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Abstract

Chain-of-Thought (CoT) prompting has be-
come the de facto method to elicit reasoning ca-
pabilities from large language models (LLMs).
However, to mitigate hallucinations in CoT that
are notoriously difficult to detect, current meth-
ods such as process reward models (PRMs)
or self-consistency operate as opaque boxes
and do not provide checkable evidence for their
judgments, possibly limiting their effectiveness.
To address this issue, we draw inspiration from
the idea that “the gold standard for support-
ing a mathematical claim is to provide a proof”
(Avigad et al., 2021). We propose a retrospec-
tive, step-aware formal verification framework
Safe. Rather than assigning arbitrary scores,
we strive to articulate mathematical claims in
formal mathematical language Lean 4 at each
reasoning step and provide formal proofs to
identify hallucinations. We evaluate our frame-
work Safe across multiple language models and
various mathematical datasets, demonstrating a
significant performance improvement while of-
fering interpretable and verifiable evidence. We
also propose FormalStep as a benchmark for
step correctness theorem proving with 30, 809
formal statements. To the best of our knowl-
edge, our work represents the first endeavor to
utilize formal mathematical language Lean 4
for verifying natural language content gener-
ated by LLMs, aligning with the reason why
formal mathematical languages were created in
the first place: to provide a robust foundation
for hallucination-prone human-written proofs.

1 Introduction

The practice of guiding LLMs to generate ad-
ditional chain of thought during inference has
emerged as a paradigm for enhancing the reasoning
capabilities of these models (Wei et al., 2022; Ko-
jima et al., 2022; Yu et al., 2023; Xu et al., 2024b).

*Work done during the internship at Huawei Noah’s Ark
Lab. The code and dataset are available at https://github.
com/liuchengwucn/Safe.
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Figure 1: The distinction between prospective verifica-
tion and retrospective verification.

While it is feasible to generate them on a large
scale with manageable costs, verifying the absence
of hallucinations in these steps remains challenging.
The verification process is especially crucial in do-
mains such as mathematical reasoning (Ahn et al.,
2024; Xu et al., 2025), code generation (Zhuo et al.,
2024; Li et al., 2024), and many others (Wang et al.,
2023b; Rein et al., 2023), where even minor errors
can significantly disrupt subsequent generations
and the final outcome(Shen et al., 2021; Zelikman
et al., 2022). Consequently, verifying the accu-
racy of each individual step becomes crucial to the
overall performance.

To mitigate hallucinations, a prevalent strategy
involves employing a verification mechanism that
evaluates and assigns scores to the reasoning trajec-
tories generated by LLMs (Lightman et al., 2024;
Wang et al., 2024b; Xu et al., 2024a). This ap-
proach facilitates the selection of the most promis-
ing responses from a pool of candidates, commonly
referred to as Best-of-N (BoN) sampling (Shen
et al., 2021; Cobbe et al., 2021). Although effective,
these approaches perceive the LLM-based verifier
as an opaque box, thereby forfeiting the benefits
of symbolic computation and formal verification.
Consequently, they inherently lack interpretability
and do not provide guarantees of correctness.

In this study, we propose a formal verification
framework designed to enhance the strengths of
natural language reasoning, which is characterized
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by its abundant data and diverse reasoning forms
(Huang and Chang, 2023), with formal language
reasoning, known for its ability to verify correct-
ness and provide better interpretability (Pan et al.,
2023). During the inference phase of LLMs, we de-
compose complex mathematical reasoning trajecto-
ries, which are challenging to verify entirely, into a
series of simpler steps. For each step, we utilize an
LLM to automatically generate formal statements
that substantiate the correctness of that particu-
lar step, akin to the process of auto-formalization.
These formal statements necessitate only the evalu-
ation of single-step correctness, allowing them to
be effectively addressed by readily available auto-
mated theorem provers. By aggregating the formal
statements and proofs from each step as evidence,
we can evaluate the overall reasoning trajectory by
scoring its state sequences.

Note that our formal verifier focuses on the cor-
rectness of each step, which constitutes retrospec-
tive verification. In contrast, PRMs are typically
trained using a loss function that evaluates the like-
lihood of achieving a correct outcome in the future
(Hao et al., 2023; Wang et al., 2024b), a process
that can be perceived as prospective verification.
The distinction between these two approaches is il-
lustrated in Figure 1. Our proposed approach Safe,
integrates retrospective formal scores with those of
a prospective PRM, resulting in significant perfor-
mance improvement. This outcome highlights the
potential of combining formal reasoning and nat-
ural language reasoning, an approach commonly
referred to as the neuro-symbolic system (Besold
et al., 2021; Sarker et al., 2022).

In conclusion, we present the following three
main contributions: (1) We propose a novel auto-
formalization task, which aims to generate formal
statements that validate the correctness of one spe-
cific step instead of simply translating the prob-
lem. Our dataset comprising 30, 809 formal state-
ments, referred to as FormalStep, will be released
to facilitate auto-formalization and automated the-
orem proving in low compute settings. Our em-
pirical findings indicate that, despite these state-
ments being out of distribution, they can still be
effectively addressed by off-the-shelf automated
theorem provers, provided there is an adequate
computational budget. (2) We propose a step-level
formal verifier that outputs one of four distinct
states, depending on whether a given step can be
auto-formalized by an LLM and resolved by an
automated theorem prover, rather than providing

numerical scores for each step. To the best of our
knowledge, this is the first study utilizing formal
mathematics language Lean 4 to verify the correct-
ness of mathematical reasoning trajectories gener-
ated by LLMs. (3) We propose a formal verifica-
tion framework Safe that aggregates a sequence of
states generated by the formal step verifier. Further-
more, we demonstrate that the retrospective scores
generated by our formal verifier can be effectively
integrated with the prospective scores, resulting in
state-of-the-art performance.

2 Related Work

The rapid advancement of LLMs has catalyzed
transformative applications across diverse domains,
ranging from medical diagnostics to fundamen-
tal scientific discovery (Jumper et al., 2021, 2020;
Madani et al., 2023; Yang et al., 2024a; Feng et al.,
2024; Shao et al., 2024; Ying et al., 2024b). Par-
ticularly in the realm of mathematical reasoning,
which serves as a critical benchmark for evaluat-
ing artificial intelligence systems, researchers have
embarked on two distinct yet complementary re-
search trajectories. The first strand focuses on for-
mal mathematics, where scholars investigate how
LLMs can assist in constructing machine-verifiable
mathematical proofs through interactive theorem
provers like Lean and Coq (Polu and Sutskever,
2020; Wang et al., 2023a; Xin et al., 2024a,b). Con-
currently, a parallel research effort examines the
models’ capacity for solving mathematical word
problems expressed in natural language, aiming to
develop general-purpose systems capable of pars-
ing complex problem statements, generating step-
wise solutions, and providing rigorous mathemati-
cal justifications (Kojima et al., 2022; Shao et al.,
2024; Ying et al., 2024b). This bifurcation in re-
search directions reflects both the multifaceted na-
ture of mathematical intelligence and the evolving
capabilities of modern language models.

2.1 Automated Theorem Proving

The objective of automated theorem proving (ATP)
is to produce a formal proof process composed of
a sequence of tactics for statements articulated in a
formal language. This proof process is designed to
be automatically verifiable by a machine, thereby
ensuring its correctness. Pioneering work in this
field GPT-f is trained using the Metamath set.mm
dataset and employs a best-first search method to
iteratively generate formal theorem proofs (Polu
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Figure 2: The primary pipeline flowchart. Solutions for each mathematical problem, generated using the zero-shot
CoT Prompt, are decomposed into reasoning steps. Each step is evaluated by both a Formal Verifier and a process
reward model (PRM), which assesses the state or score of each step. Following this evaluation, the states or scores
are aggregated to yield retrospective and prospective scores. These two scores can subsequently be combined to
generate a final evaluation score.

and Sutskever, 2020). Subsequent research pri-
marily focuses on implementing improved search
strategies (Lample et al., 2022; Wang et al., 2023a),
leveraging the capabilities of formal theorem prov-
ing environments into the proving process (Yang
et al., 2023; Thakur et al., 2024; Polu et al., 2022),
and synthesizing new data to enhance the quality
of the training dataset (Han et al., 2022; Xin et al.,
2024a; Huang et al., 2024). The benchmarks for au-
tomated theorem proving include miniF2F(Zheng
et al., 2021), FIMO (Liu et al., 2023), TRIGO (Xiong
et al., 2023), among others.

Despite significant advancements in ATP
through the synthesis of new data via expert it-
eration and the enhancement of model exploration
within the solution space using complex tree search
techniques, solving complex mathematical prob-
lems remains a challenging and computationally in-
tensive task. For example, despite a sample budget
of 16× 6400, DeepSeek-Prover achieves a 60.2%
accuracy rate on the miniF2F benchmark (Zheng
et al., 2021), which includes formalized problems
from high school, competition, and undergradu-
ate mathematics. Additionally, it attains merely
a 3.4% accuracy on the FIMO dataset, which con-
sists of more challenging problems typical of the
International Mathematical Olympiad (Xin et al.,
2024b).

2.2 Auto-Formalization

ATP represents a particularly challenging task, pri-
marily due to the limited availability of formal
mathematical data (Wu et al., 2022). Moreover, the

costs associated with employing domain experts for
annotation are prohibitively high. To address this
issue, auto-formalization leverages the in-context
learning capabilities of LLMs to transform abun-
dant preexisting mathematical data into formal data
(Wu et al., 2022; Lu et al., 2024; Jiang et al., 2024).

Currently, existing efforts in auto-formalization
are focusing on natural language mathematical
datasets created by humans (Jiang et al., 2022;
Ying et al., 2024a), as these datasets are already
abundant and of high-quality (mathlib Community,
2019). These efforts primarily focus on the formal-
ization of mathematical statements rather than their
proofs.

2.3 Process Reward Models

In the fields of mathematical reasoning and code
generation, existing research suggests that process
reward models (PRMs) are more effective than
outcome reward models (ORMs) (Lightman et al.,
2024; Wang et al., 2024b). An ORM assesses the
overall performance of the whole output of LLMs,
while a PRM evaluates each individual step, pro-
viding more fine-grained feedback.

PRMs have two primary applications (Wang
et al., 2024b). First, they can be employed dur-
ing the post-training reinforcement learning phase,
where an LLM samples its outputs and learns from
trajectories that receive higher scores from a PRM,
thereby facilitating self-improvement (Shao et al.,
2024; Lai et al., 2024; Yan et al., 2024). Second,
PRMs can be used during the inference phase of
LLMs, allowing the model to sample multiple re-
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sponses and select the Best-of-N as the final output.
Numerous studies have shown that this approach
can enhance the performance of LLMs in reasoning
tasks (Havrilla et al., 2024; Setlur et al., 2024).

2.4 Neuro-symbolic AI
In the domains of formal language mathematical
reasoning and natural language mathematical rea-
soning, while these two approaches differ method-
ologically, they possess complementary and mu-
tually reinforcing capabilities that can collectively
advance the frontier of mathematical reasoning in
artificial intelligence. This line of research is of-
ten referred to as Neuro-symbolic AI, which inte-
grates the strengths of neural networks and sym-
bolic logic-based reasoning to develop more robust
and intelligent systems (Yang et al., 2024b).

Draft, Sketch and Prove represents a representa-
tive approach that employs natural language to aug-
ment formal language reasoning (Jiang et al., 2022).
This methodology primarily focuses on automated
theorem proving, where natural language serves
as supplementary guidance to enhance the success
rate of formal theorem provers. On the other hand,
LINC (Olausson et al., 2023) and Logic-LM (Pan
et al., 2023) represent prominent approaches that
leverage formal languages to enhance natural lan-
guage reasoning. These methods primarily em-
ploy automatic formalization to transform natural
language tasks into formal representations before
solving them through symbolic reasoning. Besides,
DTV employs Isabelle to formally verify the quan-
titative reasoning capabilities of LLMs (Zhou et al.,
2024).

3 Methodology

For any given mathematical problem P , we em-
ploy zero-shot chain-of-thought (CoT) prompting
to sample n output results from an LLM, denoted
as A1, A2, . . . , An. Each output Ai is decomposed
into a sequence of steps represented by:

Ai = concat(stepi1, stepi2, . . . , stepimi)

, where concat denotes the concatenation function,
and mi indicates the number of steps contained
within Ai. Each step undergoes formal validation
through a step verifier, resulting in a verification
state defined as:

stateij = step_verifier(stepij)

for i = 1, 2, . . . , n, j = 1, 2, . . . ,mi. The step
verifier integrates two modules: auto-formalization

and automated theorem proving. Verification of
these steps can be conducted concurrently to min-
imize end-to-end latency. We aggregate the ver-
ification states of each step using an aggrega-
tor to produce a retrospective scoreretro. Subse-
quently, we utilize an off-the-shelf PRM to obtain
a prospective scorepro, which is then integrated
into scoreretro to derive the final score. A diagram
for the overall reasoning model is presented in Fig-
ure 2. The following sections will elaborate on
the processes of sampling and decomposition, the
auto-formalization and theorem proving conducted
by the step verifier, and the details regarding the
score aggregator.

3.1 Sampling and Decomposition

We use the zero-shot CoT prompting technique to
sample n outputs, denoted as:

Ai ∼ LLM(P, cot_prompt) for i = 1, 2, . . . , n

where the prompt is expressed in its simplest form
as “Let’s think step by step” (Kojima et al., 2022).

To decompose the output Ai into discrete steps,
we have explored two approaches: heuristic rules
and LLM in-context learning (ICL) (Brown et al.,
2020). The details of the decomposition can be
found in Appendix C.

3.2 Step Verifier

The step verifier validates reasoning steps by for-
malizing natural language expressions into formal
statements that establish the mathematical sound-
ness of these steps. We employ readily available au-
tomated theorem provers to attempt to prove these
statements. Following the proof attempt, a verifica-
tion state is generated.

There are certain scenarios in which the auto-
formalization process is unnecessary or impractical,
which typically involve straightforward steps such
as chanting, repeating, and summarizing. Addition-
ally, some steps are sufficiently complex and fall
outside the typical scope of our formal mathemat-
ical language, Lean 4 (Moura and Ullrich, 2021).
While Lean 4 can effectively express relationships
relevant to number theory and algebra, it may face
limitations in articulating concepts related to geom-
etry and combinatorial mathematics.

Our step verifier can produce one of four pos-
sible states: 1) no verification required; 2) failed
formalization, which may result from either the lim-
itations of the Lean 4 language or the constraints
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of our auto-formalization pipeline; 3) successful
formalization accompanied by a proof of the state-
ment; and 4) successful formalization, but with a
failure in theorem proving. The following subsec-
tions will offer a detailed description of the two
essential components of our step verifier: auto-
formalization and automated theorem proving.

3.2.1 Auto-Formalization Module
Previous efforts in auto-formalization have primar-
ily focused on translating mathematical statements
articulated in natural language into their equivalent
formal mathematical statements (Wu et al., 2022).
In this study, we utilize auto-formalization in a
novel manner to verify the mathematical sound-
ness of each step. For instance, when the reasoning
LLM attempts to transform inequalities, we use the
inequality prior to the transformation as a premise
and the resulting inequality as the proof objective
for the Lean 4 statement. An illustrative exam-
ple of auto-formalization is presented in the left
half of Figure 3. Additional examples of our auto-
formalization can be found in Appendix F.

In accordance with the existing literature (Wu
et al., 2022; Liu et al., 2023), we leverage the capa-
bilities of LLMs in in-context learning to automate
the formalization process for our verifier. The gen-
erated formal statements are subsequently submit-
ted to the Lean read-eval-print-loop (REPL) envi-
ronment for validation, ensuring adherence to the
Lean 4 syntax. We manually curate a selection of
few-shot examples to guide the LLM in the process
of auto-formalization. Furthermore, we include in-
structions within the prompts to prompt the model
to recognize that certain steps do not require valida-
tion or may exceed the capabilities of Lean 4. The
complete prompt utilized in the auto-formalization
process is available in Appendix A.

3.2.2 Automated Theorem Proving Module
In this study, we utilize existing automated theo-
rem provers to generate proofs for formalized state-
ments, thereby providing evidence for the correct-
ness of the natural language steps involved. Specif-
ically, we examine the performance of two state-
of-the-art LLM-based automated theorem provers,
COPRA (Thakur et al., 2023) and DeepSeek-
Prover-V1.5 (Xin et al., 2024b).

As previously noted, the difficulty of formally
proving the validity statement of a single step is
intuitively lower than that of solving an entire prob-
lem. Consequently, while the formal statements

derived from individual natural language steps may
be out of distribution, they may nonetheless fall
within the capabilities of contemporary automated
theorem provers. Subsequent experiments demon-
strate that for the ATP task, sampling a limited
number of proofs can yield a success rate exceed-
ing 80%. The right half of Figure 3 provides an
example.

3.3 State Aggregator
Auto-formalization pipelines and automated theo-
rem provers are fallible, leading to proof failures
that can arise from two extra sources: (1) the auto-
formalization pipeline may produce a plausible but
erroneous and consequently unprovable statement
despite the step being correct; or (2) while the state-
ment may be accurate and provable, the automated
theorem prover may not be able to complete the
proof within a constrained sample budget. As a
result, the four states provided by the step verifier
are inherently susceptible to noise. To mitigate the
effects of noise, we aggregate all the states at each
step to compute one final score.

To perform the score prediction task, we utilize
a tiny LSTM model (Hochreiter, 1997), with a to-
ken vocabulary size of 4. Our choice of LSTM is
motivated by its simplicity and effectiveness for
this specific task. Since the step verifier outputs a
sequence of four discrete states (treated as tokens),
an LSTM provides an intuitive yet efficient way to
model this sequential evidence. The latent variable
from the final step undergoes a linear transforma-
tion, followed by the application of the sigmoid
function to yield a score within the range of 0 to 1.

scoreiretro = σ(W · LSTM(statei1, statei2,

. . . , stateij) + b)

Note that the information derived from formal veri-
fication is highly condensed and retrospective, as
each state conveys only two bits of information.
This contrasts with the prospective scores of LLM-
based PRM, which uses complete reasoning steps
in natural language as input to predict a Q-value,
indicating whether these steps can potentially lead
to the correct answer (Wang et al., 2024b).

scoreipro = PRM(stepi1, stepi2, . . . , stepij)

Recognizing the complementarity between the two
scores, we further combine the retrospective score
from the state aggregator with the prospective score
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Figure 3: The pipeline of the step verifier. We construct a prompt that incorporates the relevant question and
context, then utilize the in-context learning capability of large language models to perform auto-formalization. The
formalized Lean 4 theorem is then validated using the Lean REPL. Once the auto-formalization is successful, we
attempt to prove the theorem using an LLM-based prover, followed by verification through the Lean REPL. Upon
completion of the entire procedure, each step corresponds to one of four distinct states.

from an existing PRM to generate an ensemble
score. We experimented with several methods for
calculating ensemble scores, the detailed discus-
sion of which can be found in Appendix D.

scorei = scoreiretro
α · scoreipro

(1−α)

A∗ = Ai∗ , where i∗ ∈ argmax
i

scorei

where α is a hyper-parameter.

4 Experiment

4.1 Experimental Setup
Datasets and LLMs We evaluate BoN@5 accu-
racy on the GSM8K (Cobbe et al., 2021), MATH-500
(Hendrycks et al., 2021; Lightman et al., 2024), and
CollegeMath (Tang et al., 2024) datasets, which
encompass grade school, high school, and college-
level mathematics. Our experiments includes four
language models: Llama-3-8B-Instruct (Dubey
et al., 2024), Llama-3.1-8B-Instruct (Dubey et al.,
2024), gpt-4o-2024-08-06 (Hurst et al., 2024), and
deepseek-math-7b-instruct (Shao et al., 2024). This
selection represents a range of models from dif-
ferent model families and varying capacities. We
utilized GPT-4o as the LLM to perform the auto-
formalization process.

Baselines and Metrics We evaluate the perfor-
mance in comparison to the zero-shot CoT method
and the self-consistency majority voting strategy,
as well as other reward models. We choose reward
models as baselines which possess a parameter
size comparable to that of our automated theorem
prover, the DeepSeek-Prover-V1.5 with 7B param-
eters. The baseline models include both ORMs
and PRMs. We incorporate the current SOTA rea-
soning ORMs in RewardBench (Lambert et al.,
2024), featuring Skywork-Reward-Llama-3.1-8B-
v0.2 (Liu et al., 2024) and ArmoRM-Llama3-8B-
v0.1 (Wang et al., 2024a) as representative exam-
ples. Regarding PRMs, existing works are primar-
ily domain-specific. Thus we include two recent
PRMs that concentrate on mathematical reason-
ing, namely math-shepherd-mistral-7b-prm (Wang
et al., 2024b) and RLHFlow/Llama3.1-8B-PRM-
Deepseek-Data (Xiong et al., 2024), as the repre-
sentative models.

State Aggregator Data Collection We randomly
select a subset of the training dataset that has ap-
proximately the same size as the test dataset to train
the LSTM model. Specifically, the selection com-
prise 500 problems from the MATH dataset, 1, 000
problems from the GSM8K dataset, and the entire
training set from the CollegeMath dataset. We
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Llama 3.1 Llama 3.0 GPT-4o Deepseek-Math

MATH G8K CM MATH G8K CM MATH G8K CM MATH G8K CM

ZS-CoT@1 49.1 85.4 52.6 26.1 79.9 31.3 76.9 95.0 73.4 40.8 80.1 48.4
Majority@5 50.5 87.8 54.3 24.8 80.7 29.6 78.9 95.7 73.9 39.3 81.7 48.7

Skywork (ORM) 48.9 90.2 53.2 30.5 76.0 36.6 76.7 88.6 73.1 43.6 76.8 50.7
ArmoRM (ORM) 55.1 90.0 57.1 32.3 86.1 37.3 79.3 95.5 74.7 48.6 86.6 53.5
Shepherd (PRM) 58.1 90.2 58.3 34.7 86.4 40.4 79.8 95.8 73.5 49.7 87.1 55.0
RLHFlow (PRM) 51.7 89.9 53.6 29.6 86.2 36.5 78.7 95.3 74.2 44.4 86.3 50.9

LSTM (Ours) 55.1 88.7 55.9 33.0 84.3 36.6 78.9 95.5 73.8 48.2 83.3 51.1
Safe (Ours) 60.0 90.8 59.0 36.3 87.4 43.4 80.4 96.0 74.2 52.4 87.6 55.4

Pass@5 70.8 95.5 72.3 48.9 92.5 52.9 87.8 97.0 81.5 62.6 92.1 67.1

Table 1: The experimental results of various models on the MATH-500, GSM8K and CollegeMath datasets are
presented, denoted as MATH, G8K and CM, respectively. LSTM and Safe denote our proposed methodologies.
Pass@5 indicates the probability of correct for at least one of the five samples, representing the performance
upperbound across all Best-of-N strategies.

query the reasoning LLM to answer these prob-
lems and the outputs are compared with the ground
truth to assess the accuracy of the generated reason-
ing trajectories. The sampled reasoning trajectories
are subsequently utilized to train the LSTM model.
State Aggregator Training Setup The LSTM
model utilized in this study features a tiny num-
ber of parameters, comprising two layers and a
hidden size of 64. The model was trained with a
batch size of 32 and a learning rate of 0.0001 over
the course of 200 epochs.

4.2 Results

The experimental results are presented in Table 1.
We find that: (1) Despite the high parameter effi-
ciency of our LSTM model and its minimal training
data requirements, its performance is comparable
to that of other SOTA ORMs and PRMs. (2) Our
Safe framework, which integrates LSTM with a
PRM, consistently outperforms almost every other
baseline model across all datasets and reasoning
models. (3) Our approach demonstrates significant
improvements on two more challenging datasets,
namely MATH-500 and CollegeMath. We attribute
the mediocre improvement on the GSM8K dataset to
the low difficulty level of the dataset, which has
resulted in data imbalance; a detailed discussion of
this issue is provided in the following section.

5 Discussion

5.1 Theorem Proving Strategy

For each reasoning trajectory, we need to formalize
and validate each step. As a result, the quantity of
theorems that require proving is quite significant.
As such, it is imperative to strike a balance between

the success rate of theorem proving and the com-
putational overhead involved. Current endeavors
in automated theorem proving typically address
comprehensive mathematical problems, often em-
ploying tree search strategies and substantial search
budgets.

Although employing a large search budget with
thousands of searches can significantly increase
the success rate of proving theorems for com-
plete mathematical problems, the high computa-
tional cost of searching renders such approaches
impractical for stepwise validation. Therefore,
we employed a computationally efficient setting
by opting not to use the complex Monte Carlo
tree search (MCTS) strategy employed by the
DeepSeek-Prover-V1.5 (Xin et al., 2024b). We
found that DeepSeek-Prover-V1.5 with a sample
budget of 16 is sufficient to prove over 80% of the
statements in FormalStepdescribed below. There-
fore, we adopted DeepSeek-Prover-V1.5 with a
sample budget of 16 but without MCTS as the
default theorem-proving strategy for other exper-
iments. For additional evaluation on FormalStep,
please refer to Appendix H.

5.2 The FormalStep Dataset

Construction of FormalStep We randomly sam-
pled 500 problems from the training part of MATH
dataset and employed Llama3.1 as the reason-
ing model to generate reasoning trajectories, sub-
sequently passing these trajectories to the auto-
formalization pipeline. The 30, 809 theorems gen-
erated from this auto-formalization process were
designated as a benchmark for “step correctness
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Geo Num Alg Comb Oth Total

Frequency 873 11515 5525 9414 3482 30809
S Length 147.5 79.5 107.8 125.0 112.8 104.2
P Length 51.1 36.4 39.8 49.8 25.5 41.0

Proof Rate 72.3 82.1 81.7 81.4 79.1 81.2

Table 2: Statistical information of the FormalStep
dataset, including category distributions, statement
lengths, proof lengths and proof rates. The abbrevi-
ations Geo, Num, Alg, Comb, Oth refer to Geometry,
Number Theory, Algebra, Combinatorics, Others, re-
spectively.

theorem proving”, denoted as FormalStep1.
Following common mathematical competition

classification methods (Zheng et al., 2021), we cat-
egorized the Lean 4 statements into four types: ge-
ometry, number theory, algebra, and combinatorics.
We employed the LLM-as-a-judge approach using
the GPT-4o-mini model to classify the FormalStep
dataset. The statistics in Table 2 reveal that while
previous automated theorem proving works in Lean
(e.g., miniF2F (Zheng et al., 2021), FIMO (Liu
et al., 2023)) primarily focused on Number The-
ory and Algebra problems, our dataset contains a
substantial proportion of Combinatorics statements
and a smaller but notable portion of Geometry prob-
lems. Notably, Geometry and Combinatorics state-
ments exhibit significantly longer statement lengths
and proof lengths, highlighting the inherent chal-
lenges in these categories.

5.3 Auto-Formalization of Single Steps

Our experiment indicates that the statement gen-
erated by the auto-formalization process can en-
compass not only numerical computations and
solving systems of equations — tasks that can be
easily tackled by general-purpose programming
languages such as Python — but also verify spe-
cific mathematical properties that are frequently
overlooked by general-purpose programming lan-
guages.

These mathematical properties include whether a
specific condition is sufficient or necessary, or prop-
erties like “an integer is divisible by three if and
only if the sum of its digits is divisible by three”.
This highlights the advantages of employing formal
verification, as utilizing a domain-specific language
like Lean facilitates a more efficient expression
of mathematical concepts. Additional examples
of auto-formalization are provided in Appendix F.

1Since these theorems were obtained through auto-
formalization, they may not necessarily be provable.

For additional quality evaluations regarding auto-
formalization, please refer to Appendix G.

5.4 Train & Inference Cost
In our analysis, we find that our method demon-
strates high data efficiency. About 2, 000 reasoning
trajectories sampled from 500 questions, are gen-
erally sufficient to train an effective LSTM aggre-
gator, which is significantly less than the PRM800K
dataset, which contains approximately 800k step-
level labels across 75k solutions (Lightman et al.,
2024), as well as the Math-Shepherd datasets,
which comprise over 445k reasoning strategies
(Wang et al., 2024b), which highlights the data
efficiency of our proposed methodology. We hy-
pothesize that this discrepancy arises because the
LSTM aggregator focuses on pattern recognition
tasks centered on state sequences rather than di-
rectly processing natural language. We also find
that training an effective LSTM becomes challeng-
ing when there is a disproportionate ratio of correct
to incorrect samples within the reasoning trajec-
tories. For instance, the four tested models are
approaching saturation in the GSM8K dataset, result-
ing in a minimal presence of incorrect samples in
the training set. Consequently, the LSTM model
struggled to learn the patterns of incorrect examples
effectively, which may account for the relatively
modest performance improvements observed with
our approach on the GSM8K dataset.

Regarding inference costs, we recognize that
our methodology requires more computational re-
sources. Specifically, each inference step entails a
maximum of 3 auto-formalization attempts and up
to 16 theorem proving attempts, with each attempt
necessitating a query to an LLM. During the cura-
tion of FormalStep, our analysis revealed that, on
average, approximately 1.02 automated formaliza-
tion attempts and 6.97 automated theorem proving
attempts are conducted. If we reduce the maximum
number of ATP attempts from 16 to 8 — while still
achieving a proof success rate exceeding 80% —
the average number of theorem proving attempts
can be further decreased to 2.67. This suggests that
the LLM queries of our single-step validation is
approximately 4–8x greater than that of PRMs.

We increase the sample count for other RMs
to compare two scaling strategies: increasing the
sample count with a weaker RM or increasing com-
putational resources to verify each sample. The
results presented in Figure 4 indicate that the scal-
ing patterns during the testing phase vary among
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Figure 4: Scaling Best-of-N with Math-Shephed PRM and ArmoRM ORM. The red dashed line indicates the
accuracy of Safe using Best-of-N@5, while the plot demonstrates the variations in the accruacy of the selection of
Best-of-N as N increases when utilizing the ORM or the PRM.

MATH-500 Acc L 3.1 L 3.0 GPT-4o DSM

Skywork (ORM1) 48.9 30.5 76.7 43.6
ArmoRM (ORM2) 55.1 32.3 79.3 48.6
Shepherd (PRM1) 58.1 34.7 79.8 49.7
RLHFlow (PRM2) 51.7 29.6 78.7 44.4

ORM1 ⊕ PRM1 58.6 35.2 79.6 49.7
ORM1 ⊕ PRM2 55.9 34.1 79.3 47.6
ORM2 ⊕ PRM1 59.6 35.6 79.8 50.1
ORM2 ⊕ PRM2 57.1 33.8 79.8 48.2

LSTM (Ours) 55.1 33.0 78.9 48.2
Safe (Ours) 60.0 36.3 80.4 52.4

Table 3: An ablation analysis that combines various
ORMs and PRMs. The accuracy is assessed using the
BoN@5 metric. The abbreviations L 3.1, L 3.0, GPT-4o,
and DSM refer to Llama 3.1, Llama 3.0, GPT-4o, and
Deepseek-Math model, respectively.

different LLMs. For stronger models such as GPT-
4o and Llama 3.1, it is advantageous to allocate
additional computational resources during the veri-
fication process to achieve enhanced performance.
Conversely, for less powerful models like Llama
3.0, the quality of the sampled reasoning trajecto-
ries is subpar. Therefore, increasing the sample
count with a weaker yet more cost-effective RM
may remain an effective strategy for these models.

5.5 Synergistic Effect between PRM and
Formal Step Verifier

Our main experiment indicates a synergistic ef-
fect between the PRM and our formal step veri-
fier. This observation prompts us to explore the
potential existence of a similar synergistic effect
between PRMs and ORMs. We employed a similar
strategy to integrate the PRM and the ORM. The
integration method employed aligns with our Safe
approach, wherein both models independently eval-
uate the same reasoning trajectory. Following this
evaluation, a coefficient is applied to combine the
scores, resulting in a comprehensive assessment

of the reasoning trajectory. We employ the same
metric, Best-of-N@5, to assess performance.

The results of the ablation experiments are pre-
sented in the Table 3. The results indicate that
PRMs and ORMs do benefit from model ensem-
bling; however, the improvement is not as sub-
stantial as that achieved by Safe. Although the
performance of our LSTM is comparable to that
of an ORM, Safe consistently outperforms ensem-
ble models of all evaluated combinations, notably
achieving a 2.3% (50.1% → 52.4%) increase in the
performance of DeepSeek-Math model. We posit
that the synergistic effect between the PRM and
our formal step verifier is grounded in the comple-
mentarity of prospective and retrospective, as well
as formal and informal, verification methods.

6 Conclusion

In this paper, we introduce a retrospective step-
aware formal mathematical verification framework,
termed Safe, which utilizes auto-formalization and
automated theorem proving to assign one of four
distinct states to each step within the reasoning tra-
jectory of LLMs when addressing mathematical
problems. To the best of our knowledge, this is the
first approach to employ formal mathematical lan-
guage Lean 4 for validating the correctness of LLM
generated mathematical reasoning expressed in nat-
ural language. The formal mathematical proofs
offer interpretable evidence for the correctness of
natural-language reasoning steps. A benchmark
consisting of 30, 809 formal statements, referred to
as FormalStep, will be released to facilitate auto-
formalization and automated theorem proving in
low-compute environments. Extensive experiments
conducted across various LLMs and mathematical
datasets illustrate the effectiveness of our methods
and highlight the potential role of formal mathe-
matical language in enhancing LLM reasoning.
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Limitations

The correlation between the output of the Lean 4
REPL and the final evaluation scores appears to be
relatively indirect. Furthermore, the scoring mech-
anism based on LSTM neural network parameters
still lacks perfect interpretability. While verifica-
tion is conducted at a stepwise level, our method
does not provide a precise reward score for each
step due to the noise introduced by the current lim-
itations of both auto-formalization and automated
theorem proving. To address this challenge, we pro-
pose identifying critical proof steps by examining
the correlation between intermediate verification
states and the final outcome through systematic
analysis of the compact LSTM architecture’s pa-
rameters and decision mechanisms.

Theoretically, our proposed Safe is capable of
fulfilling dual roles: it can function as a verifier
during the testing phase and as a reward model dur-
ing the reinforcement training process. However,
the increased computational overhead may present
frictions for the direct application of the current
method in reinforcement learning scenarios. More-
over, as shown in Figure 4, in some instances, when
verification costs are similar, the performance gains
may not be significant. Therefore, we identify the
following two points as areas for future work: to
alleviate the computational resource demands of
the existing method, and to integrate formal lan-
guage verification into the reinforcement learning
pipeline.
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A Prompt for Auto-Formalization

The following prompt is utilized to instruct an
LLM in the task of auto-formalization. It con-
sists of four components: a task description, de-
tailed instructions, a comparison of key differences
between Lean 3 and Lean 4, and a selection of
manually curated few-shot examples. The steps
included in the few-shot examples are derived from
PRM800K dataset. We observed that during auto-
formalization, LLMs may conflate the syntactical
elements of Lean 3 with those of Lean 4. To ad-
dress this issue, we revised the prompts by incorpo-
rating key syntactical distinctions between Lean 3
and Lean 4, thereby guiding the model to generate
outputs that are consistent with Lean 4.
Given a question and the steps to answer it, you need to determine

whether the final step of the answer may involve a hallucination
that requires theorem proving in Lean 4.

∗ If the step is simple and intuitive, and you are confident that it
does not need verification, please answer False.

∗ However, you need to verify ∗∗ ALL NUMERICAL ∗∗ operations, no
matter how simple or intuitive they may seem.

∗ If the step has a certain leap that is not very intuitive and may
involve a hallucination, please provide a Lean theorem that can
verify the step.

∗ This Lean 4 theorem should support the step; if the Lean 4 theorem
can be proven, then the step is correct and does not involve a
hallucination.

∗ Ensure that the Lean theorems you provide ∗∗ CONFORM ∗∗ to the
syntax of Lean 4, and ∗∗ AVOID USING NATURAL LANGUAGE ∗∗ to
describe properties.

∗ Do ∗∗ NOT ∗∗ provide a proof method for the theorem; you can use
"sorry" as a placeholder.

∗ Output the formalized theorem of the final step or False, and do ∗∗
NOT ∗∗ output any other content or predict next step.

∗ Note that each step is derived from the previous ones, so the theorem
may require referencing information from the question or earlier
steps.

Note that Lean 4 is not backward compatible with Lean 3.
∗ Type constants are now in UpperCamelCase, for example, ‵Nat‵ and ‵

List‵. Many variables in Mathlib have also changed to
UpperCamelCase, such as ‵fintype‵ becoming ‵Fintype‵.

∗ Lambda expressions now use ‵=>‵ as the separator. For example, ‵fun x
=> x‵ is the identity function, instead of ‵λ x, x‵.

### Question:
Let \[f(x) = \left\{
\begin{array}{cl} ax+3, &\text{ if }x>2, \\
x-5 &\text{ if } -2 \le x \le 2, \\
2x-b &\text{ if } x <-2.
\end{array}
\right.\]
Find $a+b$ if the piecewise function is continuous (which means that its

graph can be drawn without lifting your pencil from the paper).

### Step to be verified:
For the piecewise function to be continuous, the cases must "meet" at $

2$ and $-2$.
### Lean:
False

### Step to be verified:
For example, $ax+3$ and $x-5$ must be equal when $x=2$.
This implies $a(2)+3=2-5$, which we solve to get $2a=-6 \Rightarrow

a=-3$.
### Lean:‵‵‵lean
theorem test
(a x: R)
(h0: a ∗ x + 3 = x - 5)
(h1: x = 3):
(a = (-3)) := by sorry‵‵‵

. . . (More steps have been omitted.)

### Question
<question>

### Steps that do not require verification:
<answer>
### Step to be verified:
<step>
### Lean:

B Prompt for LLM-as-a-Judge
Evaluation

The following prompt is utilized to instruct an LLM
to evaluate the semantic alignment between the rea-
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soning step and the auto-formalized Lean 4 state-
ment.
Given a mathematical problem, its step-by-step reasoning chain, and a

Lean 4 statement, you need to verify whether the Lean 4 statement
corresponds to the final reasoning step.

If they are properly aligned, then proving the Lean 4 statement
mathematically validates the correctness of the final step.

If they ’dont match, the Lean 4 statement is irrelevant to the final
’steps correctness.

The three categories are ["good", "fair", "poor"].
Do ∗∗ NOT ∗∗ respond with any other characters.

### Problem:
<problem>

### Chain-of-thoughts:
<cot>

### Step to Verify:
<step>

### Lean 4 Statement:
<statement>

Which category does this statement fall into? Please respond with one of
["good", "fair", "poor"].

The following prompt is employed to instruct an
LLM to classify Lean statements into one of four
predefined categories.
Given a Lean 4 theorem, you need to identify its category.
The five categories are ["geometry", "number theory", "algebra",

"combinatorics", "others"].
∗ Do ∗∗ NOT ∗∗ respond with any other characters.

Theorem:
<statement>

To which category does this theorem belong?
Your answer should be one of ["geometry", "number theory", "algebra",

"combinatorics", "others"].

C Decomposition Specifications

Heuristic Rules In this approach, we utilize pe-
riods or line breaks as delimiters to partition the
reasoning process into independent steps. However,
we have observed that this simplistic rule may re-
sult in excessively fragmented steps and may also
lead to erroneous decomposition. For instance, a
period could serve as a decimal point rather than a
separator between sentences.
LLM In-Context Learning This approach in-
volves utilizing an LLM to decompose the reason-
ing process into distinct, independent steps. We ran-
domly select accurate reasoning processes from the
PRM800K training set, which consists of manually
annotated stepwise data, and utilize the stepwise
partitioning method derived from these responses
as few-shot examples. The model is directed to pro-
duce a JSON-formatted array with each element
representing a string that corresponds to an inde-
pendent step. Below are the step decomposition
few-shot prompts.
Given a solution to a problem , you need to break down the

solution into individual logical steps.
You have to answer the question in JSON format.
The answer must be an Array , where each element is a string

representing a logically independent step.
You can only split the answer simply , and you cannot make

any modifications to the answer , even if the answer is
incorrect.

You must include the complete solution without any missing
steps.

Here are some examples.

### Solution:

I want to find the smallest positive integer $X$ that
satisfies the given conditions. I know that any
multiple of 3 has the form $3k$ for some integer $k$ ,
so $X$ has the form $3k + 2$. I also know that any
multiple of 5 has the form $5n$ for some integer $n$ ,
so the number with the same units digit as $X$ has the
form $5n + 4$. Since the units digits of $X$ and $5n +
4$ are the same , I can equate them and get $3k + 2 \
equiv 5n + 4 \pmod {10}$. This means that the difference
between $3k + 2$ and $5n + 4$ is a multiple of 10. I

can simplify this difference by subtracting 4 from both
sides and get $3k - 2 \equiv 5n \pmod {10}$. Now I need
to find the smallest values of $k$ and $n$ that make

this equation true. I can try some values of $k$ and
see what they imply for $n$. If $k = 0$, then $3k - 2 =
-2$ and $5n = -2 + 10m$ for some integer $m$. This

implies that $n = -0.4 + 2m$ , which is not an integer.
So $k = 0$ does not work. If $k = 1$, then $3k - 2 = 1$
and $5n = 1 + 10m$ for some integer $m$. This implies

that $n = 0.2 + 2m$, which is also not an integer. So
$k = 1$ does not work either. If $k = 2$, then $3k - 2
= 4$ and $5n = 4 + 10m$ for some integer $m$. This
implies that $n = 0.8 + 2m$, which is again not an
integer. So $k = 2$ does not work as well. If $k = 3$,
then $3k - 2 = 7$ and $5n = 7 + 10m$ for some integer
$m$. This implies that $n = 1.4 + 2m$, which is not an
integer. So $k = 3$ does not work. If $k = 4$, then $3k
- 2 = 10$ and $5n = 10 + 10m$ for some integer $m$.

This implies that $n = 2 + 2m$, which is an integer. So
$k = 4$ works. This means that the smallest value of

$X$ is $3k + 2 = 3 \cdot 4 + 2 = 14$.
### Steps:
```json
[

"I want to find the smallest positive integer $X$ that
satisfies the given conditions .",

"I know that any multiple of 3 has the form $3k$ for
some integer $k$ , so $X$ has the form $3k + 2$.",

"I also know that any multiple of 5 has the form $5n$
for some integer $n$ , so the number with the same
units digit as $X$ has the form $5n + 4$.",

"Since the units digits of $X$ and $5n + 4$ are the same
, I can equate them and get $3k + 2 \\equiv 5n + 4
\\pmod {10}$.",

"This means that the difference between $3k + 2$ and $5n
+ 4$ is a multiple of 10.",

"I can simplify this difference by subtracting 4 from
both sides and get $3k - 2 \\equiv 5n \\pmod {10}$
.",

"Now I need to find the smallest values of $k$ and $n$
that make this equation true.",

"I can try some values of $k$ and see what they imply
for $n$.",

"If $k = 0$, then $3k - 2 = -2$ and $5n = -2 + 10m$ for
some integer $m$.",

"This implies that $n = -0.4 + 2m$, which is not an
integer.",

"So $k = 0$ does not work.",
"If $k = 1$, then $3k - 2 = 1$ and $5n = 1 + 10m$ for

some integer $m$.",
"This implies that $n = 0.2 + 2m$, which is also not an

integer.",
"So $k = 1$ does not work either.",
"If $k = 2$, then $3k - 2 = 4$ and $5n = 4 + 10m$ for

some integer $m$.",
"This implies that $n = 0.8 + 2m$, which is again not an

integer.",
"So $k = 2$ does not work as well.",
"If $k = 3$, then $3k - 2 = 7$ and $5n = 7 + 10m$ for

some integer $m$.",
"This implies that $n = 1.4 + 2m$, which is not an

integer.",
"So $k = 3$ does not work.",
"If $k = 4$, then $3k - 2 = 10$ and $5n = 10 + 10m$ for

some integer $m$.",
"This implies that $n = 2 + 2m$, which is an integer.",
"So $k = 4$ works.",
"This means that the smallest value of $X$ is $3k + 2 =

3 \\cdot 4 + 2 = 14$."
]
```

... (More examples have been omitted .)

### Solution:
<solution >
### Steps:

We prioritize the LLM in-context learning set-
ting; if the JSON output is not parsable, we revert
to the heuristic rules-based approach as a fallback.
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MATH BoN@5

LSTM only 55.1
PRM only 55.2

Weighted Sum 59.6
Weighted Mul (Safe) 60.0
Min 57.0
Max 58.2

Table 4: The ablation study results comparing score
ensembling strategies on Llama3.1 (MATH-500).

D Score Ensembling Strategies

The design of weighted multiplication was inten-
tionally kept simple and intuitive while proving ef-
fective in practice. The key motivation is that when
either the PRM score or LSTM verification score
approaches 0 (indicating likely errors), the com-
bined score should similarly reflect low confidence.
During development, we empirically evaluated four
ensemble variants:

• Weighted summation
• Weighted multiplication (our final choice)
• Max selection
• Min selection

The ablation results in Table 4 show that
weighted multiplication achieved the best perfor-
mance. This aligns with our design principle
that strong negative signals from either component
should significantly impact the final score.

E Analysis of State Distributions

Each step has one of four potential states that in-
dicate whether the particular step of the reasoning
trajectory contain flaws. Ideally, each step within
a correct reasoning trajectory should correspond
to either the state of “Proof Successful” or “No
Verification Required”, and a step classified under
the state of “Proof Failed” signifies that this step
has inherent flaws. However, due to the noise intro-
duced during the processes of auto-formalization
and automated theorem proving, this is not true for
all reasoning trajectories.

During the curation of FormalStep, we analyzed
the distribution of states produced by our pipeline
across these trajectories. The statistical results are
presented in Figure 5. Notably, the most com-
mon state identified is “Proof Successful”, sug-
gesting that the majority of the steps can be auto-
formalized into valid Lean statements and be tack-
led by automated theorem provers.
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Figure 5: The distribution of steps by state and their
correctness. Out of a total of 43, 652 steps, 30, 809
steps (72.2%) were auto-formalized into valid Lean 4
statements. Among these, 25, 017 statements (81.2%)
were successfully proven by DeepSeek-Prover-V1.5.

We can observe that the likelihood of ultimately
arriving at the correct answer for steps classified
as “Proof Successful” is relatively high, at 56.7%.
In contrast, the correctness for steps categorized
under the “Proof Failed” state is significantly lower,
at 40.4%. However, the noise introduced during
the processes of auto-formalization and automated
theorem proving complicates the direct assessment
of the overall correctness of reasoning trajectories.

F Extra Examples of Auto-Formalization

The following example validates a theorem: an
integer whose sum of digits is divisible by three
can be inferred to be divisible by three itself.
### Problem:
Let $N$ be the units digit of the number $

21420N$. Which nonzero value of $N$ makes
this number divisible by $6$?

### Reasoning Step by an LLM:
Divisibility by 3: A number is divisible by 3

if the sum of its digits is divisible by 3.

### Formal Statement & Proof:
theorem divisible_by_3
(n N : N)
(h0 : n = 2 + 1 + 4 + 2 + 0 + N)
(h1 : n % 3 = 0):
(21420 + N) % 3 = 0 := by
rw [h0] at h1
simp_all [Nat.add_mod, Nat.mul_mod,

Nat.mod_mod]
<;> aesop

The following example is intended to demon-
strate the sufficient and necessary conditions be-
tween equations. This mathematical property may
be challenging to articulate within the framework
of general-purpose programming languages.

12185



### Problem:
What real values of $x$ are not in the domain of

$f(x)=\frac{1}{|x^2+3x-4|+|x^2+9x+20|}$?

### Reasoning Step by an LLM:
This means that the denominator will be equal

to zero if and only if $x+4=0$, regardless
of the values of $x-1$ and $x+5$.

### Formal Statement & Proof:
theorem test

(x: R):
(|x + 4| ∗ |x - 1| + |x + 4| ∗ |x + 5| = 0) ↔

(x + 4 = 0) := by
constructor
intro h
cases′ le_total 0 (x + 4) with h0 h0 <;>
cases′ le_total 0 (x - 1) with h1 h1 <;>
cases′ le_total 0 (x + 5) with h2 h2 <;>

simp_all only [abs_of_nonneg,
abs_of_nonpos, add_left_neg, add_right_neg,

add_zero, zero_add, mul_zero,
zero_mul, mul_one, mul_neg, neg_mul,
neg_neg,

mul_right_comm, mul_left_comm] <;>
nlinarith

intro h
rw [h]
simp

The following example illustrates that the Lean
4 language is capable of performing some tasks
typically associated with general-purpose program-
ming languages, such as numerical computation.

### Problem:
A shirt′s sale price is marked $\$14.40$, which

is $60\%$ off the original price. How many
dollars was the original price of the shirt?

### Reasoning Step by an LLM:
So, the original price of the shirt was $36.

### Formal Statement & Proof:
theorem test

(sale_price original_price: R)
(h0: sale_price = 14.40)
(h1: sale_price = 0.4 ∗ original_price):
(original_price = 36) := by
rw [h0] at h1
ring_nf at h1
linarith

G Additional Quality Evaluation
Regarding Auto-formalization

Regarding accuracy (here defined as whether the
auto-formalized statements comply with the Lean 4
syntax (Ying et al., 2024a)), 72.2% (30, 809 out
of 43, 652) of steps were successfully formalized
into Lean 4-compliant statements when construct-
ing the FormalStep. Concerning consistency (here
defined as semantic alignment between success-
fully formalized statements and original natural
language statements (Ying et al., 2024a)), we em-
ployed GPT-4o-mini to evaluate our FormalStep
using an LLM-as-a-Judge approach. The complete
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Figure 6: The proof rates of two SOTA theorem provers
on FormalStep. The numbers indicate the total quantity
of statements that have been successfully proved. Note
that COPRA is significantly more resource-intensive
due to its reliance on GPT-4o; therefore, it is tested on
a randomly selected subset of 500 statements, while
DeepSeek-Prover-V1.5 is evaluated on full FormalStep,
comprising a total of 30, 809 statements.

prompt utilized in the LLM-as-a-Judge evalution
process is available in Appendix B.

Good Fair Poor Total

24,938 (80.9%) 138 (0.4%) 5733 (18.6%) 30,809

Table 5: The evaluation results of semantic alignment
on the FormalStep using the LLM-as-a-Judge method.

The results in Table 5 show 80.9% of formalized
theorems maintain good semantic alignment, which
aligns with both recent work 2 (72% for FormL4
(Lu et al., 2024) and 93.5% for Lean Workbook
(Ying et al., 2024a)) and our manual observations
during the design phase. We use an LSTM ag-
gregator rather than rejecting all unprovable steps
outright, therefore our method should be robust to
imperfect consistency.

H Additional Evaluation of FormalStep

We conducted experiments with DeepSeek-Prover-
V1.5 and COPRA combined with GPT-4o under
varying sample budgets, and the results are il-
lustrated in Figure 6. Our results indicate that
both provers are capable of effectively address-
ing the ATP task of proving single-step statements
when provided with a substantial computational
budget. DeepSeek-Prover-V1.5 exhibits a signif-
icantly greater performance advantage over the
agent-based COPRA in low-compute scenarios.

2Note that these recent studies report results for conven-
tional auto-formalization tasks (i.e., translating problem state-
ments), thus precluding direct comparison with our novel auto-
formalization approach (i.e., translating individual solution
steps).
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