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Abstract

Large language models (LLMs) are widely rec-
ognized for their exceptional capacity to cap-
ture semantics meaning. Yet, there remains no
established metric to quantify this capability.
In this work, we introduce a quantitative met-
ric, Information Emergence (IE), designed
to measure LLMs’ ability to extract semantics
from input tokens. We formalize “semantics”
as the meaningful information abstracted from
a sequence of tokens and quantify this by com-
paring the entropy reduction observed for a
sequence of tokens (macro-level) and individ-
ual tokens (micro-level). To achieve this, we
design a lightweight estimator to compute the
mutual information at each transformer layer,
which is agnostic to different tasks and lan-
guage model architectures. We apply IE in
both synthetic in-context learning (ICL) scenar-
ios and natural sentence contexts. Experiments
demonstrate informativeness and patterns about
semantics. While some of these patterns con-
firm the conventional prior linguistic knowl-
edge, the rest are relatively unexpected, which
may provide new insights. Our codes are avail-
able at: https://github.com/Zodiark-ch/
Emergence-of-LLMs.

1 Introduction

One of the most elusive and captivating attributes
of large language models (LLMs) is their ability to
learn semantics from inputs across diverse domains
(Chen, 2023; Chang et al., 2024; Minaee et al.,
2024). However, it is unclear how to quantitatively
measure the capability of LLMs in capturing se-
mantics from texts.

Numerous existing tasks indirectly reflect simi-
lar capabilities through evaluating LLMs’ perfor-
mances (e.g., accuracy) on a specific task, such as
“instruction following” (Zeng et al., 2023), “search-
ing” (Sun et al., 2023), and “reasoning” (Yang et al.,
2024). Nevertheless, these evaluation methods rely
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on manually curating datasets and tasks tailoring
different aspects, resulting in time-consuming and
domain-specific findings. In addition, these evalu-
ations typically focus on coarse-grained text, not
providing interpretations for the behavior of finer-
grained tokens. Lastly, existing evaluation metrics
which vary across different tasks can lead to var-
ied performances, and even contradicting conclu-
sions (Schaeffer et al., 2023).

In response to the above limitations, we pro-
pose a task-agnostic and closed-form metric, which
we refer to as Information Emergence (IE)!, de-
signed to reflect and deterministically quantify
the ability of LLMs to extract meaningful seman-
tics from input tokens. To begin with, we con-
struct a mathematical formalism capable of mod-
eling semantics. In essence, semantics naturally
emerge as a meaningfully organized ensemble of
tokens (Hilpert and Saavedra, 2020; Apidianaki,
2023). Consequently, tokens are considered mi-
croscopic (micro) observations with sophisticated
patterns in a sentence, whereas semantics repre-
sent macroscopic (macro) observations emerging
with more predictable behaviors. Inspired by infor-
mation theory (Bedau, 1997, 2008), we formalize
the model’s proficiency in semantics understanding,
i.e., information emergence, as the difference of the
entropy reduction between micro-level and macro-
level. In another word, a better model proficient
in deriving semantics from tokens, in compar-
ison to other models, ought to render a higher
entropy reduction for a global sequence than for
a single token.

To compute IE in transformer models, as dis-
cussed earlier, we need to mathematically measure
entropy reduction for both micro and macro lev-
els. Given the auto-regressive nature of the next-
token-prediction (NTP) mechanism, at any layer

'The “Information Emergence" here and “Emergence” in
LLM-related research are two different notions, we discuss
their difference in Section 2.2 and Section 5.3.
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[ in transformer, the most micro-level transition
can be naturally framed as the probability ProjRo |

for an isolated token h?, whereas the macro-level
transition can be formulated as PRI | 1T
across 1" tokens. We resort to the mutual infor-
mation between successive transformer layers and
adopt a practically effective estimation algorithm
motivated by (Belghazi et al., 2018). Therefore, we
can measure the IE value for any token at any trans-
former layer, reflecting the strength of the LLM’s
capability in extracting semantics from the histori-
cal context.

To validate the effectiveness of IE, we devise
a suite of comprehensive experiments encompass-
ing two different scenarios. In the first scenario,
we curate a group of synthetic datasets under the
ICL setting with different context domains. In
the second scenario, we collect two wild datasets
consisting of real-world natural language ques-
tions/answers. Under both scenarios, we experi-
ment with different LMs including GPT-2 (Rad-
ford et al., 2019), GEMMA (Team et al., 2024),
and OpenLlama (Computer, 2023). In alignment
with our hypothesis, we show that IE offers a high-
level informativeness through semantics faithful-
ness and sensitivity - the richer the semantics, the
higher the IE. Furthermore, we obtain 3 interesting
findings: 1) IE increases token-by-token in natu-
ral texts, whereas, in ICL-style texts, IE increases
only when a new demonstration appears. 2) There
is a strong correlation between specific hallucina-
tion phenomenons and a high variance in IE scores.
3) Distinctive patterns in IE have been observed
between human-written and LLM-generated texts,
revealing IE’s potential in automatically recognis-
ing LLM generations.

Overall, the main contributions could be summa-
rized below:

* We introduce IE, a novel, reasonably vali-
dated, and task-agnostic metric to determin-
istically quantify the semantic understanding
capability of LLMs.

* We introduce a light-weight implementation
method for evaluating IE, which can be ap-
plied to extremely large and closed-source
LMs like GPT-4 (Achiam et al., 2023).

* Empirical evidence demonstrates that IE can
uncover previously unknown and essential pat-
terns in areas such as ICL, Emergence, and
hallucination.

2 Related Work
2.1 Evaluation on LLM Capabilities

The prevalent body of research extensively mea-
sures the capabilities of LLMs across various tasks
by employing substantial benchmark datasets (Sri-
vastava et al., 2023; Wang et al., 2024; Zhu et al.,
2024). Additionally, a significant amount of re-
search focuses on the performance of LLMs con-
cerning specific capabilities such as adaptability
to different domains (Afzal et al., 2024), human-
like cognition (opinions, attitudes, etc.) (Ma et al.,
2024), followed with input instructions (Zeng et al.,
2023), text searching capability (Sun et al., 2023),
and reasoning ability (Yang et al., 2024). In con-
trast to these studies, our work concentrates on an
essential yet abstract ability of LLMs - the ability
to extract semantics from tokens.

2.2 Information Emergence and Emergence

“Information Emergence” and “Emergence” are two
concepts with similar names but entirely different
meanings. Emergence is defined as a capability
that does not exist in smaller models but appears
in larger ones (Srivastava et al., 2023; Lu et al.,
2023; Yu and Dong, 2022; Liu et al., 2024). Most
commonly, as the model size increases, the perfor-
mance on many tasks rapidly improves. IE is a
concept defined and validated in Information The-
ory (Bedau, 1997, 2008). It describes phenomena
observable at the macroscopic level but unobserv-
able at the microscopic level.

3 Method
3.1 How to Model Semantics in LLMs

In this paper, we identify the transformer block
as the fundamental unit for LMs?. Specifically,
we employ | = 0,1,...,L — 1 to index trans-
former blocks within a language model, where
L represents the total number of blocks. For in-
stance, GPT-2 XL (1.6B parameters) comprises 12
blocks (L = 12), and Gemma-2B totals 18 blocks
(L = 18). For any transformer block [, given an
input sequence of token length 7" and hidden state
dimension D, the input representation is given by
H; = {h0, hl,h?, ... ,h?_l} and the output repre-
sentationis Hy 1 = {h{,, b} 1, hi i, b 5
where H € RT*P and ht € R P, Without loss
of generality, we hypothesize that the multi-layer
blocks constitute a Markov process.

2We focus on decoder-only language models.
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Figure 1: The analogy of auto-regressive process in NTP
to Markov process. Taking the output representation of
token2 in Block 0 (h?) as an example, which receives
information from input representations of A9, h, and

2 caticfus _
h§.satisfying ph?+1‘Hl<t = Pz |h9 hi b2

Hypothesis 1 (Markov Process Analogy). The
auto-regressive process of NTP mechanism in multi-
layer blocks undergoes a Markovian stochastic
process following a transition probability of any

t ; .
hy, ., with Pht, | RO b} h2,....hts simply denoted by

1
Prtyms

To simplify the analogy for easier understand-
ing, Figure 1 omits normalization layers, MLP lay-
ers, and residual structures between transformer
blocks, and thus the output of /-th block is directly
considered as the input to [ + 1-th block (Hj1).
However, in all our real implementations, we re-
tain the exact transformer output at every layer, i.e.,
hit1 = hy + attention(h;) + M LP(hy).

Accordingly, we could categorize token vari-
ables within each sequence into two distinct cate-
gories: microscopic (micro) variables and macro-
scopic (macro) variables. A micro variable refers
to a token which is solely influenced by a single to-
ken as the input. For instance, h° satisfies Pro, | |h9-
Whereas macro variables aggregate information
from all micro variables and thus encompass to-
kens which are influenced by all the tokens within
the sequence as the input. An example could be
ha_ll which satisfies PRI 1RO b, kT 1

In summary, the NTP mechanism can be viewed
as a behavior that increasingly coarsens from the
most micro to the most macro scale and finally
forms meaningful semantics. Hence, the macro
level represents the semantics level and the micro
level indicates the token level. Our defined IE
commences with the discovery that the trans-
mission probabilities of macro and micro vari-
ables differ in dynamic processes. (instantiated
in Example 1).

Example 1. Given T binary tokens H; =
(W, h}, .. hf 1Yy € {0,137 as inputs, for sim-
plicity, we assume all variables are micro vari-

ables: Vh 1 € Hiyy satisfies P, \|n (the sim-
plest Markov process, and in the subsequent part
of this Example, we use p to simply denote this tran-
sition probability). The output representations are
also binary, i.e., Hi11 € {0, 1}T. We assume an
evolution rule which enables the parity of the sum
of all output variables equal to the sum of all inputs
with probability . If H; satisfies the uniform dis-
tribution, the evolution rule entails the probability
of the output Hy 1 :

gTy—lv if Lﬂ?—_ol hf+1 = Lﬂ?—_olhf
p(Hi|H) = 4 = -
571, otherwise

(D
where Wl Rt =1 if ZtT;()l hi is even
and LirJtT:_Ol R =0 if odd. For exam-

ple, if H;={0,0,0}, H;.1 can be one of
{0,0,0},{0,1,1},{1,0,1},{1,1,0} with proba-
bility vy, leading to 23%1 chance for each candidate
above. Each of the remaining value for Hy 1 has
probability ;{—l

With the assumption of micro dependency
Prt, |np> We can derive the transition proba-
bility of a micro variable as p(hj,,=0|h]) =
p(hj 1=1|h}) = 0.5. Finally, let h"** be the macro
variable with h™*=W_'ht. Then the transition
probability of a macro variable becomes:

ma |3 ma\ __ v, when hﬁci = ;na
p(hl+1|hl ) - { 1 -7, when h?}ral ?é hlma

(@)

and it is different from micro’s.

Example 1 elucidates an interesting phenomenon
of IE: The macro variable A" is not induced by
any individual micro variable but a collective of
them. As a result, it shows different phenomenon
from any micro variable’.

Furthermore, to quantify the difference in trans-
mission probabilities at the macro (semantics level)
and micro (token level) in dynamic processes, we
view it as a process of entropy reduction (Rosas
et al., 2020; Hoel et al., 2013, 2016) and employ
mutual information for modeling:

Definition 1 (Information Emergence in LLMs).
For any transformer block 1, let hj"® be the macro
variable (h]* satisfies phm ST ) and let h™
be the micro variable ( hlmi satisfies Prys, | ),
MI(-,-) represents the mutual information, thus

3In fact, researchers in dynamics have proposed the Su-

pervenience hypothesis (Bedau, 1997, 2008) to support this
conclusion, but this is beyond the scope of our discussion.
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the strength of IE in block | can be described as:

T-1 t t
E(l) = MI(h%% o MIGET, ')
+1>

ma)

T
3)

Definition 1 describes how to estimate IE. To
illustrate, suppose an input sequence contains three
tokens ‘large language model’, with their rep-
resentations at the /th block denoted as H; =
{n,h},h?}. To compute the mutual information
at the micro level, we need to make sure each
micro token is positioned at the beginning of
the sequence to avoid the influence from other to-
kens due to the auto-regressive nature of the NTP
mechanism. Specifically, there are three micro
variables ({h)""-"} !, {h" 1Y AR 2 HEh
that correspond to ‘large’, ‘language’, and model’
respectively. When calculating {h’m 0}l 0 We
treat a single token as the input text (that is, the
input is ‘large’). Similarly, the other two mi-
cro variables are computed when ‘language’ and
‘model’ are respectively treated as the input text.
These modified inputs ensure that each micro
variable only depends on itself in the previous
block. Meanwhile, the macro variable {h;"} lL: o
is given by h"® = h? for the original input se-
quence ‘large language model’. Finally, we have

(1) = MI(he, he) — SO0, =) +
MR W) 4 MT(2 ),

From an mformation theory perspective, E(1) >
0 indicates that when the function of transformer
block [ results in a higher reduction of uncertainty
(entropy) on the whole sequence (macro variable)
compared to the individual tokens (micro vari-
ables), there is a higher chance of capturing the col-
lective semantics. Consequently, IE can be briefly
understood as ‘“how confident with which a lan-
guage model, based on previous tokens, defi-
nitely predicts the next token with a lower en-
tropy in semantics”.

3.2 How to Estimate IE in LLMs?

It is not feasible to directly compute the mutual
information in Eq. 3 using Kullback-Leibler (KL)
divergence, as the input lies in a high-dimensional
continuous space. To address that, we resort to an
approximation method using mean values proposed
in Belghazi et al. (2018):

Dy r(P||Q) = limsup Ep[f] — log(Eg[ef]) (4)

Q=R

where f represents a function that maps Q to Gibbs
distribution by dG = Le/dQ, where Z = Egle/].
Naturally, f can be a neural model. Thereby, Equa-
tion 4 can be equivalently represented as optimiz-
ing the error function L:

! Z fo(z"[1y"))

b:l

o

—log(—=

Z fo(frblly”éb

&)

the concatenation operation and B is the batch
size. x,y € RP are two inputs for comput-
ing the mutual information MI(z,y). z°||y®
corresponds to sampling from the joint distribu-
tion Pxy, while z°||y*7® corresponds to sam-
pling from the marginal distribution Py and Py*.
When £ converges to the minimum £, we can
obtain the final estimated mutual information as
MI(z,y)=—log5 «L. (More details and proofs
are shown in Belghazi et al. (2018).)

To get the IE value E(l) in Eq. 3, we com-
pute M1 (hffl, h"e) by replacing z° and 3 i
Eq. 5 with A} 11 s and h)"{* obtained by applying
the LM to the same input sequence s, whereas re-
placing y*#® with hj"y using a different sequence
s’ # s. Similar operatlons apply when comput-
ing MI(h"™ h’m b). (Refer to Appendix A for a

I+1 >
complete algorlthm for estimator.)

4 Implementation

Our algorithm requires that the number of samples
is sufficiently large (over 300k) to provide a good
estimate of the mutual information. Meanwhile,
the length of each sequence within a dataset should
be kept the same to facilitate position-wise observa-
tion and meaningful computation. Due to resource
constraints, our comparative analysis is limited to
GPT2-large (812M), GPT2-XL (1.61B), GEMMA
(2.51B), and OpenLlama (3B) models. Fortunately,
this parameter range is sufficient to observe varia-
tions and regularities of IE. For those LLMs with
extremely large size or closed resource (e.g., GPT-
4, Claude3, etc.), we design another efficient strat-
egy that enables their IE evaluations as shown in
Section 6.3. All computational experiments can
be conducted on one NVIDIA GeForce RTX 3090
GPU. The estimator f in Eq. 4 is a model of a
10-layer neural network comprising linear layers

*In our implementation, the batch size was increased to en-
compass the entirety of the sample set to ensure the rationality
of ny, PX and Py.
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and leaky ReL.U activation functions, where each
linear layer’s output dimension was half of its input
dimension. We set the batch size to 300,000, the
learning rate to le-4, and polynomially decayed to
le-8 within 10k epochs. We examine the IE value
of LLMs under two distinct settings: ICL with
few-shot examples and natural sentences without
demonstrations.

4.1 ICL Scenario

Since existing datasets (e.g., SST-2 (Socher
et al., 2013), AGNews (Zhang et al., 2015), and
EmoC (Chatterjee et al., 2019)) do not meet the
requirement of the same sequence length, we syn-
thesized a set of simple few-shot samples having
token length and positions aligned across differ-
ent sequences. We curate three different datasets
encompassing three different domains, each con-
taining sequences of few-shot single-token entities
with commas:

Country: We select 25 countries from the Vocabu-
lary as entities, each represented by 1 token (e.g.,
‘Canada’, ‘Russia’). Each shot consists of one en-
tity followed by a comma, totaling 2 tokens. We
constructed 25 * 24 * 23 * 22 = 303,600’ input
sequences, each comprising 8 tokens (4 different
shots), such as “France, Mexico, Egypt, Russia,”.
Animal: Similarly, we select 16 animals as entities,
and construct 1615 14 %13 %12 = 524160 input
sequences comprising 10 tokens (5 different shots),
such as “Fox, Pig, Penguin, Rabbit, Cock,”.
Color: We select 15 colors as entities, and con-
struct 360360 samples comprising 10 tokens (5
shots), such as “red, orange, yellow, green, blue,”.

Furthermore, in Appendix E.4, we examined the
performance of IE in the In-ICL scenario using
the real-world dataset SST-2 (Socher et al., 2013).
Although an accurate ICL pattern could not be ob-
served due to the varying token lengths of each
demonstration, the findings still align with those
presented in Section 6.1.

In the experiment, we observe that each entity,
treated as a micro variable (i.e., the first token),
produces similar mutual information across dif-
ferent positions. Consequently, in this scenario,
we only use the entity in the first position to com-
pute the mutual information of micro variables
(ie., L5 " MI(hM h™-") in Eqt 3 is re-
placed by MI(h), ,h?)). Moreover, E(l) also
acts analogously in each block, so we utilize the

5The number of shots is decided to ensure the number of
combinations in each category is over 300000.

— IE
Accuracy

—— Exact Match

Model Loss

o ©
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Token (t)

Figure 2: The increasement of IE, EM, Accuracy, and
loss for GPT2-XL in comparison to the previous token:
increasement = (value(t) — value(t — 1)) /value(t),
where value(t) represents the value at token ¢. There-
fore, a positive increasement (> 0) indicates an increase
in the metric value, and a decrease vice versa.

mean of { E£(1)}/; to show the IE (i.e., E(t) =
L—
4.2 Natural Sentence Scenario

We randomly select 300,000 natural sequences,
each consisting of 8 tokens, from OpenOrca (Lian
et al., 2023) and OpenHermes (Teknium, 2023),
respectively. OpenOrca and OpenHermes are both
large-scale, multi-domain QA datasets. These se-
quences were selected to ensure that the first token
in each sequence is the beginning of a sentence.

In our experiments, we observe potential dis-
crepancies in mutual information for individual
tokens at different positions within a sentence (i.e.,
micro mechanisms in different positions are not
consistent). These discrepancies are detailed in
Appendix C). Consequently, for the mutual infor-
mation of micro-level variables, we keep the same
as to Equation 3 which averages the micro MI at
each position and utilizes the mean of each layer’s
E(1) to show the IE.

5 Informativeness

5.1 Semantics Faithfulness

Semantics Faithfulness refers to the principle that
as semantic richness increases, IE should corre-
spondingly rise. We observed the change in IE and
other popular metrics (Exact Match, Accuracy, and
model loss) with the increase in the number of to-
kens, using the samples from the OpenOrca dataset.
Figure 2 demonstrates the change in their values,
with increasement > 0 representing the value in-
creasing from that in the previous token. Only IE
consistently exhibits an upward trend (i.e., > 0),
which aligns with the intuition: what a sentence in-
tends to convey is increasingly deterministic along
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with the increasing number of tokens. Moreover,
the low variance (reflected as the shaded area in
Figure 2) in IE values exhibits commendable stabil-
ity compared to other metrics. Moreover, we show
the micro and macro value in text with and without
semantics in Appendix G.

5.2 Semantics Sensitivity

Subsequently, we aim to examine the seman-
tics sensitivity of IE (Sensitivity implies that any
change in semantics should trigger a corresponding
shift in IE.), particularly its ability to reflect differ-
ences when minor perturbations are introduced into
the semantics. Consequently, we conducted a series
of ablation studies to modulate certain factors (such
as dataset size, attributes, tasks, and format) indi-
vidually. We treat the performance of GPT2-XL on
the “country” dataset as a baseline. Appendix D
details the variations when different factors are
changed. It was observed that IE increases with
the model’s size. This corroborates the rationale
that a model with a larger size generally has better
capability to determine semantics. In addition, our
study also identifies variations in IE against differ-
ent tasks and prompts, which also resonates with
findings from prior research (Lu et al., 2023; Yu
and Dong, 2022; Liu et al., 2024).

5.3 Connection to Emergence

Moreover, we demonstrate that IE manifests a steep
ascend within the parameter range of 10% to 10'°
across 8 arithmetic tasks, which is detailed in Ap-
pendix B). Given the confines of computational
resources, we were able to select 8 models within
the parameter range of GPT2 (1 x 10%), GPT2-large
(7 % 10%), GPT2-XL (1 * 10”), Gemma (2 * 10?),
OpenLlama (3 * 10%), GPT-J (6 * 10°), Gemma
(7% 10%), and GPT-NeoX (2 * 10'9). In light of the
existing evaluation work, Big-Bench (Srivastava
et al., 2023), we discovered the emergent phenom-
ena within the arithmetic tasks emerge within the
parameters of [10%, 10'°]. Consequently, the asso-
ciation between the performance and IE values of 8
arithmetic tasks was investigated, as shown in Fig-
ure 3. For model performance, we directly adopt
the default settings of the Big-Bench benchmark.
As for IE, we took the average of the IE values of
the initial five output tokens to be the final result.
An enhancement in task performance occurs
once effective parameters reach 10'°, thereby show-
casing an emergence. The average IE experiences a
substantial surge within the same parameter range

Performance on Arithmetic
T

—+— 1 digit add
60 —— 1 digit divise

1 digit muliple
—#— 1 digit subtract

—o— 2 digit add

IS
3

—o— 2 digit divise

2 digit multiple

exact match

—&— 2 digit subtract

N
S

0 . .
10° 10° 100
model size

(a) Task Performances

|E on Arithmetic
T

—— 1 digit add
250 [ —#— 1 digit divise

1 digit multiple
—#— 1 digit subtract
—&— 2 digitadd
) —e— 2 digit divise
T 150 - 2 digit multiple
w

—&— 2 digit subtract

o . .
10° 10° 10
model size

(b) IE values

Figure 3: IE and Model Performance with model size
increasing in Arithmetic.

[10°, 10'°]. As a pioneering work proposing a
quantitative metric to reflect the level of semantics
deterministically, we believe our method could also
greatly benefit further research on Emergence.

6 Findings

6.1 IE Increases Only when A New
Demonstration Appears in ICL

Figure 4 illustrates that IE naturally becomes higher
with increased tokens. However, there is a strik-
ingly different trend between ICL and natural sce-
narios (containing natural sentences). In a natural
scenario, IE increases with each successive token
and achieves a rapid convergence (around the 6th
token), whereas, under the ICL scenario, IE only
increases when a new demonstration emerges (at
positions of the 2nd token, 4th token, 6th token),
but with a higher upper bound and requiring more
tokens to reach to the highest value.

We subsequently investigate how many demon-
strations are needed before IE ceases to increase.
Table 4 in the Appendix indicates that the three
ICL categories under study tend to saturate at the
7th demonstration (though this does not suggests
a generic ICL phenomenon). Moreover, we test
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30 — country (ICL)
animal (ICL)
25 — color (ICL)

2 OpenOrca (Natural)
" —— OpenHermes (Natural)
15 -
(W

10 =

3 4
Token (1)

(a) GPT2-large (812M)

—— country (ICL)
30 —— animal (ICL)
—— color (ICL)

OpenOrca (Natural)
20 —— OpenHermes (Natural)

0 1 2

3 4
Token (t)

(c) Gemma (2.51B)

country (ICL)
25 animal (ICL)
—— color (ICL)
20 OpenOrca (Natural)
. —— OpenHermes (Natural)

3 4
Token (t)

(b) GPT2-XL (1.6B)

40 — country (ICL)
—— animal (ICL)
—— color (ICL)
30 OpenOrca (Natural)
= —— OpenHermes (Natural)

[ 1 2

3 4
Token (t)

(d) OpenLlama (3B)

Figure 4: E(t) on ICL and natural scenarios with mean and variance.

whether increasing the number of tokens within
each demonstration would maintain this "stepwise
elevating” pattern. Figure 6 shows that the IE
scores within each demonstration does not change
when the length of each demonstration is increased
to 5 tokens, 6 tokens, and 7 tokens. Hence, we can
interpret ICL’s role in enhancing semantics deter-
minability: ICL bolsters semantics determinabil-
ity via demonstrations, where increasing the num-
ber of demonstrations can increase the ability of
capturing semantics beyond natural text, but even-
tually saturates after a certain quantity. Concur-
rently, disparate performances observed across the
two datasets and three model families suggest that
the domain of the training data and preprocessing
methodologies are likely critical factors, as further
supported by the evaluations of individual tokens
at different sentence positions in Appendix C.

Additionally, we demonstrate in Appendix E.4
the changes in IE under real-world ICL scenarios,
where each shot is no longer a simple word but
a complete sentence. In such scenarios, we still
observe the pattern of IE increasing with the ap-
pearance of demonstrations, and we also observe
the pattern of IE gradually increasing within each
shot, similar to what is seen in natural text.

6.2 Higher IE with Large Standard Deviation

Corresponds to Certain Hallucination

Figure 4 indicates that IE becomes unstable as the
number of demonstrations increases®. To further
The complete record of every token’s mutual information

is detailed in Table 5, showing the example of GPT2-XL on
the Animal category.

IE value by each shot
Statistics | shotl shot2 shot3 shot4 shot5 shot6 shot7
value 4.013 834 1295 2681 61.59 8249 71.52
SD <0.01 059 084 261 659 722 7.05
Accuracy of LLMs outputs given shots (%)
dataset shotl  shot2 shot3 shot4 shot5 shot6 shot7
country 0 54.15 7429 8847 4621 21.59 22.68
animal 0 4451 6943 76.19 64.19 36.14 3354
color 0 3749 66.51 7218 73.16 4695 3849
Accuracy in 4 complex pattern given shots (%)
pattern shotl  shot2 shot3 shot4 shot5 shot6 shot7
Asia 0.35 327 426 1529 3472 8453 79.16
Europe 3.75 829 11.16 2468 49.36 89.38 89.51
Size 459 294 643 729 7.16 2646 34.19
Alphabet | 0.11 126 147 39.16 69.17 5491 18.67

Table 1: The relationship between the accuracy of GPT2-
XL outputs and IE by each shot in 3 categories.

study this observation, we explicitly report the IE
and standard deviation (s.d.) in Table 1 and com-
pute the accuracy’ of the generations spanning over
different numbers of shots. As can be seen from
rows 1-9 of Table 1, as IE ceases to grow and the
s.d. reaches peak, the LM displays a higher proba-
bility of generating inaccurate responses. From a
closer look, we discover that oftentimes, the LM
fails to generate new entities due to “error repe-
tition” (explanations and some examples can be
found in Appendix E.3). This is aligned with ex-
isting study (Zhang et al., 2023) related to hallu-
cination. Specifically, LLMs struggle to correct
themselves after generating an erroneous output,
resulting in stagnation and fluctuation in IE.

"We randomly sample a total of N = 1000 samples and
regard the generation to be correct if the generated entity
belongs to the corresponding domain of the dataset (country,
animal or color) and is not repetitive.
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Text+Estimator token0 tokenl token2 token3 token4 token5 token6 token7 token8
Human+GPT2-XL 10.9 16.9 18.6 19.5 19.5 19.7 19.6 19.5 194
Human+GEMMA 9.5 16.8 22.4 24.3 24.0 25.3 24.6 25.0 25.9
GPT4+GPT2-XL 11.3 18.8 23.5 27.2 34.5 37.2 39.2 39.5 39.2
GPT4+GEMMA 12.1 20.5 25.1 31.6 36.3 39.9 40.4 39.5 40.6
Claude3-opus+GPT2-XL 12.6 21.8 26.6 29.5 36.8 39.8 42.6 452 45.3
Claude3-sonnet+GPT2-XL 114 17.4 24.8 28.5 325 36.5 36.1 36.2 36.2
Llama3 (70B)+GPT2-XL 11.2 18.1 23.6 24.5 28.5 32.6 36.5 36.8 36.6

Table 2: IE in texts generated from human and popular LLMs. “text” refers to the party that generates the text.
“Estimator” refers to the LM used to transform the text into representations and estimates the IE value using f
described in Section 3.2. Due to computation constraints, we only GPT2-XL and GENNA as estimators.

Howeyver, this should not be confused with the
power of ICL in exploiting more complex patterns
effectively with more “shots” as the input. Differ-
ent from the above observation, an increasing num-
ber of shots tend to bring higher accuracies under
more complex scenarios. As shown in rows 10-15
of Table 1, we design four challenging tasks: ‘Asia’
and ‘Europe’ only provide countries in Asia and Eu-
rope, respectively, as input demonstrations; ‘Size’
contains animals arranged by size from smaller to
larger; ‘Alphabet’ sorts the entities alphabetically
based on the first letter. The accuracy results indi-
cate that LLLMs require more shots to capture com-
plex patterns compared to simple patterns. Thus,
it prompts us to conjecture if the stagnation and
fluctuations in the IE are associated with another
hallucination: with excessive shots, LLMs may per-
ceive more complex patterns beyond the surface
(or even actual) appearance. In short, the corre-
lation between IE s.d. and hallucination would
offer novel insights into the future development of
hallucination detection and mitigation.

6.3 Texts Generated from LLMs and Humans
Exhibit Different IE Values

We seek to measure the differences in text gener-
ated by larger language models compared to human
texts, as well as the variations among these LLMs
themselves. Specifically, we use questions from
OpenHermes as inputs and collect responses by in-
voking the APIs of GPT-4, Claude3-opus, Claude3-
sonnet, and Llama3. These responses were sub-
jected to the same data processing methods de-
scribed in Section 4.2. To evaluate these extremely
large and closed-source language models, we im-
plement a 3-step strategy:

Step 1: Collect the answers from these LLMs (or
humans) via the questions from the OpenHermes.

Step 2: Following the data processing in Sec-
tion 4.2, we format these answers into input se-

quences of 8 tokens and obtained their representa-
tions using smaller LMs (e.g., GPT-2, GEMMA).

Step 3: These representations were processed
through an estimator to calculate the mutual infor-
mation introduced in Section 3.2, thereby determin-
ing the IE values of these answers via Equation 3.

Table 2 illustrates an interesting phenomenon:
LLM-generated texts exhibited substantially
greater IE value than human texts. This observa-
tion is intuitive—given that LLMs aim to generate
tokens with the highest probability, naturally
resulting in greater entropy reduction.

Another observation is that the text generated
by different LLMs (GPT-4, Claude3, and Llama3)
displays variations in IE values. Significant dif-
ferences are observed not only in the maximum
strength of the IE but also in the patterns of growth.
Without actually computing the transformer repre-
sentations of the target LLMs, these findings open a
promising path to estimate the semantics capturing
capability from extremely large and closed-source
LMs without expensive computational costs.

7 Conclusion

In this paper, we mathematically model the entropy
of tokens and propose a quantitative metric, IE,
representing the LLM’s ability to obtain seman-
tics from tokens. Under the proposed low-resource
estimator, we corroborate that IE possesses seman-
tics faithfulness and sensitivity not found in other
metrics. Under the settings of ICL and natural
sentences, we conducted extensive experiments ex-
plaining why ICL provides different semantics with
natural text, as well as the intrinsic relationship be-
tween IE and hallucinations. Simultaneously, we
discovered that IE can be utilized to distinguish
whether the source of the text originates from hu-
mans or LLMs, particularly a simple and feasible
strategy for those of significantly large LMs.
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8 Limitations

Position-wise Token: Given that mutual informa-
tion intrinsically demands the distribution of two
tokens to be valid, we require every token’s position
to hold a specific meaning, such as representing the
beginning or end of a sentence, the subject, predi-
cate, and so forth. Hence, applying our estimator
directly to existing tasks may result in a lack of
interpretability as the token lengths and positions
in the samples vary significantly.

Sample Amount: To ensure the accuracy
of joint and marginal distributions of high-
dimensional continuous representations, a tremen-
dous number of samples is essential. We are at-
tempting more mechanistic alternative methods,
hoping to reduce sample size requirements in the
future.

More Models and Tokens: It is evident that our
experiments lack larger-sized models and analysis
of long-length texts, especially for emergence and
hallucination analysis. Given more computational
resources, we would continue to expand these ex-
periments.
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A Algorithm for Estimating Mutual
Information

Algorithm 1 is employed to elucidate the entire
process of estimating mutual information. Simpli-
fied, the method involves two primary steps: Step
1 involves extracting representative samples from a
LLM, and Step 2 entails estimating the mutual in-
formation between these representation samples.
We denote the time required to estimate a pair
of representations (H;; and H; 1) as . Con-
sequently, the time complexity for estimating rep-
resentations from an LLM for a sequence St =
tokenl, token2, ;tokenT' — 1 across L block lay-
ers is denoted as O(LT o).

In practical implementations, o approximately
costs 40 minutes on one 3090 GPU, whereas sig-
nificant improvements on a 4090 GPU reduce this
time to about 20 minutes.

B Cases in Arithmetic Tasks

We have selected a total of 8 arithmetic tasks, as
illustrated in the caption of Figure 3. For these
tasks, we employed the 2-shots as the prompt tem-
plates for the ICL method. We randomly matched
different shots for each sample. A representative
example from each task is selected and presented
as follows:

1 digit addition:

“What is 1 plus 0? A: 1, What is 4 plus 4? A: 8,
What is 2 plus 72 A:”

1 digit division:

“What is 6 divided by 1? A: 6, What is 8 divided
by 4?7 A: 2, What is 3 divided by 3? A:”

1 digit multiplication:

“What is I times 8? A: 8, What is 5 times 0? A:
0, What is 6 times 7? A:”

1 digit subtraction:

“What is 5 minus 2? A: 3, What is 7 minus 67 A:
1, What is 9 minus 0? A:”

2 digit addition:

“What is 53 plus 97? A: 150, What is 89 plus
25?7 A: 114, What is 75 plus 63?7 A:”

2 digit division:

“What is 72 divided by 9? A: 8, What is 81
divided by 27? A: 3, What is 18 divided by 37 A:”

2 digit multiplication:

“What is 95 times 55?7 A: 5225, What is 92 times
88?7 A: 8096, What is 43 times 427 A:”

2 digit subtraction:

“What is 25 minus 14? A: 11, What is 55 minus
36?2 A: 19, What is 80 minus 387 A:”
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OpenOrca

[ token0 [ token1 [ token2 | - [token-3] token-2 [ token-1]
with previous token  8.38 13.42 15.56 17.11 17.16 17.26
wo. previous token 8.38 10.75 10.63 10.69 10.64 12.85

OpenHermes

[ tokeno [ token1 [ token2 | - [token-3] token-2 ] token-1]
with previous token  7.91 12.37 15.03 18.37 18.43 19.22
wo. previous token 791 10.78 1091 10.88 10.95 12.62

(a) GPT2-XL

OpenOrca

[ token0 | token1 [ token2 | - [token-3] token-2 [ token-1]
with previous token  10.53 17.27 20.17 21.27  21.66 22.41
wo. previous token  10.53 10.65 10.49 10.58 10.48 10.62

OpenHermes

[ tokenO [ token1 [ token2 | - [ token-3] token-2 [ token-1]
with previous token  9.59 16.80 22.28 25.31 25.33 25.54
wo. previous token 9.59 9.66 9.62 9.48 9.67 9.61

(b) GEMMA

Figure 5: Mutual information of each token position in two datasets, taking GPT2-XL and GENNA as examples.

C Mutual Information in the Natural
Scenario

We observed variations in the IE statistics of to-
kens at different positions within a sentence. Con-
sequently, we systematically evaluated tokens at
various positions within a sentence, as illustrated
in Figure 5. Specifically, tokenO, tokenl, and
token2 were derived from the same sample set
A from OpenOrca, while token-3, token-2, and
token-1 were taken from another sample set B from
OpenOrca. Sample set A ensured that token0 was
the initial token of the sentence, while set B ensured
that token-1 was the last token of the sentence. This
allowed us to measure differences in IE statistics
for tokens at the beginning, middle, and end of
sentences across variable sentence lengths.

Figure 5 presents an interesting phenomenon:
taking GPT2-XL and GEMMA as examples, GPT2-
XL exhibits distinct responses to tokens at different
sentence positions—IE values increase at the begin-
ning, stabilize in the middle, and rise again at the
end. GEMMA, on the other hand, does not display
such positional sensitivity. We hypothesize that
this may be related to the different preprocessing
methods used in the training data.

D Ablation Study for Semantics
Sensitivity

To investigate the influence of different factors on
IE value, we treat the performance of GPT2-XL
on the “country” dataset as a baseline and imple-
mented a series of variations. First, we replace
GPT2-XL with other LMs, namely modell using
GPT2-large, model2 using GEMMA, and model3
using OpenLlama. Second, we vary the dataset,
forming datal using “animal” dataset and data2
using “color” dataset. In addition, we use can-
didate to denote reduced candidates in the origi-
nal “country” dataset (reducing the total number

measure t0 tl 2 t3 t4 t5 t6 t7

baseline | 4.69 4.69 946 9.37 1532 15.02 2844 2947
modell 464 469 944 945 1509 14.67 2759 28.67
model2 4.64 4.68 944 928 1527 14.66 44.08 36.37
model3 4.69 4.68 947 945 1529 1554 5228 85.61
tokenl 2.82 283 6.88 685 11.08 1095 16.83 16.09
token2 3.60 3.60 7.36 729 11.15 11.08 15.86 14.96
candidate | 3.26 326 7.22 722 1144 1135 17.15 17.33
fusion] 3.84 384 7.63 7.64 11.66 1149 1745 16.28
fusion2 345 345 726 7.05 11.05 11.06 1645 16.59
space 4.69 4.69 946 937 1532 15.02 2244 5.19
prefix 4.69 469 946 946 1532 1534 3785 41.05

Table 3: “Ablation Study” of how IE value changes with
different measures adopted. tO-t7 represent 1st - 8th
token.

of countries from 25 to 15), and fusion1, fusion2
to denote mixed candidates where fusion 1 mixes
data from “country” and “animal” domains, and
fusion 2 mixes data from “country”, “animal”, and
“color” domains. Last, we alter the input sequence,
forming space by replacing the entity in the 4th
shot with space+entity®. prefix prepends a comma
to the original first token.

As shown in Table 3, Differences in model 1E
become apparent only when a sufficient number
of shots are provided. Statistically, models with
larger parameter sizes exhibit higher IE. However,
differences in data are apparent starting from the
first shot, likely related to the domain of training
data (tokenl, token2). Furthermore, depleting the
diversity of shots effectively reduces the IE values
in ICL (candidate). Lastly, the format of the prompt
significantly influences IE, explaining LLMs’ sen-
sitivity to certain perturbations (space, prefix).

E Supplementary Materials for Finding 1
E.1 Limit Number of Shots

In Section 4.1, we expanded the 3 categories into
input sequences containing 10 shots (20 tokens

81n the GPT-2 tokenizer, space+entity is treated as a new
token.
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Figure 6: E (t) with inputs of 18 tokens, consisting of 3 shots in 5 tokens, 6 tokens, 7 tokens, respectively.

Model categories shot3 shot4  shot5  shot6  shot7
country 15.67 11295 1275 1033  11.04
GPT2-large animal 1424 16.06 19.52 1039 [1.44
color 1488 14.82 1639 1124 1022
country 15.86 T13.12 13.56 1175 10.32
GPT2-XL  animal 1421 1575 1821 1115 10.61
color 13.82 14.61 17.06 T1.74 10.54
country 16.33 12216 [2.86 1321 [3.54
Gemma animal 14.09 16.24 1845 13651 [2.14
color 14.65 15.16 17.81 11649 11.21
country 16.33 145.26 17.54 14.65 [3.15
OpenLlama animal 1495 1754 135.16 12.16 13.26
color 1439 1527  127.56 11142 12.51

Table 4: AE (t) compared to the previous token. The

red represents E (t) decreases compared to the previous
token.

each). Table 4 illustrates the changes in IE value
for each shot relative to its predecessor within these
sequences. The IE value of 4 different LLMs gen-
erally approached their upper limits by the 6th and
7th shots. It is important to note that these results
only indicate the existence of an upper limit to the
contribution of shot quantity to IE in ICL. They
do not imply that the 6th and 7th shot universally
represents the upper limit for all ICL tasks.

E.2 Shot Length

To examine the IE value associated with shot
lengths, we designed a shot format pertinent to
sentiment analysis as follows:

“[entity] sentiment: [label],”

where “[entity]" represents emotional words
such as “happy,”, “thrill”, “offended”, etc., and
“[label]" options include “positive” or “negative,”
specifically chosen based on the category of “[en-
tity]”. The token length of “[entity]” was em-
ployed to control the overall length of the shot;
for instance, when “[entity]" consists of single-
token words like “anger,” “love,” etc., the entire
shot spans 5 tokens, whereas for two-token words
like “hopeful,” “resentful,” etc., the shot extends

to 6 tokens. Consequently, we generated 300,000
input samples, each 18 tokens in length, compris-
ing 3 shots with lengths of 5 tokens, 6 tokens, and
7 tokens respectively.

Figure 6 corroborates our hypothesis: within
each shot, all tokens share a uniform IE value. This
observation supports another intuitive viewpoint
of ICL: an LLM gains greater confidence in the
correctness of its predictions only when a new shot
is introduced.

E.3 Cases of Inaccurate Generations with
Excessive Shots

In Table 1 we found 2 types of erroneous repetition,
we listed some cases of them from GPT2-XL, in
which blue text indicates the shots as prompt, the
green text indicates correct entities and red text
indicates wrong entities:

Case 1: The sequence breakdown was precipi-
tated by the output of an incorrect entity.

“Ukraine, Mexico, Russia, Australia,

United States of America, United States of America,
United States of America, United States of Amer-
ica”

Case 2: Due to a loop spaning the shots, no new
entities were generated.

“Canada, France, Turkey, Iran,

United States, Canada, Germany, United States,
Canada, Germany, United States, Canada, Ger-
many”

E.4 1IE in ICL Scenarios with Real-world
Dataset: SST-2

Given that the ICL synthetic datasets (country,
animal, color) involved in this paper are all toy
datasets, they can clearly reflect the changing pat-
terns of IE under ICL scenarios, but real-world
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Figure 7: E(t) with inputs from SST-2 datasets, consisting of 3 shots.

ICL datasets often face more complex situations.
To investigate the performance of IE in real-world
datasets under ICL scenarios, we constructed an in-
put template containing three demonstrations using
the SST-2 dataset (Socher et al., 2013): "[review 1],
The emotion of this sentence is [labell |, [review 2],
The emotion of this sentence is [label2], [review 3],
The emotion of this sentence is [label3], [review 4],
The emotion of this sentence is". Here, [review] and
[label] are random text samples and correspond-
ing sentiment labels (positive or negative) from the
SST-2 dataset, respectively.

Unlike the ICL toy datasets in the main text, in
this ICL scenario, each demonstration has sufficient
semantics (it can be considered that each demon-
stration contains a natural text scenario). Figure 7
shows the specific changes in IE, from which we
can identify two patterns:

1. Each shot brings a new improvement to
IE: This is consistent with the pattern we observed
in ICL toy datasets - that is, IE in ICL scenarios
increases with the appearance of new demonstra-
tions.

2. The IE within each shot is slowly increasing
and tends to stabilize: This is consistent with
the pattern we observed in natural text scenarios.
Since each [review] in the SST-2 dataset contains a
sentence with natural text, a pattern corroborating
with natural text will appear within each shot.

Additionally, due to the inability to effectively
align token positions (for example, some [reviews]
only require 20 tokens, while others need 50 to-
kens), each shot will exhibit significant variance
and characteristics of an uneven upward trend.

layer | token0 tokenl token2 token3 token4 tokenS token6 token7

2.83 2.83 6.88 6.88 11.12 11.19 1686  17.42
2.83 2.83 6.90 6.88 1120 11.17 1692 1597
0 2.83 2.83 6.88 6.88 11.08 11.14 1697 16.51
1 2.83 2.83 6.88 6.88 11.04 11.05 17.05 16.19

1 2.83 2.83 6.89 6.50 10.68 9.24 14.16  11.53
2 2.83 2.83 6.90 6.91 11.08 11.10 16.70  16.79
3 2.83 2.83 6.89 6.88 11.17  11.17 1693  16.00
4 2.83 2.83 6.89 6.88 11.08 11.06 16.74  16.58
5 2.83 2.83 6.89 6.89 11.13  11.11 1694 15.88
6 2.83 2.83 6.88 6.89 11.16  11.16  18.89 17.11
7 2.84 2.83 6.89 6.88 11.15  11.14 1697 17.08
8
9
1
1

Table 5: Mutual information of GPT2-XL in Animal
category. Red represents the highest value in this block.

layer | token0 tokenl token2 token3 token4 token5 token6 token7
8.40 13.71 1601 1733 1721 17.67 1795 1729
8.36 13.77 1576 17.06 17.08 17.72 17.68  18.00
8.44 1375 1609 17.10 17.82 17.69 17.84 18.04
8.44 1420 1607 1729 1745 1774 1851  17.81
8.39 1350 1632 1683 17.82 1798 1826 18.14
8.41 13.69 1603 1699 17.58 17.82 17.52 18.33
8.41 13.68 16.06 17.00 1832 17.72 17.69 18.19
8.40 13.80 1597 1726 17.61 1773 1752 1844
8.35 13.69 1595 1717 1721 1754 1747 18.03
0 8.41 13.57 1630 1657 1746 1785 17.85 1751
1 8.34 1337 1602 1593 1730 1724 1727 1691

— = 000NN AW —

Table 6: Mutual information of GPT2-XL in OpenOrca
dataset. Red represents the highest value in this block.

F Detailed Mutual Information Tables

Tables 5 and 6 present the performance of GPT2-
XL on the Animal category and OpenOrca datasets,
respectively. Although “shots” and “natural sen-
tences” demonstrate different patterns, they share
a common characteristic: mutual information in-
creases with token length, aligning well with the
NTP mechanism.

G Corrupted Test

To further illustrate the theoretical effectiveness of
IE, we conducted a simple experiment to demon-
strate the influence of semantic strength on mutual
information. The table 7 below presents a compari-
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Type status token() tokenl token2 token3 tokend token5 token6

clean macro 8.34 13.37
clean micro  8.34 10.26
corrupted | macro 8.31 11.52
corrupted | micro  8.31 10.29

16.02 15.93 17.30 1724 17.27
10.41 10.29 10.28 10.31 10.33
11.66 11.81 11.77 11.29 11.55
10.34 10.33 10.35 10.29 10.25

Table 7: Clean text with Corrupted text in macro and micro mutual information.

Algorithm 1 Estimating Mutual Information

Require: : A set of input tokens U € R%*T,
where S denotes the total number of samples
and T represents the number of token in each
sample. A LLM f; with L layer of blocks and
hidden state dimension D. A estimator fy.

Ensure: : Mutual Information M € R¥*T,
procedure 1 Extracting Representation H &
R*L+T*D from LLM
Initialization: H = ()
for each sample s in S do

H + H+ f-(Us)
end for
procedure 2 Estimating Mutual Information M
Initialization: M = 0,1 =0,t =0,
while ! < Landt < T do
I, « H; 4 (H; € RS*D)
Iy« Hyp13(Hipq s € RSD)
Shuffle Hj4 1, in the dimension S
Iyt < Hyyro(Higr e € RSP)
inputl < I||1,
input2 « I||I,*
Initialization: M}, = 0
for Epoch i < 10k do
outputl « fp(inputl)
output2 < fo(input2)
L = %Ele(outputl) -
log(% 255:1 (output2)
L backpropagation
if My, == 0 then
My <= —logsL
else if M;,,, # O then
if My, < —log5L then
Mipp < —log5L
end if
end if
end for
l+<—1l+1,t+—t+1
Ml,t — thp
end while
return M

1

son of mutual information in layer 11 for these two
types of inputs on the GPT-XL. model using the
OpenOrca dataset. “clean” represents the sentence
samples with semantics, e.g., “Today I went to the
store with Mary.”, and “corrupted” represents the
sentence samples that have the same tokens with
clean text while the token order is shuffled to re-
move semantics, e.g., “with . went store Mary the
I to Today”.
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