
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 11696–11708
July 27 - August 1, 2025 ©2025 Association for Computational Linguistics

EpMAN: Episodic Memory AttentioN for Generalizing to Longer Contexts

Subhajit Chaudhury*, Payel Das*, Sarathkrishna Swaminathan, Georgios Kollias,
Elliot Nelson, Khushbu Pahwa‡, Tejaswini Pedapati, Igor Melnyk†, Matthew Riemer

subhajit@ibm.com, daspa@us.ibm.com, sarath.swaminathan@ibm.com,
gkollias@us.ibm.com, enelson@ibm.com, kp66@rice.edu, tejaswinip@us.ibm.com,

igor.melnyk@capitalone.com, mdriemer@us.ibm.com

IBM Research

Abstract

Recent advances in Large Language Models
(LLMs) have yielded impressive successes on
many language tasks. However, efficient pro-
cessing of long contexts using LLMs remains a
significant challenge. We introduce EpMAN
– a method for processing long contexts in an
episodic memory module while holistically at-
tending to semantically relevant context chunks.
The output of episodic attention is then used
to reweigh the decoder’s self-attention to the
stored KV cache of the context during train-
ing and generation. When an LLM decoder
is trained using EpMAN, its performance on
multiple challenging single-hop long-context
recall and question-answering benchmarks is
found to be stronger and more robust across
the range from 16k to 256k tokens than base-
line decoders trained with self-attention, and
popular retrieval-augmented generation frame-
works. Our source code will be made available
at https://github.com/IBM/epman.

1 Introduction

Large language models (LLMs) are highly capable
of many natural language processing (NLP) tasks;
however, they still struggle with generalization to
long inputs that are unseen during training. To
enhance the generalization ability of LLMs on un-
seen long inputs, continual pretraining on longer
sequences has been attempted, which requires sig-
nificant computational investments (Abdin et al.,
2024). One main challenge of training with long
context is the quadratic memory and time com-
plexity of the current self-attention mechanism em-
ployed by most LLMs, making it computationally
expensive and infeasible for processing long se-
quences. To circumvent this, existing solutions
often resort to techniques like sliding window at-

* denotes equal contribution; † Work done at IBM Re-
search; ‡ Work done during internship at IBM Research

Long
document

Episode Entry 1
Episode Entry 2
Episode Entry N

…
Write

Read

Top K episodic
attention

21 32 1 50 1 50 21 32
Noisy
training

Permute &
re-assign

Attention re-weighting

𝑎 !
"!

70.2 72.2 69.7 77.4
99.5

76.8 74.3 78.6

NITH FACTRECALL MFQA LOOGLE

RAG EpMAN

+
BroadAttn

3231 33

-1N +1N

Figure 1: EpMAN uses episodic attention and noisy
training for robust long context performance on recall
and QA tasks (mean over 16k - 256k context lengths)

tention, dilated sliding window, and sparse atten-
tion (Beltagy et al., 2020; Child et al., 2019). In
parallel, scalable position embeddings-based ap-
proaches, such as position interpolation and length
extrapolation, have been proposed which involve
minimal finetuning (Chen et al., 2023).

Despite recent advances in long context process-
ing abilities of LLMs, recent long-context model-
ing benchmarks show that LLMs still underperform
in terms of modeling the input context that has a
length longer or even similar to those seen during
training (Kuratov et al., 2024; Hsieh et al., 2024).
A promising solution to the problem of long con-
text processing is the use of retrieval-augmented-
generation (RAG) frameworks. RAG combines
the strengths of retrieval models and generative
LLMs to handle long contexts. In this framework,

11696

a retrieval model first identifies and retrieves the
relevant context from a large corpus, which is then
passed to the generative model for text generation.
Despite its usefulness, RAG struggles to handle
situations where there remains conflict between re-
trieved information and parametric memory, or the
retrieved context contains irrelevant information,
resulting in hallucination or ignoring the context
while answer generation (Xie et al.).

Thus, the current gap in long context modeling
of LLMs calls for alternative and efficient mech-
anisms for long context handling. For this pur-
pose, in this work, we propose a second attention
mechanism, named as episodic memory attention
(EpMAN), shown in Figure 1, which is utilized to
scale the self-attention according to the importance
of the information present in the context. Inspired
by the dual processing theory proposed in (Kah-
neman, 2011), in which self-attention can be char-
acterized by “System 1”, a mode of thought that
is fast, instinctive but less accurate, the proposed
EpMAN can mimic the slow and calculative think-
ing steps, i.e., the “System 2” mode. EpMAN
considers writing text chunks from the context in
an episodic memory module, estimating their rel-
ative relevance with respect to a given query, and
then utilizing this relevance to reweigh the self-
attention. Experiments on challenging fact recall
and single-hop question-answering from long con-
text scenarios, which include the presence of dis-
tractions and confusions, as well as replaced key-
words and rephrased sentences in the input context,
show the benefit of the LLM trained with EpMAN,
compared to the LLMs trained on long inputs using
self-attention and RAG frameworks.

Our main contributions are:

• A novel architecture combining episodic mem-
ory attention with self-attention during LLM
training, which is inspired by the dual process-
ing theory.

• An effective training method that introduces
noise while estimating attention to the relevant
chunks stored in the episodic memory.

• An attention scope expansion method em-
ployed during inference which enables attend-
ing to the broader context in a more holistic
manner.

• The proposed framework shows better gen-
eralization to recalling and answering from

challenging long context which includes in-
formation that is confusing, irrelevant, or con-
tains replaced keywords or rephrases when
compared to LLMs trained on long context
and RAG systems.

2 Related work

Increasing context length in LLMs introduces sev-
eral challenges that impact model performance. We
elaborate on some of those problems and also other
memory-augmented techniques.

2.1 Long Context Challenges

Recency Bias:
Recent studies (Liu et al., 2024b; Guo and

Vosoughi, 2024; Wang et al., 2024; Schmidgall
et al., 2024) have shown that LLMs tend to priori-
tize information found towards the end of a context
while neglecting important details presented in the
beginning and the middle parts of the context. This
bias is believed to originate from the pre-training
process, where the most informative tokens for pre-
diction are typically the most recent ones.

To address this issue, the authors in
(Peysakhovich and Lerer, 2023) propose at-
tention sorting, which rearranges documents based
on their attention weights and moves documents
that receive higher attention during decoding
towards the end of the context.

Impact of Distractors: Another significant chal-
lenge is the impact of distractors as highlighted in
(Peysakhovich and Lerer, 2023), the accuracy of
long-context language models generally decreases
as the context length increases through the addi-
tion of distractor documents (Li et al., 2024a; Cu-
conasu et al., 2024; Koppenaal and Glanzer, 1990).
This stresses that an overabundance of information,
even if irrelevant, can hinder the model’s ability to
identify and utilize the most pertinent parts of the
context effectively.

Attention Dilution Long-context modeling in
LLMs also suffers due to the phenomenon of atten-
tion dilution, explored in (Liu et al., 2024a; Holla
et al., 2024; Xu et al., 2024; Tian and Zhang, 2024)
which occurs due to the softmax normalization in
the attention mechanism. Since attention weights
must sum to 1, the presence of many irrelevant
documents can result in each receiving a small but
non-negligible amount of attention. This dilution
of focus can overshadow the model’s ability to con-
centrate on the most crucial information.

11697

To address this, the research in (Li et al., 2024b)
proposes a strategy to mitigate attention dilution in
RAG-based systems by training the retriever with
attention scores from a fine-tuned reader.

However, if the reader is not fine-tuned well, the
attention scores it provides might be unreliable,
leading to suboptimal retriever training and ulti-
mately impacting overall performance. Addition-
ally, distilled attention mechanisms might inadver-
tently amplify existing biases present in the train-
ing or retrieved data. Differential Transformer (Ye
et al., 2024) also aims to reduce the noisy attention
on irrelevant tokens by using noise cancellation
by subtracting attention values using two softmax
outputs.

2.2 Memory-Augmented Retrieval
Memory-augmented retrieval involves storing past
contexts and knowledge in a non-trainable mem-
ory bank, allowing the model to retrieve chunk-
level information (Liu et al., 2024c; Modarressi
et al., 2024; Rezazadeh et al., 2024). By storing
information as key-value pairs and utilizing a re-
trieval mechanism, the model can access relevant
past contexts. This approach has the potential to
mitigate the limitations of fixed context windows
and improve the model’s ability to handle long-
range dependencies. However, relying solely on
single-layer representations for retrieval might not
be robust enough and can be unstable.

Our proposed approach, EpMAN, resolves the
challenges of recency bias, distractors, and other
limitations by storing long contexts in a dedicated
memory module and selectively attending to se-
mantically relevant chunks. Rather than focusing
on the most recent inputs, EpMAN retrieves rel-
evant information from the entire stored context,
effectively addressing the "lost in the middle" phe-
nomenon, where relevant information in the middle
of long contexts is often overlooked. Additionally,
the proposed differentiating attention mechanism
with the denoising objective reduces the impact of
distractors, ensuring robust information processing.

Closer to EpMAN, (Wu et al., 2022) combines
the attention to top-k nearest neighbor with self-
attention by using a learnable gate; however, our ap-
proach is simpler, more intuitive, and more suitable
for long context generalization. Another memory-
augmented LLM, known as Larimar (Das et al.,
2024), attends to the readout from an episodic mem-
ory storing the context during decoding and per-
forms gradient-free write to the memory for input

context length generalization. However, Larimar
only attends to a single top-1 readout and therefore
is not suitable for handling tasks in which relevant
information is diffused over the context.

3 EpMAN: Episodic Memory AttentioN

In this section, we first describe the standard atten-
tion implementation in transformer-based language
models (Vaswani et al., 2017). Subsequently, we
outline our proposed differentiating attention over
the KV cache using the episodic memory, referred
as EpMAN. The EpMAN mechanism enables fo-
cusing on the relevant information required for cor-
rect recall or answering, which can be diffused over
the long context in practice.

3.1 Preliminaries

The standard attention mechanism in LLMs is used
to assign relevance weights to the input sequences
when generating the output sequence. The model
learns to pay attention to different tokens of the
input sequence for each token of the response, en-
abling it to generate more accurate and relevant
outputs to the context. The attention mechanism
is implemented using a variant of the scaled dot-
product attention mechanism as described below.

Let us denote the input sequence as X =
[x1,x2, . . . ,xn], where xi is the i-th input vector,
and n is the length of the input sequence. The
attention mechanism computes a set of attention
weights a = [a1, a2, . . . , an], which sums to 1 and
is a distribution over the input sequence. These
attention weights are used to compute a weighted
sum of the input vectors, which is then used as
input to the decoder for the next token.

In the standard attention, we compute the query
vector q as a function of the current decoder hidden
state ht, q = f(ht), where f is a linear transfor-
mation that maps the decoder hidden state to the
query vector. Next, we compute the keys K =
[k1,k2, . . . ,kn] and values V = [v1,v2, . . . ,vn],
where ki and vi are linear transformations of the
input vectors xi similar to query vector. Then, we
compute the dot product of the query vector q and
each key vector ki, followed by a softmax which is
then multiplied by the value vectors to get the con-
text vector at that token as ci = softmax(qK

T
√
dz

)V.
The query, key, and value vectors are learned dur-
ing training.

11698

Paul Graham PG19
Method 16k 32k 64k 128k 16k 32k 64k 128k
Mistral-7B-Instruct-v0.2 62.10 82.35 45.10 25.40 89.00 99.55 59.95 30.00
Phi-3-small-128k-instruct 26.40 56.00 72.00 89.65 15.60 56.35 75.75 71.55
Dragon + Mistral-7B-Instruct-v0.2 71.70 68.80 72.50 67.75 80.80 81.80 82.90 87.10
Dragon + Phi-3-small-128k-instruct 66.25 48.25 47.75 43.80 64.80 58.10 63.90 66.85
EpMAN (uniform train - Exact test) 100.0 100.0 99.2 97.9 99.5 100.0 99.5 100.0
EpMAN (uniform train - NarrowAttn test) 100.0 100.0 100.0 98.2 99.5 100.0 99.5 100.0
EpMAN (noisy train - Exact test) 100.0 100.0 99.1 97.9 99.6 100.0 99.6 100.0
EpMAN (noisy train - NarrowAttn test) 100.0 100.0 100.0 98.3 99.6 100.0 99.5 100.0

Table 1: Performance of various models on needle-in-the-haystack recall task with background / “haystack” text
from both sources - Paul Graham Essays and PG19.

3.2 Details of EpMan - An Episodic
Differentiating Attention

While the standard attention mechanism in LLMs
is effective for shorter contexts, it faces limitations
when dealing with long context inputs due to is-
sues like emergence of attention sink (Xiao et al.,
2023), conflict between input context and pretrain-
ing knowledge (Xie et al.; Yuan et al., 2024a),
and susceptibility to irrelevant information in con-
text (Borgeaud et al., 2022). To address such chal-
lenges, we propose EpMAN, an episodic memory-
based attention mechanism that enables finding rel-
evant parts from the input context while discarding
the irrelevant information, and then reweighing the
standard attention to the relevant parts by using a
relevance estimate.

Memory operations: Given a large document as
input, EpMAN first divides it into smaller entries
(or chunks) that are written in the episodic mem-
ory. The memory consists of two operations, read
and write. One can simply store encodings from a
pretrained frozen retriever in the episodic memory
as the write operation, or train an MLP using the
encodings as input for a learnable write operation.
Similarly, a learnable or a fixed (e.g., cosine) sim-
ilarity function between the query encoding and
the chunk encodings can be used to read from the
context. (more details on trainable read and write
in the appendix)

We use cosine similarity for reading and a
state-of-the-art pretrained retriever model named
Dragon (Lin et al., 2023) in this work*. We refer
to the score obtained from the read operation as
episodic attention (amem) which is used to weigh
KV cache attention for LM training.

Replacing standard attention with differenti-

*We use the multi-turn version: nvidia/dragon-multiturn-
context-encoder

ating attention: In addition to the latent retrieval
encodings, the episodic memory also stores the
KV cache of the context divided into episodic en-
tries (stored in CPU memory due to increased size),
which is processed using the above amem as fol-
lows. Once we get amem for each entry, we mul-
tiply the attention ai = softmax(qK

T
√
dz

) with the
amem episodic attention. This reweighing of stan-
dard attention with episodic attention amem pro-
vides the differentiating attention mechanism that
focuses on the relevant chunk in the memory while
discarding the irrelevant information in the context.
It is important to note that amem is the attention
over chunks, so the attention is the same for all
K-V token embeddings in the chunk. The resulting
attention operation can be described as,

aepman = softmax(
qKT

√
dz

)(V ∗ amem), (1)

where we broadcast the amem value for each entry
to the size of the number of tokens before multiply-
ing with the value vector.

EpMAN thus provides a computationally effi-
cient way to holistically handle long contexts in
LLMs by leveraging an episodic memory atten-
tion mechanism. This approach allows the decoder
model to attend to different chunks of the input se-
quence with different relevance estimates, which is
used to self-distill the standard attention. This self-
distillation of standard attention to input context
enables generating more accurate and contextually
relevant outputs.

3.3 Synthetic Data for Training

To couple our decoder such that it follows the
ranked amem output from the memory operations,
we train it on synthetic data. We use two kinds of
training data as explained below:

11699

Seed QA
dataset

Distracting
Document

Another solid form of carbon is graphite…

C1: Tom Holland played the main
character in Marvel movie No Way Home

CFI KPR
Tom Hiddleston played

Loki in the Marvel
movie Ragnarok

Wayne Rooney played the
main character in Marvel

movie No Way Home

Doc1

Doc1

C1 + KPR

Doc2

C1 + CF1

C1 + CF2

Doc3

Figure 2: CFI and KPR in LV-Eval dataset.

3.3.1 Pre-training dataset
We train the model using a combination of the next
token prediction task and memory retrieval task,
following the loss objective in previous memory-
enhanced architectures (Das et al., 2024). We used
synthetically generated passages from a teacher
model (Mixtral-8x22B-Instruct-v0.1)
which serve as the context for the model. We then
add distractor passages from Wikipedia in the con-
text to increase the context length during training.
We did not use hard negative mining for this data
that we used for QA data described next.

3.3.2 QA synthetic data
We use two types of synthetic QA data as in the
following,

Topic-sampled data: To generate this dataset,
we used the teacher model, providing it with a
topic sampled from a predefined list. The model
was tasked with generating a short paragraph based
on the given topic, which could either be factual
or fictional. Afterward, the same model was in-
structed to create two questions related to the pas-
sage: one that could be answered using the infor-
mation from the text (a related question) and one
that could not be answered solely using the text
(an unrelated question). Additionally, the model
generated answers for both questions. Finally,
a verification step was performed using Llama-
3-70B-Instruct model as a judge, along with the
nightdessert/WeCheck consistency checker
to ensure consistency between the generated pas-
sage, related/unrelated questions, and correspond-
ing answers.

Wikipedia: Firstly, we randomly sample
Wikipedia passages and generate questions and an-
swers from these passages using a teacher model.
We use few-shot examples to guide the teacher
model in generating question answers.

Similar to pretraining data, we add distractors
from other Wikipedia passages in both cases above.
In addition, to make the training more challenging,

we mine context chunks that are similar to the topic
of the relevant chunk (hard negatives) from a pool
of Wikipedia entries which is added as part of the
distracting context. We use an episode size of 16,
where one of the entries is relevant and the others
are distractors. Our chunk size is 256 and the effec-
tive training context size is 4K tokens. We use the
index of the relevant chunk for episodic loss and
the answer tokens for the decoder loss.

3.4 Training with Denoising
The read operation assigns the episodic attention
amem on each of the entries and we use a threshold
to keep the top K entries (similar to RAG) for that
are seen by the decoder to answer the query. How-
ever, different from RAG, our method EpMAN
allows for each of these entries to be weighted
differently such that the decoder can learn from
differentiating attention.

Out-of-domain mismatch: A straightforward
method for decoder training would be to keep the
original amem weight that the read operation pro-
vides to each of the entries of the episode. However,
this strategy is not always the best, particularly
when the goal is to generalize to out-of-distribution
samples. During training the decoder might be-
come biased to expect the relevant chunk to al-
ways have a high episodic attention. For out-of-
distribution (OOD) data, the read operation might
not always assign the highest weight to the most
relevant episodic entry, and in practice, the most
relevant chunk might be ranked as one of the lowest
in the top-K set of chunks. In that case, the above
training strategy, would lead to poor generalization.

Robust training with noisy attention: Since
the episodic us to assign different importance to
each entry, EpMAN proposes a noisy training
scheme where the top K chunks receive random
weights between 1.0 and 0.9. Throughout this work,
we use K=5, unless otherwise mentioned. The
episodic entries are further randomly permuted to
change their relative order to ensure that they are
not arranged in descending order of amem weights.
Randomly permuting the episodic entries adapts
the model to learn from KV entries with discontinu-
ous positional embeddings that would be associated
with the retrieved top-K chunks. Additionally, it al-
lows the decoder to pick up the relevant chunk even
if it is not in the higher bins of the top K entries.
This noisy training provides a denoising objective
that allows the decoder to be robust compared to
uniform amem training.

11700

Method 16k 32k 64k 128k 256k Mean
Mistral-7b-instruct-v0.2 65.3 72.5 41.0 22.5 11.5 42.6
Phi-3-small-128k-instruct 82.0 80.5 81.0 63.0 34.5 68.2
Dragon + Mistral-7b-instruct-v0.2 74.2 71.8 66.0 77.2 69.0 71.7
Dragon + Phi-3-small-128k-instruct 71.8 70.5 68.0 76.0 68.5 71.0
EpMAN (Uniform train - Exact test) 44.5 49.0 48.0 50.2 43.5 47.0
EpMAN (Uniform train - NarrowAttn test) 59.5 64.5 62.5 69.0 59.5 63.0
EpMAN (Uniform train - BroadAttn test) 82.0 73.0 71.5 70.0 79.0 75.1
EpMAN (Noisy train - Exact test) 44.5 49.0 51.0 51.2 45.5 48.2
EpMAN (Noisy train - NarrowAttn test) 60.2 64.5 61.8 68.5 59.0 62.8
EpMAN (Noisy train - BroadAttn test) 81.8 75.2 76.0 75.2 80.2 77.7

Table 2: Performance of various models on Factrecall-en using recall metric. EpMAN with noisy training with
BroadAttn shows the overall best performance.

Loss: We use two losses during training. The
first loss is the episodic attention loss that mini-
mizes the distance between the distribution of the
episodic attention from the read operation and the
true distribution of chunk relevance using cross-
entropy loss for the case where the read and write
operations are learnable. We also use the next-
token prediction loss in the decoder. The total loss
is

L = ED[α ln p(l|q,C) + ln(a|q,C, amem)], (2)

where (q,C, l, a) ∼ D represent the query, con-

text, location of relevant episodic entry and decoder
response respectively. We use α as the weight for
the episodic loss which is typically set to 0.1. In
the main paper, we report results with only decoder
loss for fair comparison with RAG systems.

3.5 BroadAttn: Neighborhood expansion

The top-K episodic entries might be arranged in
a manner such that there might be information
cutoff during read operation (for e.g. delayed co-
reference). In such cases, which is referred to as the
NarrowAttn as the decoder’s attention only includes
top-K chunks, the subject might be described in an
entry (e.g. “Albert Einstien was born in Germany”)
whereas some attribute related to the subject might
be described in a separate entry (e.g. “He taught
himself algebra”). To improve the robustness of
EpMAN in such cases, we expand episodic at-
tention during inference such that it includes the
immediate (sequential) neighbors of each of the
top-K chunks, which is referred as the BroadAttn.
We also test the setting where exact amem weight

for each chunk is attended during test, referred to
as exact test.

Both NarrowAttn and BroadAttn consider pre-
serving the original order of the chunks in which
the information is presented in the original context,
as suggested by (Yu et al., 2024).

4 Experimental details and results

4.1 EpMAN Implementation Details

We use mistralai/Mistral-7B-Instruct-v0.2 as our
decoder and Dragon (Lin et al., 2023) as the re-
triever for our experiments with EpMAN. We use
a sequence length of 256 tokens for each entry and
we cut at sentence boundaries. We use an effective
batch size of 32 and train the models for 20k steps.
We used LoRA (Hu et al., 2021) for training.

4.2 Evaluation datasets

We evaluate EpMAN on a combination of re-
call and question-answering tasks. For recall
tasks, we evaluate on the Needle in the haystack
(NITH) (Kamradt, 2023) and factrecall-en tasks.
For question answering, we use two single-hop,
single-document QA tasks: Multifield QA (Bai
et al., 2023) and Loogle SD (Li et al., 2023). For
factrecall-en, Multifield QA, and Loogle SD, we
use the LV-Eval benchmark, as proposed by (Yuan
et al., 2024a), which subjects LLMs to a more chal-
lenging evaluation by inserting confusing facts into
the context and by replacing keywords and phrases
in the context to make sure that LLMs use com-
prehension of the context, rather than prior knowl-
edge, to answer the questions. We consider the
most challenging scenario included in the LV-Eval
framework, where the context contains both con-
fusing facts and replaced keyword and phrases.

11701

Method 16k 32k 64k 128k 256k Mean
Mistral-7b-instruct-v0.2 65.3 52.5 37.6 34.7 25.0 43.0
Phi-3-small-128k-instruct 45.5 52.5 49.5 31.7 33.7 42.6
Dragon + Mistral-7b-instruct-v0.2 68.3 71.3 66.3 71.3 71.3 69.7
Dragon + Phi-3-small-128k-instruct 56.4 50.5 50.5 58.4 51.5 53.5
EpMAN (Uniform train - Exact test) 64.3 59.4 65.3 69.3 64.4 64.5
EpMAN (Uniform train - NarrowAttn test) 63.4 66.3 65.4 72.3 63.4 66.1
EpMAN (Uniform train - BroadAttn test) 69.3 70.3 71.3 68.3 72.3 70.3
EpMAN (Noisy train - Exact test) 59.4 60.4 62.4 64.4 60.4 61.4
EpMAN (Noisy train - NarrowAttn test) 71.3 66.3 67.3 75.3 63.4 68.7
EpMAN (Noisy train - BroadAttn test) 74.3 73.3 73.3 75.3 75.3 74.3

Table 3: Performance of various models on multifieldqa-en-mixup using LLM-as-Judge.

Needle in the haystack: We use NITH (Kam-
radt, 2023) which is a well-known recall task for
long context inputs. This task assumes that there
is a needle sentence located in the long context in-
put (haystack) and tests if an LLM can complete a
partial representation of that sentence. We use con-
text lengths of varying size (16k, 32k, 64k, 128k)
with needles located in 200 evenly spaced loca-
tions. Our needle sentence is: "The best thing to
do in San Francisco is eat a sandwich and sit in
Dolores Park on a sunny day". We experiment with
two haystacks: (i) The dataset of Paul Graham
essays following (Kamradt, 2023) and (ii) books
from PG19 corpora (Rae et al., 2020), inspired by
(Kuratov et al., 2024). We concatenate the full set
of Paul Graham essays and shuffle the sentences
from all PG19 test texts† (>11M tokens), prior to
context selection.

LV-Eval: LV-Eval is a long context benchmark
with the context length varying between 16k, 32k,
64k, 128k and 256k. LV-Eval is comprised of
the Factrecall-en, Multifield QA and Loogle SD
datasets. To begin with, it is already difficult for a
model to answer a question based on such a large
context. To make it even more challenging, LV-
Eval created two variants of the original datasets
which we show in Figure 2. In the Confusing
Facts Insertion (CFI) variant, GPT-4 is prompted
to generate sentences that are similar to the given
question and the answer. These sentences are re-
solved for inconsistencies by human annotators and
are then randomly placed in the original context.
Owing to their similarity with the question and the
answer, the purpose of the newly added sentences
is to mislead the model. An example of CFI is
illustrated in 2 where the original sentence refers

†https://huggingface.co/datasets/
emozilla/pg19-test.

to actor Tom Holland and the Marvel movie No
Way Home. To confound the model, the newly gen-
erated sentence talks about a different actor, Tom
Hiddleston and his Marvel movie, Ragnarok. The
Keyword and Phrase Replacement (KPR) vari-
ant is generated by selecting certain keywords or
phrases and replacing them with other keyword
or phrase throughout the context. This is done to
ensure that the model is not reliant on its memo-
rized prior knowledge while answering the given
question. In Figure 2, the KPR sentence is formed
by replacing the actor Tom Holland in the original
sentence with the footballer Wayne Rooney.

4.3 Baselines
We choose two kinds of baselines for comparison
with EpMAN described below:

Baseline models: We first compare with
instruction-tuned LLM decoders to investigate if
they can generalize to longer context. While consid-
ering Mistral-7b-instruct-v0.2, follow-
ing (Yuan et al., 2024b), we use half of the context
from the top and half from the bottom in case the
context size exceeds the model train context length.
We also consider Phi-3-small-128k-instruct as a
baseline model that was specifically trained with
longer context inputs.

RAG: We also compare with RAG systems to
specifically evaluate if our EpMAN style training
yields benefits over Retrieval Augmented Genera-
tion. We used state-of-the-art retrievers for instance
Dragon (Lin et al., 2023; Liu et al., 2024d) with the
above baseline decoder models.

4.4 Results
4.4.1 Simple Recall Performance
NITH: Table 1 shows the recall of EpMAN with
other baselines for sentence completion NITH task.

11702

https://huggingface.co/datasets/emozilla/pg19-test
https://huggingface.co/datasets/emozilla/pg19-test

Method 16k 32k 64k 128k 256k mean
Mistral-7b-instruct-v0.2 75.6 56.3 40.6 32.5 21.9 45.4
Phi-3-small-128k-instruct 65.6 65.6 64.4 46.2 30.0 54.4
Dragon + Mistral-7b-instruct-v0.2 78.1 76.9 76.9 78.1 76.9 77.4
Dragon + Phi-3-small-128k-instruct 65.6 63.1 61.8 63.7 63.7 63.6
EpMAN (Uniform train - Best test) 69.4 68.8 67.5 69.4 66.9 68.4
EpMAN (Uniform train - Uniform test) 71.3 71.9 70.6 72.5 72.5 71.8
EpMAN (Uniform train - BroadAttn test) 78.1 79.4 77.5 78.8 79.4 78.6
EpMAN (Noisy train - Best test) 70.6 72.5 70.6 70.0 70.6 70.9
EpMAN (Noisy train - Uniform test) 72.5 73.1 73.1 70.6 71.3 72.1
EpMAN (Noisy train - BroadAttn test) 75.6 77.5 76.3 75.0 75.0 75.9

Table 4: Performance of on loogle-SD-mixup using LLM-as-judge.

This is a simple recall task and EpMAN shows near
perfect recall score on both the Paul Graham and
PG-19 haystack cases showing that our decoder
coupling with episodic attention can successfully
complete the needle sentence when presented with
partial information. The large context models, al-
though trained at higher context length, can hal-
lucinate and does not result in high recall. Using
RAG with baseline decoders with Dragon retriever
improves performance at higher context length al-
though the recall is not perfect. Since this is a
simple task, EpMAN with uniform and noisy train-
ing shows similar performance. Additionally, Nar-
rowAttn and Exact methods show similar perfor-
mance since information diffusion does not happen
in this simple task.

4.4.2 LV-Eval (CFI + KPR) performance
FactRecallEn: From Table 2, we ob-
serve that for the baseline models, the
Phi-3-small-128k-instruct gets good
performance on shorter context until 64k context
size, however does not perform well for higher
context lengths. Adding Dragon with these models
improves long context performance, however
EpMAN shows the best overall performance. It
is important to note that Exact inference does not
perform well for this dataset because the Dragon
encoder does not always extract the relevant
context as the top entry, due to presence of CFI
and KPR as described in Section 4.2. Therefore,
the relevant entry in the episode gets a low
episodic attention score. Noisy training introduces
robustness in the training, hence yields superior
performance on longer context, even compared to
uniform training due to the denoising objective.
BroadAttn during inference provides additional
performance boost at all context lengths.

MultifieldQA: As we move from recall tasks
to complex QA tasks, it becomes more evident
that BroadAttn and noisy training improves the ro-
bustness of the decoder. Table 3 shows that noisy-
trained EpMAN with BroadAttn get the best LLM-
as-Judge score on this dataset compared to the other
combinations. Similar to FactRecall-en, the pres-
ence of CFI and KPR, makes it difficult for the
retriever to assign correct episodic weights in this
challenging benchmark. Baseline models strug-
gle to get competitive score; however, adding a
retriever to Mistral-7b instruct shows promising
performance. However, since this decoder in sim-
ple RAG setup is not trained to expect noise in
retrieval, noisy-trained EpMAN out-performs the
RAG baseline.

LoogleQA: Table 4 shows the performance on
LoogleQA task. We observe Dragon + Mistral de-
coder gives the best performance among the base-
lines, while the non-RAG systems does not show
competitive performance. For EpMAN, uniform
training with BroadAttn gives the best result outper-
forming the best baseline model. For Loogle (Li
et al., 2023) we hypothesize that since some of
the data is curated from Wikipedia, it might be in-
domain compared to our synthetic training data,
which is also sourced from Wikipedia. Addition-
ally, the data for training the retriever is also de-
rived from Wikipedia (Lin et al., 2023). Therefore,
the retriever might not add noise in this case, and
consequently the denoising objective might not be
necessary for robust response generation.

5 Conclusions

We present EpMAN - a novel method to gener-
alize to long context using episodic attention in
language models. Our method uses a two-level at-

11703

tention mechanism by first estimating the relative
relevance of entries within a context and then re-
weighting the self-attention scores for the entries
by the corresponding episode-level relevance score.
Our architectural improvements - differentiating at-
tention and training with denoising objective - show
robust performance on complex recall and question
answering tasks in the presence of distracting infor-
mation and replaced keywords. Additionally, our
attention scope expansion during inferences also
proves to be beneficial in such challenging settings
especially for QA tasks.

6 Limitations

While our method proposes techniques to improve
attention over relevant chunk, we store the full
KV cache for this work, which would take large
CPU/GPU memory for large document processing
and might require more processing time for CPU
to GPU transfers (when we store the KV cache
in CPU). Furthermore, using a large top K value
for episodic attention would also requires more
memory for training, especially large models. Ad-
ditionally, another limitation is that the benefits of
uniform/noisy training and exact/narrow/broad at-
tention depends on the nature and complexity of the
task. We plan to introduce methods like KV cache
compression and pruning to make our approach
more scalable and efficient in future works.

References
Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan,

Jyoti Aneja, Ahmed Awadallah, Hany Awadalla,
Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harki-
rat Behl, et al. 2024. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv
preprint arXiv:2404.14219.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu,
Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. 2023. Longbench:
A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508.

Iz Beltagy, Matthew E. Peters, and Arman Cohan.
2020. Longformer: The long-document transformer.
Preprint, arXiv:2004.05150.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoff-
mann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste
Lespiau, Bogdan Damoc, Aidan Clark, et al. 2022.
Improving language models by retrieving from tril-
lions of tokens. In International conference on ma-
chine learning, pages 2206–2240. PMLR.

Jianlv Chen, Shitao Xiao, Peitian Zhang, Kun Luo, Defu
Lian, and Zheng Liu. 2024. Bge m3-embedding:
Multi-lingual, multi-functionality, multi-granularity
text embeddings through self-knowledge distillation.
arXiv preprint arXiv:2402.03216.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and
Yuandong Tian. 2023. Extending context window of
large language models via positional interpolation.
Preprint, arXiv:2306.15595.

Rewon Child, Scott Gray, Alec Radford, and Ilya
Sutskever. 2019. Generating long sequences with
sparse transformers. Preprint, arXiv:1904.10509.

Florin Cuconasu, Giovanni Trappolini, Federico Sicil-
iano, Simone Filice, Cesare Campagnano, Yoelle
Maarek, Nicola Tonellotto, and Fabrizio Silvestri.
2024. The power of noise: Redefining retrieval for
rag systems. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, pages 719–729.

Payel Das, Subhajit Chaudhury, Elliot Nelson, Igor Mel-
nyk, Sarath Swaminathan, Sihui Dai, Aurélie Lozano,
Georgios Kollias, Vijil Chenthamarakshan, Soham
Dan, et al. 2024. Larimar: Large language mod-
els with episodic memory control. arXiv preprint
arXiv:2403.11901.

Xiaobo Guo and Soroush Vosoughi. 2024. Serial posi-
tion effects of large language models. arXiv preprint
arXiv:2406.15981.

Kiran Voderhobli Holla, Chaithanya Kumar, and Aryan
Singh. 2024. Large language models aren’t all that
you need. arXiv preprint arXiv:2401.00698.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shan-
tanu Acharya, Dima Rekesh, Fei Jia, Yang Zhang,
and Boris Ginsburg. 2024. Ruler: What’s the real
context size of your long-context language models?
Preprint, arXiv:2404.06654.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Daniel Kahneman. 2011. Thinking, fast and slow. Far-
rar, Straus and Giroux, New York.

Gregory Kamradt. 2023. Needle In A Haystack - pres-
sure testing LLMs. Github.

Lois Koppenaal and Murray Glanzer. 1990. An ex-
amination of the continuous distractor task and the
“long-term recency effect”. Memory & Cognition,
18(2):183–195.

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rod-
kin, Dmitry Sorokin, Artyom Sorokin, and Mikhail
Burtsev. 2024. Babilong: Testing the limits of llms
with long context reasoning-in-a-haystack. arXiv
preprint arXiv:2406.10149.

11704

https://arxiv.org/abs/2004.05150
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/2306.15595
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/1904.10509
https://arxiv.org/abs/2404.06654
https://arxiv.org/abs/2404.06654
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTest_NeedleInAHaystack/tree/main

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan
Zhang. 2023. Loogle: Can long-context language
models understand long contexts? arXiv preprint
arXiv:2311.04939.

Zhuowan Li, Cheng Li, Mingyang Zhang, Qiaozhu
Mei, and Michael Bendersky. 2024a. Retrieval aug-
mented generation or long-context llms? a compre-
hensive study and hybrid approach. arXiv preprint
arXiv:2407.16833.

Zizhong Li, Haopeng Zhang, and Jiawei Zhang. 2024b.
Unveiling the magic: Investigating attention dis-
tillation in retrieval-augmented generation. arXiv
preprint arXiv:2402.11794.

Sheng-Chieh Lin, Akari Asai, Minghan Li, Barlas Oguz,
Jimmy Lin, Yashar Mehdad, Wen tau Yih, and Xilun
Chen. 2023. How to train your dragon: Diverse
augmentation towards generalizable dense retrieval.
Preprint, arXiv:2302.07452.

Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishna-
murthy, and Cyril Zhang. 2024a. Exposing attention
glitches with flip-flop language modeling. Advances
in Neural Information Processing Systems, 36.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2024b. Lost in the middle: How language
models use long contexts. Transactions of the Asso-
ciation for Computational Linguistics, 12:157–173.

Weijie Liu, Zecheng Tang, Juntao Li, Kehai Chen, and
Min Zhang. 2024c. Memlong: Memory-augmented
retrieval for long text modeling. arXiv preprint
arXiv:2408.16967.

Zihan Liu, Wei Ping, Rajarshi Roy, Peng Xu, Chankyu
Lee, Mohammad Shoeybi, and Bryan Catanzaro.
2024d. Chatqa: Surpassing gpt-4 on conversational
qa and rag. Preprint, arXiv:2401.10225.

Ali Modarressi, Abdullatif Köksal, Ayyoob Imani,
Mohsen Fayyaz, and Hinrich Schütze. 2024. Mem-
llm: Finetuning llms to use an explicit read-write
memory. arXiv preprint arXiv:2404.11672.

Alexander Peysakhovich and Adam Lerer. 2023. At-
tention sorting combats recency bias in long context
language models. arXiv preprint arXiv:2310.01427.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayaku-
mar, Chloe Hillier, and Timothy P. Lillicrap. 2020.
Compressive transformers for long-range sequence
modelling. In International Conference on Learning
Representations.

Alireza Rezazadeh, Zichao Li, Wei Wei, and Yujia Bao.
2024. From isolated conversations to hierachical
schemas: Dynamic tree memory representation for
llms. In The First Workshop on System-2 Reasoning
at Scale, NeurIPS’24.

Samuel Schmidgall, Carl Harris, Ime Essien, Daniel Ol-
shvang, Tawsifur Rahman, Ji Woong Kim, Rojin Zi-
aei, Jason Eshraghian, Peter Abadir, and Rama Chel-
lappa. 2024. Addressing cognitive bias in medical
language models. arXiv preprint arXiv:2402.08113.

Yuan Tian and Tianyi Zhang. 2024. Selective prompt
anchoring for code generation. arXiv preprint
arXiv:2408.09121.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

Ziqi Wang, Hanlin Zhang, Xiner Li, Kuan-Hao Huang,
Chi Han, Shuiwang Ji, Sham M Kakade, Hao Peng,
and Heng Ji. 2024. Eliminating position bias of
language models: A mechanistic approach. arXiv
preprint arXiv:2407.01100.

Yuhuai Wu, Markus N. Rabe, DeLesley Hutchins, and
Christian Szegedy. 2022. Memorizing transformers.
Preprint, arXiv:2203.08913.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song
Han, and Mike Lewis. 2023. Efficient streaming
language models with attention sinks. arXiv preprint
arXiv:2309.17453.

Jian Xie, Kai Zhang, Jiangjie Chen, Renze Lou, and
Yu Su. Adaptive chameleon or stubborn sloth: Re-
vealing the behavior of large language models in
knowledge conflicts. In The Twelfth International
Conference on Learning Representations.

Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli.
2024. Hallucination is inevitable: An innate lim-
itation of large language models. arXiv preprint
arXiv:2401.11817.

Tianzhu Ye, Li Dong, Yuqing Xia, Yutao Sun, Yi Zhu,
Gao Huang, and Furu Wei. 2024. Differential trans-
former. arXiv preprint arXiv:2410.05258.

Tan Yu, Anbang Xu, and Rama Akkiraju. 2024. In
defense of rag in the era of long-context language
models. arXiv preprint arXiv:2409.01666.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang,
Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, et al. 2024a. Lv-eval:
A balanced long-context benchmark with 5 length
levels up to 256k. arXiv preprint arXiv:2402.05136.

Tao Yuan, Xuefei Ning, Dong Zhou, Zhijie Yang,
Shiyao Li, Minghui Zhuang, Zheyue Tan, Zhuyu
Yao, Dahua Lin, Boxun Li, et al. 2024b. Lv-eval:
A balanced long-context benchmark with 5 length
levels up to 256k. arXiv preprint arXiv:2402.05136.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

11705

https://arxiv.org/abs/2302.07452
https://arxiv.org/abs/2302.07452
https://arxiv.org/abs/2401.10225
https://arxiv.org/abs/2401.10225
https://openreview.net/forum?id=SylKikSYDH
https://openreview.net/forum?id=SylKikSYDH
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://arxiv.org/abs/2203.08913

A Effect of trainable memory operations

In the previous experiments, we used the setting of
a fixed retriever using Dragon (Lin et al., 2023) for
fair comparison with the baseline methods. How-
ever, as we described in Section 3.2, our memory
operations can also be trained using the loss de-
scribed in Equation 2. We trained EpMAN in a
two phase manner where in phase 1 we train the
memory operations (read and write are single layer
MLPs) and a BGE (Chen et al., 2024) retriever.
We divide our training data into different samples
phase 1 and 2 respectively. Once we train the first
phase, we use the train memory operation to obtain
the episodic attention on the chunks. In phase 2,
only the decoder parameters are updated.

Table 5 shows the performance of the EpMAN
with trained memory operations. Since the phase
1 training improves the retriever performance for
obtaining the relevant chunk from the large con-
text, the trained decoder can generate accurate
responses leading to improved performance com-
pared to fixed retriever setting. However, we do not
report this in the main paper because the RAG base-
lines should also use such an improved retriever for
fair comparison. It should be noted that although
we are using a trained retriever + memory opera-
tions in this setting, the data we are evaluating is
out-of-distribution. To improve the performance
on a large variety of OOD data, we can train the
retriever using the retriever dataset in addition to
our dataset using contrastive learning.

B Effect of top K for BroadAttn

In this experiment, we look at the effectiveness of
using BroadAttn for various values of top K. We
used a default value for top K as 5 for the experi-
ments in the main paper (except for factrecall-en
where we use top K value of 3). Table 7 show
the performance on factrecall-en for various top K
values. We find that a top K value of 2 performs
better for BroadAttn. We hypothesize that since
BroadAttn includes the relevant context neighbors
it might add some distractor chunks that might con-
fuse the decoder. Therefore, having a lower top K
would reduce the number of such distractor chunks
leading to better performance. However, it should
be noted that for complicated QA datasets, where
the retriever might not be able to pick the relevant
context in a smaller top K setting, it might lead to
worse performance. Therefore, this analysis might
not be general and might vary based on the com-

plexity of the dataset.

C LLM-as-Judge Prompt

We evaluate the performance of various models
on MultiFieldQA and LoogleQA using LLM-as-
Judge (Zheng et al., 2023). The existing met-
rics that was used in LVEval (Yuan et al., 2024a)
did not account for variation in length in the an-
swers compared to the gold. Also, those met-
rics did not consider rephrases in the answers.
Therefore, we found, although the answers were
correct (albeit full sentence responses), the F1
score metric did not reflect that. Therefore, we
used MISTRALAI/MIXTRAL-8X22B-INSTRUCT-
V0.1 to compare the generated responses with the
gold response. Figure 3 shows the prompt we used
for this purpose.

You are tasked as an expert language
model judge to analyze two answers
from different sources.
Your objective is to determine how
similar they are.
Provide a score based on their
correspondence:

Score of 0 (Zero): Assign this
score if the answers discuss
different things and are unrelated.

Score of 1 (One): Assign this score
if the answers are similar or have
a common theme or topic in common.

Issue your final score as:

FINAL SCORE: 0 for mismatched
passages.
FINAL SCORE: 1 for matched passages.

Here is the first answer:
<<generated answer>>.
And here is the second answer:
<<gold answer>>.
Now go ahead and provide your final
score, accurately reflecting
similarity. Make sure to use the
format
"FINAL SCORE: [your score]" as your
only output. Skip the preamble and
provide only the final score.

Figure 3: LLM-as-Judge prompt that was used to
measure the performance of the MultiFieldQA and
LoogleQA

D Details about the synthetic data

In addition to the description in Sec 3.3.2 in the pa-
per, we provide additional details of our synthetic
data. For each type of synthetic dataset, we add

11706

Method 16k 32k 64k 128k 256k Mean
Mistral-7b-instruct-v0.2 65.3 72.5 41.0 22.5 11.5 42.6
Phi-3-small-128k-instruct 82.0 80.5 81.0 63.0 34.5 68.2
Dragon + Mistral-7b-instruct-v0.2 74.2 71.8 66.0 77.2 69.0 71.7
Dragon + Phi-3-small-128k-instruct 71.8 70.5 68.0 76.0 68.5 71.0
EpMAN (Noisy train - BroadAttn test) 81.8 75.2 76.0 75.2 80.2 77.7
EpMAN (+ trainable read/write) 83.0 88.5 89.0 89.0 78.0 85.5

Table 5: Performance of various models on Factrecall-en using recall metric. EpMAN with noisy training with
BroadAttn shows overall best performance.

Method Total C0 C1 C2 C3 C4
Topic Sampled 171576 34200 34262 34280 34362 34472
Wikipedia 89253 17812 17636 18257 17765 17783

Table 6: Details of synthetic data used for training EpMAN

hard-negatives in the training set. We show the
total number of training samples and the number
of samples with m hard-negative given by Cm col-
umn in Table 6. For checking the consistency of the
answer with the context, we used factuality model
(NIGHTDESSERT/WECHECK) to ensure that the
generated passage, questions and corresponding
answers are factually consistent. In addition, we
also manually checked random samples from the
synthetic data to ensure that generated samples are
of sufficient high quality. For the synthetic data
based on wikipedia, since the passages are sam-
pled from wikipedia they are human generated and
not synthetically generated. In this case, only the
question and answer is generated using the teacher
model. Similar to previous case, we also perform
manual consistency check of random samples from
the data to ensure they are of high quality.

We show an example of a topic sampled gener-
ated data with a hard negative below:

• Synthetic Question: What is the estimated
age of the deposits in which the fossils of
Cystoides estonicus were found, according to
the passage?

• Synthetic Context: Recent discoveries in
the field of paleontology have shed new light
on the ancient crustacean group Cystoidea,
with the unearthing of exceptionally preserved
fossils in the Upper Ordovician deposits of
Estonia. The newly described species, Cys-
toides estonicus, boasts an extraordinary level
of ornamentation, featuring intricate patterns
of ridges and tubercles on its calcite shell.
Measuring up to 10 centimeters in diame-
ter, these ancient echinoderms are believed

to have played a crucial role in the Ordovician
ecosystem, serving as both predators and prey
for other marine organisms. The remarkable
preservation of soft tissues in these fossils
has also provided valuable insights into the
anatomy and possible feeding mechanisms
of these enigmatic creatures. Further study
of Cystoides estonicus is expected to signifi-
cantly expand our understanding of the evolu-
tion and diversification of cystoids during the
Paleozoic Era.

• Answer: The age of the deposits in which the
fossils of Cystoides estonicus were found is
from the Upper Ordovician period.

• Hard negative: In the course of time, how-
ever, a shift can be observed in the tempo-
ral significance of these terms, from post-
Eocene to post-Early Miocene to post-middle
Pleistocene. The region is seismically ac-
tive and is generally ascribed to the re-
establishment of an equilibrium after the latest
(mid-Pleistocene) deformation phase. Some
authors believe that the subduction process is
still ongoing, which is a matter of debate. His-
tory. Calabria has one of the oldest records
of human presence in Italy, which date back
to around 700,000 BC when a type of Ḧomo
erectus ëvolved leaving traces around coastal
areas. During the Paleolithic period Stone
Age humans created the B̈os Primigenius ,̈ a
figure of a bull on a cliff which dates back
around 12,000 years in the Romito Cave in
the town of Papasidero. When the Neolithic
period came the first villages were founded

11707

Method Top K 16k 32k 64k 128k 256k Mean
EpMAN (Uniform train - BroadAttn test) 2 88.2 82.8 78.2 79.5 82.5 82.2
EpMAN (Noisy train - BroadAttn test) 2 87.0 86.0 80.5 80.2 82.2 83.2
EpMAN (Uniform train - BroadAttn test) 3 82.0 73.0 71.5 70.0 79.0 75.1
EpMAN (Noisy train - BroadAttn test) 3 81.8 75.2 76.0 75.2 80.2 77.7

Table 7: Performance of various top K values on factrecall-en dataset using recall metric. Top K value of 2 with
noisy training gives the best score for this dataset

Model 16k 32k 64k 128k 256k Average
DRAGON + Mistral-7B-Instruct-v0.2 0.83 1.00 1.37 2.09 3.50 1.76
EpMAN (NarrowAttn) 1.19 1.29 1.31 1.50 1.96 1.45
EpMAN (BroadAttn) 2.01 2.03 2.12 2.14 2.52 2.17

Table 8: Wall-clock processing time for baseline models and EpMAN in both NarrowAttn and BroadAttn setting.
Averages over 10 samples (in secs); topk=5

around 3,500 BC. Antiquity.

E Episodic attention and training

We provide additional details about amem based
transformation of self attention (described in Sec-
tion 3.2 and 3.4). Suppose, we have a docu-
ment/context with N tokens – the corresponding
KV dimensions are NX32X128X8 (for each K
and V matrix) for Mistral model since it has the
head dimension of 128 and 8 multi-heads and
32 layers. We do not mention the batch dimen-
sion here and assume B=1 for simplified expla-
nation. Assuming that each chunk has a length
of 256 tokens, there are Nep number of chunks
where Nep = N/256. We obtain chunk-level
episodic weights (lets call it achunkmem vector) of
size Nep. Since the softmax score, given by

xsoftmax = softmax(qKT)√
dz

, is of size N (it attends
to the whole context), we broadcast the Nep sized
achunkmem vector to N sized vector amem vector, such
amem[k ∗ 256 : (k + 1) ∗ 256] = achunkmem [k]. Sub-
sequently, amem is used to reweight the xsoftmax

which is then multiplied with the value vector to
get the final context vector.

In our implementation, we use random sampling
between [1, 1 − βK], where β signifies the slope
of episodic attention attenuation. This setup en-
forces the setting that as the number of top K
chunks increases, some of the chunks should get
high weights while other chunks would get lower
weights. This would emphasize diversity of amem

weights mimicking retrieval weights during infer-
ence on OOD dataset (explained in Sec 3.4). By
using random sampling, we ensure that the model
does not always assign high weights to the top
chunks for in-distribution training; otherwise train-

ing the decoder with the original retrieval weights
would lead to overfitting and poor generalization
to OOD datasets. For our experiments, we use
β = 0.2 and therefore we sample from [1.0, 0.9]
since we use top K = 5 during training. This setup
enables the decoder to attend to chunks that do not
share the highest similarity with respect to the ques-
tion during inference, but still are of high relevance.
As a result, the OOD generalizability of the EpMan
attention is enhanced, as the decoder is not trained
to only attend to the chunks of highest similarity
seen during training.

F Wall-clock time

To compare the time performance of the EpMAN
method with RAG methods, in Table 8 we show
the total processing time for a baseline model and
EpMAN for factrecall-en. The overall computation
for inference in EpMAN is comparable to RAG
methods because the extra processing that is in-
volved in episodic attention re-weighting and noise
injection is performed only in the training and not
inference. We compare the time required for com-
putation in two modes as below:

NarrowAttn: This setting is exactly similar to
RAG processing pipeline since it uses uniform
weight of 1.0 for the top_K retrieved chunks. As
we see from the above table, the average total time
for baseline (1.76 s) and EpMAN (1.45 s) is very
similar.

BroadAttn: In this setting, we perform some
additional computation to extend to the neighbors
of the top_K chunks. However, this additional step
is not very expensive and increase in computational
time compared to the baseline is not order of mag-
nitude different (1.76s vs 2.17s per sample).

11708

