et al., 2023).

We attribute these intelligibility challenges pri-
marily to the problem of out-of-distribution (OOD).
For example, in cross-lingual cases, there exists a
huge mismatch between monolingual pre-training
and cross-lingual inference. While including such
scenarios in pre-training data would be a natural so-
lution, collecting high-quality data for challenging
cases like cross-lingual synthesis remains difficult.

Motivated by the above, we propose to use pref-
erence alignment (PA) (Ouyang et al., 2022; Bai
et al., 2022) to mitigate the OOD issues, and thus
enhance zero-shot TTS intelligibility. The potential
of this approach lies in two aspects. First, PA’s cus-
tomized post-training on human expected distribu-
tion can effectively mitigate the OOD issue (Zhang
et al., 2024b; Li et al., 2024a; Xiong et al., 2024).
Second, unlike TTS pre-training that requires high-
quality supervised data, PA needs only paired sam-
ples with relative preferences — notably, even syn-
thetic data can lead to large improvements (Dubey
et al., 2024; Yang et al., 2024b), thus significantly
simplifying data collection for challenging scenar-
ios like cross-lingual cases. Centered on this direc-
tion, we investigate three research problems:

* P1: Dataset quality is crucial for model perfor-
mance. To construct a high-quality intelligibility
preference dataset, what prompts and base mod-
els should be selected, and how can we establish
human-aligned preference pairs?

* P2: Unlike textual LLMs with predominantly
autoregressive (AR) design, zero-shot TTS mod-
els employ diverse architectures, including AR-
based (Borsos et al., 2023a; Anastassiou et al.,
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2024; Du et al., 2024b), Flow-Matching (FM)
based (Le et al., 2023; Eskimez et al., 2024,
Chen et al., 2024c), and Masked Generative
Model (MGM) based (Ju et al., 2024; Wang
et al., 2025a). How can we design alignment
algorithms for various architectures?

* P3: Can our preference dataset demonstrate
weak-to-strong generalization (Burns et al.,
2024)? In other words, can datasets created us-
ing less capable models effectively train more
powerful models? This question is central to un-
derstanding the scalability and transferability of
our dataset design.

In this paper, we address the aforementioned
problems with the following key contributions:

— P1: We establish a synthetic Intelligibility
Preference Speech Dataset (INTP), comprising
about 250K preference pairs (over 2K hours) of
diverse domains. Specifically, INTP covers multi-
ple scenarios, utilizing various TTS models for data
creation. Besides, we employ several strategies to
construct preference pairs, aiming to mitigate the
risk of reward hacking for simple patterns (Skalse
et al., 2022; Weng, 2024). Particularly, we leverage
human knowledge and DeepSeek-V3 (DeepSeek-
Al et al., 2024) to introduce perturbations into TTS
systems, creating human-guided negative samples.
In addition, when using Word Error Rate (WER) to
determine intelligibility preferences, we not only
consider self-comparison within a single model as
in previous studies (Tian et al., 2024; Yao et al.,
2025; Hussain et al., 2025), but also introduce com-
parisons across different models to leverage their
complementary capabilities.

— P2: We adopt the idea of Direct Preference
Optimization (DPO) (Rafailov et al., 2023) to en-
hance various zero-shot TTS architectures. We
employ the vanilla DPO algorithm for AR-based
TTS models, while proposing extended versions
of it for FM-based and MGM-based models. Our
experiments on INTP shows that these algorithms
effectively improve the intelligibility, naturalness,
and overall quality of multiple state-of-the-art TTS
systems, including ARS (AR-based) (Wang et al.,
2025a), F5-TTS (FM-based) (Chen et al., 2024c),
and MaskGCT (MGM-based) (Wang et al., 2025a).

— P3: To investigate INTP’s weak-to-strong
generalization capability (Burns et al., 2024) on
more powerful base models, we research its align-
ment effects on CosyVoice 2 (Du et al., 2024b)
and Ints (Appendix C). Both models are initialized

from textual LLMs (CosyVoice 2: from Qwen2.5,
0.5B (Yang et al., 2024a). Ints: from Phi-3.5-mini-
instruct, 3.8B (Abdin et al., 2024)) and achieve
superior intelligibility performance (Table 4). Our
experimental results verify that INTP, though con-
structed from weaker models, remains effective
for these two strong models. Additionally, we
showcase how to establish an iterative preference
alignment “flywheel” of data and model improve-
ments (Bai et al., 2022; Dubey et al., 2024; Xiong
et al., 2024) based on Ints.

We will open-source all resources used in this
study at Amphion! (Zhang et al., 2024c), includ-
ing: (1) the proposed INTP and DPO-based align-
ment codebase for various TTS models, (2) all the
INTP-enhanced models based on Ints, Cosy Voice
2, ARS, F5-TTS, and MaskGCT, and (3) our newly
constructed zero-shot TTS evaluation sets across
diverse domains.

2 Related Work

Zero-Shot Text to Speech Given a target text
and a reference speech as input, zero-shot TTS
systems aim to synthesize the target text while
mimicking the reference style. Modern zero-shot
TTS systems include AR approaches (Wang et al.,
2023; Peng et al., 2024; Anastassiou et al., 2024;
Guo et al., 2024; Du et al., 2024a,b; Zhang et al.,
2025) that model discrete speech tokens (Zeghidour
et al., 2021; Défossez et al., 2023), and Non-AR
approaches that either model continuous represen-
tations using diffusion (Shen et al., 2024) or flow
matching (Le et al., 2023; Eskimez et al., 2024;
Chen et al., 2024c), or model discrete tokens using
masked generative models (Borsos et al., 2023b;
Ju et al., 2024; Wang et al., 2025a,b). While these
systems, trained on large-scale datasets (He et al.,
2024; Kahn et al., 2020; He et al., 2025), show
excellent intelligibility in regular cases (Anastas-
siou et al., 2024; Panayotov et al., 2015; Du et al.,
2024b), they still struggle with intelligibility in
real-world scenarios.

Alignment for Speech Generation Alignment
via post-training has demonstrated its effectiveness
in the generation of text (Ouyang et al., 2022; Bai
et al., 2022), vision (Xu et al., 2023; Fu et al.,
2024), speech (Zhang et al., 2024a; Anastassiou
et al., 2024; Du et al., 2024b), music (Cideron et al.,
2024), and sound effects (Majumder et al., 2024;
Liao et al., 2024). In speech generation, existing

"https://github.com/open-mmlab/Amphion
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Text Type ‘ Example

Pronunciation- Punctuation-

perturbed perturbed #Total

Regular Repeated Code-Switching

Regular ‘ A panda eats shoots and leaves.

A panda panda eats shoots and

ARS (Wang et al., 2025a) | 8,219 8,852 8,300 7,325 8,036 40,732 Repeated |, d leaves and I
F5-TTS (Chen et al., 2024c) | 8,425 8,555 7,976 7,909 6,667 39,532 caves and feaves and feaves.
MaskGCT (Wang et al., 2025a) | 9,055 10,263 8,289 7,604 7,686 42,897 Code-Switching | AEJIZ shoots il leaves -
Intra Pairs | 25699 27,670 24,565 22,838 Pronunciation-

A pan duh eights shots n leafs.

22,389 123,161
23,970 128,350

46,359 | 251,511

Inter Pairs | 27,008 perturbed

#Total | 52,707

27,676
55,346

24,651
49,216

25,045
47,883

Punctuation-
perturbed

A panda eats, shoots, and leaves.

a) Distribution of preference pairs, where pronunciation-perturbed and punctuation- .
(@) - P P v pronunct pert punctd (b) Examples of different types for a text,

perturbed texts are introduced to create the human-guided negative samples.

“A panda eats shoots and leaves”.

Table 1: Intelligibility Preference dataset (INTP). There are about 250K pairs (over 2K hours) in INTP, covering
various texts and speechs, multiple models, and diverse preference pairs.

works have employed preference alignment to en-
hance multiple aspects of speech, including intelli-
gibility (Anastassiou et al., 2024; Du et al., 2024b;
Tian et al., 2024), speaker similarity (Anastassiou
et al., 2024; Du et al., 2024b; Tian et al., 2024),
emotion controllability (Anastassiou et al., 2024;
Gao et al., 2024), and overall quality (Zhang et al.,
2024a; Chen et al., 2024a; Hu et al., 2024; Chen
et al., 2024b; Yao et al., 2025; Hussain et al., 2025).
For intelligibility, previous studies choose WER as
the optimization objective, either directly employ-
ing it as a reward model (Anastassiou et al., 2024;
Du et al., 2024b) or centering around it to construct
preference pairs (Tian et al., 2024; Yao et al., 2025;
Hussain et al., 2025).

However, the existing research exhibits two main
limitations. First, in constructing intelligibility
preference dataset, current works rely solely on
a single model to generate data (Tian et al., 2024;
Yao et al., 2025; Hussain et al., 2025), neglecting
comparisons across different models. Additionally,
beyond the objective WER, the potential of lever-
aging human knowledge or feedback to construct
preference pairs remains unexplored. Second, most
existing work has focused primarily on optimiz-
ing AR-based (Zhang et al., 2024a; Anastassiou
et al., 2024; Du et al., 2024b; Tian et al., 2024) or
diffusion-based (Chen et al., 2024b) TTS models,
leaving open the question of how to design effec-
tive alignment algorithms for other architectural
paradigms, such as FM-based and MGM-based
TTS models.

3 INTP: Intelligibility Preference Speech
Dataset

To enhance the TTS intelligibility, this study opts
for constructing a preference dataset to align (Tian
et al., 2024; Yao et al., 2025; Hussain et al., 2025)
rather than directly optimizing single metrics or
rules such as WER (Anastassiou et al., 2024; Du

et al., 2024b). This choice is motivated by two key
considerations. First, through the construction of
a preference dataset, we can inject human knowl-
edge and feedback beyond WER, such as creating
human-guided negative samples in the framework
of preference alignment (Section 3.3). Second, in
addition to the existing approach of constructing
preference pairs from multiple samples of a single
model (Tian et al., 2024; Yao et al., 2025; Hussain
et al., 2025), we can leverage comparisons across
different models to create preference pairs, thereby
utilizing the complementary capabilities of various
models (Figure 1b). These different strategies help
increase diversity in the dataset, mitigating the risk
of “reward hacking” that often results from the sim-
ple patterns inherent in single metrics or rules (Bai
et al., 2022; Skalse et al., 2022; Weng, 2024).

Formally, we aim to construct an intelligibility
preference dataset D = {(x, %", y')}, where each
triplet comprises a prompt x (consisting of target
text z'°** and reference speech x°P°““" for zero-
shot TTS models), along with a pair of synthesized
speech samples (3%, y'). Here, y* and 4 represent
the preferred (positive) and dispreferred (negative)
outputs conditioned on z, respectively. Statistics
of the proposed INTP are presented in Table 1.

3.1 Prompt Construction

To establish a high-quality preference dataset, we
aim to make the distribution of prompt = cover a
wide range of domains. For the target text ¢,
from the linguistic perspective, we design three
distinct categories: (1) Regular text, which repre-
sents the general cases for TTS systems, aimed at
enhancing model intelligibility in common scenar-
ios; (2) Repeated text, which contains repeated or
redundant words and phrases, specifically designed
to improve TTS performance in articulatory cases;
and (3) Code-switching text, which incorporates
a mixture of different languages, intended to en-
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(a) Intra Pair (b) Inter Pair

Perturbed Prompt o

(c) Perturbed Pair
Figure 1: Three kinds of preference pairs in INTP.

hance TTS capabilities in multilingual scenarios.
From the semantic perspective, we collect text con-
tent across diverse topics and domains to enrich
the distribution of 2'***. For the reference speech
xPeech we aim to cover a wide range of speakers,
speaking styles, and acoustic environments. Re-
garding the pairing of z*** and 2°P“°" we further
consider their language alignment by constructing
both monolingual and cross-lingual combinations
(more statistics in Appendix A.1).

We construct these prompt data based on the
Emilia-Large (He et al., 2024, 2025), which con-
tains real-world speech data and textual transcrip-
tions across diverse topics, scenarios, and speaker
styles. We perform stratified sampling on Emilia-
Large’s speech and text data to obtain multilingual
prompts. We employ DeepSeek-V3 (DeepSeek-Al
et al., 2024) to preprocess the sampled text, includ-
ing typo correction, and use it as regular text. Based
on these regular texts, we further utilize DeepSeek-
V3 to transform them into different text types (as
shown in Table 1b). Construction details are pro-
vided in Appendix A.1.

3.2 Model Selection

We utilize multiple zero-shot TTS models with di-
verse architectures for data synthesis to enhance
INTP’s diversity and generalization. Specifically,
we select the following three models: (1) ARS
(AR-based): Introduced as an autoregressive base-
line by Wang et al. (2025a). and referred to as
“AR + SoundStorm” in the original paper (Wang
et al.,, 2025a). It adopts a cascaded architec-
ture, including the autoregressive fext-fo-codec and
the non-autoregressive codec-to-waveform (Borsos
et al., 2023b). (2) F5-TTS (FM-based): It fol-
lows E2 TTS (Eskimez et al., 2024) and uses a
flow-matching transformer (Le et al., 2023; Lip-
man et al., 2023) to convert the text to acoustic fea-
tures directly (Chen et al., 2024c). (3) MaskGCT
(MGM-based): Similar to ARS, MaskGCT em-

ploys a two-stage architecture. The key distinc-
tion lies in its use of an MGM in the text-to-codec
stage (Wang et al., 2025a).

All the three are pre-trained on Emilia (He et al.,
2024) (about 100K hours of multilingual data)
and represent state-of-the-art zero-shot TTS sys-
tems across different architectures. We utilize
their officially released pre-trained models (see Ap-
pendix A.2 for details) to generate data for INTP.

3.3 Preference Pairs Construction

In constructing intelligibility preference pairs, we
design three categories of pairs (Figure 1):

Intra Pair These pairs are generated through
model self-comparison (Figure 1a), following an
approach similar to previous studies (Tian et al.,
2024; Yao et al., 2025; Hussain et al., 2025). For a
given prompt x, we conduct multiple samplings us-
ing the same model. Subsequently, we calculate the
WER for each generation and designate the sam-
ples with the lowest and highest WER as y* and 1/,
respectively. To enlarge the gap between y* and
y!, we employ diverse sampling hyperparameters
across multiple generations from the same model.
Additionally, we use a specific WER threshold to
filter out pairs with insufficient performance gaps
(more details in Appendix A.3.1).

Inter Pair These pairs are constructed by com-
paring outputs across different models (Figure 1b).
The efficacy of this approach lies in leveraging the
complementary strengths of various models. For
example, by comparing intra-pairs from different
models for the same prompt, we can identify the
“best of the best” samples, thereby enhancing the
overall quality of positive samples in our dataset.
Similar to intra pair, we also employ WER to iden-
tify intelligibility preferences for inter pairs (see
Appendix A.3.2 for details).

Notably, the proposed inter-pair construction
pipeline enables comparative evaluation of intel-
ligibility performance across different models. Us-
ing this pipeline, we compared four state-of-the-art
models in the field: ARS (Wang et al., 2025a), F5-
TTS (Chen et al., 2024c), MaskGCT (Wang et al.,
2025a), and CosyVoice 2 (Du et al., 2024b). We
constructed 10K inter-pairs and analyzed the win
rates of these models, as shown in Table 2. In-
terestingly, even ARS, the model with the lowest
win rate, achieves a 4.1% success rate against the
strongest model, CosyVoice 2. This finding vali-
dates our assumption regarding the complementary
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| ARS F5-TTS MaskGCT CosyVoice2 | Win Rate (1)

ARS / 6.7% 7.4% 4.1% 18.3%
F5-TTS 10.4% / 8.8% 5.9% 25.1%
MaskGCT | 104%  8.0% / 5.9% 24.3%
CosyVoice2 | 11.9% 10.2% 10.3% / 32.3%

" The percentage in each cell represents the proportion of cases where the model
on the horizontal axis outperforms the model on the vertical axis.
" The Win Rate is calculated as the sum of values from columns 2 through 5.

Table 2: TTS Intelligibility Arena: We employ the inter-
pair construction from INTP to compare intelligibility
among four state-of-the-art zero-shot TTS models.

| ARS F5-TTS MaskGCT CosyVoice 2

Positive Samples | 73.0% 88.1% 90.9% 100.0%
Negative Samples | 45.7%  15.8% 47.1% 75.0%

All ‘ 59.7%  53.7% 64.3% 90.4%

Table 3: Human-annotated reading accuracy (1) for four
state-of-the-art zero-shot TTS models on regular texts.
We use the intra-pair pipeline of INTP to generate the
positive and negative samples.

capabilities among various models.

Perturbed Pair In addition to the aforemen-
tioned two types of pairs which are established
based on WER, we leverage human knowledge
and the intelligence of DeepSeek-V3 (DeepSeek-
Al et al., 2024) to create human-guided negative
samples, termed perturbed pairs (Figure 1c). The
main idea involves deliberately perturbing the in-
put prompt, thereby inducing the model to generate
low-quality samples (Majumder et al., 2024; Fu
etal., 2024).

Specifically, we design two types of perturba-
tion for the target text in the prompt (as shown in
Table 1b): (1) Pronunciation perturbation: we
replace certain characters of the text with easily
mispronounceable alternatives. For example, given
the text “A panda eats shoots and leaves”, we can
create the perturbed text “A pan duh eights shots n
leafs”. (2) Punctuation perturbation: we modify
the punctuation, such as commas, to alter pause
patterns and prosody in the text. For example, by
adding commas to the text “A panda eats shoots
and leaves”, we obtain “A panda eats, shoots, and
leaves”, where the words “shoots” and “leaves”
transform from nouns in the original text to verbs,
creating a significant semantic shift. The detailed
process for constructing these perturbed texts is
provided in Appendix A.3.3.

3.4 Human Perception Verification

After constructing INTP, we further conducted sub-
jective evaluation to verify its alignment with hu-

man perception. For intelligibility alignment, we
design a reading accuracy listening task (see Ap-
pendix F.3 for details): given a text and a speech,
subjects perform binary classification to determine
whether the speech accurately reads the text with-
out any content insertion, omission, or mispro-
nunciation. Using four state-of-the-art zero-shot
TTS models, we generate 300 intra-pairs on INTP
regular texts. The results in Table 3 demonstrate
that INTP’s preference identification for intra pairs
aligns well with human judgments of intelligibil-
ity. Furthermore, comparing Tables 2 and 3 reveals
that INTP’s inter-pair comparisons of intelligibility
across different models also effectively align with
human values.

In addition to intelligibility, we also investigated
how well INTP aligns with human preferences
for naturalness, which is one of the most general-
purpose metrics for TTS (Tan, 2023). The experi-
mental results demonstrate that the naturalness gap
between positive and negative samples of INTP is
substantial and perceptible to human listeners. We
discuss this finding in details in Appendix A.4.

4 Preference Alignment for Diverse
Zero-Shot TTS models

In this section, we present methods for achieving
preference alignment across a range of TTS mod-
els, including autoregressive based, flow-matching
based, and masked generative model based archi-
tectures. Building on the framework of Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023),
initially developed for AR-based models, we adapt
and extend its principles to FM-based and MGM-
based models. We note that DPO is computation-
ally efficient in practice, and its iterative variant
aligns seamlessly with the online reinforcement
learning (RL) framework (Li et al., 2024b).

4.1 DPO for AR Models

The main idea of reinforcement learning (RL)
for preference alignment is to introduce a reward
model 7(z, y) to guide the model for improvement
(see e.g., (Li et al., 2024b)). Here y represents
the output (i.e., the generated speech in zero-shot
TTS), and z means the input prompt (i.e., the refer-
ence speech and the target text in zero-shot TTS).
A widely adopted reward model design is based
on Bradley-Terry (BT) model, which defines the
probability of preferred sample y* over dispre-
ferred sample ' given x as ppr(y®” = 9’ | =) =
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o(r(z,y®) — r(x,y')). We can train the reward
model 74(z,y) by minimizing the negative log-
likelihood of observed comparisons from the pref-
erence dataset D:

ro(z,y1))] -

(1
With the given reward model, the RL optimization
objective is to guide the model to maximize the ex-
pected reward while minimizing the KL-divergence
from a reference distribution:

Lr = _E(%yuuyz)ND [IOgU (r¢(x,yw) -

H;%XEz,yfvpe(y\z) [7(z,9)] — BDxi[po(ylz) || pret(yl)],

2
where the hyperparameter 3 controls the strength
of the regularization. As highlighted in Rafailov
et al. (2023), the optimization problem in Equa-
tion 2 admits a closed form solution. This implies
a direct relationship between the reward function
and the policy. Substituting the reward expression
into Equation 1 leads the DPO loss:

Lpro = —Ep [loga (ﬁ (log polywlz) _ |,

Pa(vla) 108 :ff(élz‘ﬁ))))] :
3
DPO enables direct preference alignment for AR-
based TTS models, eliminating the need for explicit
reward modeling or RL optimization. In the follow-
ing subsections, we will introduce its extensions
for FM-based and MGM-based TTS models.

4.2 DPO for Flow-Matching Models

The vanilla DPO algorithm is tailored for AR mod-
els, while Wallace et al. (2024) extends it to diffu-
sion models. In this subsection, we introduce the
DPO algorithm for flow-matching models, specifi-
cally demonstrating its application to optimal trans-
port flow-matching (OT-FM), a common approach
in FM-based TTS models (Le et al., 2023; Eskimez
et al., 2024; Chen et al., 2024¢). Given the con-
tinuous representation y of a speech sample and
its corresponding condition z, OT-FM constructs
a linear interpolation path between Gaussian noise
yo ~ N (0, 1) and the target data y; = y. Specifi-
cally, the interpolation follows y; = (1—t)yo+t y1,
where ¢ € [0, 1], which naturally induces a velocity
field vg(yy, t, ) that captures the constant direc-
tional derivative % = y1 — yo. OT-FM aims to
learn the velocity field to match the true derivative.
The corresponding loss function is defined as

Lotem = Eyg gy atllve(ye,t,2) — (1 — o) I3, (4)

where ¢ is the time step that is sampled from the
uniform distribution 2/(0, 1).

Inspired by Wallace et al. (2024), we rewrite
the RL objective for flow-matching models. Let
po(y1|ys, t, x) denote our policy that predicts the
target sample y; given the noised observation y; at
time ¢ and condition . We initialize from a refer-
ence flow-matching policy prf. The RL objective
can be written as:

maxBy, «p, (y:12),t,2 1 (Y1, )]
" 5)
— BDxwpe (y1lye, t, @) ||pret (2|, T, @)
Following a similar derivation process as in DPO
(we provide more details in Appendix B.2), we can
obtain the loss function for flow-matching DPO:

Lpporm = —E
DPO-FM (yiuyllwm)"’pvt

Wy g
log & <ﬂ (log po (y1' |y ) —log

111111

Pt (U [y}, £, @) prer (v} |y}, t, @)

po(yilyL, t, x) )) (6)

where y{" and 4! represent the preferred and dis-
preferred samples from the preference dataset, re-
spectively, while » and %! are the interpolations
at time ¢ between % and ¢} and the randomly sam-
pled yy’ and yé. The loss can be transformed into
the velocity space:

Lororm = _]E(v/‘l”,v/ﬁ‘m)~73,t loga( -8
2 2
(llvo @it @) = i = w3 = llver(wi”s t2) = W1 = w$)]3)
i i INE l i &
= ([Prowi.to) = i = D), = oot . 2) = @i = w)[]))-

This proposed algorithm can be applied to a wide
range of FM-based and diffusion-based TTS mod-
els (Le et al., 2023; Eskimez et al., 2024; Shen
et al., 2024). In this study, we use it to optimize
F5-TTS (Chen et al., 2024c) as a representative.

4.3 DPO for Masked Generative Models

Masked generative model (MGM) is a type of
Non-AR generative model, which is also widely
adopted in speech generation, as seen in models
such as NaturalSpeech 3 (Ju et al., 2024), and
MaskGCT (Wang et al., 2025a). MGM aims to
recover a discrete sequence y = [z1, 22, ..., 2]
from its partially masked version y; = y © my,
where m; € {0,1}" is a binary mask sampled
via a schedule v(¢t) € (0,1]. MGM is trained to
predict masked tokens from unmasked tokens and
condition x, modeled as py(yo | v, x), optimiz-
ing the sum of the marginal cross-entropy for each
unmasked token:

n
l:mask - _Ey,m,t,mt th,i : IOgPG(ZZ | yt?‘r)' (8)

=1

Using a similar derivation as in Section 4.2, we ex-
tend DPO for MGM. Let pret(yo | y¢, z) represent
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Model H Regular cases ‘ Articulatory cases ‘ Code-switching cases ‘ Cross-lingual cases H Avg
|| WER SIM N-CMOS | WER SIM N-CMOS | WER SIM N-CMOS | WER SIM N-CMOS || WER SIM N-CMOS
ARS 396 0.717 20.03  0.693 54.15 0.693 19.76  0.630 24.47 0.683 -
w/ INTP 232 0.727 047 40 | 1283 0713 0.64 L5 | 3691 0.698  0.63 .3 9.57 0.632  0.82 45 1541 0.692  0.64 4.,
F5-TTS 3.44 0.670 16.84 0.635 33.99 0.609 16.86 0.546 17.78 0.615 -
w/ INTP 238 0.652 038 105 | 1297 0.628 030 155 | 1598 0.576  0.67 45 7.13 0509 047 403 9.62 0591 044 .,
MaskGCT 234 0.738 1243 0.714 - 29.06 0.696 - 1234 0.629 14.04 0.694 -
w/ INTP 223 0737  0.23 L0 9.13 0.722  0.57 103 | 19.70 0.704  0.19 1446 7.87 0.633  0.29 415 9.73 0.699 032 445
CosyVoice 2 2.09 0.709 - 8.12  0.696 - 3336 0.672 - 8.78  0.600 - 13.09 0.669 -
w/ INTP 1.65 0.709  0.24 4455 6.87 0.696 020 456 | 2831 0.671  0.63 o5 5.39 0.603 028 43 10.56  0.670  0.33 L1,
Ints 3.14  0.688 - 12.08 0.666 - 22.88 0.646 - 9.78 0.572 - 11.97  0.643 -
w/ INTP 236 0.686  0.20 43 9.38 0.664 0.11 45 | 13.80 0.642  0.20 L5 6.28 0.571  0.18 442 796 0.641  0.17 o5

Table 4: Improvements of DPO with INTP for different models (AR-based:
CosyVoice 2 (Du et al., 2024a), and Ints (Appendix C). FM-based: F5-TTS (Chen et al., 2024c). MGM-based:
MaskGCT (Wang et al., 2025a)) on diverse domains. ARS, F5-TTS, and MaskGCT participated in the INTP

ARS (Wang et al.,

202542),

construction, while CosyVoice 2 and Ints did not.

the reference policy. The DPO loss for MGM is
given by:

Loromem = —E w1y op s

log o (6 (Iog

Here, y” and y} are masked versions of y% and ).
Note that pg(yo|ys, ) corresponds to the sum of
the log-probabilities of the unmasked tokens in the
context of MGM. We provide more details about
the derivation in Appendix B.3. In this study, we
select MaskGCT (Wang et al., 2025a) as a repre-
sentative to apply this proposed algorithm for its
text-to-codec stage.

po(yo 1y @)
prcf(y(llu‘yy)vx)

o puymybx)>>. ©)

Pref (Y |y}, )

5 Experiments

Evaluation Data We evaluate zero-shot TTS sys-
tems across diverse domains in both English and
Chinese languages. Based on SeedTTS’s evalua-
tion samples (Anastassiou et al., 2024) (which are
widely used and also serve as the evaluation set for
the pre-trained models of ARS (Wang et al., 2025a),
F5-TTS (Chen et al., 2024c), MaskGCT (Wang
et al., 2025a), and CosyVoice 2 (Du et al., 2024b)
in this study), we construct evaluation sets across
four distinct domains: (1) Regular cases: We use
SeedTTS test-en (1,000 samples) and SeedTTS
test-zh datasets (2,000 samples). (2) Articula-
tory cases: These involve tongue twisters and re-
peated texts. For Chinese, we use SeedTTS test-
hard, while for English, we use reference speech
prompts of SeedTTS test-en, and employ Deepseek-
V3 (DeepSeek-Al et al., 2024) to construct the ar-
ticulatory texts like SeedTTS test-hard. There are
800 samples in total. (3) Code-switching cases:
These target texts are a mixture of English and Chi-
nese. Based on SeedTTS test-en and test-zh, we

keep their reference speech prompts unchanged,
and adopt Deepseek-V3 to transform their texts
into code-switching style. There are 1,000 samples
in total. (4) Cross-lingual cases: We construct two
types of cross-lingual samples: zh2en (500 sam-
ples) and en2zh (500 samples). The zh2en means
Chinese reference speech (from SeedTTS test-zh)
with English target text (from SeedTTS test-en).
Similarly for en2zh. The detailed distribution of
these sets is presented in Table 11, Appendix F.1.

Evaluation Metrics For objective metrics, we
evaluate the intelligibility (WER, |), speaker sim-
ilarity (SIM, 1), and overall speech quality (UT-
MOS (Saeki et al., 2022), 1). Specifically, for
WER, we employ Whisper-large-v3 (Radford
et al., 2023) for English, and Paraformer-zh (Gao
et al., 2022, 2023) for Chinese and code-switching
texts. For SIM, we compute the cosine similarity
between the WavLM TDNN (Chen et al., 2022)
speaker embeddings of generated samples and the
reference speeches. For subjective metrics, we em-
ploy Comparative Mean Opinion Score (rated from
-2 to 2) to evaluate naturalness (N-CMOS, 1), use
reading accuracy (Section 3.4) to evaluate intelli-
gibility, and use A/B Testing to compare speaker
similarity between the generated samples before
and after intelligibility alignment. Detailed descrip-
tions of all the metrics are provided in Appendix F.

5.1 Effect of DPO with INTP

To verify the effectiveness of DPO with INTP for
existing TTS models, we conduct alignment ex-
periments with multiple models. In addition to
ARS, F5-TTS, and MaskGCT, which were used in
constructing the INTP dataset, we also introduce
two more powerful models in terms of intelligi-
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(a) Comparison of reading accuracy.
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(b) Win/Lose/Tie of speaker similarity after INTP alignment.

Figure 2: Subjective evaluation of intelligibility and speaker similarity for models before and after INTP alignment.

bility: CosyVoice 2 (Du et al., 2024b) and Ints
(Appendix C), to validate INTP’s weak-to-strong
generalization capability. The experimental results
are presented in Table 4, including results on the ob-
jective WER, SIM, and the subjective naturalness
CMOS.

We observe three key findings from Table 4: (1)
Across different evaluation cases, while almost all
models demonstrate strong intelligibility perfor-
mance in regular cases (WER < 4.0), they struggle
significantly with articulatory, code-switching, and
cross-lingual cases. We show some hallucinated
outputs for these domains on our demo website. (2)
Comparing across models, CosyVoice 2 and Ints
achieves better average intelligibility performance
across all cases (WER of 13.09 and 11.97), high-
lighting the strength of using a textual LLM as the
initialization of large-scale TTS model (Du et al.,
2024b). (3) Through DPO with INTP, all models,
including the more intelligible CosyVoice 2 and
Ints that are out of the INTP distribution, show
improvements in both intelligibility (WER) and
naturalness (N-CMOS), and display comparable
performance for speaker similarity (SIM).

Furthermore, we randomly sample 300 samples
for subjective evaluation, including assessments
of reading accuracy and A/B testing of speaker
similarity before and after INTP alignment (see
Appendix F.3 for details). The results in Figure 2
demonstrate that INTP alignment enhances all five
models in terms of both intelligibility (higher read-
ing accuracy in Figure 2a) and speaker similarity
(more Tie/Win percentages in Figure 2b).

5.2 Effect of Different Data within INTP

To investigate the impact of different distributions
within INTP, we conduct ablation studies from mul-
tiple perspectives. In Table 5, we present three
groups of experiments on ARS: the effect of data
across different text types, across different models,
and the effect of different negative samples. Ad-
ditional results, including the effect of data across
different languages are provided in Appendix E.

We observe three key findings from Table 5: (1)
Group 1 demonstrates that different scenarios re-
quire customized post-training data. For instance,
repeated data proves particularly effective for artic-
ulatory cases, while pronunciation-perturbed data
significantly improves pronunciation accuracy and
WER in cross-lingual cases (see our demo website
for details). Moreover, utilizing data from multiple
scenarios (i.e., the complete INTP) yields the best
overall improvements. (2) Group 2 reveals that
model improvement can be achieved through align-
ment using synthetic data, regardless of whether
it’s generated by the model itself or other models.
Besides, the intra-pairs and inter-pairs are comple-
mentary for model improvements. (3) Group 3
shows that using only positive samples from INTP
for supervised fine-tuning (SFT) can already im-
prove quality. Building upon this, incorporating
negative samples for preference learning leads to
even more substantial gains.

5.3 Iterative Intelligibility Alignment

Furthermore, we explore how to establish an itera-
tive preference alignment, i.e., data and model fly-
wheel (Bai et al., 2022; Dubey et al., 2024; Xiong
et al., 2024). This approach aligns with the online
reinforcement learning (RL) framework Li et al.
(2024b). We investigate two rounds of alignment
based on Ints, where Ints vl (INTP-aligned model)
is used to generate new preference data for train-
ing Ints v2, following a similar cadence of data
collection as (Bai et al., 2022). To prepare Ints v1
generated preference data, we sample a challeng-
ing prompt subset from INTP and adopt the same
pipeline as INTP to construct preference pairs (see
Appendix C.2 for details). The results of this it-
erative alignment are shown in Table 6. We can
observe that compared to Ints v1, Ints v2 yields ad-
ditional improvements across all scenarios, which
demonstrates that effectiveness of iterative align-
ment. However, we observe that the magnitude of
improvement in the second round is notably smaller
than the first round. We suspect this indicates that
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Model H Regular cases ‘ Articulatory cases ‘ Code-switching cases ‘ Cross-lingual cases H Avg
| WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS
Group 1: Effect of Data across Different Text Types
ARS (Wang et al., 2025a) || 396 0717 3.145 | 2003 0.693 2915 | 5415 0693 3.045 | 1976 0630 3.120 | 2447 0683  3.056
w/ Regular || 245 0727 3200 | 1741 0706 3.000 | 3752 0701 3.110 | 9.66 0.638 3200 | 1676 0.693  3.128
w/Repeated || 233 0725 3225 | 1288 0711 3050 | 39.74 0701 3.150 | 1096 0.636 3235 || 1648 0.693  3.165
w/ Code-switching | 232 0729 3220 | 17.67 0704 3050 | 3420 0695 3.140 | 869 0633 3215 | 1572 0690 3.156
w/ Pronunciation-perturbed || 221 0720 3250 | 17.76 0693 3.075 | 3599 0.687 3185 | 824 0617 3285 || 1605 0679  3.199
w/ Punctuation-perturbed | 246 0722 3240 | 1735 0699 3.020 | 4273 0694 3.160 | 1094 0.624 3255 | 1837 0.684  3.169
w/INTP | 232 0727 3210 | 1283 0713 3035 | 3691 0698 3.145 | 957 0632 3250 | 1541 0692  3.160
Group 2: Effect of Data across Different Models
ARS (Wang et al., 20252) | 396 0717 3145 | 2003 0693 2915 | 5415 0693 3.045 | 1976 0630 3.120 || 2447 0683 3.056
w/ARS pairs | 256 0717 3200 | 1305 0705 3015 | 4091 0691 3125 | 1107 0.622 3225 || 1690 0.684 3.141
w/ MaskGCT pairs || 237 0724 3210 | 1685 0700 3.010 | 3741 0.692 3.105 | 883 0625 3200 || 1637 0685 3.131
w/F5-TTS pairs || 246 0721 3210 | 1499 0705 3.035 | 3877 0690 3.115 | 1001 0621 3225 | 1656 0684 3.146
w/Intra pairs || 2.33 0721 3200 | 1529 0705 3015 | 37.99 0687 3.115 | 936 0624 3200 | 1624 0684 3133
w/Inter pairs || 225 0726  3.180 | 1542 0703 2965 | 38.69 0.697 3.065 | 10.61 0631 3170 | 1674 0.689  3.095
w/INTP || 232 0727 3210 | 1283 0713  3.035 | 3691 0.698 3.145 | 957 0.632 3250 | 1541 0.692  3.160
Group 3: Effect of Different Negative Samples
ARS (Wang et al., 20252) | 396 0717 3145 | 2003 0693 2915 | 5415 0693 3.045 | 1976 0630 3.120 || 2447 0683 3.056
w/ Regular (SFT)* | 3.28 0716 3165 | 2003 0685 2935 | 4873 0691 3065 | 1725 0630 3.165 || 2232 0680 3.083
w/ Regular* || 245 0727 3200 | 1741 0706 3.000 | 37.52 0701 3.110 | 9.66 0.638 3200 || 1676 0.693  3.128
w/ Pronunciation-perturbed* || 2.21 0720  3.250 | 17.76 0693  3.075 | 3599 0687 3185 | 824 0617 3285 | 1605 0679  3.199
w/ Punctuation-perturbed” | 246 0722 3240 | 1735 0.699 3020 | 4273 0.694 3.160 | 1094 0624 3255 | 1837 0.684  3.169

" The positive samples in these four experiments are identical. w/ Regular (SFT) refers to supervised fine-tuning using positive samples only, excluding negative samples. w/
Regular employs WER-based negative samples, while the other two utilize our proposed human-guided negative samples.

Table 5: Effect of different data within INTP for ARS.

Model ‘ Preference Data H Regular cases ‘ Articulatory cases Code-switching cases ‘ Cross-lingual cases H Avg
| | WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS | WER SIM UTMOS
Ints - 3.14 0.688  3.175 12.08 0.666  3.025 22.88 0.646  3.045 9.78 0572 3.150 11.97 0.643  3.099
Ints v1 INTP 236 0.686  3.205 9.38 0.664  3.060 13.80 0.642  3.125 6.28 0.571 3.230 796 0.641 3.155
Ints v2 | Ints v1 generated 221 0.686 3210 848 0.660  3.085 1233  0.643  3.140 540 0.567  3.250 7.10 0.639  3.171

Table 6: Iterative Preference Alignment for Ints.

the upper bound of iterative alignment is largely
determined by the base model’s inherent capabil-
ities, suggesting future research should focus on
base models with higher potential.

6 Conclusion

In this work, we focus on the intelligibility issues of
modern zero-shot TTS systems across diverse do-
mains, especially in hard-to-pronounce texts, code-
switching, and cross-lingual synthesis. We propose
to address these challenges using preference align-
ment with our newly constructed INTP dataset,
which contains diverse preference pairs determined
through model self-comparison, cross-model com-
parison, and human guidance. We employ DPO
and design special extensions to significantly im-
prove various TTS architectures, while demonstrat-
ing INTP’s weak-to-strong generalization capabil-
ity and establishing an iterative preference align-
ment flywheel with more powerful base models.

Limitations

While our approach demonstrates significant im-
provements in zero-shot TTS intelligibility across

diverse domains, several limitations remain. Al-
though INTP covers multiple challenging scenar-
ios, it may not fully capture all edge cases, such
as specialized jargon or rare language pairs. Fu-
ture work could expand to more low-resource lan-
guages and niche domains. Besides, constructing
INTP and conduct alignment experiments on large
models like Ints require substantial computational
resources, potentially limiting accessibility.

Potential Risks

The proposed method introduces several risks that
warrant consideration. Enhanced TTS systems
could be exploited to generate deceptive content
(e.g., deepfake audio), posing ethical challenges.
Robust safeguards and watermarking mechanisms
are critical for deployment. While INTP uses pub-
lic datasets, real-world applications may risk in-
corporating sensitive or copyrighted speech data,
requiring strict governance protocols.
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A Construction Details of INTP

A.1 Prompt Construction

We construct English and Chinese prompt data,
both based on the Emilia-Large dataset (He et al.,
2024, 2025), which contains diverse real-world
speech data across various topics, recording scenar-
ios, and speaking styles.

Reference Speech We perform stratified sam-
pling on Emilia-Large’s speech data based on its
metadata such as topics and tags to cover diverse
acoustic conditions. Considering the memory con-
straints of existing zero-shot TTS models during
inference, we only select samples with durations
not exceeding 12 seconds.

Target Text Similarly to reference speech, we
perform stratified sampling based on Emilia-
Large’s metadata to cover diverse semantic topics.
We select speech samples with durations between 5
and 22 seconds, and use their corresponding textual
transcriptions as the target text data source.

We utilize DeepSeek V3 (DeepSeek-Al et al.,
2025) to preprocess the sampled textual transcrip-
tions, such as typo correction and punctuation mark
normalization, and use the processed text as regu-
lar text in INTP. Specifically, we use the following
instruction for DeepSeek V3 to conduct text pre-
processing:

System Prompt:

I obtained a text from an audio file based on some ASR
models. Please help me clean it up (e.g., correct typos,
add proper punctuation marks, and make the sentences
semantically coherent). Note: (1) You can modify, add,
or replace words that better fit the context to ensure
semantic coherence. (2) Please only return the cleaned-
up result without any explanation.

User Prompt (Example):
a panda eats shoes and leaves

System Output (Example):
A panda eats shoots and leaves.

Furthermore, we employ DeepSeek V3 to trans-
form the regular text into different types. To gener-
ate Chinese-English-mixed code-switching texts:

System Prompt:

BIREIXA)IE, BRI — P LR AR code-
switching IR « {ER: IR AT EIR EIZ8 FAL R
R, AR

User Prompt (Example):
A panda eats shoots and leaves.

System Output (Example):
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AEJEINZ shoots 1 leaves o
To generate punctuation-perturbed texts:

System Prompt:

B AR & — 1 Text To Speech (TTS) 4IH A& K,
AR, ETATR—A TTS ARGt 8t - Bk
FTIA—NDOK, TBIRIEBOX 5 CAR B E A T
W, MME TTS RGCEAE S i . 0. fRATLUE
BN LA BERNE S EENIET - B2 EF
oS, 55, BARNESEANFIMER IR A B SOA -
%§?WR%%ﬁE%ﬁ%ﬁE%E%,K%%E
A RS

FF1:
(FEA] BRI
(FREvHIH) B ERANVR R B

fl+2:

(FrEiA]l BRI, Z0OANTIEEMESRTRING
BEELANART - MARNKFMERTF IR TR EE
—E . N T BRINEZIREET, IR
@@WW%%&&TF@%*:$%A%$%:*
— A o

(RAE ] Bal, Z2EANTEEEEFHIEIN
RN AKRT - WA NMEEFHHE(E 7T
— W EZ . N T HTHHIEZ RS, JREE(ITRHI
E@EW%%%&T@%%*:$%A%EE%H
=4 e

#+3:

(F A% ] And the idea of standing all by himself in
a crowded market, to be pushed and hired by some big,
strange farmer, was very disagreeable. Why not sing that
high note and grow potatoes?

(RE%iH ] And the eye dear of standing awl bye
himself in a crowd dead market, two bee pushed and
high red buy sum big, strange far mer, was vary dis
agreeable. Y knot sing that hi note and grow poe eight
toes?

User Prompt (Example):
A panda eats shoots and leaves.

System Output (Example):
A pan duh eights shots n leafs.

To generate repeated text and punctuation-
perturbed text, we leverage DeepSeek V3 to cre-
ate executable Python scripts that implement rule-
based word repetition and random punctuation
modification. These scripts will be included in
our future open-source repository.

Combination between Speech and Text Based
on the language of reference speech and target
text data, we design four balanced combination
categories: monolingual combinations (en2en and
zh2zh) and cross-lingual combinations (zh2en and
en2zh), where zh2en denotes Chinese reference
speech with English target text, and similarly for
others. For each text type shown in Table 1a (Reg-

ular, Repeated, Code-Switching, Pronunciation-
perturbed, and Punctuation-perturbed), we con-
struct 12K prompts.

A.2 Model Selection

* ARS (Wang et al., 2025a): We use the original
checkpoint (pre-trained on Emilia) provided by
the authors.

* F5-TTS (Chen et al., 2024c): We use the offi-
cially released checkpoint? for INTP data gener-
ation.

* MaskGCT (Wang et al., 2025a): We use the offi-
cially released checkpoint® (Zhang et al., 2024c;
Li et al., 2025b) for INTP data generation.

In addition to these three models used for INTP
construction, we also investigate INTP’s effective-
ness on Cosy Voice 2 and Ints. For CosyVoice 2,
we conduct alignment experiments using its offi-
cially released checkpoint* as the base model. De-
tails of the pre-trained models of Ints are provided
in Appendix C.

A.3 Preference Pairs Construction

A.3.1 Intra Pair

For each model and prompt, we perform five sam-
plings and construct intra pairs based on their WER
comparisons. To maximize the performance gap
between positive and negative samples, we employ
two strategies. First, we use diverse hyperparame-
ters during the five generations to increase sample
diversity, selecting the generation with the lowest
WER as positive samples and the highest WER
as negative samples. Second, we apply a thresh-
old to filter out pairs where the WER gap between
positive and negative samples is less than 6.0.

Specifically, for ARS’s five samplings, we set top
k to 20 and top p to 1.0, while using different tem-
peratures of 0.4, 0.6, 0.8, 1.0, and 1.2. For F5-TTS
and MaskGCT, we use the generated speech target
duration as the sampling hyperparameter. Denot-
ing the “ground truth” duration’ as d, we employ
five different duration parameters: 0.8d, 0.9d, 1.0d,
1.1d, and 1.2d.

*https://huggingface.co/SWivid/F5-TTS

*https://huggingface.co/amphion/MaskGCT

*https://github.com/FunAudioLLM/Cosy Voice

3Since we use Emilia-Large’s transcription data as target
text in our prompt construction process (Appendix A.1), we
refer to the original speech duration corresponding to this
transcription as the “ground truth” duration.
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A+2 A+1 Tie B+1 B+2
109% 29.0% 15.0% 324% 12.6%

" For each pair, we present the two samples to human
raters in random order, labeled as A and B. A+2
indicates that sample A’s naturalness is significantly
better than B, while A+1 indicates that sample A is
moderately better than B, similar for B+2 and B+1.
Tie indicates no perceptible difference.

Table 7: Human naturalness preference for 1,000 pairs
from INTP regular text domain.

Naturalness Naturalness Naturalness
Winner Tie Loser
INTP winner \ 72% 15% 13%

Table 8: Agreement between INTP preference and hu-
man naturalness preference.

A.3.2 Inter Pair

We construct inter pairs based on the intra pairs
established in Appendix A.3.1. For a given prompt,
we denote model A’s intra pair as (y%,yY4) and
model B’s intra pair as (y%,y%). We construct
inter pairs through three types of comparisons: be-
tween y'{ and ¥, between y} and ny, and between
yf4 and y5. Note that we exclude comparisons be-
tween yf4 and le to ensure high quality of positive
samples. We apply the same WER threshold as
in Appendix A.3.1 to filter out pairs with small
performance gaps.

A.3.3 Perturbed Pair

The instructions used to prompt DeepSeek V3 for
obtaining pronunciation-perturbed and punctuation-
perturbed texts are shown in Appendix A.1. Specif-
ically, we only use data from INTP’s regular text
domain to construct perturbed pairs.

A.4 Human Verification

In Section 3.4, we evaluated INTP’s alignment with
human intelligibility perception. In this section, we
investigate the alignment between INTP and hu-
man naturalness preferences. Specifically, we de-
sign a naturalness preference annotation task (Ap-
pendix F.3). We randomly sample 1,000 pairs from
INTP’s regular text domain for human annotation,
with results shown in Table 7 and 8. The results
reveal two key findings: First, 85% of INTP pairs
exhibit distinguishable naturalness preferences (Tie
rate of 15% in Table 7). Additionally, INTP’s pref-
erence determination shows strong agreement with
human naturalness preferences (72% agreement

rate between INTP winners and naturalness win-
ners in Table 8). These results suggest that INTP
can also serve as a foundation dataset for natural-
ness preference alignment in future research.

B Details of the Derivation

B.1 DPO for AR Models

Starting from Equation 2, Rafailov et al. (2023)
demonstrate that the optimization problem admits
a closed-form solution. Specifically, the optimal
policy pj;(y|x) that maximizes the RL objective is
given by:

B

where Z(x) is the partition function ensuring nor-
malization. This establishes a direct relationship
between the reward function and the policy:

piule) = 5 peole) ex (1r<x,y>) . (10)

_ Blog P2WIZ).

r(z,y) = Blog () + Blog Z ().
Substituting this reward expression (Equation 11)
into the reward modeling loss function (Equation 1)
leads the DPO loss (Equation 3), which we repre-
sent here as:

(11

Lpro = —Ep [logg (5 (log po (Ywlz)

Pret (Yw |T)

o (Y1)
—log i) ))} :
B.2 DPO for Flow-Matching Models

Starting from Equation 5, which we represent here
as:

Hzl)ae*XEm ~po (o)t [T (Y1, )]

— BDkLIpo (y1lys, t, ) | prer (Y1 |ye, t, )]

Similar to the derivation in DPO (Rafailov et al.,
2023) and Wallace et al. (2024), we obtain the
closed-form solution for the optimal policy as:

Pret(y1]ye, T, ) exp (%T(mw)) .

(12)
where Z(y;, t, z) is the partition function ensuring
normalization. We can then express the reward
model r(y;, z) as:

S lye b, @) !
PolUL|Yt, L, X) = 77—
0 Z(yt,t, x)

o 7t7
(Y1, ) :Blogipg(yl‘yt 2) + Blog Z(yz, t, x).
Pree(Y1 |y, £, )
(13)

Similarly, substituting this reward expression
(Equation 13) into the reward modeling loss func-

tion (Equation 1) leads to the DPO loss for OT-FM
(Equation 6), which we represent here:

Lopo.rm = —E
DPO-FM (v9 vh o)~ Dt

w w,t, l L,t,
loga<ﬂ<logm(y1|yt ) o PO 1YL w)))

Prr(y [y, t, ) pet(yt |k, t, )
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Reviewing the training objective of OT-FM (Equa-
tion 4), we find that it is equivalent to fitting a
Gaussian likelihood. In other words, the induced
likelihood can be interpreted as:

1
pdeyutx)mmm(fBHw@mtm%f@1*y®@),

similarly, for the reference policy, we have:

1
Pret(y1 | ye, b, ) o eXP<—B lvres (ye, t, ) — (y1 — yo)”;) .

Here, 3 serves as an inverse temperature (or noise
variance), and the normalization constants cancel
out when taking the ratio. By taking the logarithm
of the ratio between the learned policy and the
reference policy, we obtain:

po(y1 | yi,t, @) 1 )
10g— :_7( Vo yt7t7x)_ Y1 — Yo
pref(yl | yt,t,x) /B H ( ( )”2

- Hvref(yt’ ta $) - (yl - yo)”%) .
Multiplying both sides by S results in:

p(‘)(yl | Yt t? I)

lo
ﬁ gpref(yl |yt7t7x)

== (lloalyest,2) = (w1 = w013
— lover (yas t.@) = (1 = wo)13)-

By substituting the log-ratio formulation into Equa-
tion 6, we can transform the DPO loss for OT-FM
into a form related to the velocity, as shown in
Equation 7, which is represented as:

Loro-em = _]E(y’l“”,yll,m)ND,t lOgg( -8

(Ilve(yf’,t,z) — @Y = yD2 — ot @it 2) — (¥ — y&“)Hi)

= ([lootwtst.o) = w4 = wb|2 = [enstvtstso) = b = )|2))-

B.3 DPO for Masked Generative Models

Similar to flow-matching, let py(yo | y+, x) denote
the policy to be optimized, and prer(yo | ¥¢, x) the
reference policy. We can rewrite the RL objective
for MGM as follows:

max By < pg(yolo),t.e (Y0, 2)]

o (14)
— BDxkw [po(yolye, x) || Pret(yolye, x)] -

We can also derive the closed-form solution for the
optimal policy:

. 1 1
p@(yo‘ytvx) = Z(yt x)pfef(yo‘th) exp Br(yoax) )

15)
and express the reward model as follows:

_ p;(yo‘yhx)
7(yo,z) = Blog pa(olye.7) + Blog Z(yi,x), (16)

where Z(y;, x) is the partition function ensuring
normalization. Also, substituting this reward ex-
pression (Equation 16) into the reward modeling
loss function (Equation 1) leads to the DPO loss
for MGM:

Loromem = —E w 1 4y op s

log o (ﬁ (log

Here, y;* and yﬁ are masked versions of y3’ and
yb generated via the mask schedule v(¢). Note
that pg(yo|yt, ) corresponds to the sum of the log-
probabilities of the unmasked tokens in the context
of MGM.

po(yg lye x)
pref(yé“\yff,z)

po(yplyp, ©) )) ‘ (17)

prcl'(yé |y% s I)

C Ints: Intelligibility-enhanced Speech
Language Model

Ints is an intelligibility-enhanced speech language
model. It follows a two-stage generation paradigm
like (Anastassiou et al., 2024; Du et al., 2024a;
Wang et al., 2025a): in the first stage, it uses an AR
model to generate discrete speech tokens, while in
the second stage, it employs a flow matching model
to generate mel-spectrograms from speech tokens.
We use the first-layer tokens from DualCodec (Li
et al., 2025a) as the modeling target for the first
stage of Ints, due to its efficient compression rep-
resentation (12.5Hz tokens for 24kHz speech) and
rich semantic information. Particularly, the first-
stage AR model is directly initialized from a large
language model while extending the vocabulary
to include speech tokens. The codebook size of
speech tokens is 16,384. Specifically, in this work,
we use the 3.8B Phi-3.5-mini-instruct® (Ab-
din et al., 2024), motivated by scaling up model
size and leveraging the rich textual semantic knowl-
edge.

C.1 TTS Instruction Design

We format the input as a text-to-speech instruc-
tion concatenated with speech tokens. The input
sequence is represented as:

[I,T, < |startofspeech| >, S, < |endofspeech| >

where I is the instruction prefix (e.g., “Please speak
the following text out loud”), and 71" and S de-
note the text and speech token sequences, respec-
tively. The special tokens < |startofspeech| > and
< |endofspeech| > mark the boundaries of the
speech token sequence.

Shttps://huggingface.co/microsoft/Phi-3.5-mini-instruct
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On English Evaluation Samples

Regular (en) ‘ Articulatory (en)

Model H

‘ Code-switching (en2mixed) ‘ Cross-lingual (zh2en) H Avg

| WER

SIM UTMOS | WER SIM UTMOS | WER  SIM

UTMOS | WER SIM UTMOS | WER SIM UTMOS

ARS (Wangetal., 2025a) || 3.55 0.682 3.560 | 1598 0.675  3.400

| 4859 0629  3.19

| 1522 0697 3150 || 20.84 0671 3325

w/ zh2zh 2.76  0.692 3.660 13.90 0.687 3.550
w/ en2zh, zh2en 232 0.694  3.700 11.78 0.684  3.580

w/ en2en 1.96 0.697 3.690 13.42  0.685 3.570
w/ all 235 0.695 3.680 13.76  0.686 3.560

35.18 0.641 3.270
36.65 0.644 3.260
35.17 0.645 3.290
33.53  0.642 3.240

8.92 0.694  3.320 15.06 0.679  3.448
7.00 0.700  3.330 14.07 0.681 3.475

8.19 0.692  3.300 14.19  0.679 3.458
738 0.704 3310 1426 0.682  3.448

On Chinese Evaluation Samples

Model I Regular (zh) ‘ Articulatory (zh)

| Code-switching (zh2mixed) |

Cross-lingual (en2zh) || Avg

| WER SIM UTMOS | WER

SIM UTMOS ‘ WER SIM

UTMOS | WER SIM UTMOS | WER SIM UTMOS

ARS (Wangetal.,20252) || 4.37 0752 2730 | 2407 0711 2430

| 5971 0756  2.900

| 2430 0563 3.090 | 2861 0696 2788

w/ zh2zh 241 0.760 2740 19.51 0.727 2.490
w/ en2zh, zh2en 249 0.762 2.740 2292 0.715 2.490

w/ en2en 2.68 0.761 2.760 21.68 0.727  2.530
w/ all 262 0.759 2.720 21.06 0.725 2.440

48.84  0.757 2.990
47.99 0.755 3.010
41.00 0.757 3.000
41.50 0.760 2.980

12.73 0.565  3.110 20.16 0.702  2.838
11.76  0.573  3.160 19.54 0702  2.848

12.48 0.566  3.140 2142 0.703 2.855
1195 0.572 3.090 19.78 0.704  2.808

Table 9: Effect of different languages within INTP for ARS. In these experiments, we use only the Regular part of

INTP for training.

During the inference stage for zero-shot TTS,
the input sequence is represented as:

[I s Tprompt> Ttarget, < |startofspeech| >, S pmmpt]

to generate the target speech tokens S'arger. Here,
T prompt> T'targets Sprompt are placeholders for the
prompt text, target text, and prompt speech tokens,
respectively.

C.2 Training data

We pre-train Ints on Emilia (He et al., 2024), which
consists of about 100K hours of multilingual data.
Following this, we use INTP alignment to obtain
Ints v1. Ints v1 is then used to generate new prefer-
ence data, which are employed to train Ints v2 for
iterative alignment. We select prompts from the re-
peated and code-switching samples of INTP, which
can be considered a more challenging subset of
prompts. For each prompt, we use the same INTP
intra-pair pipeline in Appendix A.3.1 to construct
preference pairs.

D Training Details

All of our experiments are conducted on § NVIDIA
H100 80GB-GPUs. Unless stated otherwise, we
use the AdamW optimizer with 31 = 0.9, 5, =
0.999 and train for one epoch. For each model,
we provide more detailed information about the
experiments:

* ARS: We use a learning rate of 5e — 6 with a
warmup of 4,000 steps and an inverse square
root learning scheduler. For DPO, we use the
hyperparameter 8 = 0.1.

* F5-TTS: We use a learning rate of 8¢ — 6 with
a warmup of 4, 000 steps and an inverse square
root learning scheduler. For DPO, we use the
hyperparameter 8 = 1, 000.

* MaskGCT: We use a learning rate of 5e —6 with
a warmup of 4, 000 steps and an inverse square
root learning scheduler. For DPO, we use the
hyperparameter 8 = 10.

* CosyVoice 2: We use a learning rate of 5e — 6
with a warmup of 4,000 steps and an inverse
square root learning scheduler. For DPO, we use
the hyperparameter 5 = 0.1.

* Ints: We use a learning rate of be — 6 with a
warmup of 4,000 steps and an inverse square
root learning scheduler. For DPO, we use the
hyperparameter 5 = 0.1. We use flash atten-
tion (Dao et al., 2022) and bfloat16 for training.

E Additional Experimental Results

E.1 Effect of Data across Different Languages
within INTP

We present the effect of different languages within
INTP in Table 9. The results reveal three key find-
ings: (1) Data from all languages can contribute
to improvements across diverse domains for ARS.
(2) Interestingly, using only English post-training
data (w/ en2en) could also improve performance on
Chinese evaluation samples, and vice versa, demon-
strating that the proposed alignment algorithm en-
hances the model’s foundation capability in intel-
ligibility. (3) Furthermore, we again observe the
effectiveness of preference alignment’s customized
feature: when aiming to improve performance on
cross-lingual cases, directly constructing data from
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Model ‘ Japanese ‘ Korean ‘ German ‘ French
| WER SIM | WER SIM | WER SIM | WER SIM
Ints 26.34 0.714 | 31.67 0.708 | 28.25 0.674 | 54.53 0.545
w/INTP | 21.82 0.718 | 19.57 0.741 | 21.20 0.676 | 42.12 0.558

Table 10: Effect of INTP alignment for unseen languages.

the cross-lingual distribution yields the most signif-
icant gains.

E.2 Effect of INTP Alignment for Unseen
Languages

We conducted the additional evaluations on four un-
seen languages not covered by INTP. Specifically,
we tested the Ints models before and after INTP
alignment using Japanese, Korean, German, and
French speech data from GTSinger (Zhang et al.,
2024d) (a dataset not used in either pre-training
or post-training). We constructed evaluation sets
consisting of 500 samples for each language. The
results in Table 10 demonstrate that despite INTP
containing only Chinese and English data, improve-
ments in both WER and SIM metrics are observed
across all four languages. We hypothesize that this
generalization stems from our proposed intelligi-
bility preference alignment method enhancing the
model’s fundamental capabilities in intelligibility
such as the basic articulation and pronunciation.

F Evaluation Details

F.1 Evaluation Data

Our evaluation sets are based on SeedTTS test-
en and SeedTTS test-zh datasets’. The SeedTTS
test-en set includes 1,000 samples from the Com-
mon Voice dataset (Ardila et al., 2019), while the
SeedTTS test-zh set comprises 2,000 samples from
the DiDiSpeech dataset (Guo et al., 2021). We also
provide the detailed distribution of our proposed
sets in Table 11.

F.2 Objective Evaluation Metrics

For objective metrics, we evaluate the intelligibil-
ity (WER), speaker similarity (SIM), and overall
speech quality (UTMOS (Saeki et al., 2022)):

* WER: We employ Whisper-large-v3® (Rad-
ford et al., 2023) for English texts, and

"https://github.com/BytedanceSpeech/seed-tts-eval
8https://huggingface.co/openai/whisper-large-v3

‘ Languages ‘ #Total

Regular ‘ b ‘ zh ‘ 3,000
| 1,000 | 2000 |

Articulatory ‘ e ‘ zh ‘ 800

| 400 | 400 |

Code-switching ‘ en2mixed ‘ zh2mixed ‘ 1,000
| 500 | 500 |

Cross-lingual ‘ zh2en ‘ en2zh ‘ 1,000
| 500 | 500 |

Table 11: Statistics of the proposed evaluation sets in
four scenarios (en: English, zh: Chinese, mixed: mix-
ture of English and Chinese, zh2en: Chinese reference
speech with English target text. Similarly for en2mixed,
zh2mixed, and en2zh).

Paraformer-zh’ (Gao et al., 2022, 2023) for
Chinese and code-switching texts.

» SIM: We compute the cosine similarity between
the WavLM TDNN!? (Chen et al., 2022) speaker
embeddings of generated samples and the prompt
samples.

* UTMOS: We use the pretrained UTMOS strong
learner following the official implementation!!.

F.3 Subjective Evaluation

We consider four different settings: regular, artic-
ulatory, code-switching, and cross-lingual. Each
setting is evaluated in two languages, resulting in
10 samples per language. This setup yields a total
of 80 pairs. These 80 pairs are evaluated across
5 different systems (ARS, F5-TTS, MaskGCT,
CosyVoice 2, and Ints), leading to a total of 400
pairs. We engage 20 participants in the evaluation
process, ensuring that each sample is assessed at
least three times.

We conduct subjective evaluations from three
perspectives: intelligibility (reading accuracy), nat-
uralness (N-CMOS), and speaker similarity (A/B

“https://huggingface.co/funasr/paraformer-zh

https://github.com/microsoft/UniSpeech/tree/main/
downstreams/speaker_verification

https://github.com/sarulab-speech/UTMOS22
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Step 1. Listen Audio Task ID #3
Speech A Speech B

T bada sl 7o e de i e Pz da s s e dz et e e
@ AR, ROHORRES
FREABNBEAIHALNEA,

BEHBWRAOME, B ® HER, BOOOMBERE

T EABNBTAI AL

BEHTHRROWE, 5B

D 00:00.00/00:12.76 D 00:00.00/00:12.76

Step 2. Assessment

a" Is any reading error? (insertion,

e . ints Speech A Has Error No Error
omission, or mispronunciation) P o o

Speech B O Has Error O No Error

b.* Which speech sounds more natural? A+2 A Tie B +1 B +2

Figure 3: User interface for intelligibility and natural-
ness evaluation.
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Step 2. Assessment

2. Which speech sounds more like the

As2 A4 T B4 B 42
reference speaker's style? * e * *+

Figure 4: User interface for speaker similarity evalua-
tion.

Testing). We have developed an automated subjec-
tive evaluation interface, as shown in Figure 3 and
Figure 4. For each item to be evaluated, users will
see three components: the System Interface, the
Questionnaire, and the Evaluation Criteria.

Intelligibility (Reading Accuracy):

* System Interface: Users listen to the speech
audio and compare it to the provided target text
to assess whether the speech matches the text.

* Questionnaire: Users are asked, “Is any reading
error? (insertion, omission, or mispronuncia-
tion)”

* Evaluation Criteria: The evaluation is binary:
“No Error” (the speech matches the text) or “Has
Error” (the speech does not match the text).

Naturalness (N-CMOS):

* System Interface: Users listen to two speech
samples, A and B, to compare their naturalness.

* Questionnaire: Users are asked, “Which speech
sounds more natural?”

* Evaluation Criteria: Options include A +2
(Sample A is much more natural), A +1 (Sample
A is slightly more natural), Tie (Both are equally
natural), B +1 (Sample B is slightly more natu-
ral), and B +2 (Sample B is much more natural).

Speaker Similarity (A/B Testing):

» System Interface: Users listen to two speech
samples, A and B, to evaluate their similarity to
the speech of the reference speaker.

* Questionnaire: Users are asked, “Which speech
sounds more like the reference speaker’s style?”

* Evaluation Criteria: Options include A +2
(Sample A is much more similar), A +1 (Sample
A is slightly more similar), Tie (Both are equally
similar), B +1 (Sample B is slightly more simi-
lar), and B +2 (Sample B is much more similar).
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