ObfusLM: Privacy-preserving Language Model Service against Embedding
Inversion Attacks

Yu Lin!, Ruining Yang*!, Yunlong Mao?, Qizhi Zhang',
Jue Hong!, Quanwei Cai!, Ye Wu'!, Huiqi Liu!,
Zhiyu Chen!, Bing Duan', Sheng Zhong?,
'ByteDance, 2Nanjing University,

Correspondence: caiquanwei @bytedance.com, maoyl @nju.edu.cn

Abstract

As the rapid expansion of Machine Learning as
a Service (MLaaS) for language models, con-
cerns over the privacy of client inputs during
inference or fine-tuning have correspondingly
escalated. Recently, solutions have been pro-
posed to safeguard client privacy by obfusca-
tion techniques. However, the solutions incur
notable decline in model utility and mainly fo-
cus on classification tasks, rendering them im-
practical for real-world applications. Moreover,
recent studies reveal that these obfuscation, if
not well designed, is susceptible to embedding
inversion attacks (EIAs). In this paper, we de-
vise ObfusLM, a privacy-preserving MLaaS
framework for both classification and genera-
tion tasks. ObfusLM leverages a model obfus-
cation module to achieve privacy protection for
both classification and generation tasks. Based
on (k, €)-anonymity, Ob fusLM includes novel
obfuscation algorithms to reach provable secu-
rity against EIAs. Extensive experiments show
that ObfusLM outperforms existing works in
utility by 10% with a nearly 80% resistance
rate against ETAs.

1 Introduction

Machine Learning as a Service (MLaaS) has be-
come a popular paradigm, providing users with
inference and fine-tuning services for language
models (Cai et al., 2024). In MLaaS, users (i.e.,
clients) must upload their private data (e.g., query
prompts, classified documents) to the cloud (i.e.,
server) for model services such as classification and
generation. However, clients are always concerned
about privacy leakage, as the untrusted server can
recognize their private information from uploaded
data (Du et al., 2023) as shown in Figure 1. Stud-
ies try to address these concerns via cryptographic
solutions, e.g., Homomorphic Encryption (HE) or
Secure Multi-party Computation (SMC), as well

“This work was completed while the author was studying
at Peking University and interning at ByteDance.

2
{ Summarize this document for]
me ...

Plaintext MLaaS
= S

— >

Private information

Obfuscation-based MLaaS

) [Dtuscaion | » B —— 1

ElAs
Recovered private information <======

Figure 1: Application scenario. In plaintext MLaaS, the
server can directly observe the client’s private informa-
tion. In obfuscation-based MLaaS, the server will try
to recover privacy from obfuscated data by Embedding
Inversion Attacks (EIAs).

as trusted hardware solutions like Trusted Exe-
cution Environments (TEE) (Zhang et al., 2022).
Nonetheless, the constraints inherent to both solu-
tions limit their application scenarios. For instance,
cryptography-based solutions can take hundreds
of seconds to generate a single token (Dong et al.,
2023), while hardware-based solutions necessitate
the service provider to allocate additional TEE re-
sources.

Motivated by the limitations of the aforemen-
tioned solutions, recent studies have endeavored to
develop obfuscation-based solutions (Tong et al.,
2023; Du et al., 2023) that balance data privacy
with model utility. By leveraging these solutions,
clients can obfuscate the tokens or token-correlated
word embeddings of their private texts. When re-
questing model service, the clients merely dispatch
the obfuscated tokens or embeddings to the server
as described in Figure 1, consequently reducing the
risk of privacy leakage. The solutions leverage tech-
niques such as Differential Privacy (DP) (Dwork
et al., 2014) and k-anonymity (Sweeney, 2002)
for obfuscation. Although these cost-effective tech-
niques make obfuscation-based solutions appeal-
ing, their integration into MLaaS faces several chal-

1160

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1160-1174

July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

mailto:email@domain
mailto:email@domain

lenges:

* Lack of Support for Generation Tasks: Cur-
rent solutions such as TextMixer (Zhou et al.,
2023b), SentinelLMs (Mishra et al., 2024), and
DP-Forward (Du et al., 2023) are limited to clas-
sification tasks, as they do not safeguard the in-
ference outputs. When these methods are applied
to generation tasks, the outputs can potentially
reveal the original input text.

* Limitations on Application Integration: Exist-
ing solutions face challenges in their application
methods and model utility, limiting their inte-
gration into real-world scenarios. For instance,
TextObfuscator (Zhou et al., 2023a) and CAPE
(Plant et al., 2021) rely on additional trusted third
parties to execute an obfuscation-based train-
ing process, which is necessary to achieve satis-
factory utility. Furthermore, methods like SAN-
TEXT+ (Yue et al., 2021) and CUSTEXT+ (Chen
et al., 2022) allow clients to obfuscate their data
locally but incur a significant utility loss.

* Threats of Inversion Attacks: Recent studies
(Qu et al., 2021; Song and Raghunathan, 2020;
Kugler et al., 2021; Lin et al., 2024) have pro-
posed Embedding Inversion Attacks (EIAs) to
recover input texts from embeddings, thereby
enabling the server to recognize clients’ private
information from obfuscated data. Experimen-
tal results from the studies indicate that EIAs
remain effective against obfuscation-based so-
lutions, highlighting EIAs as one of the most
significant threats.

To address these challenges, we design a privacy-
preserving framework, namely ObfusLM, to sup-
port private fine-tuning and inference services in
MLaaS. Specifically, ObfusLM incorporates the
following properties:

e Generic Applications on Various Tasks.
The proposed model obfuscation module in
ObfusLM is thoughtfully designed to align with
the architectures of both classification and gen-
eration models. This design enables ObfusLM
to natively support tasks in both domains. Conse-
quently, in generation tasks, ObfusLM provides
robust protection for clients’ input texts as well
as the generated outputs produced by the model.

« Efficient Utility-preserving Obfuscation Mech-
anism. ObfusLM employs a one-shot process

for privacy protection by obfuscating model em-
beddings on the client side. Following this, the
client can subsequently request fine-tuning and
inference services that are nearly identical to
those in standard MLaaS workflows. During the
obfuscation process, Ob fusLM introduces novel
embedding clustering and synthesis algorithms,
enabling clients to generate semantically pre-
served obfuscated embeddings across model lay-
ers while maintaining model utility.

* Provable Security Against EIAs. ObfusLM fol-
lows the definition of (k, €)-anonymity to obfus-
cate embeddings. By analyzing the security re-
quirements for defense EIAs, we conclude that
(k, €)-anonymity is more suitable for obfuscation
solutions than DP.

We conduct experiments to validate the effective-
ness of ObfusLM on various models and tasks.
The results show that ObfusLM outperforms re-
cent works in model utility by 10%, while achiev-
ing a nearly 80% resistance rate against EIAs.

2 Related Work

Obfuscation-based Solutions for Privacy-
preserving Language Model Service. Recent
obfuscation-based solutions can be broadly
categorized into two strategies: token-level
and embedding-level obfuscations. Token-level
obfuscations utilize DP mechanisms, enabling
clients to replace tokens in their private texts with
substitutes. To preserve utility, these replacements
must be carefully selected so that models can
still produce accurate inference results from
the obfuscated texts. For instance, SANTEXT+
(Yue et al., 2021) and CUSTEXT+ (Chen et al.,
2022) used embedding similarities to determine
sampling probabilities of tokens based on DP.
While token-level obfuscation is lightweight, only
requiring a one-shot obfuscation process by the
client, maintaining inference accuracy remains
a challenge. Furthermore, these approaches are
insufficient for generation tasks as they fail to
adequately protect the security of generated texts.

Unlike token-level methods that operate in the
discrete token space, embedding-level obfuscation
provides finer-grained control over embeddings,
enabling a more effective privacy-utility trade-off.
DP-Forward (Du et al., 2023) introduced a novel
DP mechanism and examined how applying noise
at different model layers impacts utility and pri-

1161

Method Security Client w/o Third Generation
Mechanism Over- Party Task
head
SentinelLMs Glide-reflection O v X
TextMixer' k-anonymity ¢ v x
TextObfuscator Embedding DP @ x x
DP-Forward? Embedding DP @ v x
CAPE Embedding DP @ x x
SANTEXT+ Token DP O v x
CUSTEXT+ Token DP O v x
ObfusLM (Ours) | (k,€)-anonymity O v v

! TextMixer requires extra server overhead since it requires to pre-train special model.
2 Client overhead depends on the noise position in DP-Forward.

Table 1: Comparison with recent works on supported
tasks, client-side overhead, and security mechanism.

vacy. SentinelLMs (Mishra et al., 2024) employed
a distance-preserving transformation called glide-
reflection to obfuscate word embeddings. CAPE
(Plant et al., 2021) and TextObfuscator (Zhou et al.,
2023a) simultaneously optimize the task objective
and the privacy protection effect during the training
process to balance utility and privacy. TextMixer
(Zhou et al., 2023b) adopted a data multiplex-
ing method MUX-PLMs (Murahari et al., 2023)
to achieve k-anonymity security by mixing each
client’s text with similar texts. While these solu-
tions improve both privacy and utility, they intro-
duce additional application limitations. For exam-
ple, CAPE and TextObfuscator rely on a trusted
third party to perform an extra training process,
and TextMixer requires using specially pretrained
models derived from MUX-PLMs. As a result, we
conclude the above recent studies in Table 1 to
compare their application characteristics.

Embedding Inversion Attacks. Recent works
have shown that EIAs can be used to recover
input texts from obfuscated data, including the
token-level and the embedding-level obfuscation.
K-nearest Neighbor (KNN) (Qu et al.,, 2021)
and Element-wise Deferential Nearest Neighbor
(EDNN) (Lin et al., 2024) attacks are proposed to
map obfuscated embeddings to their correspond-
ing tokens by comparing distances between ob-
fuscated embeddings and pretrained word embed-
dings. InvBert (Kugler et al., 2021) develops an
attack pipeline to train an inversion model capable
of reconstructing word embeddings generated by
the BERT (Kenton and Toutanova, 2019) model
and mapping them to their corresponding tokens.
Similarly, Multi-label Classification (MLC) (Song
and Raghunathan, 2020) trains an inversion model
optimized to determine whether a token appears in
an input text based on its sentence embedding.

3 Background
3.1 System Model

We consider a typical MLaaS scenario, as illus-
trated in Figure 1. In this setting, a client possessing
private textual data seeks to utilize a model service
provided by a server that hosts a pretrained model.
We focus on the scenario in which the client first
uses a private dataset to request a necessary model
fine-tuning process from the server, and then sub-
sequently requests online inference services. Dur-
ing both the fine-tuning and inference processes,
the server tokenizes the client’s input texts into to-
kens, which are then converted into embeddings.
These embeddings are passed through a series of
transformer layers and finally directed to a task-
specific output layer, such as a Multi-Layer Percep-
tron (MLP) for classification or a language model
head for text generation.

Ob fusLM mainly follows the above MLaaS pro-
cedure with a few alterations. In Obfus1M, it is
presumed that the client also has access to the pre-
trained model. The client is able to obfuscate some
parts of the pretrained model and dispatch the ob-
fuscated parts to the server. In the fine-tuning and
inference processes, the client tokenizes its texts
locally and let the server direct the token indices to
the obfuscated model.

3.2 Threat Model

Following previous studies (Du et al., 2023; Mishra
et al., 2024), we consider the server as an attacker
interested in inferring clients’ private information.
We assume that the attacker has white-box access
to the model parameters and possesses prior knowl-
edge of the clients’ dataset distributions. This in-
formation enables the attacker to perform EIAs to
recover client data, thereby compromising client
privacy. EIAs can be harmful to both embedding-
level and token-level obfuscation solutions. Based
on these assumptions, ObfusLM is designed to
protect not only the clients’ private input texts but
also the generated texts in generation tasks. It is
important to note that we do not aim to protect the
labels and predicted scores in classification tasks,
as the leakage of such information is limited with-
out access to the input texts.

4 Methodology

In this section, we present a comprehensive intro-
duction to the construction of ObfusLM, with all
associated notations summarized in Appendix A.

1162

4.1 Key Insight

Observation. Previous studies (Du et al., 2023)
have struggled to achieve both satisfactory model
utility and robust security against EIAs, as their
obfuscation mechanisms are not well-suited to the
unique characteristics of language models. In par-
ticular, for generation tasks, simply applying obfus-
cation to clients’ inputs fails to prevent the server
from extracting private information from the gen-
erated texts. Furthermore, since generation tasks
require iterative forward passes, poorly designed
obfuscation mechanisms can result in significant
utility degradation throughout this iterative process.

To address with these challenges, instead of ob-
fuscating clients’ inputs, ObfusLM leverages a
model obfuscation process to protect both input
and generated texts. This obfuscation process en-
dows the server with the ability to provide obliv-
ious computation for clients. That is to say, with
the obfuscated model, the server is still able to
evaluate the forward pass during fine-tuning and in-
ference processes, but it cannot recognize whatever
it inputs and generates. Moreover, we extend (k, €)-
anonymity (Holohan et al., 2017) to embedding
space and present an obfuscation mechanism under
(k, €)-anonymity to guarantee such obliviousness.
We put forward the formal definition of embedding
(k, €)-anonymity as follows:

Definition 1. (k, ¢)-anonymity. Considering an
embedding matrix E = {e;|]1 < i < n}, a trans-
Sformation P(-) satisfies (k, €)-anonymity on E if
it holds: For any e € FE, there exists a subset
S C E,|S| > k forall € € S, and any subset
O of the outputs of P such that

Pr[P(e) € O] <ePr[P(e') € O], (1)

where € > 0 is a privacy parameter.

Equation (1) represents that each word embed-
ding should be indistinguishable within a sub-
set. Unlike DP, the discrete indistinguishability of
(k, €)-anonymity avoids the influence generated be-
tween dissimilar embeddings, leading to a lower
utility reduction.

4.2 Model Obfuscation

As we described in Section 3.1, ObfusLM offloads
text tokenization to the client and remains other
heavy evaluation steps on the server. To prevent
the server from recognizing the private tokens,
ObfusLM introduces a series of steps for the client

to obfuscate the vocabulary, input embedding layer,
and language model head since these model com-
ponents involve a direct one-to-one mapping rela-
tionship to the tokens. As illustrated in the model
obfuscation process in Figure 2, the client first ob-
tains the vocabulary V, the weights of the input
embedding layer E, and, for generative models,
the weights of the model head H from the pre-
trained language model. The client then generates
arandom permutation o : {1,...,n} — {1,...,n}
and applies o to the vocabulary and weights, re-
sultingin V! = o(V),E' = o(E),H = o(H).
This transformation preserves the correct one-to-
one mapping between tokens and embeddings.
The shuffled vocabulary V" is securely stored on
the client side. The shuffled weights E' and H’
are further obfuscated before being sent back to
the server. To achieve this, we introduce two key
algorithms: EmbedCluster, which assigns em-
beddings into clusters, and WeightSynth, which
computes weights for embedding synthesis. The
two algorithms are formally presented in Appendix
B with the following procedures.

Embedding Clustering. Since our solution is
not intended to precisely cluster embeddings,
EmbedCluster is designed to be efficient for em-
bedding clustering compared with traditional clus-
tering algorithms such as K -means. The algorithm
takes any matrix X, which can be input embed-
dings F, a cluster size k, and a threshold ratio /3
as inputs. The algorithm first calculates the cosine
similarity between each pair of embeddings. Then
the algorithm traverses all embeddings to construct
clusters. During each iteration, it calculates the 3
quantiles of the similarities as the threshold. Then
the algorithm sorts the similarities between the cur-
rent embedding and other embeddings with the
function to pick the most similar embedding to the
cluster if its similarity is greater than the threshold.
Finally, the algorithm outputs a set M that con-
tains multiple index sets indicating the clustering
relationships of the embeddings.

Embedding Synthesis. With the set of cluster
indices M, the client is able to synthesis new
embeddings for each token with the algorithm
WeightSynth. The algorithm takes any embed-
ding matrix X containing m embeddings and a
privacy parameter € as inputs. It calculates the co-
sine similarities of every pair of embeddings within
the cluster and use the normalized similarities as
the weights of the cluster embeddings. After that,

1163

Vocabulary and Embeddings

!

. ; Pa . N,
Client 1. Model Obfuscation ‘ Server ‘ 1. Model Obfuscation ‘ / Pretrained Model N
S’”‘/ﬂL Classification | Tokenl
2 Token 2
Embeddings Obfuscated Embeddings Obfuscated Tm— TR = -
[T [TokenT Shuffle 1 —OTokenT Embeddings eneration n__ Tokenn
[Z7][TokenZ | [2| [OTokenZ
| — A - | Vocabul
[Tokenn| > [][OTokein St/
Vocabulary Shuffled Vocabulary Obfuscated Model l
‘ 2. Fine-tuning ‘ 2. Fine-tuning ‘ Input Embeddings
[T] [OTokenT Classification
[Z || OTokenZ Labels for l
- OTokenrn o classification

Labcls for Obfuscaled
cm«.ﬁcauon Fine-tuning Indices

[54.67.... |
Dalase

Labels for
Classificati

87.32.46....
SLIETS, e

Obfuscated Indices %

Model

3. Inference ‘

UTaken T
OToken 2
[7 | [OTokenn

Shuffled Vocabulary

E] ——{ Tokenize |—— [[7.524L...]

Prompt Text Obfuscated Inference Indices

Generated Text +——] Detokenize J—— 66. 41,89, ..

Inference Indices

7,52,41,... |—t—»

Obfuscated Indices

Transformer N

Generation

‘ 3. Inference ‘

2 Generation
i |
: Output

a Embeddings

Classification

Autoregressive Generation

Obfuscated | _ _,

Model \
—‘ Token Index

Predicted Indices for Generation Results

Predicted Score |,/
>

Figure 2: Workflow of ObfusLM: The client obfuscates the vocabulary and embeddings of the pretrained model. In
the fine-tuning and inference processes, the client locally tokenizes its texts to request services from the server that

holds the obfuscated model.

the algorithm applies Laplace noise to the loga-
rithm of the weights. Finally, the algorithm outputs
a weight matrix Wy, x,, for embedding synthesis.
Putting Together. Given the algorithms, the
client is able to obfuscate input embeddings and
model head with the following steps.

1. Pick k,3 and compute the cluster index
set with the input embeddings: M =
EmbedCluster(E', k,).

2. Pick € and compute the synthesis weights W =
WeightSynth(E', M, €).

3. Synthesize new input embeddings and model
head: E=WE',H=WH'.

Then the client sends the F , H to the server and
locally stores V'. The server replaces the input
embedding layer and model head of the original
language model with Eand H.

4.3 Private Model Usage

After the model obfuscation process, the client can
perform private fine-tuning and inference for both
classification and generation tasks. During private
fine-tuning, tokenization is handled by the client,
while computationally intensive procedures remain
on the server. The client tokenizes its fine-tuning
dataset into obfuscated token indices and transmits
them to the server. The server can then optimize
the model weights using these token indices in the
usual manner.

Similarly, during private inference, the client to-
kenizes its private prompts using the shuffled vo-
cabulary. For classification tasks, the server evalu-
ates the fine-tuned model and returns the predicted
scores to the client. For generation tasks, the server
recursively generates a sequence of token indices,
which can only be decoded by the client using the
shuffled vocabulary. This approach ensures privacy
while preserving the utility of the model for both
tasks.

4.4 Security Improvement: ObfusLM+

Generative models inherently capture semantic in-
formation during the forward pass, raising potential
concerns about information leakage from the mid-
dle layers of the obfuscated model. This issue arises
because, in ObfusLM, only the embedding layers
are obfuscated, leaving the intermediate layers po-
tentially vulnerable to exposing sensitive semantic
information. To this end, we propose ObfusLM+
to enhance security. Specifically, in addition to ob-
fuscating embeddings along the token-wise dimen-
sion of size n, ObfusLM+ also applies obfusca-
tion on the embedding dimension of size d using
EmbedCluster and Weight Synth. Since the em-
bedding dimension should be kept consistent in all
model layers, the obfuscation will be applied to
the whole model, enlarging the difficulty for the
attacker to recognize private information during for-
ward pass. After obfuscating input embeddings and
model heads, Obfus LM+ further postprocesses the

1164

obfuscated embeddings Enxd and model heads

H,, «q together with each ¢-th transformer layer
parameter, @ég o 6&2 , Where g and h are the di-
mensions related to attention heads. Without loss
of generality, the procedure of the post-process can

be formalized by the following equation:

M = EmbedCluster(ET, k*, 3)

Wia= WeightSynth(ET, M*, €*)

E*, H* = o*(EW*),0*(HW*)

0" 0" = o*(@OW*), o*(W*0®),

2)

where o* is a random permutation over [1,d]. k*
and €* are the privacy parameters for embedding-
dimension obfuscation. As a result, the client needs
to send the obfuscated embeddings E*, the model
head H™*, and the transformer layers q)(i)*, 0" o
the server.

In ObfusLM+, the outputs of all intermediate
layers are shuffled and obfuscated during the for-
ward pass due to the embedding-dimension obfus-
cation. As a result, the server becomes difficult to
capture the semantic information from the interme-
diate outputs without the knowledge of o*.

5 Security Analysis

5.1 (k,e)-anonymity

ObfusLM guarantees data privacy by clustering
embeddings and applying noises to them. Noting
that in the EmbedCluster, we have used a thresh-
old ratio 3 to get similarity threshold ~ for clus-
tering. In this way, ObfusLM actually does not
intend to protect those very special embeddings
whose cosine similarity to others is smaller than
the threshold. For most common embeddings, we
prove that Ob fusLM satisfies the (k, €)-anonymity
in Definition 1.

Theorem 1. ObfusLM satisfies (k, €)-anonymity
under the security of the Laplace mechanism DP
(Dwork et al., 2014).

Proof. Given an embedding matrix £ =
{ei}i<n,€i € R, the token embedding procedure
can be seen as a query of F. The query takes a
token index z € N as the input and output o € R,
Generally, we denote by P € B : R? < N any
possible transformation achieving this embedding
procedure. Denoted by Fy € ‘13 the conventional
token embedding procedure, it gives precise and
unanonymised mapping from £ to o. But P, pre-

serves no privacy since the attacker can unmap o
and infer the input x precisely.

ObfusLM uses two steps to break this linkage.
Given any embedding matrix £ = {e; }i<p, £ will
be separated into q subsets £1, &, ..., &g, |&i| > k,
ENE; =0,Yi,7 € [1,q]. As defined in Algorithm
1 of ObfusLM, a threshold ~ is used to determine
the embedding cluster for a current embedding e;.
According to the triangle inequality for cosine sim-
ilarity (Schubert, 2021), the lower bound of every
pair of embeddings within any cluster £ can be
calculated by:

Binojk 2 030k = \/(1 —0ij)?(1 = oip)?

Z 2’72_17

where e; is the selected embedding for clustering,
0j, = CosSim(e;, ey,). Therefore, when + is cho-
sen to be large enough, the attacker may most likely
link x to the correct embedding vector with a prob-
ability < 1/k.

The second step is done in the WeightSynth
algorithm. Since the obfuscated embeddings are
generated using synthetic weights within each clus-
ter £, the security is guaranteed by an artificial per-
turbation z that introduced from a Laplace distribu-
tion. As the maximum difference among synthetic
weights is fixed as Au = max(u) — min(u) for a
given embedding clustering £, we can use Awu as
the sensitivity for z. Therefore, regarding the out-
put weights as u’' = u + z, v’ will satisfy e-DP as
long as perturbation z ~ Laplace(Awu/¢) accord-
ing to the Laplace mechanism definition. Therefore,
ObfusLM belongs to a set of transforms P* C 3,
satisfying (k, €)-anonymity for any query to E.

O

5.2 Other Potential Threats

In addition to considering typical EIAs studied in
previous works, we further investigate the secu-
rity of Ob fusLM under the following attacks (de-
scribed in detail in Appendix E.

* Token Frequency Attack (TFA) (Zanella-
Béguelin et al., 2020) leverages token frequency
characteristics for text recovery. As ObfusLM
applies deterministic obfuscation for each private
token, we investigate whether the attacker is able
to identify tokens by observing their frequencies.

* Substitution Deciphering Attack (SDA) (Kamb-
hatla, 2018) recovers plaintext from substitution

1165

KNN+ | InvBert |

Dataset Top-1 Top-3 RougeL | Top-1 Top-3 RougeL

Solution Acc. T

Plaintext 92.02 - - - - -
DP-Forward 5252 | 795 795 67.40 205 480 1.21
CAPE 80.96 | 0.01 0.90 0.01 9726 98.88 97.52
TextObfuscator | 79.93 | 13.76 2245 1250 3.88 991 60.88
SANTEXT+ | 83.71 | 74.12 74.63 7470 | 40.03 40.03 56.08
CUSTEXT+ | 79.12 | 47.35 56.04 4557 | 2260 22.60 57.36
SentinelLMs | 92.55 100 100 100 49.47 49.76 64.90
ObfusLM 89.11 | 19.98 42.01 24.69 | 28.14 3591 3559
Plaintext 90.70 - - - - - -
DP-Forward | 49.46 | 589 589 53.27 248 418 1.94
CAPE 54.89 | 0.0 0.09 0.0 1.88 341 1.90
TextObfuscator | 58.68 | 0.04 0.11 0.05 6.07 13.03 6143
SANTEXT+ | 81.64 | 71.11 7140 69.60 | 37.50 37.50 66.88
CUSTEXT+ | 77.75 | 4475 51.18 5859 | 2259 2259 57.36
SentinelLMs | 91.45 100 100 100 4840 4858 66.98
ObfusLM 87.50 | 20.83 43.61 2752 | 24.08 3192 36.77

SST-2

QNLI

Table 2: The comparison of task accuracy and the attack
effect of EIAs on classification tasks. 1 represents that
the larger the better, while | is on the contrary.

ciphers by beam search and sequence scoring
of language models. To inverse the token-level
obfuscation in ObfusLM, SDA can recover text
with significant semantic information from the
set of candidate tokens.

* Embedding Replacement Attack (ERA) pro-
posed in this paper is specifically designed for
recovering generated texts against ObfusLM. To
perform ERA, the server directly passes the out-
put embeddings of the last transformer into the
pretrained language model head instead of the ob-
fuscated one. Consequently, it is able to decode
the generated token indices to texts.

In Section 6, we conduct experiments to show that
ObfusLM has a significant defensive effect against
the above attacks.

6 Experiment

6.1 Experimental Settings

Models and Datasets. For classification tasks,
we use bert-base-uncased (Devlin et al., 2018) as
the pretrained model and choose SST-2 and QNLI
datasets from the GLUE benchmark (Wang et al.,
2018). The model performance on both datasets
is evaluated by Accuracy. For generation tasks,
we use the Llama3-8b model (Al@Meta, 2024),
and choose Alpaca (cleaned) (Taori et al., 2023)
and Databricks-dolly-15k (Conover et al., 2023)
datasets. We evaluate the two datasets with RougeL
(Lin and Och, 2004) and Rougel (Lin and Hovy,
2003). Other detailed information about the models
and datasets is presented in Appendix C.1.

Baselines. To thoroughly assess the model utility
and security of ObfusLM, we select the following
widely used attack and defense baselines:

* Defenses: We compare most of the solutions pre-
sented in Table 1, including both token-level and
embedding-level obfuscation solutions. Note that
we do not compare with TextMixer since it re-
quires special pretrained models.

» Attacks: We investigate two types of EIAs on
defense baselines. We use KNN+ attack to repre-
sent two EIAs based on nearest-search, includ-
ing KNN and EDNN. We also test InvBert
to evaluate the defenses against training-based
ElIAs. For these attacks, we use Top-k to measure
the proportion of the correct recovered tokens
among datasets. We also use RougeL to measure
the similarity between recovered sentences and
original ones. The detailed information on the
attack baselines is described in Appendix C.2.

Implementing Details. For classification tasks,
all parameters of BERT model are trainable in the
fine-tuning process. For generation tasks, we use
LoRA (Hu et al., 2021) for fine-tuning, except that
the first two and last transformer layers are trained
with full parameters. We search different training
and privacy hyperparameters for ObfusLM and
other defense baselines. We report the experimen-
tal details in Appendix C.3 and the experimental
environment in Appendix C.5.

6.2 Experimental Results

Performance Comparison with Baselines. As
shown in Table 2 and 3, we compare ObfusLM
with other defense solutions. For classification
tasks, the results show that ObfusLM outperforms
SANTEXT+ and CUSTEXT+, two solutions with
a similar system model to ObfusLM, in inference
utility by 10%, and in recover ratio against EIAs
by 45%. Although SentinelLMs reaches higher ac-
curacy, it fails to effectively defense KNN+ attack
since the element-wise deterministic noise used
in SentinelLMs can be eliminated by the attack.
The noise mechanism used in DP-Forward does
not take into account the semantic information of
embeddings, resulting in unsatisfactory model us-
ability. TextObfuscator and CAPE rely on a trusted
server to train an EIA-resistant model, but they
still result in a loss of more than 10% in utility.
ObfusLM adopts a provable security mechanism
with considerable utility maintenance, leading to
only a reduction of utility within 4% while success-
fully resisting nearly 80% of the KNN+ attack. To
further illustrate the performance of ObfusLM on

1166

Dataset Solution Rougelt To;EIl\INJrRio ugel
Plaintext 75.48 - -
Alpaca ObfusLM 70.93 1542 2747
ObfusLM+ 66.08 0.0 1.24
Plaintext 70.31 - -
Databricks ObfusLM 57.18 23.82 35.16
ObfusLM+ 49.00 0.0 0.47

Table 3: Utility and privacy on generation tasks

classification tasks, we report more experimental
results of the GLUE benchmark in Appendix D.1.

For generation tasks, we only compare the
ObfusLM and ObfusLM+ with plaintext fine-
tuning, since solutions in recent works cannot pro-
vide sufficient privacy guarantee for generation
tasks as they cannot protect generated texts. In Ta-
ble 3, ObfusLM performs better on Alpaca than
on Databricks. We analyze the reason is that the
average text length of Databricks is significantly
longer than that of Alpaca, which makes it more
challenging to fine-tune on the obfuscated embed-
dings. For the Alpaca dataset, the success rate of
the KNN attack on ObfusLM is nearly 15% with
6% loss of model utility. ObfusILM+ can almost
completely resist the KNN+ attack as it introduces
two-dimensional obfuscation. We present more re-
sults under other privacy parameters in Appendix
D.2, and list straightforward text-generation exam-
ples in Appendix D.3. The client-side overhead is
reported in Appendix D.4.

Performance of ObfusLM under Different Pri-
vacy Parameters. We conduct a set of experi-
ments under different k£ and € on SST-2 and Alpaca
tasks. The results in Figure 3 show the phenomenon
that the utility and privacy will be simultaneously
affected by both the cluster size and privacy budget.
By configuring these parameters, the security of
ObfusLM is almost negatively related to the task
utility. Meanwhile, since cluster size directly de-
termines the number of indistinguishable tokens,
it is necessary to ensure a sufficiently large clus-
ter size. Choosing a larger cluster size benefits the
anonymity of token embeddings, leading to the at-
tacker being more difficult to reconstruct clients’
private texts from obfuscated embeddings. For ex-
ample, when k grows from 5 to 20 under ¢ = 1.0
in the Alpaca task, the Top-1 drops nearly 7 times.

Security Performance on Potential Threats.
We further test the information leakage of
ObfusLM under TFA, SDA, and ERA. For TFA,

[
[
i

91
|90

-88

Cluster size k
20 10 5
o
8
Cluster size k
20 10 5
w
8

1.0 0.3 0.1 0.03
Noise param €

1.0 0.3 01 003 20
Noise param €

(a) Accuracy on SST-2

|72

71

(b) Top-1 on SST-2

—
Y
3

Cluster size k
20 10 5
Cluster size k
20 10 5
IS
8

3.0 0.3 -70 3.0 0.3

1.0 1.0
Noise param & Noise param &

(c) Rougel on Alpaca (d) Top-1 on Alpaca

Figure 3: Utility vs. security for Ob fusLM under differ-
ent k, e

we test the cases where QNLI and Databricks are
used as the public datasets available to the attacker,
while SST-2 and Alpaca are the client’s private
datasets. In Table 5, by recovering private tokens
to the ones with the similar frequencies, we evalu-
ate the Top-1, Top-3, and RougeL metrics of TFA
under different proportions of private datasets avail-
able to the attack. The results indicate that the at-
tacker can only recover 10% tokens even if it has
access to 50% of the private texts.

We combine SDA and KNN+ to evaluate the
attack performance by beam search and sentence
scoring. Specifically, the attacker first identifies
K 4 candidate tokens for each obfuscated embed-
ding using KNN. These candidates are then com-
bined into sentences and passed into a scoring
model to determine the most likely plaintext. We
provide more information about the training de-
tails of the scoring model in Appendix C.4. The
results in Table 4 show that the attack slightly
improves recovery performance comparing with
KNN+. Meanwhile, ObfusLM can still effectively
defend against it by increasing k, which expands
the ciphertext space and complicates the attacker’s
search. We attribute this resilience to ObfusLM’s
clustering mechanism, which ensures that K 4 near-
est neighbor tokens often share similar parts of
speech. This grammatical interchangeability makes
it challenging for the language model to identify
the correct plaintext combination.

Recall that ERA uses a pretrained model head
to extract another inference result for the attacker.
Therefore, we illustrate the effect of ERA by com-
paring the metrics between original texts and infer-
ence results observed by the client or the attacker.
As shown in Table 6, the text recovered by ERA
keeps a significant difference from the original text.

1167

RougeLL
ko Ka KNN+ SDA with KNN+
5 3 41.47
5 5 3750 3621
0 3 29.37
10 5 24.69 29.54

Table 4: Comparison of attack performance between
KNN+ and SDA with KNN+ under different k£ and K 4.

Priv./Pub. Priv. Top-1 Top-3 RougeL
dataset proportion

1% 0.0 72 3.05

SST-2/QNLI 10% 1.18 3.03 4.02
50% 2.13 11.03 2.94

1% 4.57 17.00 7.92

Aplaca/Databricks 10% 4.74 17.12 7.24
50% 10.53 26.60 7.71

Table 5: The effect of token frequency attack.

) ERA | ObfusLM 1
Dataset Rougel RougeL ‘ Rougel RougeL
Alpaca 40.47 35.53 70.93 64.70

Databricks 35.47 31.47 57.18 51.99

Table 6: ERA inference results observed by the attacker
vs. ObfusLM inference results observed by the client.

For example, the Rougel metric of the inference
results observed by the attacker is only 60% of the
ones observed by the client.

7 Conclusion

In this paper, we propose a privacy-preserving
MLaaS framework Ob fusLM. We present the key
insight of ObfusLM to achieve safeguard both
clients’ privacy in both classification and gener-
ation tasks with a security definition called (&, €)-
anonymity. We formally analyze the security of
ObfusLM and also conduct a series of experiments
to evaluate its performance in comparison with re-
cent works. The experimental results demonstrate
that it outperforms recent studies to provide sub-
stantial security and utility.

Limitations

As ObfusLM is mainly designed to provide
privacy-preserving model service, it has some limi-
tations on application scenarios and security guar-
antees. For application scenarios, we have mainly
verified the utility and privacy of ObfusLM on
transformer-based models. It should be further val-
idated before applying it to other classical model

structures such as recurrent neural networks (RNN)
and convolutional neural networks (CNN). Mean-
while, ObfusLM is required to execute a fine-
tuning process to enable the model to adapt to the
obfuscated embeddings. Otherwise, the obfuscated
model will cause significant downgrade on model
utility. Consequently, it would be challenging in a
situation where the client desires to request the in-
ference service without invoking a fine-tuning pro-
cess. For security guarantees, we have discussed
and tested some potential threats, such as inver-
sion attacks, embedding replacement attacks and
token frequency attacks. Nevertheless, the security
of ObfusLM in resisting other threats still needs to
be further verified, such as poisoning and backdoor
attacks.

Acknowledgment

We appreciate the anonymous reviewers for their
feedback on this paper. We thank Yi Liu from
City University of Hong Kong and Peiran Wang
from Tsinghua University for the valuable sugges-
tions on the paper writing. This work was par-
tially supported by NSFC Grants No0.62272222,
No0.62272215, Jiangsu Province Outstanding Youth
Fund Project (No. BK20230080), and the Funda-
mental Research Funds for the Central Universities
(No. 2024300401).

References
Al@Meta. 2024. Llama 3 model card.

Zinuo Cai, Rongbo Ma, Yicheng Fu, Weishan Zhang,
Ruhui Ma, and Haibing Guan. 2024. Llmaas: Serv-
ing large language models on trusted serverless com-
puting platforms. [EEE Transactions on Artificial
Intelligence.

Huimin Chen, Fengran Mo, Yanhao Wang, Cen Chen,
Jian-Yun Nie, Chengyu Wang, and Jamie Cui. 2022.
A customized text sanitization mechanism with dif-
ferential privacy. arXiv preprint arXiv:2207.01193.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie,
Jun Wan, Sam Shah, Ali Ghodsi, Patrick Wendell,
Matei Zaharia, and Reynold Xin. 2023. Free dolly:
Introducing the world’s first truly open instruction-
tuned 1lm.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. CoRR, abs/1810.04805.

Ye Dong, Wen-jie Lu, Yancheng Zheng, Haoqi Wu,
Derun Zhao, Jin Tan, Zhicong Huang, Cheng Hong,

1168

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

Tao Wei, and Wenguang Chen. 2023. Puma: Secure
inference of llama-7b in five minutes. arXiv preprint
arXiv:2307.12533.

Minxin Du, Xiang Yue, Sherman SM Chow, Tianhao
Wang, Chenyu Huang, and Huan Sun. 2023. Dp-
forward: Fine-tuning and inference on language mod-
els with differential privacy in forward pass. In Pro-
ceedings of the 2023 ACM SIGSAC Conference on
Computer and Communications Security, pages 2665—
2679.

Cynthia Dwork, Aaron Roth, et al. 2014. The algorith-
mic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—
4):211-407.

Naoise Holohan, Spiros Antonatos, Stefano Braghin,
and Pol Mac Aonghusa. 2017. (k, €)-anonymity:
k-anonymity with e-differential privacy. CoRR,
abs/1710.01615.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Nishant Kambhatla. 2018. Decipherment of substitution
ciphers with neural language models.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of naacL-HLT, volume 1, page 2. Min-
neapolis, Minnesota.

Kai Kugler, Simon Miinker, Johannes Hohmann, and
Achim Rettinger. 2021. Invbert: Reconstructing text
from contextualized word embeddings by inverting
the bert pipeline. arXiv preprint arXiv:2109.10104.

Chin-Yew Lin and Eduard Hovy. 2003. Automatic eval-
uation of summaries using n-gram co-occurrence
statistics. In Proceedings of the 2003 human lan-
guage technology conference of the North American
chapter of the association for computational linguis-
tics, pages 150-157.

Chin-Yew Lin and Franz Josef Och. 2004. Auto-
matic evaluation of machine translation quality using
longest common subsequence and skip-bigram statis-
tics. In Proceedings of the 42nd annual meeting of

the association for computational linguistics (ACL-
04), pages 605-612.

Yu Lin, Qizhi Zhang, Quanwei Cai, Jue Hong, Wu Ye,
Huigqi Liu, and Bing Duan. 2024. An inversion attack
against obfuscated embedding matrix in language
model inference. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2100-2104.

Abhijit Mishra, Mingda Li, and Soham Deo. 2024. Sen-
tinellms: Encrypted input adaptation and fine-tuning
of language models for private and secure inference.

In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pages 21403-21411.

Vishvak Murahari, Ameet Deshpande, Carlos Jimenez,
Izhak Shafran, Mingqiu Wang, Yuan Cao, and
Karthik Narasimhan. 2023. Mux-plms: Pre-training
language models with data multiplexing. In Proceed-
ings of the 8th Workshop on Representation Learning
for NLP (RepL4NLP 2023), pages 196-211.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word rep-
resentation. In Proceedings of the 2014 conference
on empirical methods in natural language processing
(EMNLP), pages 1532-1543.

Richard Plant, Dimitra Gkatzia, and Valerio Giuf-
frida. 2021. Cape: Context-aware private embed-

dings for private language learning. arXiv preprint
arXiv:2108.12318.

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang,
Michael Bendersky, and Marc Najork. 2021. Natural
language understanding with privacy-preserving bert.
In Proceedings of the 30th ACM International Con-
ference on Information & Knowledge Management,
pages 1488-1497.

Erich Schubert. 2021. A triangle inequality for cosine
similarity. In International Conference on Similarity
Search and Applications, pages 32—44. Springer.

Congzheng Song and Ananth Raghunathan. 2020. In-
formation leakage in embedding models. In Pro-
ceedings of the 2020 ACM SIGSAC conference on
computer and communications security, pages 377—
390.

Latanya Sweeney. 2002. k-anonymity: A model for pro-
tecting privacy. International journal of uncertainty,
fuzziness and knowledge-based systems, 10(05):557-
570.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann
Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B. Hashimoto. 2023. Stanford al-
paca: An instruction-following llama model. https:
//github.com/tatsu-lab/stanford_alpaca.

Meng Tong, Kejiang Chen, Yuang Qi, Jie Zhang, Weim-
ing Zhang, and Nenghai Yu. 2023. Privinfer: Privacy-
preserving inference for black-box large language
model. arXiv preprint arXiv:2310.12214.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Shouxiang Wang, Xuan Wang, Shaomin Wang, and
Dan Wang. 2019. Bi-directional long short-term
memory method based on attention mechanism and
rolling update for short-term load forecasting. In-
ternational Journal of Electrical Power & Energy
Systems, 109:470-479.

1169

https://arxiv.org/abs/1710.01615
https://arxiv.org/abs/1710.01615
https://github.com/tatsu-lab/stanford_alpaca
https://github.com/tatsu-lab/stanford_alpaca

Xiang Yue, Minxin Du, Tianhao Wang, Yaliang Li,
Huan Sun, and Sherman SM Chow. 2021. Differ-
ential privacy for text analytics via natural text saniti-
zation. arXiv preprint arXiv:2106.01221.

Santiago Zanella-Béguelin, Lukas Wutschitz, Shruti
Tople, Victor Rithle, Andrew Paverd, Olga Ohri-
menko, Boris Kopf, and Marc Brockschmidt. 2020.
Analyzing information leakage of updates to natural
language models. In Proceedings of the 2020 ACM
SIGSAC conference on computer and communica-
tions security, pages 363-375.

Ziqi Zhang, Lucien KL Ng, Bingyan Liu, Yifeng
Cai, Ding Li, Yao Guo, and Xiangqun Chen. 2022.
Teeslice: slicing dnn models for secure and efficient
deployment. In Proceedings of the 2nd ACM Interna-
tional Workshop on Al and Software Testing/Analysis,
pages 1-8.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Yuran Wang,
Yong Ding, Yibo Zhang, Qi Zhang, and Xuan-Jing
Huang. 2023a. Textobfuscator: Making pre-trained
language model a privacy protector via obfuscating
word representations. In Findings of the Associa-
tion for Computational Linguistics: ACL 2023, pages
5459-5473.

Xin Zhou, Yi Lu, Ruotian Ma, Tao Gui, Qi Zhang, and
Xuan-Jing Huang. 2023b. Textmixer: Mixing multi-
ple inputs for privacy-preserving inference. In Find-

ings of the Association for Computational Linguistics:
EMNLP 2023, pages 3749-3762.

A Notations

We denote the vocabulary of language models by
V', which contains n tokens. We denote the weight
matrices of the input embedding layer and language
model head as F and H, respectively. d is the di-
mension of embeddings. €, k, 3 are the privacy pa-
rameters used in ObfusLM, and they will be intro-
duced in the description of ObfusLM. We use A[i]
to stand for the i-th element of the set A. | A| means
the size of the set A. For a matrix M,, 4 with n
rows and d columns, we use bold lowercase m; to
represent the i-th row vector of the matrix M, and
m; ; is the element in the i-th row and j-th column.
The matrix M with n rows can also be regarded as
a set containing n row vectors. In conclusion, we
present the notations in Table 7.

the number of tokens in vocabulary
the dimension of embeddings
the vocabulary of language models
the weight matrix of input embedding layer
the weight matrix of output embedding layer
the noise parameter
the cluster size
the threshold ratio for clustering
the similarity threshold calculated by 5
an embedding vector
an embedding cluster
the index set of an embedding cluster
a weight vector for embedding synthesis

E Mo maa TImTas

Table 7: Notations

B Embedding Obfuscation Algorithms

We present EmbedCluster in Algorithm 1. In the
algorithm, CosSim is the function to calculate the
cosine similarity of two embeddings. The ArgSort
function is used to calculate an index set according
to the order of the set from largest to smallest. We
use the quantile function to calculate the given
percentile of a set as the similarity threshold. In the
algorithm, each embedding will only be assigned
to one cluster with no more than k£ embeddings.
Meanwhile, if there are not enough similar embed-
dings, there will also be some clusters whose sizes
are smaller than k.

In WeightSynth as presented in Algorithm 2,
In the WeightSynth algorithm as shown in Algo-
rithm 2, each embedding will be synthesized into a
new embedding according to the clustering infor-
mation it belongs to. Specifically, within a cluster,
the algorithm will calculate the similarity between
embeddings and then generate normalized weights

1170

Algorithm 1: EmbedCluster

Algorithm 2: WeightSynth

Input: Matrix X = {x; }i<y, cluster size k, thresh-
old ratio 5.
Output: A cluster index set M.

1: Initialize a set of flags B = {0},, and a set of
cluster token indices M = {}.

2: Calculate the distances between every
pairs of embeddings D,x, = {d;; =
CosSim(z;, x;)|1 <i,j < n}

3: fori=1—ndo

4: if B[i] == 1 then

5: Continue.

6: end if

7. Set § = {i} and compute I =

ArgSort(Dli])

8: Calculate the threshold 7 =
quantile(Dli], B)

9: forjeldo

10: if |S| == k or D[i, j] < then

11: break

12: else

13: s =SU{Y Bl =1

14: end if

15: end for

16: Set M = M J{S}
17: end for

18: return M

based on these similarities. These weights will be
obfuscated by Laplace noise with the preset pri-
vacy parameter € and then be used to synthesize the
embedding.

C Experiment Details
C.1 Models and Datasets

Model Information. Bert-base-uncased model
has 12 encoder-only transformer blocks with nearly
110 million parameters and its vocabulary contains
30522 tokens. Llama3-8b model has 32 decoder-
only transformer blocks with nearly 8 billion pa-
rameters and its vocabulary contains 128k tokens.

Dataset Information. For classification tasks,
SST-2 dataset has over 67k training sentences that
are labeled as either positive or negative senti-
ment. Nearly 99% sentences contains no more than
200 words. QNLI dataset has over 105k training
question-sentence pairs to determine whether the
sentence contains the information necessary to an-
swer the question. The sentence is longer than SST-
2 dataset with nearly 99% sentences contains at

Input: A embedding matrix X = {x;}i<m, a set
of cluster indices M, a privacy budget e.

Output: A weight matrix W, «,,, for embedding
synthesis.

1: Initialize obfuscated embedding matrix to zero
W = Om><m
2: fori =1— |M|do

3 LetS=Mll]andY = {X|[si]|s; € S}

4. fori=1—|S|do

5: Calculate 0;; = CosSim(Y[i],Y[j]),
vj € [1]S]]

6: Let u = {u;}j<s) where u; =
log __eiil?

Seisy e

7: Let Au = max(u) — min(u) and evalu-
ate v’ = u + laplace(Au/e)

8: Calculate u = {Lu/}jgw

k<is| €

9: Set W[ti,t]‘] = ﬂj for j € [1, ‘SH

10: end for

11: end for

12: return W

most 500 words.

For generation tasks, Alpaca-cleaned contains
51k instruction-following records related to dif-
ferent subjects like science, history, literature,
or technology. Databricks-dolly-15k contains 15k
instruction-following records in several of the be-
havioral categories, including classification, gener-
ation, and question-answering.

C.2 Attack Baseline Settings

For both KNN+ and InvBert attacks, Topk is de-
fined as:

N
1
Topk = N Z[yz € topk(pi)],

(2

where NV is the total token number of the dataset,
1; is the private token, p; is the recovered proba-
bilities, and topy(p;) means the top k recovered
tokens with the highest probability.

In order to examine the defense effect of the de-
fense scheme against InvBert, we consider that the
attacker can access a training dataset with the same
distribution of client’s private dataset for inversion
model training. The attacker will subsequently for-
ward the private to defense solutions and the first 3
encoder layers to get the intermediate embedding

1171

Example: text summarization

60

Client

Between 1989 and 2019, the size of the U.S. economy, measured in terms of the gross
domestic product (GDP), more than doubled. The growth was faster than in the prior two
decades, driven in part by the dramatic expansion of the information technology sector in
the 1990s and early 2000s, gains in worker productivity and strong consumer demand,
and government investments in research and development.

D

Server

2. Inference with

1. Tokenize with obfuscated vocabulary.

l 249, 72, 10382, ... | obfuscated model

3. Detokenize with obfuscated vocabulary.

Obfuscated input token indices

l 8371, 62, 1640, ...

Obfuscated output token indices

The US economy more than doubled in size between 1989 and 2019. This growth, faster H
than the previous two decades, was driven by factors such as the expansion of
information technology, increases in worker productivity, consumer demand, and
government investments in research and development.

Recover texts by EIAs

Recover texts frq'm obfuscated
token indices by' KNN Topl

heavier queln from contradictory deux hundreds.

Between €19516 i €20016. from sizes from from,u S&.market.
from fromUlItimately domestically-product,(DGdup"]),
governedInalf from from dramatic 7
preparation from from infotechnology girisimIn from € 4VZero s i1 longest €199Zero s S
losingln employee throughput i1 stark consumer demand . :
professionallyPortfoliolnResearchers i development.

quantin keywords
-more que ousted®. The maturity did

i
1 '
7 @
i

n

barring from preparation from infotechnology .
consumer demand.

emarks(: The NYmarket-more que oustedIn sizes amongst €19516 i1 €200162.These
maturity, heavier que from foregoing deux hundreds.
increasesin employee throughput.
1 professionallyPortfoliolnResearchers i1 development.)

~

did governed fromactor However

J

Figure 4: An example of generated text observed by the client and Top1 recovered text observed by the attacker.

representations. Then the attacker takes these em-
beddings as inputs and the original token indices
as labels to train the inversion model. For SAN-
TEXT+ and CUSTEXTH+, the attacker will replace
the original tokens with their substitutes just like
the client in the training process. For SentinelLMs
and ObfusLM, the attacker will initialize its own
obfuscated model since it cannot use client’s ob-
fuscated model without shuffled vocabulary. We
mainly follow the experimental settings of InvBert
in (Zhou et al., 2023a) with the following custom
settings. We use bert-base-uncased as the inversion
model and set the learning rate to be 2e~°, the
batch size to be 8 and the number of epochs to be
10.

C.3 Training and Privacy Parameters

In the experiments of Table 2 and 3, we search
e on [1.0,0.3,0.1,0.03], k on [20,10, 5], and fix
I} 0.99 for ObfusLM. For ObfusLM+, we
fix k* = 10,¢* = 3.0. For SentinelLMs, we fix
the number of glide-reflection to be 10. For CUS-
TEXT+ and SANTEXT+, we search the noise pa-
rameter € on [1, 2, 3] and use GloVe (Pennington
et al., 2014) for token replacement. In SANTEXT+,
we the sensitive word percentage w to be 0.9 and
the probability of non-sensitive words to be sani-

Task Solution Ir bsz

e k wiaw m V2

ObfusILM | 2 ° 32 0.1 10 - - -

SANTEXT+ | 2¢™® 32 3 - - - -

CUSTEXT+ | 2¢7® 32 3 - - - -

CIf. DP-Forward | 2¢7° 32 8 - - - -

CAPE le® 32 5 - 01 - -

TextObfus. 2¢7° 128 - - - 0.03 0.01

Gen. | ObfusLM | le=®* 8 1 10 - - -
Table 8: Parameter settings for comparison experiments

on classification and generation tasks.

tized p to be 0.3. In CUSTEXT+, we fix topy to
be 20. For DP-Forward, we search the noise pa-
rameter € on [1, 3, 8]. For CAPE, we search the
adversarial training weights wgg, on [0.1,0.5,1.0]
and the noise parameter € on [0.5,1.0,5.0]. For
TextObfuscator, we search the close loss weights
~1 on [0.1,0.03,0.01] and the away loss weights
~2 on [0.1,0.03,0.01]. Besides, we configure the
learning rate Ir on [le™>,2¢ =, 5¢75] and batch
size bsz on [8, 32, 128] for classification tasks. For
generation tasks, we select the learning rate on
[le=*,2e7*,3e74] and fix the batch size to be 8.
We chose the final parameters according to both
privacy and utility as shown in Table 8.

In classification tasks, we fine-tune the bert
model on all parameters. We fix the number of
epochs to 10 and use float32 to train bert-base-

1172

uncased model. In generation experiments, we fix
the number of epochs to be 10, beta2 of Adam
to be 0.95 and use bf16 to train Llama3-8b. We
conduct fine-tuning on Llama3 using LoRA except
that the first two and the last transformer layers
are fine-tuned on all parameters. We set the LoORA
rank to 256, the alpha to 16, and the target mod-
ules include all the linear layers. We use the default
chat template of Llama3 to generate prompts. Other
unspecified parameters use the default settings of
the HuggingFace Trainer. We conduct three tests
for all experiments using the above parameters and
reported the average of the results.

C.4 Training details of scoring model

In the experiments of SDA, we use a fine-tuned
bert-base-uncased for sequence classification as the
scoring model. We construct the training set based
on the SST-2 dataset. For each text in the SST-2
dataset, we use the original one as a positive sam-
ple and generate a negative sample by randomly
replacing each token in the text with the K 4 near-
est tokens. We set the learning rate to 2¢ > and the
number of epochs to 10 for fine-tuning the scoring
model.

C.5 Experimental Environment

All the experiments are evaluated on a machine
with Intel(R) Xeon(R) Platinum 8336C CPU @
2.30GHz, 128GB RAM and 4 NVIDIA A800-
SXM4-40GB. The operating system of the machine
is Debian GNU/Linux 11 and CUDA version is
12.2.

D Other Experiment results

D.1 Classification Tasks

We also test the utility of ObfusLM in other
datasets of GLUE benchmark and verified its
security against KNN+. As shown in Table 9,
ObfusLM achieve similar security guarantee and
utility loss on most of tasks except CoLA. We
analyaze that CoLA is designed for English accept-
ability judgments. Due to the strictness of grammar
judgment, obfuscation applied on token embed-
dings in ObfusLM can have a greater impact on
the utility compared to other tasks.

D.2 Generation Tasks

We report more experimental results on Databricks
under different privacy parameter € in Table 10.

Metric KNN+ on ObfusLM
Plaintext | ObfusLM | Topl Top3 RougeL

CoLA 56.55 29.39 18.16 38.64 24.54
MNLI 84.16 81.14 3449 5490 39.76
MRPC 89.43 86.44 1630 3545 23.66
QNLI 91.78 87.50 20.84 43.60 27.51
QQP 91.34 90.19 25.63 56.63 33.39
RTE 67.51 61.73 16.96 34.19 23.50
STS-B 88.5 84.26 16.36 38.06 22.64

Table 9: Experiments on other classification tasks of
GLUE benchmark. Metrics: Matthews Correlation for
CoLA, F1 for MRPC, Pearson for STS-B, and Accuracy
for others.

€ | Rougel KNN+
Topl Top3 RougeL
0.1 | 55.16 | 13.28 26.09 26.99
0.3 | 56.29 148 28.58 28.25
1.0 | 56.55 | 23.26 3896 34.34
30| 59.17 | 48.64 72.66 56.54

Table 10: Utility vs. security on Databricks under k =
10 and different e.

D.3 Generation Examples

We present straightforward examples to explain
the utility of ObfusLM for text generation. In the
experiment, we use the model fine-tuned under
k = 10,e = 1.0. We set the temperature to 0.6, the
number of beams to 4, and the number of highest
probability to 40. Figure 4 shows the observations
of the client and server during text generation pro-
cess. In the example, both the client’s inputs and
generated texts are only visible to the client. To
recover the texts, we let the server perform KNN
attack on the observed information and recover the
texts according to Topl recovered tokens.

D.4 Client-side Overhead

The extra clients’ overhead in ObfusLM includes
tokenization and obfuscation, both of which take
negligible costs compared to the server side. Cor-
respondingly, as shown in Table 11, we conduct
experiments on Llama3-8b and Alpaca-cleaned un-
der CPU-only environment (Intel(R) Xeon(R) Plat-
inum 8336C) to illustrate the overhead is practical
for the client.

D.5 Experiments on Traditional Models

ObfusLM is not limited to transformer-based mod-
els and can be applied to other architectures, such
as RNNs and CNNs, as long as the models take

1173

Process Party Operation Time usage
. . Client Obfus.catiAon 44.25s
Fine-tuning Tokenization 42.84s
Server Fine-tuning >10hours
Client Tokeniz.ati(')n < 0.001s
Inference Detokenization < 0.001s
Server Inference 1.29s

Table 11: Overhead comparison for client and server
sides.

embedding representations as inputs when process-
ing natural language texts. To demonstrate this, we
evaluated ObfusLM on a BiLSTM (Wang et al.,
2019) model using the SST-2 dataset in Table
12. The text was converted into 100-dimensional
GloVe (Pennington et al., 2014) embeddings be-
fore being fed into the BiLSTM. We maintained
identical model configurations and training param-
eters for both plaintext and ObfusLM (e.g., hidden
size of 256, 2 layers, learning rate of le-3, and 100
epochs). The results indicate that although the util-
ity loss for BILSTM (8%) is higher than for BERT
(3%), ObfusLM still allows the model to converge
on the target task. Performance degradation can be
attributed to two factors:

* GloVe embeddings have magnitudes that devi-
ate more from 1, leading to larger errors when
ObfusLM uses cosine similarity to evaluate
embedding similarity.

* BiLSTM’s sequential hidden state propaga-
tion amplifies the embedding noise intro-
duced by ObfusLM, making it more sensi-
tive to such perturbations. This demonstrates
that ObfusLM’s applicability extends beyond
transformers, albeit with some variations in
performance depending on the model archi-

tecture.
Ace KNN+
" Topl Top3 RougeL
Plaintext ~ 83.71 - - N
ObfusLM 77.01 7.26 33.19 11.83

Table 12: Comparison of Accuracy and Security on
BiLSTM

E Details of Potential Threats

We investigate the security of ObfusLM against
token frequency attack (TFA), substitution deci-
phering attack (SDA), and embedding replacement

attack (ERA). In ObfusLM, each token is shuf-
fled deterministically to an obfuscated index in the
vocabulary. To perform TFA, the attacker can use
a public dataset to count the frequency of token
occurrences and observe the frequency of token
indices in the private dataset uploaded by the client.
Then, similar to the KNN attack, the attacker can
recover each token index of the private dataset to
its corresponding tokens with the one with nearest
frequency in the public dataset.

SDA requires a set of candidate tokens for beam
search and sentence scoring, which are performed
by combining the candidates into sentences using
a trained scoring language model. To obtain these
candidates, the attacker first employs embedding in-
version attacks to generate several candidate tokens
for each encrypted token. The attacker can then ex-
plore various combinations of these candidates to
form potential sentences and use the scoring model
to select the most likely one.

ERA is designed to recover generated texts in
generation tasks. Specifically, instead of using ob-
fuscated weights of model head H, the attacker
still uses the pretrained weights H to calculate the
probabilities of output tokens. Therefore, the at-
tacker is able to detokenize the output token index
as it holds the vocabulary corresponding to the
pretrained model head. After the auto-regressive
generation process, the attacker can observe a set
of generated tokens and try to recognize the client’s
private information from them.

1174

