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Abstract

A popular end-to-end architecture for selec-
tive rationalization is the select-then-predict
pipeline, comprising a generator to extract high-
lights fed to a predictor. Such a cooperative sys-
tem suffers from suboptimal equilibrium min-
ima due to the dominance of one of the two
modules, a phenomenon known as interlock-
ing. While several contributions aimed at ad-
dressing interlocking, they only mitigate its ef-
fect, often by introducing feature-based heuris-
tics, sampling, and ad-hoc regularizations. We
present GenSPP, the first interlocking-free ar-
chitecture for selective rationalization that does
not require any learning overhead, as the above-
mentioned. GenSPP avoids interlocking by per-
forming disjoint training of the generator and
predictor via genetic global search. Experi-
ments on a synthetic and a real-world bench-
mark show that our model outperforms several
state-of-the-art competitors.

1 Introduction

Selective rationalization is the process of learning
by providing highlights (or rationales) as explana-
tion, a type of explainable AI approach that has
gained momentum in high-stakes scenarios (Wiegr-
effe and Marasovic, 2021), such as fact-checking
and legal analytics. Highlights are a subset of in-
put texts meant to be interpretable by a user and
faithfully describe the inference process of a classi-
fication model (Herrewijnen et al., 2024). Among
the several contributions, the select-then-predict
(SPP) selective rationalization framework of Lei
et al. (2016) has gained popularity due to its inher-
ent property of defining a faithful self-explainable
model. In SPP, a classification model comprises a
generator and a predictor. The generator generates
highlights from input texts, i.e., it selects a portion
of input text tokens, which are fed to the predictor
to address a task. To define interpretable highlights,
the generator performs discrete selections of input

tokens while regularization objectives control the
quality of generated highlights.

This discretization process introduces an op-
timization issue between the generator and the
predictor, hindering training stability and increas-
ing the chances of falling into local minima, a
phenomenon denoted as interlocking (Yu et al.,
2021). To account for this issue, several contri-
butions have been proposed to facilitate informa-
tion flow between the generator and predictor and
avoid overfitting on sub-optimal highlights. No-
table examples include differentiable discretiza-
tion via sampling (Bao et al., 2018; Bastings et al.,
2019), weight sharing between generator and pre-
dictor (Liu et al., 2022), and external guidance via
soft rationalization (Yu et al., 2021; Huang et al.,
2021; Sha et al., 2023; Hu and Yu, 2024). How-
ever, these methods only mitigate interlocking by
introducing ad-hoc regularization.

A few attempts have been proposed to eliminate
interlocking. These solutions either rely on feature-
based heuristics to pre-train the generator (Jain
et al., 2020) or partially address interlocking by in-
troducing multiple independent training stages (Li
et al., 2022). However, these methods present sev-
eral limitations, including the use of heuristics for
guiding the generator, limited information flow be-
tween the generator and the predictor, and intro-
duce additional optimization issues.

We propose Genetic-SPP (GenSPP), the first se-
lective rationalization framework that eliminates
interlocking without requiring heuristics and archi-
tectural changes. GenSPP breaks interlocking by
splitting the optimization process into two stages,
optimized via genetic-based search. First, a genera-
tor instance is defined independently of a given pre-
dictor. Second, a predictor is trained from scratch
while keeping the defined generator frozen. By do-
ing so, the generator instance is evaluated only via
the training objective, without the need for addi-
tional regularizations to guide its learning to avoid
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interlocking. Genetic-based search allows for local
and global exploration of the generator’s parame-
ters, significantly reducing the risk of getting stuck
into local minima. Furthermore, genetic-based
search does not require differentiable learning ob-
jectives, allowing for a more accurate model evalua-
tion accounting for both classification performance
and highlight quality.

We evaluate GenSPP on two benchmarks: a con-
trolled synthetic dataset that we introduce to assess
selective rationalization frameworks and a popular
real-world dataset on hate speech. Experimental re-
sults show that GenSPP achieves superior highlight
quality while maintaining comparable classifica-
tion performance.

To summarize, our contributions are:

• We introduce GenSPP, the first interlocking-
free selective rationalization framework that
does not require sub-optimal heuristics and
additional regularizations.

• We design a robust evaluation objective to
account for classification and rationalization
capabilities equally.

• We build a novel controlled synthetic dataset
to study selective rationalization frameworks.

• We carry out an extensive, robust, and repro-
ducible experimental setting to compare Gen-
SPP with several competitive selective ratio-
nalization frameworks.

We make our data and code available for re-
search.1

2 Preliminaries

We overview two fundamental concepts to under-
stand our method: (i) selective rationalization and
(ii) genetic-based search.

2.1 Selective Rationalization
Selective rationalization denotes a self-explainable
classification model capable of extracting discrete
highlights from an input text. The typical archi-
tecture for selective rationalization is based on the
select-then-predict (SPP) architecture (Lei et al.,
2016). In SPP, the classification model is split
into a generator (gθ) and a predictor (fω), where
θ and ω are the parameter sets. Given an input
text x = {x1, x2, . . . , xn} comprising n tokens

1https://github.com/nlp-unibo/gen-spp

and its corresponding ground-truth label y, the gen-
erator gθ produces a binary mask m = gθ(x) =
{m1,m2, . . . ,mn} where mi ∈ {0, 1}. The mask
m indicates which tokens of x are selected. We de-
note the mask generation process as rationalization.
A masked input text x̃ is then defined by applying
m on x as follows: x̃ = x ⊙ m. The masked
text x̃ is fed to the predictor fω for classification.
Generally, the selective rationalization architecture
is trained to minimize the classification empirical
error on an annotated dataset, without providing
supervision on generated m. This setting is often
denoted as unsupervised rationalization, which is
formalized as follows:

Lt = min
θ,ω

1

|D|
∑

(x,y)∈D
Lce

(
fω(gθ(x)⊙x), y

)
, (1)

where D is a textual dataset annotated for classifi-
cation and Lce is the classification loss.

Controlled Rationalization. A self-explainable
model should produce meaningful highlights in ad-
dition to accurate predictions. Lei et al. (2016) in-
troduced regularization objectives to prefer sparse
and coherent highlights for better interpretability.
Formally, the regularizer is denoted as follows:

Ω(m) = λs

n∑

i=0

mi

︸ ︷︷ ︸
Ls

+λc

n∑

i=1

|mi −mi−1|
︸ ︷︷ ︸

Lc

, (2)

where Ls controls the level of sparsity (sparsity
constraint), Lc reduces highlights fragmentation
(contiguity constraint), and λs, λc ∈ R are scalar
coefficients that balance the regularization. Effec-
tively, controlling the regularization effect of Ls

to not outweigh Lt is non-trivial. To simplify the
optimization process, Chang et al. (2020) relax the
sparsity constraint to achieve a specific sparsity
level: Ls = |α − 1

n

∑n
i=0m

i|, where α ∈ [0, 1]
regulates the degree of sparsity. By including the
regularizer, Eq. 1 can then be rewritten as follows:

L = Lt +Ω(m) (3)

Interlocking. Yu et al. (2021) showed that when
performing unsupervised rationalization in an end-
to-end fashion, the selective rationalization archi-
tecture suffers from sub-optimal equilibrium min-
ima. This occurs when either the generator gθ or
the predictor fω are in a sub-optimal state. If gθ
is stuck on generating a sub-optimal m, fω is fine-
tuned on that m, further enforcing gθ to maintain
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that selection. Similarly, if fω is a remarkably bad
predictor, it is further encouraged to exhibit lower
classification error on a sub-optimal m compared
to the ground-truth one m∗.

2.2 Genetic Algorithms

Genetic Algorithms (GAs) constitute a class of
search algorithms for finding optima in optimiza-
tion problems. They are based on population-based
search relying on the concept of survival of the
fittest (Katoch et al., 2021a). Formally, a pop-
ulation P contains a set of I individuals, P =
{c1, c2, . . . , cI}, where each individual c ∈ Rd is a
parameter vector representing a candidate solution
to the problem of interest.

Initially, a population P0 of I individuals is ini-
tialized randomly to cover the solution search space.
The individuals are evaluated by a fitness function
h : Rd → R that is the optimization objective
of GAs. A portion of individuals is then selected
based on their fitness scores with selection proba-
bility psl. An intermediate population P̃0 is built by
generating individuals from selected ones, either
by modifying a portion of individual parameters
(mutation) or by mixing parameters between indi-
vidual pairs (crossover). We denote pm and pc the
mutation and crossover probabilities, respectively.
The population for the next iteration Pi is built by
performing a second individual selection phase, de-
noted as survival selection, to keep the number of
individuals equal to I across generations. We de-
note psu the survival probability of each individual.
The population-based search is iterated for G gen-
erations or stopped preemptively if a certain fitness
score is reached.

Neuroevolution. GAs have been successfully ap-
plied to solve a wide variety of tasks (Alhijawi
and Awajan, 2024), including agent exploration
(Conti et al., 2018), image processing, schedul-
ing, clustering, natural language processing (Ka-
toch et al., 2021b), training large neural networks
(Miikkulainen et al., 2019), and, in particular, neu-
ral network optimization, known as neuroevolu-
tion (Galván and Mooney, 2021). Neuroevolution
denotes the process of (i) neural network archi-
tecture search and (ii) parameter optimization by
employing genetic algorithms. In the second sce-
nario, each individual c in a population P denotes
the parameters of a neural network. In addition to
having interesting properties, such as parallel com-
putation and reduced likelihood of getting stuck

into local minima, neuroevolution also shows cor-
respondence with gradient descent, as proved by
Whitelam et al. (2021).

3 Related Work

Lei et al. (2016) introduce Rationalizing Neu-
ral Predictions (RNP), the first SPP framework,
whereby the generator and predictor components
are trained via reinforcement learning (Williams,
1992). Several contributions have explored ways to
improve RNP, including end-to-end optimizations,
external guidance to mitigate spurious correlations,
regularizations for faithful rationalization, and at-
tempts to break interlocking.

Improved Optimization. Bao et al. (2018) pro-
pose an end-to-end architecture by leveraging the
Gumbel softmax trick (Jang et al., 2017) for gen-
erating differentiable discrete masks m. Simi-
larly, Bastings et al. (2019) adopt rectified Ku-
maraswamy distributions to replace sampling from
Bernoulli distributions. Parameterized sampling
provides a regularization effect to mitigate inter-
locking, but it requires additional calibration effort
to find the best trade-off between sampling stability
and exploration. In contrast, genetic-based search
does not require sampling to define discrete selec-
tion masks and has superior optimization stability
with respect to standard reinforcement learning al-
gorithms (Salimans et al., 2017). Contributions
have also explored solutions to ease the learning
process. Liu et al. (2022) propose to share embed-
ding weights between the generator and predictor
to increase information flow between the two mod-
ules. Liu et al. (2023d) employ different learning
rates for gθ and fω to mitigate selection mask over-
fitting. Liu et al. (2023b) use multiple generators to
improve rationalization exploration to reduce the
chance of interlocking. While, in principle, some
of these design choices, like weight sharing, may
be included in our framework, they are not required
as GenSPP avoids interlocking.

External Guidance. Another class of contribu-
tions leverages information from the input text to
guide selective rationalization. Yu et al. (2021)
define an attention-based predictor that performs
soft selections to mitigate interlocking. Chang et al.
(2019) propose a generator-discriminator adversar-
ial training to learn class-wise highlights. Paran-
jape et al. (2020) propose a sparsity regularization
objective based on information bottleneck to trade-
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off performance accuracy and highlight coherence.
Huang et al. (2021) define a guider module that
acts as a teacher for fω and propose an embedding-
based regularization between the embedded input x
and the generated highlight x̃ to guide gθ. Yue et al.
(2022) propose a mutual information regularization
to exploit information from non-selected tokens by
leveraging an additional predictor. Sha et al. (2023)
introduce the InfoCal framework, where an addi-
tional predictor trained on the input text x provides
guidance through a regularization objective based
on the information bottleneck principle. Liu et al.
(2023a) use an additional predictor trained on the
original texts and fixed during rationalization to
guide fω. Hu and Yu (2024) employ an end-to-
end guidance module with information from the
original input text to guide fω while also providing
importance scores for weighting tokens to guide
gθ. Liu et al. (2024) propose an alternative to max-
imum mutual information, treating spurious fea-
tures that correlate with class labels as noise. In
contrast to all these approaches, GenSPP does not
require the integration of additional neural modules
and regularizations to guide gθ since genetic-based
search alleviates selective rationalization from get-
ting stuck into sub-optimal minima.

Breaking Interlocking. Few attempts have ex-
plored breaking interlocking. Jain et al. (2020) em-
ploy importance score features derived from post-
hoc explainable tools like LIME (Ribeiro et al.,
2016) to first pre-train gθ. Subsequently, fω is
trained on the dataset produced in the previous
stage. Compared to our work, the solution of Jain
et al. (2020) has two limitations. First, it requires
external feature extraction tools that act as heuris-
tics for training gθ in a supervised fashion. Second,
information learned when training fω does not flow
to gθ for improvement. In contrast, the generator gθ
in GenSPP is trained via a heuristic fitness function
that only involves learning objectives concerning
classification performance and highlight quality (
Eq. 3). A recent contribution is the 3-stage frame-
work of Li et al. (2022) for multi-aspect rationaliza-
tion (Antognini et al., 2021; Antognini and Faltings,
2021). In the first stage, gθ and fω are first trained
end-to-end, and then gθ is discarded. In the second
stage, fω is frozen, and a new generator is trained.
Likewise, in the third stage, the trained new gen-
erator is frozen while fω is fine-tuned. While this
framework avoids interlocking by iteratively freez-
ing gθ or fω, it presents two main limitations. First,

it is not completely interlocking-free since inter-
locking may still occur in the first stage, leading to
a sub-optimal fω. Second, it does not offer good
guarantees for reaching an optimal solution due to
two independent training stages. In contrast, Gen-
SPP is interlocking-free, characterized by stable
convergence properties due to global search.

4 Motivation

We motivate our work by discussing how existing
contributions only mitigate interlocking. The anal-
ysis of (Yu et al., 2021) underlines that the quality
of the selective rationalization solution strongly
depends on the system’s capability to avoid the in-
terlocking effect, thus reducing the probability of
incurring local minima during training. Interlock-
ing affects the following optimization problem:

min
θ

min
ω

L(fω(gθ(x)⊙ x), y) (4)

A major cause of interlocking is the generation of
a discrete binary mask m to define a faithful and
interpretable model. The discretization of m in-
duces a discrepancy in how gθ and fω learn during
training. As pointed out by Yu et al. (2021), fω
tends to overfit to a certain sub-optimal mask m,
causing the interlocking. More precisely, while the
predictor’s parameters ω change smoothly at each
gradient step thanks to the continuous nature of
the learning objective, the generator gθ contains
a discrete function (i.e., rounding) that makes its
policy a piecewise constant function with respect
to its parameters θ. Even by applying smoothing
techniques (e.g., sampling) to mitigate the issue
and achieve differentiability, the generated binary
mask m might remain unchanged (or change too
slowly) over multiple gradient steps, thus, leading
fω to overfit on m.

To address this issue, contributions have pro-
posed sampling-based methods to allow for dif-
ferentiable discretization (Bao et al., 2018; Bast-
ings et al., 2019), external guidance by introducing
an additional soft rationalization system (Chang
et al., 2019; Yu et al., 2021; Sha et al., 2023; Liu
et al., 2023a; Hu and Yu, 2024), multi-stage train-
ing procedures (Liu et al., 2023b), and weight shar-
ing between gθ and fω for increased information
flow (Liu et al., 2022). However, none of these
methods solves interlocking, and the likelihood of
rapidly falling into a local optimum is only miti-
gated at the cost of added optimization issues, such
as increased variance.
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Given the side effect caused by the unequal joint
training of the two models via stochastic gradient
descent (SGD), a logical and straightforward way
to break the interlocking between gθ and fω is to
split the dual minimization problem of Eq. 4. For-
mally, let ω∗ be the optimal predictor’s parameters,
and let l be its optimal solution:

l = L(fω∗(x), y) (5)

Eq. 4 can be reformulated as a disjoint training by
minimizing:

min
θ

Ω(m)

s.t. min
ω

L
(
fω(gθ(x)⊙ x), y

)
≤ l + ϵ

(6)

for a tolerance ϵ. This formulation is equivalent
to finding the optimal highlight (according to the
applied regularization), such that fω achieves a
comparable performance to a predictor trained on
x, up to a certain level of approximation regulated
by ϵ. Equivalently, gθ is trained to filter out un-
informative information from input text x. Given
the structure of Eq. 6, the disjoint optimization
cannot be addressed via SGD and, therefore, we
propose genetic algorithms to address the mini-
mization problem.

5 The GenSPP Framework

We introduce GenSPP, a novel SPP framework op-
timized via genetic-based search. GenSPP presents
several advantages over selective rationalization
based on SGD. First, GenSPP is interlocking-free
by splitting the optimization process into two stages
(Eq. 6): each individual c embodies a different gen-
erator gθ, which is then evaluated through a unique
predictor fω. Second, GenSPP leverages genetic-
based search, allowing for both local (via mutation)
and global (via crossover) search in the θ param-
eter space to avoid local minima. Third, genetic-
based search does not require a differentiable learn-
ing objective, allowing for more accurate training
regularizations. We describe GenSPP and discuss
its advantages over other selective rationalization
frameworks in detail.

5.1 Method

GenSPP follows the same architecture of Lei et al.
(2016) where hard rationalization is performed via
rounding and is trained via neuroevolution. In par-
ticular, individual evaluation is a two-stage process.

Algorithm 1 GenSPP Algorithm

Input: Population P , fitness function h, selection
probability psl, crossover probability pc, mu-
tation probability pm, survival probability psu,
G generations, task threshold l.

Output: Optimal individual c∗.
1: Initialize P0 = {c1, . . . , cI} of I individuals
2: Initialize memory weights p|M | = p0|M |
3: for individual c ∈ P0 do
4: Train a predictor fω to minimize Lt

5: Evaluate c via fitness function h
6: end for
7: while current generation g < G do
8: Determine crossover pairs with selection

probability pci =
h(ci)∑I
j h(cj)

9: Generate I
2 new individuals via one-point

crossover
10: Perform mutation on newly generated indi-

viduals with mutation probability pm

11: for individual c in generated individuals do
12: Train a predictor fω to minimize Lt

13: Evaluate c via fitness function h
14: end for
15: Perform survival selection to obtain Pg+1

16: end while

First, a population P of individuals, each represent-
ing a configuration of the generator’s parameters,
is defined. Second, each individual is evaluated via
a fitness function h. In particular, a predictor is
initialized from scratch for each individual c and
trained to minimize the task classification loss via
SGD while keeping the parameters of c frozen to
avoid interlocking. We compute h on each trained
model, and we build a new population by selecting
individuals based on their fitness scores. The pro-
cess is iterated until convergence or a fixed budget
of generations G is reached. Algorithm 1 summa-
rizes GenSPP algorithm.

5.2 Individual Evaluation

We identify two major issues in Eq. 3 for model
evaluation. First, finding a balance between Lt

and Ω(m) is non-trivial, potentially leading to sub-
optimal solutions that only minimize one of the two.
Second, the joint learning formulation is not a rea-
sonable candidate for optimization, collapsing sub-
stantially different solutions to the same cost value.
Consider two instances of the learning problem,
one with Lt = 0.0 and Ω(m) = 1.0, and another
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Figure 1: Loss landscape comparison between our fit-
ness function h̃ (left) and the regularized selective ratio-
nalization objective (Eq. 3). Red markers denote points
(0.0, 1.0) and (0.5, 0.5), highlighting the difference be-
tween the two losses.

with Lt = 0.5 and Ω(m) = 0.5. Notably, both
instances have the same average cost of 0.5, but
the first does not satisfy our objective of defining a
faithful rationalization framework. Fig. 1 compares
the landscape of Eq. 7 to Eq. 3. Therefore, the two
instances should be evaluated differently to favor
solutions that are both accurate and interpretable.

To allow for more robust individual evaluation,
we propose the following objective function:

h̃ =

{
1− L, if Lt < l + ϵ

0, otherwise
(7)

where L =
√
(1− Ω(m))× (1−min(Lt, 1)).

To account for the maximization problem in ge-
netic search, we define the fitness function h in
GenSPP as follows:

h =
1

h̃+ ϵ̂
, (8)

where ϵ̂ is a small constant to ensure computational
stability. Eq. 7 guides the learning process by ini-
tially favoring Lt and progressively shifting toward
a state where Lt is stable while Ω(m) is optimized.
We do not require weight balancing since learning
objectives are normalized and equally important.

5.3 GenSPP Genetic Algorithm
We describe the genetic algorithm for training Gen-
SPP. Given a population P0 of I individuals, each
representing a different generator instance, we per-
form individual selection and recombination as fol-
lows. We initially evaluate P0 by computing the
fitness score of each individual in the population.
We apply the roulette-wheel selection strategy, a
stochastic process where individuals are sampled
proportionally to their fitness score (Lipowski and
Lipowska, 2012), to pair individuals for recom-
bination. In total, I

2 pairs are selected. We em-
ploy one-point crossover (Poli and Langdon, 1998)

to generate I new individuals from selected pairs.
This crossover strategy swaps parameters between
two individuals by randomly choosing a swap point
from a uniform distribution. We then mutate each
generated individual parameter with probability
pm by inserting Gaussian noise. The intermediate
population P̃0 comprises the original I individu-
als and the I newly generated ones. To build the
population P1 of I individuals for the next genera-
tion, we evaluate the fitness score of P̃0 and then
perform survival selection via the half-elitism strat-
egy (Michalewicz, 1996). In particular, we select
the I

2 with the highest fitness score, while the re-
maining I

2 is sampled via roulette-wheel selection.

5.4 Advantages

Optimizing Eq. 6 via GAs introduces several advan-
tages over selective rationalization based on SGD,
which we discuss in detail.

Disjoint Training. A joint training of the selec-
tive rationalization system based on SGD involves
a dependency between gθ and fω: the quality of a
highlight mask m is also dependent on the quality
of the current employed fω (e.g., good masks may
be evaluated badly if fω has already overfitted to
a previously generated mask). In contrast, the pro-
posed disjoint training allows the optimization of
gθ by searching in the space of parameters that min-
imize Ω, while yielding the highest performance in
classification. More precisely, the fω depends on
gθ, while the opposite does not hold.

Global Search. Population-based search in GAs
reduces the chances of converging towards local
minima, a common issue in optimization indepen-
dently from interlocking. Mutation and crossover
offer two ways to perform local and global search
space, respectively, alleviating the risk of getting
stuck into a local optimum.

Non-differentiable Objective. Differentiable
sampling (e.g., via Gumbel softmax (Jang et al.,
2017)) introduces noise, potentially making the
optimization process of gθ unstable depending on
the chosen sampling hyper-parameters. In contrast,
genetic-based search does not require gradient com-
putation for optimization, ensuring a more robust
training procedure. Additionally, the optimization
objective of GenSPP (Eq. 8) can be designed with-
out defining surrogate losses (Eq. 7). This is a
crucial advantage of GenSPP since it is not subject
to dataset-specific hyperparameter-tuning (e.g., α
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in Ls). In contrast, SGD-based approaches require
heavy fine-tuning to find a reasonable α value.

6 Experimental Settings

We compare GenSPP to several competitors for un-
supervised selective rationalization2 on two bench-
marks. We describe the data, models, and evalu-
ation metrics in detail. See Appendix A for addi-
tional details.

Toy Dataset. We build and release a controlled
toy dataset of random strings. We define three clas-
sification classes, each corresponding to a unique
character-based highlight: aba, baa, abc. We de-
sign highlights to ensure that all their characters
have to be selected in order to determine the cor-
responding class. To avoid degenerate solutions in
which only a portion of the highlight is sufficient
for classification, we contaminate generated strings
with randomly sampled chunks of other class high-
lights. Lastly, we enforce that a single highlight
is contained in each string. Generated strings not
compliant with the aforementioned rules are dis-
carded. We set the generated string length to 20
characters. In total, we generate 10k random strings
and split them into train (6.4k), validation (1.6k),
and test (2k) partitions.

HateXplain Dataset. A dataset of ∼20k En-
glish posts from social media platforms like X and
Gab (Mathew et al., 2021). Each post is annotated
from three different perspectives: hate speech (hate,
offensive, normal), the target community victim of
hate speech, and the rationales which the labeling
decision about hate speech is based on. To account
for annotation subjectivity, each post is annotated
by at least three annotators (Waseem, 2016; Sap
et al., 2022). We notice that annotations vary sig-
nificantly among annotators regarding the number
of selected tokens. This might hinder rationaliza-
tion evaluation since longer highlights might be
preferred. For this reason, we employ a major-
ity voting strategy to merge annotators’ highlights
and identify top relevance tokens. As a side ef-
fect, extracted ground-truth highlights are less co-
hesive. We filter out texts longer than 30 tokens to
reduce the computational overhead. The dataset is
split into train (∼10k), validation (∼1.3k), and test
(∼1.3k) partitions. We consider hate speech as a

2We recall that ground-truth highlights are only used for
model evaluation and not provided as input.

binary classification problem by merging hate and
offensive classes.

Models. We consider the architecture of Yu et al.
(2021) for all models, including ours, described as
follows. An input text x is encoded via a frozen pre-
trained embedding layer. We use one-hot encoding
for Toy and 25-dimension GloVe embeddings (Pen-
nington et al., 2014) pre-trained on Twitter for Hat-
eXplain. The generator gθ comprises a RNN layer
with a dense layer on top for token selection. The
predictor fω comprises a RNN layer followed by a
max-pooling layer and a final linear layer for clas-
sification. We set the RNN layer to a biGRU for
baselines and GRU for GenSPP, respectively. We
consider the following baselines. FR (Liu et al.,
2022), an end-to-end SPP framework using Gum-
bel softmax for discrete mask generation, where
gθ and fω share the same RNN layers. MGR (Liu
et al., 2023b), an SPP framework where multiple
generators are considered to extract distinct high-
lights that are fed to a single predictor. At inference
time, only the first generator is considered since
all generators eventually align on the same mask
m. MCD (Liu et al., 2023c), a guidance-based SPP
framework, where an additional predictor trained
using the original input text x is used to guide se-
lective rationalization towards better highlights. G-
RAT (Hu and Yu, 2024), a recent guidance-based
SPP framework, where an attention-based soft SPP
framework is used as guidance.

Evaluation Metrics. We focus on classification
performance and rationalization quality (Chang
et al., 2019; Yu et al., 2021). Regarding classi-
fication performance, we report macro F1-score
averaged over all classes (Clf-F1). Regarding gen-
erated highlights, we report binary token-level F1-
score (Hl-F1), selection ratio (R), and selection
size (S).

7 Results

We consider two sets of experiments. The first eval-
uates models when trained from scratch to assess
their capability to avoid local minima. The sec-
ond measures how good a method is at recovering
from interlocking. See Appendix B for additional
results.

Benchmark Evaluation. Table 1 reports results.
We observe that GenSPP significantly outperforms
all competitors in selecting high-quality highlights
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Toy HateXplain
Model Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓ Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓
FR 99.78±0.20 54.07±4.02 14.80±0.24 2.96±0.05 72.14±1.12 31.15±2.56 25.55±0.72 3.46±0.11

MGR 99.92±0.04 50.34±11.23 15.05±0.80 3.01±0.16 71.14±1.16 29.38±4.83 25.30±1.04 3.42±0.06

MCD 99.90±0.04 65.70±3.76 15.18±0.17 3.04±0.03 70.37±1.06 27.92±1.66 25.07±1.52 3.50±0.20

G-RAT 99.36±0.82 50.22±7.78 14.81±0.51 2.96±0.10 73.85±1.05 36.17±1.62 24.68±0.86 3.34±0.08

GenSPP (Ours) 99.00±0.25
∗∗76.02±0.64 11.47±0.49 2.29±0.08 69.71±0.40

∗∗42.62±0.73 6.51±0.58 0.75±0.05

Table 1: Benchmark evaluation test results. We report average macro F1-score (Clf-F1) for classification, while
we report binary token-level F1-score (Hl-F1), selection rate (R) and size (S) for rationalization. Best results are
highlighted in bold.
(∗∗) ≤ 0.01 denotes Wilcoxon statistical significance on the best baseline.

Toy HateXplain
Model Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓ Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓
FR 99.85±0.11 58.91±3.18 14.57±0.12 2.91±0.02 71.00±0.76 7.22±2.29 26.85±0.92 3.47±0.08

MGR 97.75±4.25 37.45±12.33 14.99±0.42 3.00±0.08 71.09±1.00 14.45±4.84 27.75±1.36 3.57±0.11

MCD 99.93±0.06 62.94±2.39 15.10±0.66 3.02±0.13 70.93±0.95 13.88±10.13 25.84±1.87 3.46±0.16

G-RAT 99.85±0.14 47.53±12.77 14.56±0.36 2.91±0.07 73.15±0.35 34.33±1.22 25.43±0.87 3.40±0.09

GenSPP (G = 100) 98.93±0.47 70.52±0.15 13.04±0.12 2.60±0.02 67.02±0.57 39.89±0.73 7.45±0.48 0.96±0.05

GenSPP (G = 150) 99.46±0.36
∗∗74.28±0.61 10.11±0.42 1.99±0.04 69.89±0.43

∗∗42.81±0.65 6.74±0.67 0.87±0.07

GenSPPsk (G = 100) 98.74±0.43 63.45±0.36 8.03±0.40 1.58±0.06 66.41±0.35 35.52±0.46 8.17±0.62 1.06±0.07

Table 2: Synthetic skew test set results. We report average macro F1-score (Clf-F1) for classification, while we
report binary token-level F1-score (Hl-F1) and selection rate (R) and size (S) for rationalization. Best results are
highlighted in bold.
(∗∗) ≤ 0.01 denotes Wilcoxon statistical significance on the best baseline.

(+10.3% Hl-F1 in Toy and +6.5% Hl-F1 in HateX-
plain), while reporting comparable classification
performance. Additionally, GenSPP shows reduced
variance across seed runs compared to competitors,
especially in the Toy dataset, where MGR and G-
RAT present notable instability. Regarding high-
light regularization, GenSPP selects highlights that
are more sparse and accurate compared to baseline
models. Interestingly, GenSPP learns to not select
any highlight for negative examples in HateXplain,
while keeping valuable selections for positive ex-
amples, a flexibility that baseline models cannot
achieve since they are subject to satisfy a certain
sparsity threshold. Overall, these results show the
advantage of GenSPP in performing a disjoint opti-
mization problem via genetic-based search to break
interlocking.

Synthetic Skewing. We follow Liu et al. (2022)
and train a skewed gθ for K = 10 epochs using
the classification label as supervision for selecting
the first token x1. To evaluate GenSPP on this
experiment, we include one skewed individual in
the initial population P0, while randomly initial-
izing the remaining individuals. We experiment
with G ∈ [100, 150] since convergence may re-
quire more time due to recombinations with the
skewed individual in the earlier generations. Addi-
tionally, to stress test GenSPP, we consider a more
degenerated setting where we initialize P0 with
variants of the skew individual by adding Gaus-
sian noise. We denote this configuration as Gen-

SPPsk. Table 2 reports results conducted on both
datasets. We observe that G-RAT and MCD are the
best-performing baselines on HateXplain and Toy
datasets, respectively. In general, baseline mod-
els suffer from high variance, showing that these
methods are not able to break the interlocking state
in many seed runs. In contrast, GenSPP recovers
from the degenerated state and outperforms base-
line models, achieving comparable performance to
the one reported in Table 1. In particular, perform-
ing a parameter search with an increased budget
(e.g., G = 150) leads to the best results.

8 Discussion

Computational Comparison. Breaking inter-
locking in GenSPP comes with some limitations.
Intuitively, genetic-based search requires more
computational time than solutions based on SGD
since I predictors are trained at each generation.
On average, a seed run of GenSPP takes ∼36min
in Toy and ∼78min in HateXplain. In contrast, a
seed run for baseline models requires ∼8min and
∼4min, respectively. Nonetheless, we remark on
two aspects regarding our implementation: (i) indi-
viduals are evaluated sequentially, and (ii) we make
use of standard genetic operations for individual
evaluation and selection. More efficient implemen-
tations (e.g., allowing parallel computation of in-
dividuals) and advanced algorithms, such as the
CMA-ES (Hansen and Ostermeier, 2001), can sig-
nificantly reduce convergence time. We leave these
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improvements as future work. This drawback is
mitigated by two main properties of GenSPP. First,
GenSPP has low variance, avoiding, in principle,
multiple seed runs for evaluation. Second, global
search via crossover allows for employing lighter
and yet more efficient models. Compared to com-
petitors, GenSPP has the same size as the smallest
model (i.e., FR), which is 2-4x smaller than other
baselines.

Genetic Search. Genetic search can be more
time-consuming than other approaches like
gradient-based methods. Since scalability issues
are attributable to model complexity (number of
parameters) rather than dataset size, they can be
mitigated via parallel and efficient implementations
(Cantú-Paz and Goldberg, 2000). Model complex-
ity is correlated with task complexity and is of-
ten addressed by increasing model parameteriza-
tion. Genetic-based search can help reduce over-
parameterization. Indeed, we shot that GenSPP
outperforms competitors despite having a smaller
number of parameters, independently of the size of
the dataset. Regarding text length (i.e., the num-
ber of tokens), token-level rationalization has O(n)
time complexity (i.e., time scales linearly with to-
kens). However, we point out that selective rational-
ization for longer sequences is often accomplished
at the sentence level to reduce task complexity (An-
tognini et al., 2021; Hu et al., 2022).

Rationale Evaluation. In comparing models,
sparsity and performance are equally important
(Lei et al., 2016). In particular, there is a pref-
erence for sparser models inspired by studies on
human cognition (Hoefler et al., 2021). The novelty
of GenSPP over gradient-based methods is that it
does not require a specific sparsity threshold. In
contrast, these methods present such a limitation
to avoid unstable training regimes (Chang et al.,
2020). Like gradient-based methods, GenSPP can
be optimized for a certain sparsity threshold (see
Tables 6 and 7). Additionally, GenSPP can be opti-
mized for sparser solutions while maintaining high
accuracy without additional constraints.

9 Conclusions

We have introduced GenSPP, the first selective ra-
tionalization framework that breaks interlocking
via genetic-based search. GenSPP does not re-
quire differentiable surrogate learning objectives,
additional regularization tuning, and architectural

changes. Our results on two benchmarks, a con-
trolled synthetic one that we curate, and a real-
world dataset for hate speech, show the advan-
tage of GenSPP, outperforming several competitors.
Furthermore, our robust evaluation underlines the
increased variance that affects competitors’ models,
a phenomenon that was not sufficiently explored in
selective rationalization. Future research directions
regard exploring more efficient genetic algorithms
and implementations to reduce computational over-
head and scale to more complex neural architec-
tures.

Limitations

Data. This study is based on two datasets, one of
which is synthetic. Some widely adopted datasets
like Hotel Reviews (Wang et al., 2010) and Beer Re-
views (McAuley et al., 2012) could be considered.
However, after a curated analysis, we excluded
these datasets due to (i) data leakage between train,
development and test splits; (ii) limited test set
size (200-800 samples) which limits a robust and
extensive evaluation of models; and (iii) single hu-
man annotations despite rationale selection being
inherently subjective in these tasks. Despite our ef-
forts, we could not find other high-quality datasets
for text classification with a relatively sufficient
number of samples and multiple annotations for ro-
bust evaluation. A broader analysis of GenSPP on
several datasets, including tasks other than text clas-
sification as in the ERASER benchmark (DeYoung
et al., 2020), could strengthen our contribution.

Models. All models follow a specific architec-
ture, which is not the only possible one. Our study
could include other backbone architectures for a
more exhaustive evaluation of selective rationaliza-
tion frameworks. However, while some existing
contributions have explored more complex archi-
tectures like transformers (Hu and Yu, 2024), their
effectiveness is still a matter of debate due to their
sensitivity to interlocking (Liu et al., 2023b, 2024).

Algorithm Implementation. Our GenSPP im-
plementation does not leverage several optimiza-
tions available for genetic algorithms like paral-
lel evaluation of individuals and distributed com-
puting (Cantú-Paz and Goldberg, 2000). Conse-
quently, we observed a notable computational over-
head compared to gradient-based baselines. More
efficient implementations could be considered to
reduce the overhead.
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Task Complexity. The datasets used in this pa-
per presented selective rationalization tasks where
the number of tokens that could be selected is rel-
atively small (up to 30 tokens). More complex
settings could be considered to further corroborate
the advantages of genetic search for selective ra-
tionalization. However, we remark that the aim
of our work is to propose a sound methodology to
solve interlocking, and not to account for the limita-
tions of genetic algorithms in large scale problems,
which deserve a separate study.
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A Experimental Settings

A.1 Data
We report additional details regarding the presented
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Figure 2: Number of contiguous highlights (i.e., con-
nected token groups) in HateXplain.

Toy Dataset. To assess the quality of our toy
dataset, we evaluate string-matching baselines for
selective rationalization. Intuitively, the baseline
that selects the right highlight for each class should
achieve perfect rationalization performance. In con-
trast, other selections should lead to much lower
selection performance. We consider the following
string-matching baselines: {aba, baa, abc}, {abc,
baa, aba}, and {ba, aa, bc}. The baselines achieve
100%, 33.33% and 53.57% Hl-F1 score, respec-
tively.

HateXplain Dataset. Aggregating annotators’
provided highlights via majority voting produces
fragmented highlights. Therefore, the contiguity
constraint Lc may lead to sub-optimal solutions.
We compute the number of contiguous highlights
in each example x to systematically analyze the
impact of our design choice (see Fig. 2). Addition-
ally, we compute the average highlight size and
sparsity percentage. On average, S = 1.57±2.52

which corresponds to R = 0.12±0.17.

A.2 Training Setup

We carry out a repeated train-and-test evaluation
routine using the provided dataset partitions. We
evaluate models in five distinct seed runs. We
consider layer norm (Ba et al., 2016), and early
stopping on validation loss with patience set to 30
epochs as regularization methods. We train models
using batch size 64 and Adam optimizer (Kingma
and Ba, 2015) with learning rate set to 10−3. All
baseline models are trained with SGD following

Eq. 3 as training objective, where Lce is the categor-
ical cross-entropy. We set λs = 1.0 and λc = 2.0
in the Toy dataset, while we set λc = 0 for Hat-
eXplain since highlights are inherently more frag-
mented (Fig. 2). We set the sparsity threshold
α = 0.15 in the Toy dataset. This value of α en-
courages

∑n
i=0m

i = 3, which is the length of all
character-based highlights in the Toy dataset. Con-
versely, we set α = 0.22 in HateXplain based on
training data statistics of ground-truth highlights.

Regarding GenSPP, we set G = 100 and I = 50,
with mutation and crossover probabilities pm =
pc = 1.0 and selection and survival rates psl =
psu = 0.5. We perform mutation by adding a
Gaussian noise sample from N (0.0, 0.05). We
train predictors during the genetic-based search
for 3 epochs with batch size 64 and learning rate
of 10−2. We set evaluation tolerance l + ϵ equal to
0.1 and 0.6 for Toy and HateXplain case studies,
respectively.

A.3 Model Details

Table 3 reports the full list of model hyper-
parameters employed in our experiments, while
Table 4 and Table 5 report model configurations in
Toy and HateXplain datasets, respectively.

A.4 Hardware and Implementation Details

For our experiments, we implemented all baselines
and methods in PyTorch (Paszke et al., 2019), rely-
ing on open-source frameworks like PyTorch Light-
ning (Falcon and The PyTorch Lightning team,
2019). We will release all of the code and data
to reproduce our experiments in an MIT-licensed
public repository. All experiments were run on
a private machine with an NVIDIA 3060Ti GPU
with 8 GB dedicated VRAM.

B Results

We report additional experimental results for each
presented experiment.

Benchmark Evaluation. Table 6 and Table 7 re-
port extensive results conducted on Toy and HateX-
plain datasets, respectively. In addition to baseline
models, we consider a random baseline to assess
the complexity of the rationalization task.

Synthetic Skewing. Table 8 reports synthetic
skew results when considering K ∈ [5, 10, 15, 20].
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Name Description

emb_dim Input embedding dimension
emb_type Pre-trained embedding matrix type
num_classes Number of classification classes

hidden_size Number of units in RNN layers
cell_type Type of RNN layer for encoding
num_generators Number of generators in MGR

λs Coefficient for sparsity regularization Ls

λc Coefficient for contiguity regularization Lc

λkl Kullback-Lieber divergence coefficient in MCD
λjsd Jensen-Shannon divergence coefficient in G-RAT
λg Guider coefficient in G-RAT
pretrain Number of guider pre-training epochs in G-RAT
g_decay Guider regularization decay coefficient in G-RAT
σ Attention noise in guider model in G-RAT
G Number of genetic-based search generations in GenSPP
I Population size in GenSPP
pm Mutation probability in GenSPP
pc Crossover probability in GenSPP
psl Selection probability in GenSPP
psu Survival probability in GenSPP

Table 3: List of hyper-parameters in employed selective rationalize models.

Model General gθ fω Learning

FR
emb_dim: 25
emb_type: 1-hot
num_classes: 3

hidden_size: 8
cell_type: biGRU

hidden_size: 8
cell_type: biGRU

λs: 1.0
λc: 1.0

MGR
emb_dim: 25
emb_type: 1-hot
num_classes: 3

hidden_size: 8
cell: biGRU
num_generators: 3

hidden_size: 8
cell: biGRU

λs: 1.0
λc: 1.0

MCD
emb_dim: 25
emb_type: 1-hot
num_classes: 3

hidden_size: 8
cell_type: biGRU

hidden_size: 8
cell_type: biGRU

λs: 1.0
λc: 1.0
λkl: 1.0

G-RAT
emb_dim: 25
emb_type: 1-hot
num_classes: 3

hidden_size: 8
cell_type: biGRU

hidden_size: 8
cell_type: biGRU

λs: 1.0
λc: 1.0
λjsd: 1.0
λg: 1.0
pretrain: 10
g_decay: 1e−05

σ: 1.0

GenSPP
emb_dim: 25
emb_type: 1-hot
num_classes: 3

hidden_size: 8
cell_type: GRU

hidden_size: 8
cell: GRU

G: 100
I: 50
pm: 1.0
pc: 1.0
psl: 0.5
psu: 0.5

Table 4: Model hyper-parameters for Toy dataset.
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Model General gθ fω Learning

FR
emb_dim: 25
emb_type: GloVe
num_classes: 2

hidden_size: 16
cell_type: biGRU

hidden_size: 16
cell: biGRU

λs: 1.0
λc: 0.0

MGR
emb_dim: 25
emb_type: GloVe
num_classes: 2

hidden_size: 16
cell_type: biGRU
num_generators: 3

hidden_size: 16
cell: biGRU

λs: 1.0
λc: 0.0

MCD
emb_dim: 25
emb_type: GloVe
num_classes: 2

hidden_size: 16
cell_type: biGRU

hidden_size: 16
cell_type: biGRU

λs: 1.0
λc: 0.0
λkl: 1.0

G-RAT
emb_dim: 25
emb_type: GloVe
num_classes: 2

hidden_size: 16
cell_type: biGRU

hidden_size: 16
cell_type: biGRU

λs: 1.0
λc: 0.0
λjsd: 1.0
λg: 2.5
pretrain: 10
g_decay: 1e−05

σ: 1.0

GenSPP
emb_dim: 25
emb_type: GloVe
num_classes: 2

hidden_size: 16
cell_type: GRU

hidden_size: 16
cell: GRU

G: 100
I: 50
pm: 1.0
pc: 1.0
psl: 0.5
psu: 0.5

Table 5: Model hyper-parameters for HateXplain dataset.

Model Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓
FR (α = 0.10) 99.14±1.23 50.23±8.32 9.74±0.47 1.95±0.09

MGR (α = 0.10) 99.56±0.21 40.02±8.90 10.03±0.40 2.01±0.08

MCD (α = 0.10) 99.89±0.05 62.89±2.20 10.12±0.38 2.02±0.08

G-RAT (α = 0.10) 99.42±0.94 50.33±10.34 9.98±0.21 2.00±0.04

FR (α = 0.15) 99.78±0.20 54.07±4.02 14.80±0.24 2.96±0.05

MGR (α = 0.15) 99.92±0.04 50.34±11.23 15.05±0.80 3.01±0.16

MCD (α = 0.15) 99.90±0.04 65.70±3.76 15.18±0.17 3.04±0.03

G-RAT (α = 0.15) 99.36±0.82 50.22±7.78 14.81±0.51 2.96±0.10

Table 6: Test results on Toy when varying sparsity threshold α.

Model Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓
FR (α = 0.10) 70.80±1.15 22.52±14.64 13.02±0.87 1.57±0.07

MGR (α = 0.10) 69.74±1.81 28.13±10.99 13.76±0.58 1.64±0.06

MCD (α = 0.10) 68.52±2.79 21.17±15.03 12.96±0.57 1.65±0.03

G-RAT (α = 0.10) 71.33±1.14 40.40±3.25 13.00±0.50 1.58±0.07

FR (α = 0.16) 71.90±1.47 27.34±13.41 19.31±1.35 2.49±0.12

MGR (α = 0.16) 71.03±0.70 31.57±5.60 20.28±1.25 2.54±0.08

MCD (α = 0.16) 70.03±0.97 25.60±6.98 19.65±0.87 2.60±0.07

G-RAT (α = 0.16) 71.68±1.23 38.45±2.31 19.73±0.78 2.52±0.04

FR (α = 0.22) 72.14±1.12 31.15±2.56 25.55±0.72 3.46±0.11

MGR (α = 0.22) 71.14±1.16 29.38±4.83 25.30±1.04 3.42±0.06

MCD (α = 0.22) 70.37±1.06 27.92±1.66 25.07±1.52 3.50±0.20

G-RAT (α = 0.22) 73.85±1.05 36.17±1.62 24.68±0.86 3.34±0.08

FR (α = 0.28) 73.09±0.75 29.41±1.32 31.08±1.75 4.35±0.14

MGR (α = 0.28) 72.41±0.95 27.03±3.28 31.11±1.72 4.33±0.12

MCD (α = 0.28) 70.26±1.15 25.98±0.76 30.29±0.71 4.34±0.14

G-RAT (α = 0.28) 73.60±0.71 32.20±0.96 31.26±0.80 4.36±0.11

Table 7: Test results on HateXplain when varying sparsity threshold α.

Running Time and Model Size. Table 9 reports
training running time and model size for each se-

lective rationalization evaluated in our experiments.
It is worth noting that for GenSPP, we only report
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Toy HateXplain
Model Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓ Clf-F1 ↑ Hl-F1 ↑ R ↓ S ↓

K
=

5

FR 99.94±0.06 50.32±9.81 14.62±0.32 2.92±0.06 70.86±1.45 14.91±7.50 27.35±1.01 3.48±0.08

MGR 99.08±1.54 41.26±18.58 14.96±0.68 2.99±0.14 72.85±0.77 21.84±9.56 27.62±1.13 3.42±0.12

MCD 99.94±0.04 65.18±5.43 15.12±0.45 3.02±0.09 70.02±1.56 22.72±9.03 25.54±1.32 3.53±0.09

G-RAT 99.20±1.37 46.79±12.37 14.91±0.13 2.98±0.03 73.34±0.34 33.51±1.20 26.31±0.99 3.45±0.11

K
=

1
0 FR 99.85±0.11 58.91±3.18 14.57±0.12 2.91±0.02 71.00±0.76 7.22±2.29 26.85±0.92 3.47±0.08

MGR 97.75±4.25 37.45±12.33 14.99±0.42 3.00±0.08 71.09±1.00 14.45±4.84 27.75±1.36 3.57±0.11

MCD 99.93±0.06 62.94±2.39 15.10±0.66 3.02±0.13 70.93±0.95 13.88±10.13 25.84±1.87 3.46±0.16

G-RAT 99.85±0.14 47.53±12.77 14.56±0.36 2.91±0.07 73.15±0.35 34.33±1.22 25.43±0.87 3.40±0.09

K
=

1
5 FR 99.85±0.15 51.44±10.06 14.90±0.59 2.98±0.12 70.95±1.51 8.21±1.49 25.85±1.54 3.39±0.13

MGR 93.29±11.14 22.10±8.79 15.04±0.48 3.01±0.10 72.35±0.69 10.90±5.51 25.99±1.66 3.42±0.07

MCD 99.91±0.07 62.78±2.01 14.94±0.33 2.99±0.07 69.58±0.81 11.04±8.03 25.37±1.40 3.41±0.06

G-RAT 99.84±0.21 42.84±8.17 14.75±0.47 2.95±0.09 73.55±0.32 33.43±2.25 26.12±1.80 3.36±0.13

K
=

2
0 FR 99.63±0.45 48.51±13.52 14.49±0.36 2.90±0.07 71.30±1.25 8.53±2.21 27.18±0.87 3.54±0.08

MGR 89.05±11.15 18.53±5.19 16.07±0.64 3.21±0.13 71.30±1.11 13.26±4.31 27.31±0.42 3.53±0.11

MCD 99.91±0.08 62.26±2.50 14.80±0.35 2.96±0.07 69.75±1.35 16.58±9.54 26.44±2.40 3.48±0.20

G-RAT 66.95±40.28 29.43±10.21 21.43±8.72 4.29±1.74 73.57±0.55 33.71±1.06 26.53±0.88 3.47±0.07

Table 8: Synthetic skew experiment results when varying skew pre-training epochs K.

fω trainable parameters, which are the only ones
trained during individual evaluation. If we consider
gθ parameters, the GenSPP size equals the one of
FR.
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Model Single (min.) Total (min.) No. Parameters Memory (MB)

Toy

FR 7.41±2.68 38.42 1797 0.010
MGR 8.94±2.67 46.04 7001 0.039
MCD 6.55±0.99 34.07 3477 0.020
G-RAT 8.45±4.08 43.19 6538 0.037
GenSPP ∼36.00 ∼180.00 891 (fω) 0.005

HateXplain

FR 2.52±0.30 13.49 4324 122.0
MGR 3.34±0.13 18.11 17032 480.6
MCD 2.84±0.29 15.11 8452 238.5
G-RAT 4.80±0.43 25.39 16840 475.2
GenSPP ∼78.00 ∼390.00 2098 (fω) 59.2

Table 9: Training running time and model size. We report single seed run running time (Single) and total running
time over five seed runs (Total). Running time is measured in minutes. Additionally, we report the total number of
trainable parameters and memory size.
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