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Abstract

In this paper, we investigate the retrieval-
augmented generation (RAG) based on Knowl-
edge Graphs (KGs) to improve the accuracy
and reliability of Large Language Models
(LLMs). Recent approaches suffer from in-
sufficient and repetitive knowledge retrieval,
tedious and time-consuming query parsing,
and monotonous knowledge utilization. To
this end, we develop a Hypothesis Knowledge
Graph Enhanced (HyKGE) framework, which
leverages LLMs’ powerful reasoning capac-
ity to compensate for the incompleteness of
user queries, optimizes the interaction process
with LLMs, and provides diverse retrieved
knowledge. Specifically, HyKGE explores the
zero-shot capability and the rich knowledge
of LLMs with Hypothesis Outputs to extend
feasible exploration directions in the KGs, as
well as the carefully curated prompt to enhance
the density and efficiency of LLMs’ responses.
Furthermore, we introduce the HO Fragment
Granularity-aware Rerank Module to filter out
noise while ensuring the balance between di-
versity and relevance in retrieved knowledge.
Experiments on medical and general domain
datasets two LLM turbos demonstrate the su-
periority of HyKGE in terms of accuracy and
explainability. Code is available at 1.

1 Introduction
Large Language Models (LLMs), such as Chat-
GPT (OpenAI, 2022) and GPT-4 (OpenAI, 2023), have
achieved remarkable progress in pivotal areas. By un-
dergoing pre-training on massive text corpora and align-
ing fine-tuning to follow human instructions (Ziegler
et al., 2020; Wang et al., 2023e; Ma et al., 2025; ?), they
have recently demonstrated exceptional performance in

*Equal contribution.
†Corresponding author.
1https://github.com/Artessay/HyKGE

a range of downstream tasks (Kaplan et al., 2020). These
achievements underscore the vast potential of LLMs
in understanding and generating natural language (Vu
et al., 2024), especially in the medical domain (Kraljevic
et al., 2022; Yang et al., 2023c; Zhu et al., 2023; Wang
et al., 2023c; Xiong et al., 2023; Wang et al., 2023a;
Zhang et al., 2023a; Pal and Sankarasubbu, 2023; Bao
et al., 2023). Despite the advancements of fine-tuning,
they still encounter significant challenges, including the
difficulty in avoiding factual inaccuracies (i.e., hallu-
cinations and limited explainability) (Ji et al., 2023a;
Cao et al., 2020; Ji et al., 2023b), data constraints (i.e.
token resource limit, high training costs, and privacy
concerns)2, catastrophic forgetting (Gao et al., 2024),
outdated knowledge (He et al., 2022), and a lack of
expertise in handling specific domains or highly spe-
cialized queries (Kandpal et al., 2023). This under-
mines their reliability in areas where accountability and
trustworthiness are crucial and infallible in the medical
area (Ji et al., 2023a; Song et al., 2024; Lai et al., 2023;
Xu et al., 2023b, 2024b).

Retrieval-Augmented Generation (RAG), enhances
content generation by retrieving external information,
reduces factual errors in knowledge-intensive tasks with
the help of external knowledge and is seen as a promis-
ing solution to address incorrect answers, hallucina-
tions, and insufficient interpretability (Izacard et al.,
2022b; Asai et al., 2023b,a; Jiang et al., 2025; Xu
et al., 2024a). Among the numerous external infor-
mation sources (Yang et al., 2024), knowledge graphs
(KGs), as a structured data source refined and extracted
through advanced information extraction algorithms,
can provide higher quality context. Compared to docu-
ments, KGs embody structured knowledge (Zhong et al.,
2023; Ji et al., 2022; Xu et al., 2025, 2023a; Yang et al.,
2023b; Ma et al., 2023b), providing succinct content
and facilitating the analysis of intricate relationships
among entities, leading to advanced inference capabili-
ties and enabling extrapolation for efficient knowledge
retrieval. They are considered by many research works

2https://www.youtube.com/watch?v=ahnGLM-RC1Y
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to improve the accuracy and reliability of answers pro-
vided by LLMs (Pan et al., 2024; Wen et al., 2023;
Jiang et al., 2024). However, the gap between unstruc-
tured user queries of inconsistent quality and structured,
high-quality KGs (Soman et al., 2023a) poses signif-
icant challenges on how to properly parse user intent
for improving the robustness of retrieved knowledge
(pre-retrieval phase) and how to handle the abundant
retrieved knowledge (post-retrieval phase), which are
detailed as:

Challenge I: At the pre-retrieval phase, pre-
vious works suffer from how to parse user in-
tent and retrieve reasonable knowledge based on
varying-quality user query. Some works are based on
the Retrieve-Read framework, which initially obtains
knowledge through dense vector retrieval according to
user queries (Ma et al., 2023a; Qu et al., 2021; Yu et al.,
2022). However, they are stricken with issues such as
unclear expressions and lack of semantic information in
the user’s original query. This misalignment between
the semantic spaces of user queries and high-quality
structured knowledge leads to the retrieval of knowledge
that is of insufficient quality and may contain redundant
information and noise (Barnett et al., 2024). In addition,
the excessive redundant knowledge can lead to a waste
of token resources, and the response speed of LLMs will
drop sharply, which adversely damages the performance
in real-world applications (Finardi et al., 2024).

Challenge II: At the pre-retrieval phase, how to
align user intent with high-quality structured knowl-
edge while reducing interactions with LLMs remains
an unresolved issue. Some works enable LLMs to step-
by-step utilize knowledge to enhance intent parsing and
inference of user queries. They facilitate the acquisition
of planning and reflective abilities in LLMs’ interac-
tions with KGs through multi-round chain-of-thought
requests (Sun et al., 2023; Li et al., 2023b; Wang et al.,
2023b; Asai et al., 2023b; Yu et al., 2023a). However,
they are constrained by the expensive time overhead
of multiple interactions with LLMs and the cumulative
errors in the distributed reasoning process.

Challenge III: At the post-retrieval phase, previ-
ous studies often struggle with the dilemma of bal-
ancing the diversity and relevance of the retrieved
knowledge. Recent post-retrieval models typically ap-
ply similarity filtering or a reranking approach in re-
sponse to user queries to prune retrieved results (Toro
et al., 2023; Finardi et al., 2024; Cuconasu et al., 2024).
However, user queries often exhibit notably monotonous
properties and sparsely distributed keywords because
the prevalence of natural language descriptions will
tend to dilute its concentration (Breuer et al., 2023).
Conversely, KGs are characterized by their inherently
structured nature, resulting in a high knowledge den-
sity within retrieved results. As a consequence, pruning
knowledge solely based on the user query can lead to a
misalignment in knowledge density and the final result
is often highly correlated yet excessively repetitive, sig-
nificantly diminishing the efficacy of RAG. Therefore,

one of the primary challenges in the post-retrieval phase
is to balance the trade-off between relevant knowledge
and diverse ones (Breuer et al., 2023).

To cope with these challenges, we put forward the
Hypothesis Knowledge Graph Enhanced (HyKGE)
framework, a novel method based on the hypothesis out-
put module (HOM) (Gao et al., 2022a) to explore, locate,
and prune search directions for accurate and reliable
LLMs responses in pre-retrieval phase and greatly pre-
serve the relevance and diversity of search results at in
post-retrieval phase. i) Specifically, in the pre-retrieval
phase, our key idea is that the zero-shot capability and
rich knowledge of LLMs can compensate for the incom-
pleteness of user queries, facilitating alignment with
high-quality external knowledge. For example, when
facing the question “After meals, I feel a bit of stom-
ach reflux. What medicine should I take? ”, if retrieval
is based solely on the key entity “stomach reflux ” as
illustrated in Figure 1(a), a large amount of noise will
be introduced due to the broad semantics of the entity.
However, if LLMs are guided to explore how to solve
the problem, they will provide additional clues related to
“stomach acid ”, “H2 receptor antagonists ” and “proton
pump inhibitors ” as illustrated in Figure 1(b), based on
the knowledge acquired during their pre-training and in-
struction fine-tuning phases, offering exploration direc-
tions for retrieval on the KGs. ii) Meanwhile, HyKGE
utilizes the flexibility of natural language in prompts to
set constraints, enabling LLMs to provide as comprehen-
sive information as possible when outputting hypothesis
results, thereby reducing the number of interactions and
improving efficiency. iii) In the post-retrieval stage,
to further enhance the alignment between user queries
and external knowledge inference paths, we propose a
Hypothesis Output-based (HO) Fragment Granularity-
aware, which utilizes multiple short snippets from the
hypothesis outputs as well as the user query to rerank
and filter the retrieved knowledge, greatly avoiding the
filtering of diverse knowledge. It ensures fine-grained
interaction and filtering while addressing the issue of
imprecise matching between monotonous and sparse
text (user query) with multi-element and dense text (re-
trieved knowledge). Through comprehensive experi-
ments, our main contributions can be summarized as
follows:

• At the pre-retrieval phase, we leverage the zero-shot
capability of LLMs to obtain an exploratory and hy-
pothesis output, transforming the incomplete and non-
professional nature of user queries. Corresponding
anchor entities are then identified from the hypothesis
output on the KGs, providing a direction for explo-
ration and pruning retrieval space. Simultaneously,
we utilize the knowledge chains to rectify errors and
illogicalities in the hypothesis outputs, mitigating hal-
lucinations and false knowledge problems.

• At the post-retrieval stage, we propose a HO Frag-
ment Granularity-aware rerank module to further en-
hance the knowledge density alignment between the
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Query After meals, I feel a bit of

stomach reflux. What medication

should I take for it?

Entities:

1. stomach acid

2. gastro-

esophageal 

reflux

…Search KG according 

to query only

Prompt = Query + Entities

Answer: Gastroesophageal reflux

may be caused by the backward

flow of food or stomach acid. You

can consider using Acid-suppressing

medications to relieve symptoms of

gastric reflux and mitigating the

development of reflux esophagitis…

Hypothesis Output  …Gastroesophageal reflux may 

caused by the backward flow of stomach acid into the 

esophagus … Depending on the evidence, considering the 

use of H2 receptor antagonists or proton pump inhibitors …

Step 2: Search KG according to query and hypothesis output

Prompt = Query + Reasoning Chains

Answer: Stomach acid backward may be the cause of

gastroesophageal reflux …You may consider omeprazole or

esomeprazole to reduce gastric acid secretion, …. Alternatively,

you can use acid-neutralizing medications (antacids) such as

magnesium aluminum carbonate. Another option is the use of

H2 receptor antagonists such as ranitidine or famotidine …

Step 1: Query LM and get hypothesis output

anchor entity

Query After meals, I feel a bit of stomach

reflux. What medication should I take for it?

Reasoning Chain:

① bile reflux → abdomen ← stomach pain

② magnesium aluminum carbonate→ heartburn 

→ excessive stomach acid → stomach pain

…

Figure 1: (a) KGRAG (Left). Basic KGRAG extracts key entities from user queries and searches for corresponding
entities within KG, which are then fed into LLMs along with the query. (b) HyKGE (Right). HyKGE first queries
LLMs to obtain hypothesis output and extracts entities from both the hypothesis output and the query. Then HyKGE
retrieves reasoning chains between any two anchor entities and feeds the reasoning chains and query into LLMs.

retrieved reasoning chains and hypothesis outputs at
a finer granularity, greatly preserving relevant yet
diverse knowledge through the idea of divide-and-
conquer.

• We validate the superiority of the HyKGE through
various observations by experiments on two Chinese
medical multiple-choice question datasets and one
Chinese medical open-domain Q&A dataset with two
LLM turbos. This integration of LLMs and KGs
addresses key challenges in medical LLMs, notably
in accuracy and explainability, and has potential ap-
plications in improving medical consultation quality,
diagnosis accuracy, and expediting medical research.

2 Related Work
Retrieval-Augmented Generation. RAG incorpo-
rates the external knowledge retrieval component via
prompt engineering to achieve more factual consistency,
enhancing the reliability and interpretability of LLMs’
responses (Lewis et al., 2021; Xu et al., 2024c). Classic
RAG methods leverage retriever models to source rele-
vant documents from large knowledge corpora (Xu et al.,
2024a), followed by reranker models that distill contents
and reader models for further processing (Pan et al.,
2024; Sarthi et al., 2024; Zhang et al., 2024). Despite
advancements in retriever (Qu et al., 2021; Ma et al.,
2023a; Kim et al., 2024) and reranker efficiency (Cheng
et al., 2021; Yu et al., 2022), they still encounter dif-
ficulty in acquiring high-quality datasets for training
query-document pair retrievers or limited information in

user queries which weakens their generalization capabil-
ity (Gao et al., 2022b). Moreover, some researches focus
on fine-tuning reader LLMs, applying instruction-tuning
with retrieved knowledge or RAG API calls (Luo et al.,
2023a; Izacard et al., 2022b; Asai et al., 2024; Yoran
et al., 2024; Wang et al., 2024; Zhang et al., 2023b; Lin
et al., 2024). However, creating such datasets is also
challenging due to the need for manual label correction,
which in turn, may erode LLMs generalization capabili-
ties and cause catastrophic forgetting in routine Q&A
tasks.

Beyond optimizing submodels, HyDE (Gao et al.,
2022b) introduces an innovative method where
instruction-following LLMs generate hypothesis docu-
ments based on user queries to enhance retriever per-
formance, particularly in zero-shot scenarios. Other
methods like CoN (Yu et al., 2023b) and CoK (Li et al.,
2023c) involve LLMs in note-making and step-wise rea-
soning verification through customized prompts, and
greatly rely on frequent interactions with LLMs. How-
ever, such an approach is excessively inefficient for
deployment in real-world Q&A scenarios.

Our HyKGE, uses LLM hypothesis output for ex-
ploratory directions in KGs and corrects model errors
using graph reasoning chains during pre-retrieval, and
applies fine-grained alignment in post-retrieval to main-
tain effective, diverse knowledge, enhancing retrieval
efficiently without fine-tuning or excessive interactions.

Knowledge Graph Query-Answer. Compared to
knowledge stored in document repositories (Izacard
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et al., 2022a), the knowledge contained within KGs
has the advantages of being structured and inferable,
rendering it a more suitable source for supplementing
LLMs (Luo et al., 2023b; Jiang et al., 2023; Liu et al.,
2021; Kang et al., 2023; Sen et al., 2023; Varshney
et al., 2023). However, how to design a retriever to
extract knowledge from KGs and how to design inter-
action strategies between LLM and KGs are still in the
exploratory stage3. KGRAG (Soman et al., 2023a)
and GraphRAG uses the user query as a reference for
retrieval in KGs, which suffers from misalignment be-
tween high-quality structured knowledge and varying-
quality queries. Semantic parsing methods allow LLMs
to convert the question into a structural query (e.g.,
SPARQL), which can be executed by a query engine to
derive the answers on KGs (Sun et al., 2020; Li et al.,
2023a,c). However, these methods depend heavily on
the quality of generated query sentences, displaying sub-
par performance when confronted with intricate queries.

3 Preliminaries
Definition 1. (Knowledge Graph) Given a medical
knowledge graph, denoted by KG = (E ,R, T ,D,N ),
where E = {e1, . . . , eN} is the set of entities,
R = {r1, . . . , rP } is the set of relations, and T =
{(ethead

i
, rti , ettail

i
) | 1 ≤ i ≤ T, ethead

i
, ettail

i
∈

E , rti ∈ R} is the set of head-relation-tail triplets (facts).
Additionally, di ∈ D represents the entity description
of ei, and Nv = {(r, u) | (v, r, u) ∈ T } stands for the
set of neighboring relations and entities of an entity v.

Definition 2. (Knowledge Graph Retrieval) Knowl-
edge Graph Retrieval (Reinanda et al., 2020) is a mod-
ule that focuses on efficiently retrieving relevant infor-
mation from KG based on the user query Q. In KGs,
information is represented as entities, relations, and
attributes, forming a structured network. The goal of re-
trieval is to find entities or relationships that additionally
supply knowledge for LLMs. Particularly, we retrieve
knowledge from the matched entities {ej} such as entity
names, entity types, descriptions {dj} and even triplets
or subgraphs Gej = (ej , Tj , dj).

4 Method
In this section, we detail our proposed HyKGE, and
the overall framework is illustrated in Figure 2. In gen-
eral, we will discuss our model from the four pipeline
architectures:
• Pre-Retrieval Phase includes the Hypothesis Output

Module (HOM) and the NER Module (NM). HOM lever-
ages LLMs to obtain hypothesis output by exploring
possible answers. Then NM extracts medical entities
from HO and the user query.

• Retrieval on Knowledge Graph utilizes the extracted
entities as anchors to search three distinct types of
reasoning chains interlinking these anchors, providing
relevant and logical knowledge.

3https://siwei.io/talks/graph-rag-with-jerry/1

• Post-Retrieval Phase utilizes the HO Fragment
Granularity-aware rerank approach. First, the hypoth-
esis output and the user query are segmented into
discrete fragments, and subsequently, we rerank the
retrieved reasoning chains based on the fragments.

• LLM Reader is fed with the user query and the pruned
retrieved reasoning chains, organized with carefully
designed prompts.

Next, we will delineate each phase in detail in the fol-
lowing subsections.

4.1 Pre-Retrieval Phase
Firstly, we let LLMs generate hypothesis outputs (HO)
in response to user query Q, and then use the NER
model to extract entities from bothHO and Q. During
this process, LLMs utilize inherent medical knowledge
to explore potential answers. Although HO may con-
tain factual errors or hallucinations between entities,
the NER Module focuses solely on the extraction of
entities while disregarding the relations, thus signifi-
cantly isolating the correlation among medical entities.
The subsequent graph retrieval phase (c.f. Section 4.2)
searches the correct reasoning chains to discern and
reintegrate the relationships between medical entities,
avoiding LLMs’ shortages. The combination of HOM
and NM provides us with a direction for exploration and
identifies corresponding anchors in the KGs to guide
subsequent graph retrieval, ensuring consistency and
effectiveness in information processing.

4.1.1 Hypothesis Output Module
To enhance the quality of HO, due to LLMs’ robust
reasoning abilities and potential as knowledge bases,
we meticulously design instructions to guide LLMs in a
step-by-step exploration and thoughtful consideration
of problems. Prompts used inHO can be referred to in
Appendix A.1. Here, the prompt (a textual instruction)
is denoted as PHO, and Q toHO as:

HO = LLM(Q | PHO). (1)

Thus, in light of the powerful reasoning abilities as well
as the knowledgeable medical cognition, galore medical
knowledge relevant to Q is discovered.

4.1.2 NER Module
Although there still remains a possibility of an inac-
curate comprehension of relationships withinHO (i.e.
hallucinations or misunderstanding between medical
entities), training a discriminative model or using other
general-domain LLMs for authenticityHO is extremely
labor-intensive and will lead to error accumulation. To
tackle this issue, we extract entities instead of relation-
ships, and utilize the completely unmistakable triplets
in KGs for authenticity instead of the relations analyzed
in HO. As a consequence, we have trained a medi-
cal Named Entity Recognition (NER) model using the
CMEEE dataset4 (Zhang et al., 2022; Hongying et al.,

4https://tianchi.aliyun.com/dataset/144495
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Hypothesis Output

LLM

Query and Hypothesis Output

Hypothesis Output Module

W2NER Model

NER Module

Recognized Entities Knowledge Graph

Embedding Alignment

Reasoning Chains in Knowledge Graph

Knowledge Graph Retrieval Module

TopK Chains
Reranker

HO Fragment Granularity-aware 
Rerank Module

GTE Encoder

Retrieved 
Knowledge

User Query

Context:
Reasoning Chains

Question:
    User query

Answer
Entities

Data 
Chunker

LLM

Align

User Query
Reader

Entity Relation

Figure 2: Overall framework. HyKGE first feeds user query Q through LLMs and obtains Hypothesis OutputHO.
Then through NER Module, a W2NER model is applied to recognize entities and isolate relations. Through GTE
Encoder, these recognized entities are then linked with KG entities. After that, HyKGE extracts three types of
relevant reasoning chains from KGs. Then, due to sparseness of Q, in HO Fragment Granularity-aware Rerank
Module, HyKGE chunks Q and HO and align with reasoning chains via a TopK Chains Reranker, to eliminate
noise. Finally, we organize retrieved knowledge with the user query and obtain responses through the LLM Reader.

2020). Our NER Module is built upon the W2NER
model (Li et al., 2021), the state-of-the-art word-word
NER model that effectively addresses three primary
types of NER situations (flat, overlapped, discontinu-
ous). This medical NER model can wonderfully extract
medical entities from complex medical contexts:

U = [u1, · · · , u|U|] = NER(Q⊕HO), (2)

where ⊕ is the concatenation function and ui represents
the corresponding extracted entity.

4.2 Knowledge Graph Retrieval Module

4.2.1 Embedding Alignment
Subsequently, we link the potential entity to KG using
dense retrieval methods. This process involves employ-
ing an encoding model, denoted as enc(·), to encode
the potential entity ui and entities E within KG. To be
specific, we utilize the GTE embedding model (Li et al.,
2023d) "gte_sentence-embedding"5, which is currently
the top-performing model for text vector embedding in
the retrieval field. GTE Encoder follows a two-stage
training process: initially using a large-scale dataset
with weak supervision from text pairs, followed by fine-
tuning with high-quality manually labeled data using
Contrastive Learning (Le-Khac et al., 2020).

5https://www.modelscope.cn/models/damo/nlp_gte_sentence-
embedding

Then, the inner product similarity between the em-
beddings of ui and E is then computed. The entity with
the highest similarity, surpassing a predefined threshold
δ ∈ [0, 1], is considered a match. This linkage process
can be formulated as follows:

sim(ui, ej) =
〈
enc(ui), enc(ej)

〉
, ui ∈ U , ej ∈ E ,

ui ↔ ej iff ej = {argmax
ek∈E

sim(ui, ek) | sim(ui, ej) > δ},

where δ ∈ [0, 1] is the threshold hyper-parameter. We
utilize the same encoding model enc(·) to embed each
medical entity, and

〈
enc(ui), enc(ej)

〉
denotes the in-

ner product between extracted entities and KGs entities
for achieving graph entity linking. Finally, the matched
entities set is denoted as EQ.

4.2.2 Search Reasoning Chains in KGs
Next, using matched entities, we explore reasoning
chains within k hops and consolidate this knowledge
along with descriptions of the head and tail entities. Con-
sidering various knowledge graph retrieval methods, we
opt for utilizing reasoning chains between entities for
several reasons: i) Reasoning Chains provide richer log-
ical knowledge provided for LLMs to help it digest,
compared to entities and entity descriptions alone. ii)
Reasoning chains help LLM Reader understand the re-
lationships between different entities, thereby alleviat-
ing hallucinations and error problems. iii) Reasoning
chains act as an efficient pruning mechanism, filtering
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out noise more effectively than subgraphs and saving
token resources.

As a consequence, in light of (Xu et al., 2022), we
consider three possible reasoning chains from medical
perspective: i) Path (head-to-tail) as pathij , for compre-
hensively analyzing the triggering and causal relation-
ships between diseases and symptoms (Mas-Ponte and
Supek, 2020; Otlu et al., 2023). ii) Co-ancestor chain
(tail-to-tail) as chainCAij , for referring similar physi-
ological or environmental factors for better analogical
diagnosis (Bergstrom et al., 2022). iii) Co-occurance
chain (head-to-head) as chainCOij , for better capturing
the pathological characteristics and evolution of dis-
eases (Dong et al., 2021). In general, the reasoning
chain setRC after the graph retrieval are as:

pathij = (ei → r· → e· → · · · → r· → ej︸ ︷︷ ︸
within k hops

, di, dj),

chainCAij = (ei → r· → e· ← · · · ← r· ← ej︸ ︷︷ ︸
within k hops

, di, dj),

chainCOij = (ei ← r· ← e· → · · · → r· → ej︸ ︷︷ ︸
within k hops

, di, dj),

where ei, ej ∈ EQ, and r. is the relation. For any entity
pair in EQ, we collect reasoning chains within k(k ≥ 2)
hops and description of head & tail entity di, dj in KG.

4.3 Post-Retrieval Phase
Through retrieval, a large amount of reasoning chains
will be collected. However, due to the considerable
noise and the shortage of token resources (c.f. Chal-
lenge III in Section 1), we employ a reranker model
to prune and eliminate irrelevant noise knowledge by
reranking reasoning chains, leading to more efficient
token resource utilization. For the reranker base model,
we use the "bge_reranker_large"6 (Xiao et al., 2023),
trained through large-scale text pairs with asymmetric
instruction tunning, to map text to a low-dimensional
dense vector to rerank topK documents.

Moreover, due to the varying knowledge densities
between queries and reasoning chains, traditional re-
ranking based solely onQmay filter out valuable knowl-
edge acquired through HOM, resulting in a repetitive and
monotonous situation. As a consequence, we innova-
tively combine HO and Q, rather than relying solely
on user query, utilizing the richer medical knowledge
contained in HO. Practically, we first remove stop
words from natural language and then we use the chunk
method to segmentHO and Q:

{C} = Chunk(Q⊕HO), (3)

where {C} = {c1, · · · , ci, · · · , c|{C}|} is the segmented
fragments, with carefully selected chunk window size
lc and overlap size oc. Then, we leverage a rerank-
ing model denoted as Rerank(RC, {C}; topK), which
means referring to segment setRC, we select the topK

6https://huggingface.co/BAAI/bge-reranker-large

reranked retrieved chains from set {C}. Acting as a filter,
the reranking model reevaluates the significance of each
chain, considering various factors such as relevance,
coherence, and informativeness:

RCprune = Rerank
(
RC, {C}; topK

)
, (4)

where |RCprune| = topK.

4.4 LLM Reader

Finally, we linkRCprune with directed arrows, combined
with the description of the head and tail entities, and
feed the retrieved knowledge as well as user query Q
to LLM Reader via prompt engineering. The prompt
format PReader can be referred to in Appendix A.1 and
the LLM’s answer can be expressed as:

Answer = LLM(Q,RCprune | PReader). (5)

4.5 Overall Algorithm

Algorithm 1 shows the overall RAG process of HyKGE.
Given the knowledge graph KG, HyKGE first pre-
embed the entity name using enc(·), and saves the vec-
tor locally (Lines 1-3). Then, we query LLM to obtain
HO in response to user query Q (Line 4). After that,
we extract entities fromHO and Q (Line 5) and match
them with KG (Line 6). HyKGE then retrieves the rea-
soning chains fromKG (Line 7) while filtering the noise
path with HO Fragment Granularity-aware rerank mod-
ule (Line 8). At last, HyKGE organizes the retrieved
knowledge and query via prompt (Line 9) and queries
LLM Reader to get optimized answers (Line 10).

Algorithm 1 The RAG process of HyKGE.

Require: Knowledge Graph KG = (E ,R, T ,D,N ),
token vocabulary set V , user query Q, trained NER
model NER(·), trained embedded model enc(·),
trained Reranking model Rerank(·), Large Lan-
guage Model LLM(·), hyper-parameters δ, k, topK.

1: for ei ∈ E do ▷ Embed Knowledge Graph
2: Save enc(ei) locally;
3: end for
4: ObtainHO via LLM:HO = LLM(Q | PHO); ▷

Hypothesis Output
5: Extract entities U fromHO and Q via Eq.(2); ▷

NER Module
6: Match U with E via Eq.(4.2.1) and attain EQ; ▷

Entity Linking
7: Retrieved reasoning chains between any two anchor

entities from KG; ▷ Knowledge Graph Retrieval
8: Filter noise reasoning chains with HO Fragment

Granularity-aware Rerank Module; ▷ Prune
knowledge

9: Organize knowledge RCprune with user query Q
into prompt;

10: Get optimized answer of LLMs; ▷ LLM Reader
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5 Experiments
In this section, we conduct experiments on three datasets
to answer the following research questions:

• RQ1 (Section 5.2): Does HyKGE outperform the
state-of-the-art Knowledge Graph RAG methods us-
ing the same database source?

• RQ2 (Appendix A.3, Appendix A.4,Appendix A.5):
Is the framework we designed effective? What impact
does each module have on the overall performance?

• RQ3 (Section 5.3, Appendix A.3): Does the retrieved
knowledge we provide enhance the interpretability of
LLMs answers?

• RQ4 (Appendix A.6): How sensitive is HyKGE to
hyper-parameters retrieval hop k and rerank threshold
topK?

5.1 Experimental Setup
Dataset. Our experiments are conducted on two open-
source query sets: MMCU-Medical (Zeng, 2023) and
CMB-Exam (Wang et al., 2023d) datasets, which are
designed for multi-task Q&A and encompass single
and multiple-choice questions in the medical field, and
one open-domain Q&A dataset CMB-Clin (Wang et al.,
2023d) which is the inaugural multi-round question-
answering dataset based on real, complex medical diag-
nosis and treatment records. We use CMeKG (Clinical
Medicine Knowledge Graph) (BYAMBASUREN et al.,
2020), CPubMed-KG (Large-scale Chinese Open Med-
ical Knowledge Graph) and Disease-KG (Chinese dis-
ease Knowledge Graph) as external-knowledge source.
Details of datasets are summarized in Appendix A.2.

Baselines To fairly verify whether HyKGE can ef-
fectively enhance LLMs, we selected the follow-
ing two types of general-domain large models as
the base model and explored the gains brought by
HyKGE: GPT 3.5 and Baichuan13B-chat (Yang et al.,
2023a). We compare the HyKGE results against
eight other models: Base Model (Base) include
GPT 3.5 and Baichuan13B-chat,Knowledge Graph
Retrieval-Augmented Generation (KGRAG) (So-
man et al., 2023b,a; Sen et al., 2023),Query Expan-
sion (QE) (Azad and Deepak, 2019),CHAIN-OF-
NOTE (CoN) (Yu et al., 2023b),Chain-of-Knowledge
(CoK) (Li et al., 2023c),Knowledge-Augmented Lan-
guage Model Verification (KALMV) (Baek et al.,
2023),Knowledge Graph Generative Pre-Training
(KG-GPT) (Kim et al., 2023) and Summarizing Re-
trievals (SuRe) (Kim et al., 2024). Detailed description
of baselines can be referred in Appendix A.2.

Evaluation Metrics. We select EM, PCR to evaluate
the multi-task Q&A dataset, and ACJ, PPL, ROUGE-
R, BLEU-1, BLEU-4 to evaluate the open-domain
Q&A dataset. The detailed descriptions of these metrics
are in Appendix A.2.2.

Table 1: Analysis Comparison of RAG methods. Aver-
age Duration is computed based on GPT 3.5 turbo.

External LLMs RAG Opt. Avg.
Method Knowledge Finetuning Retriever LLMs Interactions (/times) Time (s)

Base ✗ ✗ 1 7.42
KGRAG ✓ ✗ 1 13.28

QE ✓ ✗ 2 18.54
CoN ✓ ✓ ≥ 2 34.33
CoK ✓ ✗ ≥ 4 45.84

KALMV ✓ ✗ ≥ 4 47.23
KG-GPT ✓ ✗ 5 55.19

SuRE ✓ ✗ ≥ 5 63.08
HyKGE (ours) ✓ ✗ 2 19.76

5.1.1 Baselines
5.2 Performance Comparison (RQ 1)

To answer RQ1, we conduct experiments and report
results of the accuracy on the MMCU-Medical, CMB-
Exam and CMB-Clin datasets with two LLM turbos
GPT 3.5 and Baichuan 13B-Chat, as illustrated in Ta-
ble 2 and Table 3. From the reported accuracy, we can
find the following observations:

Comparison of RAG methods and Base LLMs.
Through comparison, we observe that most RAG ap-
proaches do not consistently yield effective outcomes
when integrated with KGs, especially in contrast with
the Base model. For instance, the KGRAG method
extracts triples from KG without engaging in essen-
tial post-processing steps like reranking and filtering,
thereby infusing an overabundance of noise and com-
promising the interpretative performance of LLMs. As
for QE tasks, while traditional QE methods typically
show efficacy, LLMs demonstrate a notable difficulty
in comprehending instructions that necessitate the task-
specific rewriting of multiple-choice questions, which,
in turn, detrimentally impacts LLMs performance in
such scenarios. Moreover, this effect is particularly pro-
nounced in weaker models, such as Baichuan, where
the repercussions of these deficiencies are significantly
magnified. However, the improvement in CoN, CoK,
KG-GPT, SuRe and HyKGE is more remarkable, be-
cause leveraging LLMs to explore or organize knowl-
edge can assist in finding more relational knowledge and
the reranking or filtering methods can highly likely re-
move irrelevant noise knowledge chains, and contribute
to accuracy improvement.

Comparison of HyKGE and other RAG methods.
Firstly, it is evident that our model, HyKGE, outper-
forms the baseline models across all metrics. For in-
stance, the EM and PCR scores see an improvement of
approximately 8.55%-28.15% and 10.45%-33.29% for
the MMCU-Medical dataset with GPT 3.5 turbo, and the
BLEU-1 and ROUGE-R scores see an improvement of
approximately 40.29%-278.47% and 7.30%-51.69%
for the CMB-Clin dataset with GPT 3.5 turbo. This
highlights the effectiveness of our modules in locating
valid information and filtering noises in retrieved knowl-
edge. Although CoK, CoN, KG-GPT and SuRe have
achieved commendable results, their advancements are
constrained in the knowledge search space, due to their
focus on continuous knowledge understanding rather
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Table 2: Performance comparison (in percent) on CMB-Exam and MMCU-Medical for medical Q&A answer. Red
shading indicates the best-performing model, while blue signifies the second-best in the ablation study, and green
signifies the second-best in baselines.

LLM Turbo LLM GPT 3.5 Baichuan 13B-Chat

Method Dataset MMCU-Medical CMB-Exam MMCU-Medical CMB-Exam
Metric EM PCR EM PCR EM PCR EM PCR

Baselines

Base 43.52 50.55 38.40 46.76 42.20 46.09 36.91 40.95
KGRAG 38.74 43.38 38.00 42.26 34.37 38.51 39.92 45.84

QE 40.28 46.79 36.35 41.84 38.25 44.23 34.27 38.79
CoN 45.74 51.15 42.45 45.65 44.98 50.65 41.37 47.58
CoK 45.15 52.35 42.32 45.98 45.15 51.19 41.87 47.95

KALMV 39.24 43.77 38.24 43.37 36.17 40.85 38.61 43.92
KG-GPT 45.08 52.16 41.49 45.72 44.25 50.97 39.92 45.20

SuRe 44.81 51.49 41.37 44.27 44.77 50.24 39.49 46.22
Ours HyKGE 49.65 57.82 45.94 50.63 49.33 58.12 45.44 51.25

Ablation

HyKGE (w/o HO) 41.08 49.74 34.40 40.14 39.55 45.28 33.33 35.42
HyKGE (w/o Chains) 48.15 54.53 44.60 48.27 48.65 55.45 43.40 48.81

HyKGE (w/o Description) 48.30 54.01 44.80 48.56 48.22 55.23 43.77 49.86
HyKGE (w/o Fragment) 47.87 54.34 42.33 47.54 47.95 53.45 44.72 49.29
HyKGE (w/o Reranker) 46.38 52.48 41.44 48.84 43.59 46.88 40.65 46.25

Table 3: RAG relevance and answer performance comparison (mean) on CMB-Exam, MMCU-Medical, and
CMB-Clin for medical Q&A answer with GPT 3.5 Turbo.

Method Dataset MMCU-Medical CMB-Exam CMB-Clin
Metric ACJ PPL ROUGE-R ACJ PPL ROUGE-R BLEU-1 BLEU-4 PPL ROUGE-R

Baselines

Base / 47.42 / / 62.54 / 4.83 6.51 10.38 23.99
KGRAG 13.38 151.22 5.31 18.40 218.67 11.25 5.34 8.77 61.81 22.15

QE 25.53 28.75 14.05 31.91 29.57 16.64 8.85 18.67 28.32 26.24
CoN 19.14 29.01 16.46 14.89 27.35 17.31 12.48 25.81 17.65 31.37
CoK 18.45 24.38 18.23 16.77 28.69 19.94 12.35 24.79 21.57 30.86

KALMV 14.42 147.22 7.21 18.77 233.49 12.84 5.72 8.27 80.46 23.16
KG-GPT 32.03 25.76 15.90 38.70 24.01 17.72 13.03 26.14 15.54 28.42

SuRe 20.16 26.49 16.91 22.27 30.81 16.18 10.54 24.82 16.84 29.18
Ours HyKGE 59.57 12.55 26.89 71.28 10.14 32.11 18.28 30.21 8.56 33.66

Ablation HyKGE (w/o HO) 41.49 15.57 22.30 51.48 11.23 29.01 7.15 11.55 8.96 30.48
HyKGE (w/o Fragment) 38.30 18.95 23.63 41.91 11.26 26.89 11.28 23.09 8.99 31.40

than exploration. Moreover, compared to CoK, CoN,
KG-GPT and SuRe, HyKGE avoids accumulating er-
rors in the chain of thought while acquiring and re-
taining more relevant yet diverse knowledge. In sum-
mary, the HyKGE exhibits superior performance over
all baselines with fewer interaction times with LLMs
(c.f. Table 1). Evidenced by comprehension experi-
ments, HyKGE demonstrates HO Module’s and the HO
Fragment Granularity-aware rerank module’s effective-
ness compared to CoN, CoK, KG-GPT and SuRe.

5.3 Interpretability Analysis (RQ 3)

In this section, we concentrate on evaluating the inter-
pretability with three metrics ACJ, BLEU, PPL and
ROUGE-R as shown in Table 3 to find out whether
retrieved knowledge is effective and whether it can help
LLMs reduce hallucinations. Several observations can
be derived from the results.

The relevance of knowledge retrieval. For meth-
ods that interacted with LLMs and applied noise fil-
tering modules, such as QE, CoK, CoN, SuRE and
HyKGE, we notice that they often score higher on
ACJ on MMCU-Medical and CMB-Exam, and ROUGE-

R on CMB-Clin dataset, reflecting the efficacy of the
LLMs’ inherent knowledge and reasoning abilities as
well as the importance of removing irrelevant knowl-
edge. Moreover, the ACJ value of KG-GPT and QE
is the second-to-best as they do not alter the seman-
tics of the user query. Therefore, the knowledge re-
trieved by KG-GPT and QE have higher relevance with
ACJ score, compared to CoK and CoN. Furthermore, it
is noticed that our proposed HyKGE surpasses base-
lines with a performance gain of 84.19%-378.71%
and 133.33%-345.22% on MMCU-Medical and CMB-
Exam respectively, which demonstrates our superior-
ity in solving misaligned knowledge density between
query and retrieved knowledge. The marked decline
in ACJ of w/o Fragment also supports HO Fragment
Granularity-aware reranker’s role in keeping relevant
knowledge. The BLEU and ROUGE-R scores on CMB-
Clin also demonstrate HyKGE’s superiority, indicating
that HyKGE could be more appropriate for and aligned
with real-life doctor consultations, proving the effective-
ness of HyKGE in information retrieval.

Can LLMs utilize retrieved knowledge to reduce
hallucinations? As for method KGRAG, it fails to per-

11843



form well on PPL and ROUGE-R, which is attributed
to the provision of overly lengthy retrieved knowledge
and redundant noise, resulting in the inability of the
LLMs to extract useful information from the knowledge.
The performance test of baselines consistently shows
that our proposed HyKGE greatly reduces hallucina-
tions and promotes LLMs to better utilize the retrieved
knowledge, with performance gain of 57.77%-95.36%
and 61.03%-185.42% on MMCU for PPL and ROUGE-
R respectively. We argue the reason that the retrieved
knowledge is more relevant and diverse because of the
HOM and HO Fragment Granularity-aware Reranker, and
its chain structure also stimulates the reasoning ability
of LLMs. Others, i.e. QE, CoN, and CoK’s have been
greatly reduced because their rerankers cannot retain
more diverse knowledge, resulting in LLMs’ answers
being too singular and ROUGE-R surely being lower.
Notably, our performance on the CMB-Exam test set
was superior, due to richer and more detailed descrip-
tion of medical questions, allowing us to obtain more
diverse and relevant knowledge based onHO & Q.

6 Conclusion
In this paper, we proposed HyKGE, a hypothesis knowl-
edge graph enhanced framework for LLMs to improve
accuracy and reliability. In the pre-retrieval phase, we
leverage the zero-shot capability of LLMs to compen-
sate for the incompleteness of user queries by exploring
searching directions through hypothesis outputs. In the
post-retrieval phase, HyKGE applies a fragment rerank-
ing module to enhance the knowledge density alignment
between user queries and retrieved knowledge, preserv-
ing relevant and diverse knowledge chains. The compre-
hensive experiments conducted on three medical Q&A
tasks with two LLMs turbo demonstrate the effective-
ness of HyKGE. Nevertheless, it remains worthwhile
to contemplate how to dynamically optimize fragment
granularity in the post-retrieval phase—a direction that
we are committed to exploring actively in the future.
In addition, despite the limitations of data sources and
the high computational cost of LLMs, we will explore
other language or domain-specific KGs in the future to
enhance the scalability and generalization of HyKGE.

Limitations
We acknowledge two limitations in this work. First,
many knowledge graphs suffer from limited coverage,
and in the future, we plan to address the challenge of
handling queries that contain entities not represented in
the knowledge graph. Second, our current approach is
tailored to knowledge graphs and data sources in a spe-
cific language. Moving forward, we aim to extend our
methodology to support multiple languages and validate
its effectiveness using more general benchmarks.
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A Appendix

A.1 Design Details

A.1.1 Prompts Design
Prompts used in Hypothesis Output Module and LLM
Reader are illustrated in Figure 3.

A.2 Experiment Settings

A.2.1 Datasets
For MMCU-Medical (Zeng, 2023), the questions are
from the university medical professional examination,
covering the three basic medical sciences, pharmacol-
ogy, nursing, pathology, clinical medicine, infectious
diseases, surgery, anatomy, etc., with a total of 2,819
questions. The CMB-Exam (Wang et al., 2023d) dataset
utilizes qualifying exams as a data source in the four
clinical medicine specialties of physicians, nurses, medi-
cal technicians, and pharmacists, with a total of 269,359
questions. Given the extensive size of the CMB-Exam
dataset, we randomly sample 4,000 questions for testing.
The CMB-Clin (Wang et al., 2023d) dataset contains 74
high-quality, complex, and real patient cases with 208
medical questions.

CMeKG (Clinical Medicine Knowledge Graph)7

(BYAMBASUREN et al., 2020), CPubMed-KG (Large-
scale Chinese Open Medical Knowledge Graph) 8

and Disease-KG (Chinese disease Knowledge Graph)9

are open-source medical KGs, which integrates exten-
sive medical text data, including diseases, medications,
symptoms and diagnostic treatment technologies. The
fused KG has 1,288,721 entities and 3,569,427 relations.
However, due to the lack of medical entity descriptions
in its entities, we collect relevant entity knowledge from
Wikipedia10, Baidu Baike11, and Medical Baike12, and
store them as entity descriptions.

(1) Base Model (Base) servers as the model without
any external knowledge, used to check the improve-
ment effect of different RAG methods. We use GPT
3.5 and Baichuan13B-chat (Yang et al., 2023a) as base
models. (2) Knowledge Graph Retrieval-Augmented
Generation (KGRAG) (Soman et al., 2023b,a; Sen
et al., 2023) uses user query as a reference to retrieve
in the KGs, which is the base model of RAG on KG
and has been widely applied in (Soman et al., 2023b,a;
Sen et al., 2023). (3) Query Expansion (QE) (Azad
and Deepak, 2019) reformulate the user’s initial query
by adding additional terms with a similar meaning with
the help of LLMs. (4) CHAIN-OF-NOTE (CoN) (Yu
et al., 2023b) generates sequential reading notes for
retrieved knowledge, enabling a thorough evaluation
of their relevance to the given question and integrating

7https://cmekg.pcl.ac.cn/, https://github.com/king-
yyf/CMeKG_tools

8https://cpubmed.openi.org.cn/graph/wiki
9https://github.com/nuolade/disease-kb

10https://www.wikipedia.org/
11https://baike.baidu.com/
12https://www.yixue.com/
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Figure 3: The prompt formats of (Up.) Hypothesis Output Module and (Down.) LLM Reader.

### Task Description:
You are a medical expert. Please write a passage to answer [User Query] while adhering to [Answer Requirements].

### Answer Requirements:
1) Please take time to think slowly, understand step by step, and answer questions. Do not skip key steps.
2) Fully analyze the problem through thinking and exploratory analysis.

### {{ User Query }}

The Prompt Format of Hypothesis Output Module (PHO)

### Task Description:
You are a medical expert. Based on relevant medical [Background Knowledge] and your medical knowledge, provide
professional medical advice for [User Query] while adhering to [Answer Requirements].

### Answer Requirements:
1) Take time to think slowly, understand step by step, and answer questions.
2) Clearly state key information in the answer and provide direct and specific answers to user questions.

### {{ Background Knowledge }}
The retrieved knowledge chains are:
Kidney stones→ Laboratory tests→ Serum calcium← Laboratory tests← Gastric ulcer... (example)

### {{ User Query }}

The Prompt Format of LLM Reader (PReader)

these notes to formulate the final answer. (5) Chain-of-
Knowledge (CoK) (Li et al., 2023c) utilize the power
of LLMs and consists of reasoning preparation, dynamic
knowledge adapting, and answer consolidation. (6)
Knowledge-Augmented Language Model Verifica-
tion (KALMV) (Baek et al., 2023) verifies the output
and the knowledge of the knowledge-augmented LLMs
with a separate verifier. (7) Knowledge Graph Gen-
erative Pre-Training (KG-GPT) (Kim et al., 2023)
comprises three steps: Sentence Segmentation, Graph
Retrieval, and Inference, each aimed at partitioning sen-
tences, retrieving relevant graph components, and deriv-
ing logical conclusions. (8) Summarizing Retrievals
(SuRe) (Kim et al., 2024) constructs summaries of the
retrieved passages for each of the multiple answer can-
didates and confirms the most plausible answer from
the candidate set by evaluating the validity and rank-
ing of the generated summaries. Note that we follow
the prompts of the baselines as stated strictly. Besides,
the baselines and running time are summarized in Ta-
ble 1. In RAG Options, CoN requires fine-tuning the
retriever, implying a higher training overhead and the
prerequisite of preparing a dataset. In addition, it is also
difficult to migrate to other domain-specific KGs. In
terms of LLMs interactions, QE, CoN, CoK, KALMV,
KG-GPT, SuRe and HyKGE all necessitate engagement
with LLMs. However, CoN, CoK, KALMV, KG-GPT
and SuRe entail multiple interactions (more than twice),
significantly escalating the time expenditure.

A.2.2 Evaluation Metrics

As for the evaluation of multi-task medical choice ques-
tion performance, we guide LLMs to only answer the
correct answer and employ established metric Exact
Match (EM) as suggested by prior work (Zhu et al.,
2021; Karpukhin et al., 2020). For the EM score, an
answer is deemed acceptable if its form corresponds to
all correct answers in the provided list. For multiple-
choice questions, we also calculate a Partial Correct
Rate (PCR). In comparison to EM, if there is a miss-
ing answer without any incorrect ones, PCR classifies
it as correct. In addition, to verify the effectiveness
of the retrieved knowledge, we also let LLMs output
a complete analysis process. Then, we measure Arti-
ficial Correlation Judgement (ACJ) by inviting 20
medical experts to rate the retrieved knowledge accord-
ing to the criteria of (correlation=1, relevant but use-
less=0, irrelevant=-1), and calculate the relevant scores
for each question by sampling 100 questions from the
two datasets. Moreover, we also objectively evaluated
the Perplexity (PPL) of LLMs output. The smaller
the PPL, the greater the role of retrieved knowledge in
reducing LLMs’ hallucinations. Moreover, we also com-
plement our analysis with ROUGE-Recall (ROUGE-
R) (Xu, 2023). ROUGE-R measures the extent to
which the LLMs’ responses cover the retrieved knowl-
edge, which is crucial for ensuring comprehensive in-
formation coverage. For open-domain medical Q&A
tasks, we utilize ROUGE-R and Bilingual Evaluation
Understudy (BLEU-1 for answer precision, BLEU-4
for answer fluency) (Xu, 2023) to gauge the similarity
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of LLMs responses to the ground-truth doctor analy-
sis. Additionally, we employ PPL to assess the quality
of LLMs responses. Next, we provide comprehensive
descriptions and formulas for the metrics used to eval-
uate our models. Each metric targets a specific aspect
of performance, allowing for a thorough and balanced
assessment.

Exact Match (EM). Exact Match measures the per-
centage of predicted answers that exactly align with the
ground truth. It is equivalent to Accuracy (ACC).

EM =
Number of Correct Predictions

Total Number of Questions
(6)

Partial Correct Rate (PCR). For multiple-choice
questions, partial correctness is permissible. If a subset
of the selected answers matches the ground truth, the
prediction is deemed correct.

PCR =
Number of Partially or Fully Correct Predictions

Total Number of Questions
(7)

Artificial Correlation Judgment (ACJ). ACJ evalu-
ates the relevance of retrieved knowledge using expert
annotation. Twenty medical experts score 100 sampled
questions from each dataset under three criteria:

• Correlation = 1: Retrieved knowledge is relevant
and useful.

• Relevant but Useless = 0: Knowledge is relevant
but does not help answer the question.

• Irrelevant = –1: Knowledge is not relevant.

The final ACJ score is the mean of the expert ratings:

ACJ =
Sum of Expert Ratings
Number of Questions

(8)

Perplexity (PPL). Perplexity quantifies the fluency
of the language model’s output by exponentiating the
average negative log-likelihood of the predicted token
sequence.

PPL = 2−
1
N

∑N
i=1 log2 P (wi), (9)

where P (wi) is the probability assigned to token wi and
N is the total number of tokens.

ROUGE (Recall-Oriented Understudy for Gisting
Evaluation). We employ ROUGE-R (recall) to mea-
sure the overlap between generated text and reference
text in terms of n-grams, longest common subsequences,
or skip-bigrams.

ROUGE-R =
# Overlapping n-grams

Total #n-grams in Reference
(10)

where # denotes the number.

BLEU (Bilingual Evaluation Understudy). BLEU
assesses the precision of overlapping n-grams between
generated and reference texts, incorporating a brevity
penalty (BP) to discourage overly short outputs:

BLEU = BP · exp
( N∑

n=1

wn logPn

)
, (11)

where Pn denotes n-gram precision and wn is typically
uniform (wn = 1/N ). The brevity penalty is defined as

BP =

{
1, if c > r,

exp
(
1− r

c

)
, if c ≤ r,

(12)

with c and r representing the lengths of the generated
and reference texts, respectively.

A.2.3 Experimental Implementation.
In HyKGE, k = 3, topK = 10, δ = 0.7, lc = 10, oc =
4. The prompts for LLMs can refer to Table 3. More-
over, for all the baselines and HyKGE, we set the maxi-
mum number of returned tokens for LLMs to 500 and
the temperature to 0.6. In all baselines and HyKGE,
we first use the Jieba library in Python to perform
word segmentation, and then use filtered text to filter
out tone words and invalid characters following “chi-
nese_word_cut.txt”13 to avoid errors in knowledge ex-
traction. For a fair comparison, we apply the same
W2NER, GTE and FlagEmbedding models for all base-
lines. Moreover, the parameters of W2NER are opti-
mized with Adam optimizer (Kingma and Ba, 2015)
with L2 regularization and dropout on high-quality med-
ical dataset (Zhang et al., 2022; Hongying et al., 2020),
the learning rate is set to 1e-3, the hidden unit is set
to 1024 and weight decay is 1e-4. Similar to previous
work (Soman et al., 2023a), because of the randomness
of LLMs’ outputs, we repeat experiments with differ-
ent random seeds five times and report the average and
standard deviation results. Experimental results are sta-
tistically significant with p < 0.05. Implementations are
done using the PyTorch 1.9.0 framework (Paszke et al.,
2019) in Python 3.9, on an Ubuntu server equipped with
8 A100 GPU and an Intel(R) Xeon(R) CPU.

A.3 Case Study (RQ2 and RQ3)
This case study presents a representative sample that
illustrates the effectiveness of our HyKGE model using
GPT-3.5 Turbo as shown in Figure 5. The color cod-
ing within the table is key to understanding the source
and validity of the information and we have these ob-
servations: i) Compared to a brief user query, seman-
tic spaces of HO are more abundant and have a clear
direction for answering, helping us better understand
user intention and extract more effective entity infor-
mation. Ultimately, HyKGE extracted 23 entities from
HO compared to only 1 fromQ. ii) Comparing theRC
with RCprune, it can be observed that the pre-filtered

13https://github.com/Robust-
Jay/NLP_Chinese_WordCut/blob/master/stopwords.txt
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Table 4: Performance and computation time comparison
(in mean ± standard deviation) on MMCU-Medical for
medical Q&A answer with GPT 3.5 Turbo.

Method / Metric EM PCR Avg. Time (s)
HyKGE 49.65±1.39 57.82±1.54 19.76

HyKGE(+ LLM for NER) 48.17±1.13 56.77±1.02 26.61
HyKGE(+ LLM for Reranker) 42.72±2.06 48.24±1.17 32.51
HyKGE(+ LLM for Summary) 43.02±3.11 46.54±2.08 28.51

chains contain a large amount of irrelevant or repeti-
tive knowledge, marked in black. After reranking, re-
trieved knowledge is highly non-redundant and relevant
to HO and Q, demonstrating the effectiveness of our
fragment-based reranker. Ultimately, out of 125 reason-
ing chains, HyKGE selected topK = 10 of the most
valuable chains. iii) Note that retrieved knowledge ef-
fectively assisted LLMs in correcting errors, mitigating
the issue of hallucinations. InHO, LLMs posited that
“calcium carbonate could not treat GERD”; however,
with the supplemental knowledge about “calcium car-
bonate” in our retrieved reasoning chains, marked in
green. LLMs corrected this error in its final response. In
general, this case study demonstrates HyKGE’s strong
ability to generate hypotheses and validate them against
a structured KG, effectively leveragingHO for explor-
ing and reasoning chains for error correction. In general,
the integration of these components ensures that the
RAG’s outputs are not only contextually relevant but
also accurate, showcasing the interpretability and poten-
tial for AI-assisted decision-making in healthcare.

A.4 Efficiency Analysis (RQ2)

To illustrate the effectiveness of our HyKGE module, we
conducted a comparative analysis of the time overhead
between HyKGE and other knowledge graph-enhanced
LLM approaches, as presented in Table 1. The KGRAG
method demonstrates the shortest time overhead among
RAG methods, as it solely necessitates conveying the re-
trieved knowledge to the LLM Reader. However, when
juxtaposed with QE and HyKGE, KGRAG’s perfor-
mance notably lags behind, even resulting in a nega-
tive gain because of the huge noise. In contrast to QE,
HyKGE incurs slightly higher time primarily due to
the noise filtering process, which consumes some time.
Nonetheless, the performance enhancement achieved
by HyKGE outweighs this marginal increase in time
overhead. Furthermore, CoN and CoK, which adopt
the chain-of-thought strategy (Wei et al., 2023), en-
tail multiple interactions with LLMs, which proves to
be considerably restrictive, particularly in real-world
medical Q&A scenarios where time is a critical con-
sideration. Therefore, striking a balance between time
overhead and model accuracy becomes imperative, in
which regard HyKGE emerges as the most efficient and
high-performing framework.

Moreover, inspired by these Chain-of-thought
works (Pouplin et al., 2024; Trivedi et al., 2023), which
respectively employ LLMs in different processes of
RAG, we embarked on similar endeavors. Specifically,
we integrated LLMs into the modules of NER, Reranker,

and summarization modules (to summarize the retrieved
knowledge) (Kim et al., 2024), as shown in Table 4.
However, our findings underscored that leveraging such
large-parameter models for tasks amenable to smaller
counterparts incurs substantial time costs with marginal
benefits. For instance, incorporating LLMs into NER,
aimed at enhancing entity extraction, a task that could
be efficiently handled by specialized pre-trained medi-
cal NER models, not only doubling interaction time but
also introducing complexities such as misinterpretation
of instructions, thus impeding subsequent processing.
Similarly, the utilization of LLMs in Reranker consid-
erably strained token resources. For instance, upon
retrieving the query “I feel stomach reflux after eating.
What medicine should I take?” it generated a whopping
125 reasoning chains. However, employing LLMs to
eliminate noisy knowledge from these chains resulted in
decreased effectiveness. We argue that this was primar-
ily due to the inundation of tokens, causing LLMs to
lose in the middle (Liu et al., 2023), thereby impeding
their ability to discern genuinely relevant knowledge
from the retrieved chains and even ignore LLMs’ tasks.
Consequently, LLMs employed for Reranker inadver-
tently filtered out valuable knowledge, yielding nega-
tive outcomes and exacerbating computational overhead.
Likewise, employing LLMs for knowledge summariza-
tion encountered challenges akin to those encountered
in Reranker. Although LLMs are quite effective, accord-
ing to Occam’s razor principle (Standish, 2004), it is
not always beneficial to use LLMs in every RAG step.
Excessive reliance on LLMs can only lead to wasted
time costs. In summary, because RAG involves a pro-
cess of continuous trial and error (Barnett et al., 2024),
we experimented with many strategies and ultimately
arrived at HyKGE.

A.5 Ablation Study (RQ 2)
To answer RQ2, we perform ablation studies to verify
the effectiveness of the critical components of HyKGE,
as illustrated in Table 2. Our observation can be sum-
marized as follows:

In pre-retrieval phase. When we remove the Hy-
pothesis Output Module, results are even deteriorating
than base model. This is attributed to the fact that re-
trieved knowledge simply based on user queries is ei-
ther insufficient or futile because of lacking direction
for exploration. Nevertheless, the results of w/o HO
are still better than KGRAG and we argue the reason is
the reranking of reasoning chains effectively filters out
noise during the post-retrieval phase.

In post-retrieval phase. The removal of the Reranker
leads to a noticeable decline in performance compared
to HyKGE, which indicates that Reranker effectively
eliminates excessive noise introduced by the retrieved
knowledge, retaining only the most pertinent parts for
answering the question. When we use entireHO andQ
instead of chunk (Q⊕HO) to perform reranking with
reasoning chains, a decline in performance is also ob-
served. This is attributable to the misalignment between
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dense retrieved knowledge and sparsely distributed key-
words inHO andQ, inducing a tendency to select more
general or lengthier knowledge, thereby diminishing the
HOM’s capability to supplement diverse knowledge.

Moreover, results of w/o Chains and w/o
Description demonstrate that even when KG lacks
certain knowledge, descriptive information or relevant
knowledge chains can still enhance the answering ca-
pabilities of LLMs, which is believed to be associated
with the inherent implicit knowledge within the LLMs
themselves.

A.6 Hyper-parameter Study (RQ4)
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Figure 4: (Left.) Hyper-parameter study with the KG
hop k on MMCU-Medical and CMB-Exam with GPT
3.5 turbo, from 1 to 5. (Right.) Hyper-parameter study
with the reranker topK on MMCU-Medical and CMB-
Exam with GPT 3.5 turbo, from 5 to 50.

In this part, we concentrate on evaluating the influ-
ence of different hyper-parameters on HyKGE for RQ4.
Specifically, we perform a series analysis of KG hop k
from the list [1, 2, 3, 4, 5] and reranker topK from the
list [5, 7, 10, 15, 30, 50] to verify the sensitive:

Figure 4 (Left.) depicts EM and the number of re-
trieved knowledge before pruning. We observe that as k
increases, the amount of knowledge retrieved explodes
exponentially following a power-law distribution(Berger
et al., 2005; Ahad N. et al., 2023), exceeding 103 when
k = 5. However, an excessive amount of knowledge not
only fails to improve EM, but also burdens LLMs with

an increased number of tokens. Concurrently, EM ex-
hibits a trend of initial increase followed by a decrease
as k increases. This phenomenon can be attributed to the
fact that at lower values of k, the retrieved knowledge
predominantly consists of isolated snippets of informa-
tion, offering minimal utility. Conversely, with larger
k, the LLMs encounter limitations in comprehending
extensive reasoning chains, thereby rendering them inca-
pable of effectively utilizing the complex and abundant
retrieved information, with the performance even worse
than the base model. Besides, we notice removing the
HO will result in a substantial reduction in the quantity
of knowledge retrieved, because of the limited diversity
of knowledge obtained based solely on user query.

Figure 4 (Right.) depicts EM with different rerank-
ing thresholds. Similar to Figure 4 (Left.), as topK
increases, the trends demonstrate that overwhelming
reasoning chains will hamper LLMs’ ability for com-
prehension. Meanwhile, it is obvious that HyKGE w/o
Fragment always underperforms on EM as analyzed in
Section A.5.

A.7 Quantifying Knowledge Density
Quantifying the knowledge density of user queries poses
significant challenges in natural language processing
and understanding. Knowledge density refers to the
amount of useful information conveyed in a given state-
ment, which can vary widely depending on how the
information is presented.

For example, consider the following two statements:
1. “Doctor, my name is Jack. Recently, after having

breakfast, I often experience stomach pain.” 2. “Having
breakfast causes stomach pain.”

The first statement exhibits a lower knowledge den-
sity, as it includes extraneous information that does not
directly contribute to the understanding of the medi-
cal issue at hand. In contrast, the second statement is
concise and directly conveys the relationship between
breakfast and stomach pain, demonstrating a higher
knowledge density.

This disparity illustrates the challenges involved in
quantifying knowledge density. The lack of fine-grained
annotations in many datasets complicates efforts to de-
velop reliable metrics for measuring knowledge density.
While it is possible to qualitatively assess the informa-
tion content of various statements, the absence of stan-
dardized methods or clear benchmarks makes it difficult
to achieve accurate and consistent quantification.

Consequently, addressing the misalignment between
the knowledge density of user queries and reasoning
chains remains an area of active research. Future work
may involve exploring new annotation strategies or de-
veloping automated methods to evaluate and quantify
knowledge density effectively.

A.8 Explanation and Ablation Results for the
Proposed Reasoning Chains

Biomedical knowledge graphs are characterized by
dense adjacency relationships, which often result in sub-
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Figure 5: Case study. We demonstrate the User Query Q, Hypothesis OutputHO, Retrieved Reasoning ChainsRC
and Pruned Reasoning chainsRCprune of HyKGE using GPT-3.5 Turbo to verify the interpretability and effectiveness
of HyKGE. Red shed signifies that the knowledge or answer is derived from evidence in Q, blue shed indicates
that the evidence originates fromHO, and green shed represents a corrected answer with the help of KG, despite
initially being false inHO.

### User QueryQ:
I feel stomach reflux after eating. What medicine should I take?

### Hypothesis OutputHO:
Stomach reflux can be a symptom caused by gastroesophageal reflux . 1. Do you have symptoms related to

indigestion , excess stomach acid , gastric ulcers , bile reflux , or stomach pain ? . . . When experiencing mild
gastroesophageal reflux, the following plans can be considered:- Avoid overeating - Avoid spicy, stimulating foods, and
alcohol - Maintain a light diet, eat more vegetables. Under appropriate evidence, consider taking
H2 receptor antagonists or proton pump inhibitors . It is not recommended to take calcium carbonate or

aluminum hydroxide medications,

as calcium carbonate can lead to kidney stones, and the aluminum element in aluminum hydroxide

is toxic and may cause allergic reactions or discomfort.

### Retrieved Reasoning ChainsRC:
Kidney stones→ Laboratory tests→ Serum calcium← Laboratory tests← Gastric ulcer. Kidney stones→ Clinical
symptoms and signs→ Fever← Complications← Esophageal cancer.
Excess gastric acid→ Affected area→ Abdomen← Affected area← Stomach pain. Niflumic acid→ Adverse

reaction→ Discomfort← Adverse reaction← Calcium carbonate. Gastrointestinal bleeding→ Related diseases→
Gastric ulcer. Gastric ulcer→ Treatment→ Aluminum hydroxide.

Calcium carbonate→ Indication→ Excess gastric acid. Aluminum hydroxide→ Indication→ Gastric reflux.

Niflumic acid→ Third level classification→ Others← Affected area← Postprandial food reflux.

Duodenogastric reflux and bile reflux gastritis→ Treatment→ Calcium carbonate. More else . . . [125 reasoning
chains in total.]

### Pruned Reasoning chainsRCprune:
Gastric ulcer→ Treatment→ Aluminum hydroxide. Calcium carbonate→ Indication→ Excess gastric acid.

Aluminum hydroxide→ Indication→ Gastric reflux.

Niflumic acid→ Third level classification→ Others← Affected area← Postprandial food reflux.

Duodenogastric reflux and bile reflux gastritis→ Treatment→ Calcium carbonate.

Stomach reflux→ Related disease→ Excess gastric acid. Caved-S→ Indication→ Excess gastric acid.

Weile tablets→ Indication→ Excess gastric acid. More else. . .[10 reasoning chains in total.]

### Answer:
Stomach reflux can be a symptom caused by gastroesophageal reflux disease (GERD) , and this condition could

potentially lead to reflux esophagitis. Consider the following medical recommendations:
Acid-suppressing medications (Proton Pump Inhibitors) : You may consider using omeprazole or esomeprazole to

effectively reduce gastric acid secretion, aiding in relieving symptoms of gastric reflux and mitigating the development
of reflux esophagitis. Alternatively, you can use
acid-neutralizing medications (antacids) such as magnesium aluminum carbonate (Rennie), calcium

carbonate, and aluminum hydroxide. Another option is the use of H2 receptor antagonists such as

ranitidine or famotidine. Additionally, medications like Caved-S or Weile tablets are also suitable for mild to
moderate symptoms of gastric reflux. Gastric protective medications: For short-term relief of stomach pain,
you may also consider using gastric mucosal protectants such as sucralfate. It helps form a protective mucous layer,

reducing irritation to the stomach mucosa. Diet and lifestyle adjustments: First, . . . it is advisable to consult a healthcare
professional for evaluation and diagnosis as soon as possible.

A case study of HyKGE pipeline
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graphs that contain a significant number of noisy and
irrelevant entities. These noisy subgraphs can degrade
the performance of downstream tasks by introducing
unnecessary complexity and distracting from relevant
information. The results presented in Table 1 (HyKGE
w/o Chains) validate this observation, underscoring the
necessity of incorporating reasoning chains to reduce
noise and enhance retrieval quality.

Rationale Behind the Selection of the Three Rea-
soning Chains. The inclusion of the three reason-
ing chains—Path, Co-ancestor, and Co-occurrence—is
driven by their unique ability to address the challenges
associated with biomedical reasoning tasks. Each chain
pattern offers specific advantages that collectively en-
hance the retrieval process:

• Path (head-to-tail): This reasoning chain captures
direct causal or triggering relationships between dis-
eases and symptoms. For instance, it identifies con-
nections such as "infection" leading to "fever," pro-
viding clear and logical insights into causal medical
phenomena.

• Co-ancestor Chain (tail-to-tail): This chain iden-
tifies shared physiological or environmental factors
between entities, facilitating analogical reasoning and
supporting diagnostic processes. For example, "high
blood pressure" and "diabetes" might share a common
factor like "obesity," revealing underlying relation-
ships that aid in understanding co-morbidities.

• Co-occurrence Chain (head-to-head): This reason-
ing chain captures pathological characteristics and
disease progression by linking entities that frequently
co-occur in similar contexts. For instance, it estab-
lishes connections between "tumor" and "metastasis,"
providing insights into disease progression and asso-
ciations.

Benefits of the Selected Reasoning Chains. These
reasoning chains collectively serve as a structured and
semantically rich mechanism for organizing biomedical
knowledge. Specifically, they provide several benefits:
- They facilitate easier interpretation and inference by
large language models (LLMs), enabling more accu-
rate and relevant retrievals. - By focusing on logical
and contextual relationships, they function as an effi-
cient pruning mechanism, significantly reducing noise
in subgraphs and improving the quality of the retrieved
knowledge.

Experimental Validation. To further support our
choice of reasoning chains, we conducted an ablation
study comparing the effectiveness of each reasoning
chain pattern (Path, Co-ancestor, Co-occurrence) both
individually and in combination. The ablation results,
along with those detailed in Table 1, confirm that the
integration of these three chains yields the best perfor-
mance by leveraging their complementary strengths.

By incorporating these reasoning chains, our method
effectively addresses the inherent challenges of biomed-
ical knowledge graphs while ensuring more precise and
semantically meaningful knowledge retrieval for down-
stream tasks.

A.9 Evaluation of Relevance, Coherence, and
Informativeness by the Reranking Model

We clarify the design and rationale behind the HO Frag-
ment Granularity-aware Rerank Module and explain
how it achieves a balance between diversity and rele-
vance in retrieval.

Core Objective of the Module. The HO Fragment
Granularity-aware Rerank Module is specifically de-
signed to address the challenges of semantic misalign-
ment and noise interference in knowledge retrieval while
balancing relevance and diversity. This is accomplished
through two primary steps:

1. Chunk Splitting: Enhancing Relevance and Re-
ducing Noise. Traditional retrieval methods often
treat the user query Q as a single entity and match it
directly with reasoning chains (RCs) in the knowledge
graph. However, user queries frequently contain am-
biguous semantics or irrelevant information, leading to
semantic misalignment and the introduction of noise or
redundancy. To mitigate this, we implement chunk split-
ting for both the user query Q and the hypothesis output
(HO): - Each query Q and HO is divided into K mean-
ingful chunks, which allows us to remove redundant or
low-information parts (for example, phrases like “My
name is. . . ” or overly descriptive background details). -
This chunking process ensures that each segment of the
query aligns more precisely with the reasoning chains in
the knowledge graph, significantly enhancing relevance
and coherence while filtering out noise.

2. Similarity Matrix: Ensuring Diversity and Infor-
mation Completeness. During the reranking process,
we construct a similarity comparison matrix to balance
diversity and relevance. This matrix compares the K
chunks with M reasoning chains (RCs): - The similarity
matrix, with dimensions K×M , represents the semantic
similarity between each query chunk and each reasoning
chain. - Each value in the matrix quantifies how well a
specific chunk aligns with a particular reasoning chain.

We utilize this similarity information to rank all rea-
soning chains and select the top K chains as the final
retrieval results. This approach offers several benefits:
1. Enhancing Diversity: By incorporating similarity
scores from multiple chunks, the method avoids over-
reliance on a single chunk, ensuring that the selected
reasoning chains cover a broader semantic scope. 2.
Preserving Information Completeness: The selection
of the top K reasoning chains not only guarantees high-
quality outputs but also retains important task-relevant
information, thus preventing the loss of valuable knowl-
edge due to excessive simplification.
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In summary, the HO Fragment Granularity-aware
Rerank Module effectively evaluates the relevance, co-
herence, and informativeness of each retrieved reason-
ing chain through a structured process that emphasizes
meaningful segmentation of queries and robust similar-
ity analysis.

A.10 Retrieving Reasonable Knowledge Based on
Varying Quality User Queries

The quality of user queries can vary significantly, and
retrieving reasonable knowledge accounts for two main
scenarios:

1. Incomplete or Implicit Semantics in User Queries.
User queries often contain implicit meanings that can
lead to incomplete understanding. For example, a query
like “I have a fever and my throat is uncomfortable”
implicitly suggests potential causes such as "viral infec-
tion" or "bacterial infection," which are not explicitly
mentioned. When performing retrieval-augmented gen-
eration (RAG) directly on such queries without leverag-
ing hypothesis outputs, the retrieved entities and knowl-
edge may be insufficient to address the underlying med-
ical context.

To overcome this challenge, we utilize the powerful
contextual understanding capabilities of large language
models (LLMs) to generate hypothesis outputs that fill
in the missing semantics. For instance, the model can
explicitly identify the possibility of infections based on
the symptoms provided. This strategy ensures that the
retrieval process is both comprehensive and aligned with
the intended meaning of the user’s query.

2. Noisy User Queries with Redundant Medical En-
tities. Consider a user query such as “I am Jack; after
having breakfast this morning, I felt nausea, stomach
pain, dizziness, and weakness, and then I decided to rest
but later developed a headache.” This query contains
multiple medical entities—“nausea,” “stomach pain,”
“dizziness,” “weakness,” and “headache”—which, while
all related to medical conditions, may include irrelevant
or redundant information that distracts from the main
concern: the "stomach pain" following breakfast.

Directly retrieving knowledge from the knowledge
graph (KG) based on such a query would likely in-
clude unnecessary entities like “headache” or “weak-
ness,” leading to an overabundance of noisy or irrelevant
knowledge. To address this, we again leverage hypoth-
esis outputs from LLMs to refine the query, focusing
on the most critical medical entities that directly relate
to the task. In this example, entities such as "break-
fast" and "stomach pain" would be emphasized, while
irrelevant or less pertinent entities would be filtered out.
This refinement enhances the precision of the KG re-
trieval process, ensuring that the retrieved knowledge is
relevant and useful.

By applying these strategies, we ensure that our ap-
proach is robust to varying query quality and capable
of retrieving meaningful knowledge while minimizing
redundancy and noise in the results.

A.11 Training LLMs with Knowledge from
Knowledge Graphs

Indeed, in the medical domain, the performance of the
base model significantly impacts the quality of the hy-
pothesis outputs (HO). Our experiments consistently
demonstrate that larger models with stronger compre-
hension abilities produce higher-quality HOs. This find-
ing provides a solid basis to believe that training LLMs
on medical knowledge—particularly high-quality med-
ical KGs—could greatly enhance the effectiveness of
the pre-retrieval phase.

Incorporating KG knowledge directly into an LLM’s
parametric memory has the potential to bypass certain
challenges encountered during the retrieval stage, such
as noise and misalignment when interacting with knowl-
edge graphs. As you suggested, this approach could of-
fer a promising alternative, especially in domains where
the growth of high-quality KGs is relatively slow or
static.

To explore this idea further, we propose leveraging
our high-quality KG to fine-tune or train LLMs, en-
abling the models to internalize this structured medical
knowledge. By doing so, we can potentially enhance
the model’s ability to generate contextually relevant and
accurate outputs based on the internalized knowledge.
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