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Abstract

Phonetic transcription requires significant time
and expert training. Automated, state-of-the-
art text-dependent methods still involve sub-
stantial pre-training annotation labor and may
not generalize to multiple languages. Halluci-
nation of speech amid silence or non-speech
noise can also plague these methods, which fall
short in real-time applications due to post hoc
whole-phrase evaluation. This paper introduces
Phonotomizer, a compact, unsupervised, online
training approach to automatic, multilingual
phonetic segmentation, a critical first stage in
transcription. Unlike prior approaches, Phono-
tomizer trains on raw sound files alone and
can modulate computational exactness. Pre-
liminary evaluations on Irish and Twi, two un-
derrepresented languages, exhibit segmentation
comparable to current forced alignment tech-
nology, reducing acoustic model size and mini-
mizing training epochs.

1 Introduction

Computer scientists and linguists have spent
decades honing automated speech-to-text (STT)
systems to drive interfaces through natural lan-
guage processing (NLP). At the NLP pipeline head,
speech segmentation tokenizes continuous acoustic
data into chunks for downstream processing. Both
layered phonic analysis and direct word correlation
depend on segmenter accuracy and speed. Many
mistakes in final STT output stem from subtle seg-
menter perturbations (Hamooni and Mueen, 2014).

Intuitive user experience strongly motivates re-
search in fields as disparate as accessibility, tran-
scription, and telecommunication. As the global
economy grows to depend on computing, natural
interfaces to these systems can reduce barriers to
adoption for diverse language communities.

Computers can struggle to process speech with
unfamiliar accents, dialects, languages, or noise.
Even in clean-room settings, speaker variation may

impair consistency. Consecutive sounds may alter
each other, e.g., by tongue movement in palatal-
ization or throat constriction in pharyngealization.
Acoustic variability demands flexibility.

Existing STT systems tend to fall into two
camps: hierarchical and end-to-end. Hierarchi-
cal approaches, e.g., SegFeat (Kreuk et al., 2020),
rely on linguistic concepts with acoustic models
often tailored to one language. Modern end-to-end
systems, e.g., DeepSpeech (Hannun et al., 2014),
apply data-, time-, and energy-hungry deep learn-
ing (DL) techniques to map orthography directly
from raw acoustic data but often struggle with un-
foreseen words. Broken dependencies and aban-
donware litter the field in both categories.

This work remedies these shortcomings with a
compact tool that trains online with minimal third-
party dependencies. Its phonetic approach supports
adaptive, mixed-criticality real-time systems bal-
ancing accuracy and response time through inexact
computation and fosters a sustainable, hierarchi-
cal approach to STT systems by leaving sufficient
headroom for downstream applications.

Phonotomizer contributes the following improve-
ments to the practice of phonetic segmentation with
performance comparable to the state-of-the-art in
initial experiments:

• reduction in acoustic model size

• meaningful cluster labeling coded for prefix-
searchable similarity and explainability

• generality over multiple languages with no
need for a priori pronunciation dictionaries

• extensibility through interchangeable audio
processing pipeline components

• suitability for real-time, online learning

12135



2 Related Work

Current STT approaches occupy continua along
two axes: training, from supervised to unsuper-
vised, and segmentation, from phonetic/phonemic
(by sound) to lexemic (by word).

2.1 Supervised Segmenter/Classifiers

Supervised methods demand a priori truth labels
and copious training data, which may hamper cata-
loguing of low-resource and endangered languages.
Requisite manual annotation compounds high time
and energy costs, and standard datasets in the lit-
erature cover few languages (e.g., Garofolo et al.,
1992; Pitt et al., 2005; Panayotov et al., 2014). A
significant body of work (e.g., Lin and Wang, 2022;
Taguchi and Chiang, 2024; El Kheir et al., 2024;
Liu et al., 2024; Fu et al., 2024) extends Wav2Vec
(Schneider et al., 2019; Baevski et al., 2020) and
executes experiments on well-studied languages. A
recurrent neural network (RNN) devised by Kreuk
et al. (2020) transferred from English to Hebrew
with « 10% loss, but lack of textual ground truth
may impair greenfield linguistic studies.

McAuliffe et al. (2017) debuted the Montreal
Forced Aligner (MFA) to time-correlate audio with
transcriptions via a sliding triphone (3-sound) win-
dow for better auditory context. Though citing
wide multilingual support, the initial paper only
evaluated North American English. Training new
acoustic models requires set pronunciation dictio-
naries on top of recordings and orthographic text.

2.2 Unsupervised Segmenter/Classifiers

Unsupervised approaches classify sound without
the aid of ground truths. Key issues are cluster
fragmentation, speaker dependence, and consis-
tency. Typical approaches include k-means clus-
tering (Duda et al., 2001; Bhati et al., 2018),
RNNs (Wu et al., 2021), Bayesian Gausian Mix-
ture Models (GMMs) (Kamper et al., 2016; Kam-
per, 2019), and adversarial deep neural networks
(DNNs) (Tsuchiya et al., 2018). Some studies at-
tempt to model infant language acquisition, aiming
for simultaneous word and phone discovery and
multi-modal reinforcement (Taniguchi et al., 2016;
Tada et al., 2017; Okuda et al., 2022; Taniguchi
et al., 2023). As with the supervised approaches,
the focus of study tends to favor languages with
large corpora and comprehensive transcription.

2.3 Real-Time Classifiers

Baruah et al. (2023) explored so-called “I Don’t
Know” (IDK) classifiers under time constraints,
focusing on pre-trained, readily interchangeable
DNNs. Optimally ordered IDK classifier cascades
may save time on average, but the entire cascade
must meet deadlines in the worst case. Nguyen
et al. (2024) used probabilistic analysis to impart
dynamism to the cascade and skip intermediate
stages for up to 17% quicker response times.

2.4 Segmentation by Phone/Phoneme (Sound)

Systems that segment by phone or phoneme build
a hierarchical representation based on linguistic
theory. By phoneme implies an accord with a
given language’s phoneme inventory; by phone,
a cross-lingual sound space. Most techniques take
a phonemic approach to match available transcrip-
tion resources (Wang et al., 2015; Gao et al., 2020).
While linguistically robust, this granularity can in-
duce latency to orthographic output.

Difficulties in phoneme identification have led
some to shift to lexemic approaches (Gao et al.,
2020). Others have sought to transfer supervised
phonemic pre-training from high- to low-resource
languages (Riviere et al., 2020; Conneau et al.,
2021). However, they chiefly evaluated Turkic and
Indo-European languages with phonemic ground
truths generated by Phonemizer (Bernard and Ti-
teux, 2021) from extant lexemic transcriptions. The
studies’ “low-resource” languages have far greater
representation among the Mozilla Common Voice
datasets (The Mozilla Foundation, 2022) than, say,
Twi, a variant of Akan spoken in Ghana.

2.5 Segmentation by Lexeme (Word)

Scalable neural networks have increased the appeal
of direct word segmentation. Proponents claim
reduced latency and better noise tolerance, but vo-
cabulary gaps pose challenges.

Abandoning “even the concept of a ‘phoneme”’,
Hannun et al. (2014) presented Deep Speech.
Highly scalable, effective lexemic approaches (e.g.,
Chen et al., 2019; Radford et al., 2023; Barrault
et al., 2023a; Barrault et al., 2023b), own this and
the Transformer architecture (Vaswani, 2017) as
their intellectual predecessors.

However, heavy text dependency presupposes
a written form which may not exist. Billion- or
trillion-parameter models also incur high ecologi-
cal tolls (Yu et al., 2024; Luccioni et al., 2024).
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3 System Design and Implementation

Phonotomizer seeks to minimize errors and spare
resources with universal acoustic features and a
compact footprint. Its one-pass k-means approach
and adaptivity to deadline pressure suit real-time,
mixed-criticality tasks. Built for commodity CPUs
and trained on raw sound files alone, Phonotomizer
could serve in embedded field linguistics contexts
under sparse network access and tight resource con-
straints, reaping a windfall in its inherent amenity
to data privacy versus cloud-driven solutions.

Phonotomizer corrects oversights in the original
design of Yantosca’s (2019) work on ARTIC, an
adaptive, real-time audio processing framework
which meets real-time deadlines by modulating
computational complexity. Work is divided into
successive stages of a cascading pipeline.

3.1 Phonotomizer Data Flow

Data flows in Phonotomizer’s pipeline as fol-
lows: audio ingestion, one-zero gammatone fil-
tration (OZGF) per Lyon (1996), discrete energy
separation algorithm (DESA) per Maragos et al.
(1993), band estimation per Potamianos and Mara-
gos (1995) and Shokouhi and Hansen (2017), and
finally segmentation and classification per Fig. 1.
Each pipeline stage spawns a thread, with pipeline
management on the program’s main thread.

3.1.1 Audio Ingestion

The audio ingestor resamples audio data into non-
overlapped frames of Nt 32-bit little endian float
(F32_LE) raw samples at an internal rate r. By
default, Nt “ 2048 samples, and r “ 48 kHz.

When reading MP3 files as input, the ingestor
skips a priming prelude of initial samples to cohere
with ground truth alignments manually transcribed
in Praat (Boersma and Weenink, 2023a). Praat
skips the first 529 (decoder delay) + 96 (encoder
delay) samples (Boersma and Weenink, 2023b).
The ingestor multiplies these magic numbers by
the ratio of r to the source file’s sample rate to
achieve the same effect.

3.1.2 OZGF Bank

The OZGF bank divides each ingestor output frame
by band-pass filters into B audio spectrum bands.
By default, B “ 32. Band spacing may follow one
of these equations:

Flin“
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Linear spacing offers balance while logarithmic
and quadratic progressively favor the low end.

The gammatone filters biomimetically replicate
cochlear response, suiting speech recognition well.
A cascade of O (default = 4) biquad filters per
Redmon (2012) implements the OZGF with no au-
tomatic gain control, following the “without-AGC
open loop” case by Katsiamis et al. (2009).

To govern the filter response shape, a quality
factor Qb is calculated per band according to the
following formula where fc is the band center fre-
quency and fl and fh are the lower and upper
bounds of the band, respectively (Lyon, 1996):

Qb “ max

ˆ
3,

d
f2
c p10 1

O ´ 1q
pfh ´ flq2

˙
(4)

This approximates the quality factor required to
cover the band of interest. To arrive at an analytical
solution for Q, a term 1{Q2 has been elided from a
rearrangement of the bandwidth equation given by
Lyon (1996). At higher frequencies, this asymptot-
ically approaches zero. However, this elision may
result in gaps between consecutive bands on the
lower end of the spectrum.

Before filtration, raw samples pass through a
frame mean subtractor per Gangamohan and Gan-
gashetty (2019), who use the technique to clean
data for fundamental frequency (F0) extraction.
Similar improvements manifested during develop-
ment for formant detection and segmentation more
generally. In fact, a lower band by itself typically
yielded a good estimate of F0 for B ě 80 when
r “ 16 000 with voicing present.

3.1.3 DESA Calculation
The DESA stage decomposes the audio frames
into amplitude modulation (AM) and frequency
modulation (FM) components, respectively abpnq
and fbpnq. This simple method adapts quickly to
speech non-stationarity. Maragos et al. (1993) de-
fine the Teager-Kaiser energy operator by Eq. (5)
and the consecutive sample delta by Eq. (6).

Ψrzpnqs fi z2pnq ´ zpn ´ 1qzpn ` 1q (5)
9ybpnq fi ybpnq ´ ybpn ´ 1q (6)
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Figure 1: Phonotomizer Pipeline Architecture. A gammatone filterbank divides ingested audio into bands. DESA
computes instantaneous amplitude and frequency components for each band. Band estimation averages the DESA
output over a window to create dominant frequency estimates with confidence bandwidths, a.k.a., a pyknogram
(Potamianos and Maragos, 1995), which informs segmentation and classification. Each classification y of an audio
segmentation is immediately recorded. The timing logger stage records stage micro-benchmarks with each cycle.
Deadline slack is granted altruistically by each stage and circulated systolically through the system with the data.
Stages may claim this slack as needed. Unclaimed deadline slack is recirculated by the pipeline from tail to head.

Per Maragos et al. (1993), the system supports
CESA (Eq. (7), Eq. (8)), DESA-1 (Eq. (9), Eq.
(10)), and DESA-2 (Eq. (11), Eq. (12)).

fbpnq “ 1

2π

ˆd
Ψr 9xbpnqs
Ψrxbpnqs

˙
(7)

|abpnq| “ Ψrxbpnqsa
Ψr 9xbpnqs (8)

fbpnq “ 1

2π
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ˆ
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2Ψrxbpnqs
˙

(9)

|abpnq| “ Ψrxbpnqs
1 ´ `
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˘2 (10)

fbpnq “ 1

4π
acos

ˆ
1 ´ Ψrxbpn ` 1q ´ xbpn ´ 1qs

2Ψrxbpnqs
˙

(11)

|abpnq| “ 2Ψrxbpnqsa
Ψrxbpn ` 1q ´ xbpn ´ 1qs (12)

3.1.4 Band Estimation
The band estimator transforms DESA’s output into
time-windowed estimates with confidence band-
widths of dominant frequency (Eq. (13), Eq. (14))
and mean frequency (Eq. (15), Eq. (16)) (Potami-
anos and Maragos (1995), Shokouhi and Hansen
(2017)).

Fbptq “ 1

Nt

Nt´1ÿ

n“0

fbpnq (13)

Wbptq “ 1

Nt

Nt´1ÿ

n“0

pfbpnq ´ Fbptqq2 (14)

Fbptq “
řNt´1

n“0 fbpnqa2
bpnq

řNt´1
n“0 a2

bpnq (15)

Wbptq“
gffe

řNt´1
n“0 p 9abpnq

2π
q2 ` pfbpnq ´ Fbptqq2a2

bpnq
řNt´1

n“0 a2
bpnq

(16)

The estimator selects amplitudes matching fre-
quency estimates with confidence bandwidths
tighter than some band-specific threshold zb, i.e.,

Spykpt, bq“
#
Apt, bq, Wbptq ă zb

0, otherwise
(17)

Apt, bq fi 1

Nt

Nt´1ÿ

n“0

a2
bpnq (18)

Potamianos and Maragos (1995) coined the
term “pyknogram” for this band-pass presentation
of frame energy. Phonotomizer normalizes each
Apt, bq, dividing it by the total pyknogram frame
energy. By default, zb is pegged to the bandwidth
wb derived from Eqs. 1, 2, and 3 and the average
bandwidth w̄ “ r{2B according to Eq. 19:

z “ 10log2 pwbq´9
wb
w̄ (19)

This non-linear relationship was derived from
the observation of consistent pre-visualization
across band counts when progressively dividing
z by 10 as the average bandwidth was halved due
to doubling band count.

To guard against spurious formant detection, a
noise floor parameter ν can be specified by the user.
During comparison, the parameter ν is squared
to match the squared amplitude estimate of the
pyknogram and multiplied by the ratio of max band
gain to total frame energy as an adaptive scaling
factor to apply the same ν universally to noise and
speech regions. Eq. 20 expresses the noise floor
inequality used to filter unwanted bands.

Apt, bq ą ν2maxB´1
b1“0 Apt, b1q

řB´1
b1“0 Apt, b1q (20)
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This works equally well with voiced and un-
voiced sounds while ignoring low-energy areas of
disinterest. By default, ν “ 0, i.e., no noise floor is
activated, but ν “ 0.05, i.e., a max floor of 1{20 of
the possible 32-bit float amplitude range, appears
to work well in practice across band counts.

Harmonic suppression checks each band for in-
tegral factors of its own estimate among the lower
bands, subtracting the energy of each detected co-
incident harmonic scaled by the reciprocal of the
harmonic number (Daniel et al., 2024). Bands sup-
pressed below the noise floor are dropped.

The OZGF frequency response sometimes
causes estimates from neighboring bands to coa-
lesce in one band, violating their respective bound-
aries. Any estimate that falls outside of a band’s
boundaries is likewise dropped.

3.1.5 Segmentation/Classification
The segmenter/classifier decides at each frame
whether to update or segment a pending phone
cluster based on band one-hot similarity and de-
tected formants. An update to the pending cluster
occurs if all of the following conditions are met.
(1) Hot bands exist, and at least some are contin-
uous. (2) The ratio of continuous to hot bands
stays above a threshold. (3) The average formant
estimate difference across continuous bands stays
within confidence radii. Failure to meet these con-
ditions triggers a formant similarity test between
the pending cluster and the current frame. If this
fails, segmentation occurs.

From the provided pyknogram, the segmenter se-
lects the first four formant frequencies above 80 Hz
and corresponding bandwidth estimates identified
by Eq. 13 and Eq. 14, respectively, with non-zero
pyknograms per Eq. 17. Regions of dense spectral
energy may average band estimates, weighted by
pyknogram. The values for each identified formant
are converted into absolute values in Hz.

Rounding the frequency values to 16-bit signed
integers from 32-bit floats gives a comfortable
Nyquist ceiling of 32 768 Hz and facilitates a bi-
nary radix representation for the cluster labels.
Per Fig. 2, interleaving the bits of each formant
frequency (F1–F4) into a 64-bit unsigned integer
yields a meaningful cluster label. Storing the clus-
ters in memory in a PATRICIA trie (Morrison,
1968; Okasaki and Gill, 1998) keyed by label en-
ables fast prefix searching where more definitive
formants (e.g., F1, F2) guide initial branching and
subtrees define formant cluster families.

Welford’s (1962) online algorithm tracks each
cluster’s contributing frame count Ny, formant
means vector µy per Eq. (13), and confidence band-
widths vector ρy per Eq. (14). With frequencies as
cluster means and confidences as standard devia-
tions, cluster statistics can be merged per Chan et al.
(1982) to form a new cluster in order to keep the
cluster count |Y | within reason. A merged cluster
label is recalculated to match the potentially shifted
mean formant vector.

Each new cluster z joins an existing cluster y if
all mean formants overlap within respective con-
fidences. Otherwise, the cluster z is added to the
in-memory map of clusters, keyed by its label.

Areas of silence receive the apt label
0x0000000000000000 since no formants would
have been detected. With learning frozen, in-
determinate clusters receive the special label
0xffffffffffffffff.

3.1.6 Model Persistence
Clusters are stored to disk in a packed binary format
at the end of a training run. The file signature
allocates 10 bytes for the extension .phonotype
and 2 bytes each for Phonotomizer major, minor,
and patch numbers for version disambiguation. A
64-bit unsigned integer header size indicates how
far to seek to reach the model payload. No file
header exists at present, so the value is zero (0).

Each persisted cluster stores a 64-bit integer la-
bel, a 64-bit frame count, and the four 16-bit for-
mant frequencies and confidence bandwidths. Total
cost of storage per cluster is therefore 32 bytes.

Since the clusters are uniquely identifiable and
keyed by their labels, no additional metadata is
stored. Model dumps write the file signature fol-
lowed by each cluster’s label and packed struct.
Model loads check the file signature and read each
label and packed struct, inserting them into the clus-
ter map, until reaching the end of the file. Fig. 3
illustrates the cluster layout.

4 Experimental Setting

Table 1 describes the environment used for com-
paring Montreal Forced Aligner (MFA) v3.2.0 and
ARTIC/Phonotomizer (A/P) v3.0.6.

The Mozilla Common Voice (MozCV) project
(version: cv-corpus-12.0-2022-12-07) supplied
training and test data in Irish and Twi (The Mozilla
Foundation, 2022). Mozilla’s designations “train”
(“A”) and “other” (“B”) served as hold-out set parti-
tions for Twi and cross-lingual tests, but only Irish
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Figure 2: Phonotomizer Cluster Label Bit Interleaving. In this example, F1 = 93 Hz, F2 = 211 Hz, F3 = 2101 Hz,
and F4 = 2953 Hz to yield the label 0x30115c2e9a4f. More properly, these correspond to true F0 ´ F3 of /i/ in the
Twi word “nim”. A discontinuity in spectral energy between the fundamental frequency F0 = 93 and true F1 = 211
led to the shift in identification. The variance of F0 among speakers suggests that future research should focus on
identifying it apart from the other formants, perhaps using it as a basis for harmonic ratio clustering.
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Figure 3: Phonotomizer Cluster Persistence Format.
The size of the model grows as a product of cluster
count |Y |. Bytes per field are given in parentheses.

Parameter Value
OS Ubuntu 24.04
CPU Intel® Core™ i9-10900X, 3.70 GHz
Cores 10 cores ˆ 2 threads
Memory 128 GB
Build System GNU make + g++ 13.3.0

Table 1: Experimental System Specifications

A was tested due to the high time cost of manual
transcription. The Twi corpus received complete
coverage, but Irish only received 15 transcriptions

Though spoken by many, these languages lack
phonetic annotations and acoustic models in the
literature. Several projects (e.g., WikiMedia Foun-
dation (2008), Priva et al. (2021)) have abandoned
efforts in Irish and Twi citing difficulties. These
datasets thus support an unbiased, end-to-end eval-
uation of STT systems including pre-processing.

For Irish, the GNU aspell (GNU Project, 2020)
Gaeilge word list was converted to International
Phonetic Alphabet (IPA) symbols using rules de-
fined by Ó Siadhail (1996) for the MFA pronun-
ciation dictionary. For Twi, the MozCV transcrip-
tions and a lexicon by Beermann et al. (2020) sup-
plied words to convert to IPA using mappings from
Zabolotskikh (2018) and Ager (2023).

Gold labels for post-hoc evaluation were manu-
ally transcribed with Praat as TextGrids (Boersma
and Weenink, 2023a). TextGrid metrics calcula-
tions and Photonomizer classification output con-
versions used the PraatIO library (Mahrt, 2016).

Table 2 outlines the experimental parameters.
DESA-1 seemed to perform best in results reported
by Yantosca (2019), as well as on earlier, unpub-
lished Phonotomizer experiments on the English
LibriSpeech corpus (Panayotov et al., 2014). All
band spacing options were tested, along with 4 dif-
ferent band counts. Fixing dT at 10 ms and r at
16 kHz offered sufficient resolution to adequately
identify formants and capture phone boundaries.

MFA trained for 35-40 epochs. Phonotomizer
trained for 1 epoch except for zero shots. To es-
tablish a segmentation baseline apart from timing
constraints, the underlying ARTIC pipeline applied
no exactness modulation nor deadline adaptation.

Parameter Value
Band spacing Linear, Log, Quad
Band count (B) 40, 80, 160, 320
Filter order (O) 4
DESA Algorithm DESA-1
Confidence threshold (zb) implicitly derived
One-hot similarity threshold 0.5
Noise floor (ν) 0.05
Sample Rate (r) 16 kHz
Data frame size (Nt) 160 samples (10 ms)
Training Sets Twi A, Twi B, Irish A, None
Test Sets Twi A, Twi B, Irish A

Table 2: Phonotomizer Evaluation Parameters

Given recent advances with transformers in
phoneme classification (Baevski et al., 2020; Xu
et al., 2021; Prat et al., 2024; Poli et al., 2024),
we also attempted to establish baselines for these
models. However, PhonHuBERT (Prat et al., 2024)
would not build due to dependency conflicts even
after trying multiple Python versions and point-
ing to standard packages instead of files local to
the authors1. The restriction to TIMIT phonemes
by spokenlm-phoneme (Poli et al., 2024) would
not suffice to model Irish and Twi phones unrep-

1e.g., certifi @ file:///...
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resented in English. Consequently, we chose to
test Facebook’s wav2vec2-xlsr-53-espeak-cv-
ft model (Xu et al., 2021) derived from XLSR-53
(Conneau et al., 2021) for its adequate documenta-
tion and multilingual support.

5 Results

5.1 Model Size
Phonotomizer’s unzipped acoustic model footprint
ran about 10% of the size of MFA’s zipped acous-
tic model format per Table 3. Standard deviation
among tested Phonotomizer model sizes is given
as a plus/minus adjustment.

Dataset Clips MFA 3.2.0 A/P 3.06
Twi A 12 160.0 19.0 ˘ 5.2
Twi B 217 2 596.0 243.3 ˘ 91.1
Irish A 537 6 244.0 512.3 ˘ 206.3

Table 3: Acoustic Model Footprints (KB)

5.2 Alignment Completion
MFA failed to generate alignments in some cases.
Of the 537 clips in the Irish A set, MFA only gen-
erated 359 alignments, missing 5 from the set of
15 gold transcriptions. Phonotomizer generated
alignments for all clips in all tests.

5.3 Clustering Metrics
Segmentation performance was evaluated with
common clustering metrics having values in the
range [0,1] in order to provide comprehensive and
comparable statistics across the corpora tested.

Completeness is defined as 1 ´ HpY |Φq
HpY q .

HpY |Φq is cluster entropy conditioned by true la-
bels, and HpY q is unconditional. It diagnoses over-
segmentation, measuring how much each true label
corresponds to a unique cluster (Wu et al., 2021).

Homogeneity is defined as 1´HpΦ|Y q
HpΦq . HpΦ|Y q

is true label entropy conditioned by clusters, and
HpΦq is unconditional. It diagnoses undersegmen-
tation, measuring how much each cluster corre-
sponds to the same true label (Wu et al., 2021).

Normalized Mutual Information (NMI) cap-
tures the mutual dependence between discovered
clusters (Y ) and true phonemes (Φ). Each clus-
ter/phoneme joint probability mass function (PMF)
is multiplied by the logarithm of that joint PMF
over the product of the marginal PMFs, i.e., MI “ř
yPY

ř
φPΦ

PY,Φpy, φq log
` PY,Φpy,φq
PY pyqPΦpφq

˘
. This sum is

then divided by the halved sum of the cluster and

phoneme entropies for normalization, i.e., NMI “
2 MI
HpY q`HpΦq (Wang et al., 2015).
Fig. 4 demonstrates that MFA generally fared

better at completeness and Phonotomizer at homo-
geneity, indicating tendencies to under- and over-
segmentation, respectively. Phonotomizer zero-
shot runs scored highest overall at NMI, suggesting
the best balance. Peak performance appears to coin-
cide with B “ 80 bands, i.e., an average bandwidth
of 100 Hz. The low completeness scores suggest
room for improvement on the classifier.

MFA performed best with the richest datasets
but floundered for lack of data, especially on cross-
lingual tests. Data scarcity impacted Phonotomizer
less, though trained model runs exhibited evidence
of overfitting to the respective training sets. De-
spite this, Phonotomizer often outperformed MFA
when tested on a language other than its training set,
lending credence to the universality of its phonetic
as opposed to MFA’s phonemic approach.

A salient pyknogram example in Fig. 5 offers
insight into Phonotomizer’s strengths and weak-
nesses. Segment boundaries correspond well with
clear changes in spectral energy, though overseg-
mented transitions between phones illustrate the
issues with completeness. Conflation of neigh-
boring sounds can occur, e.g., in the presence of
high-energy, turbulent sounds like the sibilant /s/
that bleed into adjacent phones. However, Phono-
tomizer’s automatic noise filtration guards against
spurious identification of silence as a region of in-
terest. In this depicted clip, which runs for 2.7 s,
low-energy noise at the start and end confuse MFA
and exacerbate the effects of its text dependency,
as shown in Fig. 6.

5.4 Wav2Vec2Phoneme Comparison
Facebook’s wav2vec2-xlsr-53-espeak-cv-ft
model, a.k.a. Wav2Vec2Phoneme (W2V2P), pro-
duced plausible phone sequences in zero-shot test-
ing against the MozCV Twi corpus. Unlike MFA, it
lacked precise timing for producing TextGrids, con-
flating silence and model indecision and tagging
each phone on one 20 ms frame near the phone’s
end. Without delimiter tags, the pad symbol over-
loading made initial boundaries indeterminable.

Table 4 depicts confusion tables for the top 10
test matches against 3 gold phones: /b/, /O/, and
/C/. Each test phone’s time percentage per selected
gold phone over a complete run on the Twi corpus
appears in columns for W2V2P with standard pre-
training and untrained ARTIC/Phonotomizer (A/P)
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with online training enabled for each test clip alone.
XLSR-53’s training languages share the first two

phones. Owing to its phonemic importance, Twi
grants /O/ its own letter “O”. /C/ is common in Twi
but unrepresented in the XLSR-53 training set.

Due to its prevalence by frame, padding domi-
nates the W2V2P matches for each gold phone by
time covered. The next best actual phone matches
prove correct or close substitutes given training.

However, matching /O/ to /o/, /O/, and /o:/ hints
at systemic issues also seen in similar phone pairs
like /E/ and /e/. Overall, W2V2P’s labels straddle
multiple phonetic encodings, producing not only
IPA but also notation like “i.5” and “ong5”2, possi-
bly conflating homographic symbols from different
contexts. Two phonemizers sourced the phonemic
transcriptions of the 3 training sets from lexemic
text conversions instead of vocal analysis (Xu et al.,
2021)3. Ignoring the true phonetic context risks
undervaluing uncommon accents and phones.

A/P’s confusion results are grouped by prefix
into hyperclusters due to frequent hapax, i.e., one-
off, production. Truncating 7 hexadecimal digits
from the right functionally truncates 7 binary digits
per formant, yielding a uniform radius per formant
of about 127 Hz for each hypercluster in 4 dimen-
sions. Being all zeroes in all clusters, the 2 most
significant digits are elided for legibility. Improve-
ments in the formant picking algorithm should gen-
erate better clusters with tighter grouping since the
system exhibited a bias toward spurious identifica-
tion of formant peaks at lower frequencies.

Despite this, the A/P results for /b/ favor the top
two hyperclusters with over 50% coverage, and /O/
and /b/ demonstrate strong prefix similiarity. The
spread for /C/ is more uniform as might be expected
for a turbulent sibilant with less defined formants.
None of the depicted hyperclusters show conflation
with silence (i.e., 00 00 00 0).

6 Conclusions

Phonotomizer proves the possibility of making
more with less with its zero-shot runs consistently
outscoring MFA on NMI. Spot evaluations of the
generated TextGrids confirmed MFA’s noise in-
tolerance in contrast to Phonotomizer’s rugged
adaptability. The pyknograms generated by Phono-
tomizer as inputs for segmentation and classifica-
tion visually confirmed the efficacy of the method-

2NB: not “ong5”, but “ong5”, i.e., g = \U+0261.
3cf. §3.2 of their paper.

Gold W2V2P t (%) A/P t (%)
b 90.97 00 00 00 8 43.06
b b 6.61 00 00 40 8 11.34
b o 0.48 00 00 04 c 2.97
b a 0.45 00 00 08 0 2.44
b u 0.31 00 00 48 0 2.12
b m 0.24 00 00 40 c 2.03
b d 0.16 00 00 44 c 1.16
b v 0.16 00 00 0c 4 1.05
b i 0.16 00 00 04 0 0.88
b p 0.10 00 02 40 8 0.88
O 72.39 00 00 48 c 10.51
O o 12.67 00 00 40 8 4.78
O a 3.39 00 00 48 0 3.39
O w 1.69 00 00 48 8 2.22
O u 1.59 00 00 08 8 2.05
O b 1.39 00 00 00 8 1.93
O O 1.29 00 00 40 c 1.81
O o: 0.90 00 00 48 4 1.66
O n 0.80 00 00 6a 2 1.66
O h 0.68 00 00 c0 4 1.55
C 83.80 00 34 5e 1 2.57
C S 7.90 01 e6 a4 3 2.15
C s 5.19 07 89 a0 4 1.91
C t 0.55 00 30 58 5 1.79
C e 0.51 01 e6 b4 7 1.52
C f 0.51 00 73 57 f 1.50
C i 0.49 00 79 ad 6 1.50
C ts 0.27 01 e6 a0 5 1.50
C I 0.25 00 73 57 6 1.49
C n 0.18 00 f3 57 a 1.49

Table 4: Top-10 Twi Confusion Tables for /b/, /O/, /C/
A/P prefix similarities are highlighted in color.
A/P used logarithmic banding (B “ 80).

ology and significantly accelerated development.
However, Phonotomizer’s models, while more

compact, require improvement on the classifica-
tion end. We are exploring improvements to the
formant picker by dividing the spectrum for more
granulated comparison of energy regions across
time. We are also looking to reformulate the clus-
ter format to better handle speaker variability, e.g.,
rebasing the formant definitions as harmonic ratios
of the fundamental frequency. Finding a path to-
ward conversion to IPA and evaluating electricity
consumption constitute open areas of research.

In this vein, porting the framework to an embed-
ded context could prove useful to linguists in the
field working under sparse network connectivity
and severe resource constraints. Additionally, the
small footprint of Phonotomizer and ARTIC lends
itself to privacy-sensitive, low-impact approaches
to NLP in diametric opposition to the titanic quan-
tities of e-waste generated by the state of the art.
This could prove a boon to endangered language
communities seeking to preserve their cultural her-
itage in the midst of a growing homogenization of
the spaces we inhabit, digital or otherwise.
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7 Limitations

7.1 Gold Label Accuracy
The gold labels were transcribed by the primary
author alone over the course of several months.
As such, more recent transcriptions likely possess
higher quality than earlier transcriptions, and there
is some degree of intra-transcriber disagreement.

For instance, the Twi reference clip used during
development was re-transcribed after the first
pass of transcriptions was completed to better
capture the phones involved and to distinguish
nasals and creaky voice with diacritics. Editing
the gold label dataset is an ongoing process,
and revisions are tracked using git for source
control. The goldgrids-twi repo used commit
a3bb57e5fb3574da02e8891efb2ba48c7b69bf52,
and the goldgrids-gle repo used commit
53568849d8db7ca332f8e892c0a6001eac6911a1.

7.2 Applicability
While Phonotomizer has built-in facilities for noise
tolerance, the current implementation assumes a
single speaker. Source separation is not attempted
but might prove useful in future development.

Phonotomizer does not correct or compensate
for disfluencies or pathological speech conditions,
e.g., dysarthria. While Phonotomizer’s transparent
capture of the raw phonetic data can support studies
in speech pathology or field linguistics, end-to-end
lexemic or orthographic transcription applications
built on top of Phonotomizer would need to account
for this limitation and adjust accordingly.

7.3 Experimental Parameters
The executable and supporting pipeline modules
are written to the C++20 standard and have been
built with g++-13 and tested on Ubuntu 24.04 only.
Audio ingestion and resampling depend on ffmpeg
(FFmpeg Project, 2019) but use Praat’s prelude skip
count to throw away some initial samples (Boersma
and Weenink, 2023b). Unfortunately, there is no
standard behavior across MP3 encoders with re-
spect to padding samples. Even ffmpeg has open
issues on this behavior from version to version
(Robertson, 2023). We chose to adhere to Praat’s
behavior for simplicity and coherence with manu-
ally transcribed ground truths.

8 Ethical Considerations

Anonymous contributors to The Mozilla Founda-
tion (2022) may withdraw their data, but no such

requests were received for Irish or Twi. In accord
with the license, no diarization was attempted.

All code and models used for experiments were
written and developed by the primary author with
the following exceptions:

• GNU C++ standard library (Carlini et al.,
2020), which was used throughout the project

• ffmpeg (FFmpeg Project, 2019), which was
used for audio ingestion and resampling

• C++ biquad source code (Redmon, 2012),
which the primary author adapted for the
OZGF bank stage

• JSON for Modern C++ (Lohmann, 2022),
which was used for parsing Phonotomizer
pipeline schedules

• libcester (Azeez, 2020), which was used for
unit tests in the ARTIC framework and Phono-
tomizer

• Montreal Forced Aligner (MFA) 3.2.0
(McAuliffe et al., 2017), which was used for
comparison in experiments

• Facebook’s Wav2Vec2Phoneme (Xu et al.,
2021) Hugging Face model wav2vec2-xlsr-
53-espeak-cv-ft based on XLSR-53 (Con-
neau et al., 2021), which was used for further
experimental comparisons per reviewer feed-
back

• PraatIO (Mahrt, 2016), which was used to
generate TextGrids

The development and experiments described in
this paper did not utilize research products (code,
models, etc.) implicated in or from companies
under investigation for alleged abuse of workers
(cf. Phillips, 2018; Perrigo, 2022; Perrigo, 2023;
Bartholomew, 2023; Musinga et al., 2024). The
tests of Facebook’s wav2vec2-xlsr-53-espeak-
cv-ft model may constitute the exception which
proves this rule, but we deemed comparison with
our gold transcriptions necessary to substantiate a
robust critique of these resource-intensive methods.
No large language models (LLMs) were employed
in the writing or editing of this paper.
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