
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 12055–12065
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

DebateCoder: Towards Collective Intelligence of LLMs via Test Case
Driven LLM Debate for Code Generation

Jizheng Chen1, Kounianhua Du1, Xinyi Dai2, Weiming Zhang1,
Xihuai Wang1, Yasheng Wang2, Ruiming Tang2, Weinan Zhang1*, Yong Yu1

1Shanghai Jiao Tong University, 2Huawei Noah’s Ark Lab
Shanghai, China

{humihuadechengzhi,wnzhang}@sjtu.edu.cn

Abstract

With the impressive reasoning and text gen-
eration capabilities of large language models
(LLMs), methods leveraging multiple LLMs
to debate each other have garnered increas-
ing attention. However, existing debate-based
approaches remain limited in effectiveness in
structured and detailed domains represented by
code generation due to several reasons: 1) Re-
liance on different instances of the same LLM
for debate, neglecting the potential benefits of
integrating diverse models with varied internal
knowledge for more comprehensive code gen-
eration, 2) under-utilization of test cases, and
3) reliance on third-party LLM moderators for
result consolidation and decision-making, prob-
ably introducing hallucinations and judgment
errors. To address these challenges, we propose
DebateCoder to collect intelligence of LLMs
via test case-driven debate for code generation.
In DebateCoder, test cases serve as a medium
for models to analyze code and identify bugs,
while opposing models generate test cases to
challenge each other’s code during the debate
process. These test cases, along with their exe-
cution results, are elaborately leveraged to re-
fine and enhance the code through a novel con-
trastive analysis process. Furthermore, Debate-
Coder leverages test case outcomes to assess
code quality and determine convergence crite-
ria. Unlike previous approaches, DebateCoder
emphasizes the collaborative improvement of
both models through competitive debate and
interactive analysis. Abundant experimental
results on two datasets demonstrate the effec-
tiveness of DebateCoder.

1 Introduction

Code generation is a critical yet challenging task
that requires domain-specific knowledge and log-
ical reasoning for continuous problem-solving.
While the development of large language models
(LLMs) has significantly advanced various natural

*Corresponding author.

language processing (NLP) tasks, raw NLP LLMs
often encounter difficulties when addressing pro-
gramming problems that necessitate a deep under-
standing of algorithms and precise code develop-
ment. This challenge arises primarily due to the
inherent differences between the open-ended na-
ture of the NLP domain and the more structured
requirements of code generation domain (Du et al.,
2024). To overcome these limitations, existing ap-
proaches focus on adapting target LLMs to spe-
cialize in the code generation domain. Techniques
such as fine-tuning large language models on ex-
tensive code corpora (Li et al., 2023b; Luo et al.,
2023) or employing inference-time computational
steps are commonly used, where the model itera-
tively refines its written program through repeated
reasoning and search processes to identify more op-
timal solutions (Lu et al., 2023; Shinn et al., 2024).
While these methods have notably enhanced the
code generation capabilities of individual LLMs,
they remain constrained by the limitations inher-
ent to a single model, as its performance is bound
by its internal coding capacity. This restricts the
model’s ability to engage in knowledge sharing or
collaborative interactions with other models.

Recently, there has been a growing body of work
leveraging multiple LLMs in a Mixture-of-Experts
(MoE) framework, with debate-based methods
gaining increasing attention (Liang et al., 2023;
Long et al., 2024; Subramaniam et al., 2024). In a
debate process, typically two or more models en-
gage in a back-and-forth argumentative exchange,
iteratively refining their responses, while a moder-
ator evaluates the arguments and provides a con-
sensus conclusion. While this approach helps over-
come the limitations of a single LLM, when applied
to the code generation domain, several problems
remain unresolved: Firstly, debating models face
challenges in accurately identifying flaws in each
other’s solutions, as two similar pieces of code
may yield vastly different outputs, making it dif-

12055

ficult to pinpoint the underlying issues. Secondly,
the reliance on third-party moderators often intro-
duces errors and biases in judgment, which can
lead to suboptimal final solutions. Thirdly, exist-
ing approaches fail to establish a clear connection
between the generated code and the arguments put
forth during the debate. These methods focus pri-
marily on criticizing or debating the code itself,
without incorporating execution feedback, thereby
limiting opportunities for further solution refine-
ment. Lastly, while test cases are a valuable tool
for validating code correctness, current LLM de-
bate frameworks do not effectively integrate them
into the debate process.

To address the above challenges, in this paper,
we propose DebateCoder, a test case-driven frame-
work that incorporates a dual-model debate process
for code generation. To effectively guide iterative
and comprehensive thinking, DebateCoder refines
the generated code through a competitive and col-
laborative debate process, where each model is en-
gaged in a debate where they critique each other’s
code and then refine their own code through a com-
prehensive contrastive analysis process. To build
the link between code scripts and debate arguments,
during the debate, each model generates test cases
to challenge the other model’s solution. These test
cases are then executed, with the resulting feedback
used to drive the iterative refinement of the code.
This contrasts with traditional methods that rely
either on the internal feedback of a single model or
a third-party moderator to make judgments, which
can often be biased or error-prone.

To harness the collective intelligence of the two
debate sides, DebateCoder fosters mutual improve-
ment through a continuous co-evolutionary process.
Rather than having each model merely “debate” or
critique the other, both models actively participate
in improving each other’s code through targeted
test case generation and execution. By doing so,
DebateCoder effectively leverages the collective
intelligence of both models, making the generated
code more robust and accurate.

Furthermore, DebateCoder avoids the pitfalls of
open-domain debate-based approaches by elimi-
nating the need for a third-party moderator. The
convergence criteria for the debate process are de-
termined solely by the execution results of the test
cases, ensuring that the final code solution is cor-
rect and optimized. This method significantly re-
duces the potential for judgment errors and hal-
lucinations, which are common in existing LLM

debate frameworks.
In summary, our main contributions can be sum-

marized as follows:

• DebateCoder framework. We propose De-
bateCoder, a framework that integrates the col-
lective intelligence of different debate sides
within the code generation domain. To the
best of our knowledge, DebateCoder is the
first framework to combine the intelligence of
both debate sides through an interactive debat-
ing process driven by test case generation.

• Test cases as the medium for debate. We
leverage test case generation as the medium
for the interactive debate, boosting the oppo-
nents to co-evolve through mutual test case
generation and verification.

• Adaptable convergence criteria for code
generation. Instead of relying on a third-party
moderator, we use test case execution results
to re-determine the convergence criteria for
the debate process. Extensive Experimental
results also validate the effectiveness of the
DebateCoder framework.

2 Related Work

2.1 LLM for Code Generation

Large language models (LLMs) have gained
widespread application in code generation domain
due to their impressive abilities in both coding and
reasoning. Current approaches can be generally
categorized into three main groups: the first type
involves fine-tuning pre-training LMs on extensive
code corpora to enhance the models’ understanding
of code (Luo et al., 2023; Li et al., 2023b; Fried
et al., 2022; Roziere et al., 2023; Bi et al., 2024;
Hui et al., 2024). Due to high computational costs
and scarcity of specialized training datasets, an-
other line of work apply tuning-free methods like
few-shot learning (Wang et al., 2022; Madaan et al.,
2022) and retrieval-augmented generation (RAG)
(Nashid et al., 2023; Du et al., 2024), which intro-
duce domain knowledge into the model through
external knowledge bases or prompts. A third line
of work focuses on enhancing the model’s internal
reasoning process. Techniques such as Chain-of-
Thought (CoT) (Yang et al., 2024b; Jiang et al.,
2024; Li et al., 2023a), Tree-of-Thought (ToT) (Yao
et al., 2024; La Rosa et al., 2024), and Monte Carlo
Tree Search (MCTS) (Li et al., 2024; Zhang et al.,

12056

2023; Hu et al., 2024; Hao et al., 2023) are used to
guide the model’s problem-solving process. Other
work prompts the model through a self-play pro-
cess to reflect on previously generated contents to
learn from itself (Haluptzok et al., 2022; Chen et al.,
2023a; Lu et al., 2023; Chen et al., 2023b; Madaan
et al., 2024; Shinn et al., 2024), or generates test
cases as extra supervision signal (Chen et al., 2022;
Huang et al., 2023). Despite achieving promising
results, these models primarily focus on the rea-
soning process of a single model, overlooking the
potential of leveraging the mutual intelligence of
different models to further enhance performance in
the code generation domain, which is the focus of
this work.

2.2 Multi-Agent Debate for Reasoning

Multiple large models engaging in interactive de-
bate can combine their respective arguments to
push the system’s performance limits (Lang et al.,
2025). For instance, MAD (Liang et al., 2023)
introduces a debate scenario with a moderator
LLM guiding the models to provoke new think-
ing through a clash of viewpoints. MEP (Long
et al., 2024) applies multiple models playing dif-
ferent roles and integrates their outputs, MapCoder
(Islam et al., 2024) leverages multiple LLMs to
emulate the developing cycle of human develop-
ers, while DebateGPT (Subramaniam et al., 2024)
allows models to summarize each other’s perspec-
tives and perform data cleaning to ensure high-
quality reasoning. DebateLLM (Du et al., 2023)
iterates the models through the exchange of view-
points. Existing work focuses on stubborn debate
with a moderator in open domain, overlooking the
collective improvement through a mutual promo-
tion during the debate. In this paper, we focus on
enhancing the debate process in code generation
domain via comprehensive and collaborative model
interaction driven by test cases.

3 Methodology

The framework of our proposed DebateCoder is
illustrated in Figure 1. Our design has the following
five key stages. Detailed prompts of each stage can
be found in Figure 5 in the appendix part.

3.1 Zero-shot Solution Generation

In this stage, each model independently generates
an initial solution to the given programming prob-
lem, which can be formulated as:

CA =MA(Pzeroshot(Q)),

CB =MB(Pzeroshot(Q)),

where Q is the problem description, Pzeroshot de-
notes the zero-shot prompt construction process.
M(·) represents LLM generation, and C(·) is the
generated code.

3.2 Self-Evolvement

The description section of a programming prob-
lem typically provides a certain number of sample
test cases. These sample test cases may fail the
zero-shot solutions, and thus can be leveraged for
code refinement. In order to help both models
identify and overcome shortcomings in their ini-
tial solutions, each model independently refines its
zero-shot solution by leveraging these example test
cases through self-evolvement.

Specifically, corresponding inputs and outputs
are extracted from sample test cases. The initial
solutions (CA and CB) generated in the zero-shot
stage are executed against these test cases. Then the
result pairs are collected for error analysis, where
both debate models analyze the discrepancies be-
tween expected outputs and generated outputs for
each failed test case.

Based on insights from the error analysis, each
model generates an updated solution by incorpo-
rating feedback from the failed test cases into the
solution refinement prompt. This results in the
improved solutions, C∗

A and C∗
B .

3.3 Test Case Generation

The test case generation stage is a pivotal com-
ponent of the DebateCoder framework, bridging
the interactive refinement of solutions between the
models. In this stage, each model generates test
cases targeted at challenging the correctness and
robustness of the opposing model’s solution. Con-
cretely, this stage consists of three sub-steps.

• Problem analysis. Each model is prompted to
compare the opposing model’s solution with its
own refined solution from the self-evolvement
stage, aiming to identify areas where the oppos-
ing solution might fail.

• Test case construction. Using insights from
problem analysis, each model generates a test
case specifically designed to highlight poten-
tial weaknesses or edge cases in the opposing
model’s solution, which can be formulated as:

12057

Code A'

Test case B2A

Model A

Model B

Code A

Code B

Problem

A. Zero-shot
Solution Generation

Code A*

Code B*

B. Self-Evolvement

Test case A2B

C. Test Case
Generation

Python
Executor

D. Test Case
Execution

Contrastive

Analysis
Result B Code B'

E. Solution Update

Result A

Figure 1: Framework overview. DebateCoder employs an iterative refinement to improve code generation by
leveraging two models in a collaborative and competitive debate process via five key stages (marked as A to E).

TA2B =MA(Ptestcase(Q,C∗
B, IB)),

TB2A =MB(Ptestcase(Q,C∗
A, IA)),

where Q is the problem description, C∗
A

and C∗
B are the refined solutions from the

self-evolvement stage, Ptestcase represents the
prompt construction for test case generation, I(·)
denotes insight from problem analysis process,
and TA2B and TB2A are the test cases generated
by Models A and B to challenge each other.

The generated test case is capsulated in a JSON
format dictionary, with "Input" as the key and
the test case string as the value.

• Test case validation. To ensure that generated
test cases are logically consistent with the prob-
lem constraints and can be completely executed
on the challenger model’s solution, they are veri-
fied for validity. Specifically, we check the out-
put information of TA2B on C∗

A and TB2A on
C∗
B . If an error is reported, a correction process

is conducted to regenerate the test cases.

By encouraging models to challenge each other via
executable test cases, DebateCoder drives iterative
refinement with actionable feedback.

3.4 Test Case Execution
To ensure that during the debate the models effi-
ciently leverage previously generated test cases and
achieve incremental performance improvements, in
every iteration epoch, the test case from the op-
posing debate model along with execution results
on the challenger’s solution is stored in a test case
pool. The whole process can be formulated as:

ResA = Exe(C∗
B, InputB2A),

ResB = Exe(C∗
A, InputA2B),

poolA ← ⟨InputB2A, ResA⟩,
poolB ← ⟨InputA2B, ResB⟩,

where pool(·) is the memory pool to store test cases
raised by opposing debate model, Input(·) and
Res(·) denote test case input and corresponding
execution results. Exe is the Python executor.

3.5 Solution Update
In this stage, each model integrates insights from
test case execution to improve its solution, lead-
ing to progressively more robust generation results,
which can be decomposed into two sub-stages:

• Error analysis. Each model examines the dis-
crepancies between the execution results of both
models’ solutions on the opposing model’s test
cases. This process is done using a novel con-
trastive analysis approach, in which each model
is additionally given the opposing model’s so-
lution and execution results. Then, the model
aims to comprehensively compare the execution
results and logic differences between the two
pieces of code, and perform error analysis based
on this. Through this step, our framework not
only identifies weaknesses but also learns from
the strengths in the counterpart’s code and gener-
ates targeted test cases.

• Solution refinement. Using the error analysis
results, each model generates specific feedback
on how its solution can be improved. Then, by
incorporating the feedback derived from the test
cases and execution results, each model updates
its solution. The refined solutions C ′

A and C ′
B

are expected to correct the identified issues, en-
hancing robustness against edge cases introduced
by the opposing model. The process can be math-
ematically expressed as:

C ′
A =MA(Prefine(Q,TB2A, ResA, IA)),

C ′
B =MB(Prefine(Q,TA2B, ResB, IB)),

where Prefine represents the prompt for solution

12058

refinement, TB2A and TA2B are test cases gener-
ated by the opposing models, ResA and ResB
are execution results, and C ′

A and C ′
B denote the

updated solutions.

3.6 DebateCoder: Convergence Criteria
Different from previous work where a moderator
LLM is used to determine the termination of debate,
we split dataset test cases into public and private
test cases by half, and leverage the following con-
vergence criteria to determine whether to stop at
the end of each debate epoch:

• Maximum iteration limit. The process halts
if the number of iterations exceeds a predefined
maximum threshold.

• Complete validation pass. The process stops
immediately if both solutions pass all test cases
in the public test case set, demonstrating robust-
ness and correctness.

• Public set performance. If performance on the
public test case set improves, the refined solu-
tions are retained. If performance deteriorates,
an early stopping mechanism is triggered where
the refinement process is stopped when the solu-
tions show repeated performance degradation on
the public set for a predefined number of epochs.

4 Experiment

In this section, we conduct a series of experiments
to answer the following research questions (RQs):

RQ1 How does our proposed DebateCoder per-
form against the baselines?

RQ2 What is the trend of the model’s performance
with a different number of debate epochs?

RQ3 Is DebateCoder compatible with open-source
large language models?

RQ4 Do generated test cases and convergence cri-
teria bring performance gain, realizing the
collective intelligence of debate sides?

RQ5 What is the concrete difference between typ-
ical debate-based methods and DebateCoder
in code generation domain?

4.1 Setup
4.1.1 Datasets
We evaluate DebateCoder and the competing meth-
ods on the popular benchmark datasets APPS

(Hendrycks et al., 2021) and CodeContest (Li et al.,
2022). APPS dataset has three levels of difficulties,
namely introductory, interview, and competition,
and the first 100 problems in each level are used
for evaluation. For CodeContest dataset, we split
the test problems into basic and advanced levels
according to their difficulty tags, getting over 100
basic problems and around 60 advanced problems.
Following previous works (Austin et al., 2021;
Chen et al., 2021; Dong et al., 2023), pass rate and
pass@1 are used as the evaluation metric for code
generation correctness, where pass rate represents
the average percentage of private test cases that
the generated programs pass across all problems,
while pass@1 indicates the percentage of problems
in which the generated programs successfully pass
all private test cases.

4.1.2 Baselines
We compare with a series of competitive meth-
ods to validate the effectiveness of our pro-
posed DebateCoder, including methods that in-
volve self-refinement and iterative reasoning: self-
play (Madaan et al., 2022), Reflexion (Shinn et al.,
2024), CoT (Yang et al., 2024b), and two debate-
based methods: MEP (Long et al., 2024), MAD
(Liang et al., 2023) along with code generation
methods CodeT (Chen et al., 2022), LDB (Zhong
et al., 2024) and AgentCoder (Huang et al., 2023).

4.1.3 Implementation
We select Claude-3.5-sonnet and GPT-4o-mini as
the two opposing backbones of debate. For the
debate-based methods, MEP, MAD, and Debate-
Coder, the number of maximum debate epochs is
set to 10. We adjust the prompt for MEP and MAD
to fit the code generation task. We split half of the
problem test cases as the public test cases for con-
vergence criteria, following the settings in previous
work (Li et al., 2024; Chen et al., 2022), and use
the other half as a private set.

4.2 Overall Performance (RQ1)
In this section, we compare our proposed Debate-
Coder with various code generation baseline mod-
els. Their performance is listed in Table 1. Our
code is available1.

From the results, one can observe that: (1) De-
bateCoder outperforms all the baseline models,
demonstrating the effectiveness of our proposed de-
bate framework that leverages test case generation

1https://github.com/Otsuts/DebateCoder

12059

Table 1: Major results. For each backbone, the best result(s) are marked in bold, and the second best result(s) are
underlined. Each method is run over three times to get the best result for a fair comparison.

APPS CodeContest
Arch Method Pass Rate Pass@1 Pass Rate Pass@1

Intro. Inter. Comp. Intro. Inter. Comp. Basic Advance Basic Advanced

claude-3.5-sonnet

zero-shot 0.6456 0.6297 0.4816 0.4500 0.4200 0.3300 0.4990 0.4664 0.3750 0.2581
self-play 0.7756 0.7463 0.5316 0.5700 0.5400 0.3500 0.5085 0.4871 0.3882 0.3871
Reflexion 0.7719 0.7417 0.5403 0.5100 0.5300 0.3500 0.5396 0.5314 0.3975 0.3838
MAD 0.7487 0.7099 0.4933 0.5000 0.4500 0.3600 0.5186 0.5078 0.3906 0.3188
MEP 0.7568 0.7358 0.4983 0.5200 0.4500 0.3400 0.5107 0.5056 0.3856 0.3281
zero-shot CoT 0.6710 0.6363 0.5025 0.4900 0.4800 0.3700 0.5086 0.4945 0.3862 0.3614
CodeT 0.6777 0.6584 0.5000 0.4600 0.4500 0.3200 0.5587 0.5621 0.4521 0.4186
LDB 0.6815 0.6242 0.5267 0.5400 0.5500 0.3900 0.6017 0.5141 0.5323 0.4419
AgentCoder 0.7560 0.7258 0.5283 0.5100 0.4800 0.3300 0.5500 0.5603 0.4052 0.3593
DebateCoder 0.7932 0.7736 0.5681 0.5700 0.5500 0.4100 0.6174 0.6003 0.5620 0.4688

gpt-4o-mini

zero-shot 0.5773 0.5780 0.3467 0.2900 0.2900 0.1600 0.3028 0.2814 0.1830 0.1250
self-play 0.6419 0.6882 0.4006 0.3700 0.4300 0.2000 0.3850 0.3511 0.2434 0.1452
Reflexion 0.6381 0.6352 0.3833 0.4000 0.4100 0.1800 0.3381 0.2871 0.1908 0.1625
MAD 0.5591 0.6479 0.3488 0.3800 0.3200 0.1900 0.3366 0.2942 0.2157 0.1406
MEP 0.6181 0.6080 0.3600 0.3900 0.3200 0.1600 0.3499 0.2879 0.2449 0.1450
zero-shot CoT 0.5580 0.5360 0.3387 0.3900 0.3400 0.1500 0.3437 0.3149 0.2222 0.1416
CodeT 0.6187 0.5798 0.3933 0.4500 0.3300 0.1800 0.4049 0.3671 0.3168 0.2500
LDB 0.6011 0.5765 0.3800 0.4200 0.4100 0.1600 0.3065 0.3352 0.2093 0.1628
AgentCoder 0.6368 0.5805 0.3566 0.3800 0.3300 0.1600 0.3833 0.2926 0.2007 0.1875
DebateCoder 0.7236 0.6980 0.4457 0.4500 0.4300 0.2000 0.4556 0.3920 0.3856 0.2500

for flaw detection and code refinement. (2) Among
the baseline models, self-play, CodeT and LDB
achieve the best performance in most settings, indi-
cating that iterative self-reflection driven by gener-
ated test cases provides valuable feedback that sig-
nificantly boosts model performance. However, our
model incorporates a process where the two mod-
els engage in mutual debate and co-improvement
based on the test cases, leading to better results.
(3) Our method also surpasses the debate-based
method MEP and MAD in open domains, suggest-
ing that DebateCoder is better suited for the code
generation domain.

4.3 Performance Change Over Debate Epochs
(RQ2)

In this section, we study the performance gain over
every epoch of the whole debate process on the
APPS dataset. We record the average debate epochs
before the debate terminates in Table 2.

Table 2: Average debate epochs.

APPS(Intro.) APPS(Inter.) APPS(Comp.)

Average Epochs 2.01 2.04 1.54

Based on this, we plot the pass rate change
curves of both debate models across each epoch
in Figure 2. Since the performance of both sides
converges in the later rounds, we only recorded the
performance trends for the first 6 epochs. Due to
space limitations, the specific data is presented in

Performance Change Over Debating Epochs on APPS Dataset

Epochs
zero-shot self-evolvement 1 2 3 4 5 6

0.8

0.7

0.6

0.5

0.4

Pa
ss
R
at
e

claude-3.5-sonnet (Intro.)
claude-3.5-sonnet (Inter.)
claude-3.5-sonnet (Comp.)

gpt-4o-mini (Intro.)
gpt-4o-mini (Inter.)
gpt-4o-mini (Comp.)

Intro. Average Epoch
Inter. Average Epoch
Comp. Average Epoch

Figure 2: Performance change over debate epochs.

Table 4 in the appendix part.
From the table and figure, it can be seen that De-

bateCoder demonstrates good convergence, with
performance stabilizing around the first two debate
epochs. Furthermore, one can observe that through
self-evolvement, the debate models can learn from
the visible high-quality sample test cases, result-
ing in stable performance improvements. Building
on this, our model can continue to achieve steady
performance growth through test case generation,
even without additional visible test cases.

4.4 Compatibility Study (RQ3)

In this section, we implement DebateCoder based
on two open source LLMs, Qwen-32b-Instruct
(Yang et al., 2024a) and Yi-34b-Chat (Young et al.,
2024), and compare them with baselines mentioned

12060

in Section 4.1.2 on APPS dataset.

Table 3: Performance of open-source models on APPS.
For each backbone, the best result(s) are marked in bold,
and the second best result(s) are underlined.

APPS
Arch Method Pass Rate Pass@1

Intro. Inter. Comp. Intro. Inter. Comp.

Qwen-32b-
Instruct

zero-shot 0.6295 0.5348 0.3317 0.4300 0.2300 0.1600
self-play 0.7677 0.7134 0.3633 0.4800 0.4300 0.1800
Reflexion 0.5937 0.5600 0.3750 0.4700 0.3600 0.2100
MAD 0.6337 0.5506 0.3535 0.4400 0.2500 0.1600
MEP 0.7113 0.5624 0.3788 0.4400 0.2900 0.1800
CodeT 0.6336 0.6089 0.3750 0.4500 0.3500 0.1900
LDB 0.6329 0.5831 0.3300 0.4500 0.4700 0.2000
AgentCoder 0.6553 0.6186 0.3850 0.4300 0.3500 0.2200
DebateCoder 0.7709 0.7176 0.3983 0.4900 0.4900 0.2300

Yi-34b-Chat

zero-shot 0.3968 0.3813 0.2650 0.2400 0.1800 0.1200
self-play 0.5309 0.5710 0.3000 0.3400 0.3300 0.1600
Reflexion 0.4868 0.4863 0.3022 0.3000 0.2700 0.1600
MAD 0.4340 0.5129 0.2245 0.2700 0.2200 0.0900
MEP 0.4632 0.5264 0.2837 0.2900 0.2700 0.1400
CodeT 0.4270 0.5121 0.2950 0.2500 0.2600 0.1500
LDB 0.4464 0.4352 0.2283 0.2700 0.2600 0.1200
AgentCoder 0.5177 0.5080 0.2483 0.3500 0.3000 0.1300
DebateCoder 0.6689 0.6750 0.3216 0.4400 0.3400 0.1800

From the experimental results, it can be seen
that DebateCoder achieves the best performance,
surpassing all baseline models. This demonstrates
that the performance of our model is independent of
the base model and exhibits robustness, verifying
the effectiveness of DebateCoder.

4.5 Ablation Study (RQ4)

In this section, we conduct ablation experiments
to evaluate the effectiveness of each component of
DebateCoder. We modify the proposed framework
into a series of variants, as outlined below:

• Best-of-N (①). The backbone large language
model is prompted to perform N iterations of
zero-shot code generation, and the best result
will be selected as the final score.

• DebateCoder-Same (②). The same backbone
model is used for both debate sides, with all
other settings remaining unchanged.

• DebateCoder-Moderator (③). Similar to
MAD (Liang et al., 2023), a third-party mod-
erator is introduced to assess the quality of
responses from both debate models in each
round and provide the final refined code.

• DebateCoder-Explain (④). The test case
generation component from the original
framework is replaced with direct analysis and
refinement of the generated code.

We compare the variants with our proposed De-
bateCoder mentioned in Section 3, denoted here as
DebateCoder-Testcase (⑤). Results are presented

in Figure 3. The following conclusion can be drawn
from the results:

2
1

APPS-intro. APPS-inter. APPS-comp.

APPS-intro. APPS-inter. APPS-comp.

Pa
ss
@
1

claude-3.5-sonnet

claude-3.5-sonnet claude-3.5-sonnet

claude-3.5-sonnet claude-3.5-sonnet

claude-3.5-sonnet

gpt-4o-mini

gpt-4o-mini gpt-4o-mini

gpt-4o-mini gpt-4o-mini

gpt-4o-mini

Pa
ss
R
at
e

0.1-
0.2-

0.0-

0.3-
0.4-
0.5-
0.6-
0.7-
0.8- 0.8-

0.7-
0.6-
0.5-
0.4-
0.3-
0.2-
0.1-
0.0-

Pa
ss
R
at
e

0.6-

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

Pa
ss
R
at
e

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

0.5-

0.4-

0.3-

0.2-

0.1-

0.0-

Pa
ss
@
1

0.4-

0.3-

0.2-

0.1-

0.0-

Pa
ss
@
1

zero-shot
Best-of-N

DebateCoder-Same
DebateCoder-Moderator

DebateCoder-Explain
DebateCoder-Testcase

4
53

Figure 3: Ablation study: performance of variants of
DebateCoder.

Impact of DebateCoder’s debate paradigm
(①,② VS ⑤). Although the claude-3.5-sonnet
model outperforms gpt-4o-mini in code capabili-
ties, when both debate sides are switched to claude-
3.5-sonnet, the performance of DebateCoder actu-
ally decreases. This suggests that different models
possess distinct internal knowledge of code-related
problems. DebateCoder effectively integrates and
promotes the knowledge of these models, achieving
the effect of collective intelligence. Similarly, our
approach also outperforms multiple generations
that rely on previously generated outputs. This
demonstrates that the framework is well-suited for
code generation tasks.

Impact of test cases (④ VS ⑤). One can ob-
serve that the use of test cases further improves the
model’s performance, indicating that the approach
of DebateCoder, which uses generated test cases
to identify issues in the opponent’s code and re-
fines the code based on feedback from test case
execution, is effective.

Impact of the third-party moderator (③ VS
⑤). Existing debate-based methods mainly rely
on a third-party moderator model to evaluate re-
sponses and summarize issues from both sides.
However, as shown in the figure, DebateCoder
achieves better results by using test case execu-
tion results to determine convergence conditions
and control the number of debate rounds.

4.6 Case Study (RQ5)

Existing debate-based methods are primarily
applied in open-domain knowledge question-
answering tasks, where the debate models identify
overlooked or erroneous flaws in previously gener-
ated results through rebuttal processes, and a third-

12061

Affirmative
Side

Moderator

Affirmative
Side

Question:You are given a sequence consisting of n integers. You are making a sequence of moves. During each move you must take either
the leftmost element of the sequence or the rightmost element of the sequence, write it down and remove it from the sequence. Your task is to
write down a strictly increasing sequence, and among all such sequences you should take the longest as the final result.

1. This problem can be solved using dynamic programming.
I will give my solution: <Generated code>.

2. This solution is incorrect for the given problem. The key
issue is that we can only take elements from either end
of the sequence (leftmost or rightmost), not from any
position. Let me propose a correct solution: <New code>
This solution:
(1) Uses a recursive approach to try all possible
combinations of taking elements from the left or right.
(2) <Other points of improvements>

3. I agree that we can only take elements from the ends of
the sequence. However, I believe we can optimize your
solution using dynamic programming to avoid the expon-
ential complexity of recursion. Here's my proposed
solution: <New code>
Key improvements over your solution: <Points of
improvements>

4. The negative side's solution is superior for the following
reasons: 1. Time Complexity: The negative side's solution
uses dynamic programming with O(n^3) complexity, which
is significantly better than the affirmative side's exponential
O(2^n) recursive solution. 2. Memory Efficiency: Although
it uses more memory for the DP table, it's still polynomial
O(n^3) and won't cause stack overflow issues like the
recursive solution might for large inputs. 3. Scalability: The
DP solution can handle larger test cases more efficiently,
making it more practical for real-world use. Final Code:
<Final Code>

1. Here's my current solution: <Generated code>

2. Here's my current solution: <Generated code>

4. A test case that fails your code:{"Input": "4\n2 1 1 2\n"}

3. Deficiencies in the current solution: The current solution
uses dynamic programming to solve the problem. However,
there are a few issues with the implementation: <Issues>

5. Summary of Deficiencies in the Current Solution
(1) Handling Duplicates: The current solution does not
handle cases where there are duplicate numbers correctly.
In the provided test case , the correct output
should......
 (2) Inefficiency with Multiple Valid Paths:
(3) Complex Logic:

6. A test case that will fail your code: {'Input': '4\n1 2 3 3'}

7. Advice and improved code: <New code with advice>

8. Advice and improved code: <New code with advice>

Negative
Side

Model A

Model A

Model A

Model A

Model B

Model B

Model B

Model B

a. Stubborn debating w/ a third-party moderator
b. DebateCoder:

Test case driven debating w/o moderator

Figure 4: Case study of MAD and DebateCoder on a dynamic programming problem of APPS. Key points of model
response are underlined.

party moderation model is introduced to evaluate
the outcomes. This paradigm, however, has the
following issues when adapted to code generation
domain: (1) a lack of effective mechanisms to deter-
mine the correctness of code and obtain execution
results, making it difficult to accurately identify
flaws in the opponent’s code; (2) the third-party
moderator model suffers from judgment biases and
hallucination problems. These issues result in poor
performance when such methods are adapted to the
code generation domain.

In this section, to reveal the core difference be-
tween the typical debate-based method and Debate-
Coder, we use a case study comparing the detailed
behavior of the open-domain debate-based method
MAD and DebateCoder on a specific programming
problem. The problem descriptions and model re-
sponses are summarized in Figure 4.

It is evident that in MAD, the debate sides iden-
tified issues with the dynamic programming imple-
mentation (Response 2) and the algorithm’s time
complexity (Response 3). However, they failed to

detect the primary error in the code (incorrect input
data handling), leading to an incorrect result. In
contrast, DebateCoder identified the error in input
data handling (Response 5) through the execution
results of generated test cases (Response 4) and
constructed targeted test cases (Response 6). The
final modified result successfully passed most data
points. This validates the effectiveness of Debate-
Coder in the code generation domain.

5 Conclusion
In this paper we propose DebateCoder, a test case-
driven framework for code generation that employs
dual-model debate for code generation. By utiliz-
ing test cases for models to critique and refine each
other’s code, DebateCoder integrates the collective
intelligence of different debate sides and addresses
the limitations of typical debate-based methods,
ensuring both correctness and optimization of gen-
erated code. Experiment results highlight the po-
tential of DebateCoder to improve the reliability
and efficiency of code generation tasks.

12062

Acknowledgements

The Shanghai Jiao Tong University team is par-
tially supported by National Key R&D Pro-
gram of China (2022ZD0114804), Shanghai Mu-
nicipal Science and Technology Major Project
(2021SHZDZX0102) and National Natural Science
Foundation of China (62322603, 62177033).

Limitations

While DebateCoder introduces a novel test case-
driven approach for large language model (LLM)
debate in code generation, certain limitations re-
main that could be addressed in future research:

Restricted to Two-Model Debate Our current
framework focuses on the debate between two
LLMs, leveraging their complementary knowledge
to refine code generation. However, extending the
debate to a multi-agent setting, where more than
two models with varying architectures or training
paradigms engage in a structured discussion, could
further enhance the robustness and coverage of
edge cases.

Debating Granularity: Code-Level vs. Thought-
Level DebateCoder emphasizes debating over en-
tire generated code snippets, with test cases serv-
ing as the primary medium for critique. While
effective, this approach does not explicitly model a
thought-level debate process, where models criti-
cally analyze intermediate reasoning steps before
arriving at a final code solution. Introducing step-
wise thought validation and thought-level debate
could provide finer-grained feedback and improve
overall reasoning capabilities.

Lack of Adaptivity Through Learning Debate-
Coder currently operates purely during inference
time, without mechanisms for parameter updates.
As test case results are non-differentiable, the
framework does not support end-to-end gradient-
based learning. Future extensions could investigate
how to incorporate reinforcement learning tech-
niques to enable adaptive improvement over time
by using test outcomes as reward signals.

These limitations highlight areas where Debate-
Coder can evolve. We believe that addressing them
could further enhance the framework’s adaptability
and effectiveness across various structured reason-
ing tasks.

References
Jacob Austin, Augustus Odena, Maxwell Nye, Maarten

Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, et al. 2024. Deepseek llm: Scal-
ing open-source language models with longtermism.
arXiv preprint arXiv:2401.02954.

Bei Chen, Fengji Zhang, Anh Nguyen, Daoguang Zan,
Zeqi Lin, Jian-Guang Lou, and Weizhu Chen. 2022.
Codet: Code generation with generated tests. arXiv
preprint arXiv:2207.10397.

Kai Chen, Chunwei Wang, Kuo Yang, Jianhua Han,
Lanqing Hong, Fei Mi, Hang Xu, Zhengying Liu,
Wenyong Huang, Zhenguo Li, et al. 2023a. Gain-
ing wisdom from setbacks: Aligning large lan-
guage models via mistake analysis. arXiv preprint
arXiv:2310.10477.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming
Yuan, Henrique Ponde De Oliveira Pinto, Jared Ka-
plan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and
Denny Zhou. 2023b. Teaching large language mod-
els to self-debug. arXiv preprint arXiv:2304.05128.

Yihong Dong, Jiazheng Ding, Xue Jiang, Ge Li, Zhuo
Li, and Zhi Jin. 2023. Codescore: Evaluating
code generation by learning code execution. arXiv
preprint arXiv:2301.09043.

Kounianhua Du, Renting Rui, Huacan Chai, Lingyue
Fu, Wei Xia, Yasheng Wang, Ruiming Tang, Yong
Yu, and Weinan Zhang. 2024. Codegrag: Ex-
tracting composed syntax graphs for retrieval aug-
mented cross-lingual code generation. arXiv preprint
arXiv:2405.02355.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B Tenen-
baum, and Igor Mordatch. 2023. Improving factual-
ity and reasoning in language models through multia-
gent debate. arXiv preprint arXiv:2305.14325.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Wen-tau Yih,
Luke Zettlemoyer, and Mike Lewis. 2022. Incoder:
A generative model for code infilling and synthesis.
arXiv preprint arXiv:2204.05999.

Patrick Haluptzok, Matthew Bowers, and Adam Tauman
Kalai. 2022. Language models can teach themselves
to program better. arXiv preprint arXiv:2207.14502.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.
Reasoning with language model is planning with
world model. arXiv preprint arXiv:2305.14992.

12063

Dan Hendrycks, Steven Basart, Saurav Kadavath, Man-
tas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, et al. 2021.
Measuring coding challenge competence with apps.
arXiv preprint arXiv:2105.09938.

Zhiyuan Hu, Chumin Liu, Xidong Feng, Yilun Zhao,
See-Kiong Ng, Anh Tuan Luu, Junxian He, Pang Wei
Koh, and Bryan Hooi. 2024. Uncertainty of thoughts:
Uncertainty-aware planning enhances information
seeking in large language models. arXiv preprint
arXiv:2402.03271.

Dong Huang, Qingwen Bu, Jie M Zhang, Michael Luck,
and Heming Cui. 2023. Agentcoder: Multi-agent-
based code generation with iterative testing and opti-
misation. arXiv preprint arXiv:2312.13010.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Md Ashraful Islam, Mohammed Eunus Ali, and
Md Rizwan Parvez. 2024. Mapcoder: Multi-agent
code generation for competitive problem solving.
arXiv preprint arXiv:2405.11403.

Xue Jiang, Yihong Dong, Lecheng Wang, Zheng Fang,
Qiwei Shang, Ge Li, Zhi Jin, and Wenpin Jiao. 2024.
Self-planning code generation with large language
models. ACM Transactions on Software Engineering
and Methodology, 33(7):1–30.

Ricardo La Rosa, Corey Hulse, and Bangdi Liu. 2024.
Can github issues be solved with tree of thoughts?
arXiv preprint arXiv:2405.13057.

Hao Lang, Fei Huang, and Yongbin Li. 2025. De-
bate helps weak-to-strong generalization. Preprint,
arXiv:2501.13124.

Jia Li, Ge Li, Yongmin Li, and Zhi Jin. 2023a. Struc-
tured chain-of-thought prompting for code genera-
tion. ACM Transactions on Software Engineering
and Methodology.

Qingyao Li, Wei Xia, Kounianhua Du, Xinyi Dai, Ruim-
ing Tang, Yasheng Wang, Yong Yu, and Weinan
Zhang. 2024. Rethinkmcts: Refining erroneous
thoughts in monte carlo tree search for code gen-
eration. arXiv preprint arXiv:2409.09584.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc
Marone, Christopher Akiki, Jia Li, Jenny Chim, et al.
2023b. Starcoder: may the source be with you!
arXiv preprint arXiv:2305.06161.

Yujia Li, David Choi, Junyoung Chung, Nate Kush-
man, Julian Schrittwieser, Rémi Leblond, Tom Ec-
cles, James Keeling, Felix Gimeno, Agustin Dal
Lago, Thomas Hubert, Peter Choy, Cyprien de Mas-
son d’Autume, Igor Babuschkin, Xinyun Chen, Po-
Sen Huang, Johannes Welbl, Sven Gowal, Alexey
Cherepanov, James Molloy, Daniel J. Mankowitz,

Esme Sutherland Robson, Pushmeet Kohli, Nando
de Freitas, Koray Kavukcuoglu, and Oriol Vinyals.
2022. Competition-level code generation with alpha-
code. Science, 378(6624):1092–1097.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang,
Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi, and
Zhaopeng Tu. 2023. Encouraging divergent thinking
in large language models through multi-agent debate.
arXiv preprint arXiv:2305.19118.

Do Xuan Long, Duong Ngoc Yen, Anh Tuan Luu, Kenji
Kawaguchi, Min-Yen Kan, and Nancy F Chen. 2024.
Multi-expert prompting improves reliability, safety,
and usefulness of large language models. arXiv
preprint arXiv:2411.00492.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei
Wang, Fei Mi, Baojun Wang, Weichao Wang, Lifeng
Shang, and Qun Liu. 2023. Self: Language-driven
self-evolution for large language model. arXiv
preprint arXiv:2310.00533.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xi-
ubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma,
Qingwei Lin, and Daxin Jiang. 2023. Wizardcoder:
Empowering code large language models with evol-
instruct. arXiv preprint arXiv:2306.08568.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2024. Self-refine: Iterative refinement with
self-feedback. Advances in Neural Information Pro-
cessing Systems, 36.

Aman Madaan, Shuyan Zhou, Uri Alon, Yiming Yang,
and Graham Neubig. 2022. Language models of code
are few-shot commonsense learners. arXiv preprint
arXiv:2210.07128.

Noor Nashid, Mifta Sintaha, and Ali Mesbah. 2023.
Retrieval-based prompt selection for code-related
few-shot learning. In 2023 IEEE/ACM 45th Interna-
tional Conference on Software Engineering (ICSE),
pages 2450–2462. IEEE.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, et al. 2023.
Code llama: Open foundation models for code. arXiv
preprint arXiv:2308.12950.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2024. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36.

Vighnesh Subramaniam, Antonio Torralba, and Shuang
Li. 2024. Debategpt: Fine-tuning large language
models with multi-agent debate supervision.

Xingyao Wang, Sha Li, and Heng Ji. 2022. Code4struct:
Code generation for few-shot event structure predic-
tion. arXiv preprint arXiv:2210.12810.

12064

https://arxiv.org/abs/2501.13124
https://arxiv.org/abs/2501.13124
https://doi.org/10.1126/science.abq1158
https://doi.org/10.1126/science.abq1158

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, et al. 2024a. Qwen2. 5
technical report. arXiv preprint arXiv:2412.15115.

Guang Yang, Yu Zhou, Xiang Chen, Xiangyu Zhang,
Terry Yue Zhuo, and Taolue Chen. 2024b. Chain-
of-thought in neural code generation: From and for
lightweight language models. IEEE Transactions on
Software Engineering.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023.
Planning with large language models for code gener-
ation. arXiv preprint arXiv:2303.05510.

Li Zhong, Zilong Wang, and Jingbo Shang. 2024. De-
bug like a human: A large language model debugger
via verifying runtime execution step-by-step. arXiv
preprint arXiv:2402.16906.

A Appendix

A.1 Performance Change Over Debate
Epochs

In Section 4.3 we study performance gain over ev-
ery epoch of the whole debate process. We record
the table corresponding to Figure 2 in Table 4.

Table 4: Performance change over debate epochs.
’self-evolve’ represents the refined program after self-
evolvement stage in Section 3.2.

Arch Debate-epoch APPS(Intro.) APPS(Inter.) APPS(Comp.)

claude-3.5-sonnet

zero-shot 0.6456 0.6297 0.4816
self-evolve 0.7257 0.7161 0.5200
1 0.7824 0.7620 0.5393
2 0.7849 0.7630 0.5646
3 0.7843 0.7636 0.5681
4 0.7849 0.7677 0.5656
5 0.7887 0.7686 0.5681
6 0.7932 0.7686 0.5681

gpt-4o-mini

zero-shot 0.5773 0.5780 0.3467
self-evolve 0.6251 0.6240 0.3552
1 0.7113 0.6907 0.4157
2 0.7099 0.6954 0.4118
3 0.7143 0.6973 0.4234
4 0.7218 0.6976 0.4234
5 0.7219 0.6984 0.4234
6 0.7236 0.6984 0.4234

A.2 Detailed prompt of each stage
In Section 3, we introduced the overall framework
of DebateCoder. We list the detailed prompts of
each stage corresponding to Figure 1 in Figure 5.

Please use {language} to write a correct
solution to a programming problem.

You should give executable completed
 code and nothing else. The problem:\n{task}

A

You are a skilled programmer.
Given a {language} programming problem and your

current solution.We execute the solution on some
demo testcases and get the results along with the
correct answer. Please analyse the results and give
 useful advice to improve the solution to pass the

testcases. The problem: {problem}.
The current solution: {current_solution}.

 Execution results: {failed_cases}.
 Give me your advice and improved code.

B

You are an programming expert.
I'll give you a {language} programming problem,

a solution to refer to and another imperfect solution.
Your task is to analyse the solution and tell me

briefly the problems and drawbacks in it.
The problem: {task}.

Reference solution: {correct_sol}.
Solution to be improve: {wrong_sol}.

C1

You are an excellent programmer.
I'll give you a {language} programming problem

 and an imperfect solution. An expert gives
some problems and drawbacks in it.

Your task is to analyse the imperfect code,
and generate one test case that will fail the solution.

Your test case must be in a json format,
with the input being a string.

An example of test case is: {demo_testcase_input[0]}
. The problem: {task}.

Solution to be improve: {wrong_sol}.
Just give me your test case and no other explanations.

C2

Given a {language} programming
problem, a current solution and several

testcases, we execute the solution on the testcase and
 getthe results. Also we have another person's code
and his execution results for you to compare yours.
Your task: 1. Briefly summarize the deficiencies in
 the current solution, 2. Give useful advice along
with your correct code to improve the solution to
make it correct and better. The problem:{task}.

The current solution: {current_sol}.
Another person's solution: {correct_sol}.

Execution results:{failed_cases}

E1

Given a {language} programming problem and
your current solution. We also have the solution by

another person. An expert give some advice on
how to improve it. Please improve your current

solution base on the advice. The problem:{task}.
The current solution: {current_sol}.

Another solution: {correct_sol}.
The expert suggestions: {advice}.

Give me ONLY the improved code and nothing else.

E2

Figure 5: Prompts of each stage in DebateCoder.

12065

